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We consider a massive complex scalar field with contact interactions with a source and show that, upon
Bose-Einstein condensation, there is an emergent long-range interaction between sources. This interaction
becomes long-range in the limit of vanishing self-interaction between Bose-Einstein constituents. More
generally, the range is given by l−1 ∝

ffiffiffiffiffiffiffiffiffiffiffi
λn=m

p
, with λ being the 2-body self-interaction coupling constant,

n the particle number density in the condensate, and m the mass of the condensed particles. Naively this
may sound surprising since in λ → 0 limit gapless excitations of the condensate have dispersion relation
ωk ¼ k2=2m, yet for the mediated force we have F ∝ 1=r2. The reason behind this seemingly
counterintuitive result lies in the fact that the force is being mediated by the phonon, which happens
to acquire a nontrivial derivative interaction with the source. We discuss the potential ramifications of this
observation for dark matter models. In particular, we show that this force can compete with gravity on
galactic scales for a wide range of dark matter mass, provided that the interaction with baryons allows the
presence of an extended dark matter condensate core. The effect could be of particular interest in ultralight
dark matter models, such as Fuzzy Dark Matter.
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I. INTRODUCTION

In this paper, we discuss the emergence of long-range
correlations in a Bose-Einstein condensate (BEC) ofmassive
particles. To the best of our knowledge, Ferrer andGrifols [1]
were the first to find this effect for BEC of noninteracting
particles. There, the effective potential between sources (with
contact four-point interactionswith theBECbuilding blocks)
was obtained using finite-temperature field theory methods.
In particular, the interaction between sourceswas viewed as a
loop effect, with the massive degree of freedom (which
makes up the condensate) running in the loop. As shown in
[1], in the presence of a heat bath of ideal gas (with Bose-
Einstein statistics) the finite-temperature modification to the
propagator of massive particles leads to the emergence of a
long-range force. The effect is a bosonic analog of the Kohn-
Luttinger effect [2], which transforms the repulsive contact
interaction of fermions into a long-range attractive one in the
presence of the Fermi sea. According to [2], this effect is
unrelated to the fermion-phonon attractive interaction in
metals, or to van der Waals forces, and is instead due to the

sharpness of the Fermi surface. In the absence of sharpness
the interactionwould be short-range and decay exponentially
at large distances.
In this work, we show the emergence of long-range

correlations using merely a classical field theory. The
advantage of our approach is its simplicity; there is no
need to invoke finite-temperature field theory in the
analysis. Moreover, the precise nature of statistics is also
irrelevant; the analysis relies solely on the presence of a
homogeneous bosonic field-configuration. The disadvant-
age of this method, relative to the one adopted in [1], lies in
the fact that it can be only applied at temperature well
below the critical temperature. However, for cosmological
considerations this is precisely the limit we are interested
in. On the flip side, our analysis is easily generalizable to
self-interacting theories. In fact, we will see that in general
the presence of interactions limits the range of the emergent
force. Moreover, our approach allows to investigate the
case of high-density sources, the presence of which distorts
the condensate significantly and as such makes the analysis
of [1] inapplicable. As we will see, because of phenom-
enological constraints, precisely in the regime of strongly
deformed condensate can the long-range interaction
between sources compete with gravity.
Besides being an interesting effect in and of itself, the

emergent long-range interactions could have important
phenomenological consequences for dark matter models
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in which particles form BECs in galactic halos [3–8]. As
one example, we recently proposed a novel dark matter
model [6–8] in which dark matter particles condense into a
superfluid phase in the central region of galactic halos. (See
also [9–17].) Phonon excitations mediate a long-range
force between baryons, resulting in an effective force
law F ∝ 1=r that explains various empirical galaxy scaling
relations between dark and baryonic components [18–20].
This requires coupling baryons to the phase of the dark
matter condensate, which explicitly breaks (albeit weakly)
the global Uð1Þ symmetry.
In this paper, instead of mediating a force through the

exchange of the phase degree of freedom, let us see what
happens if we exchange the modulus of the complex scalar
field instead, compatible with the Uð1Þ symmetry. Based
on the intuition from the Higgs mechanism, a natural
reaction is that this attempt is futile from the get-go. In
simple superfluids with bosonic origin there are usually two
degrees of freedom in the spectrum: a massless/Goldstone
mode and a heavy mode with mass 2m corresponding to the
particle pair creation. The analogy with the linear sigma
model may mislead us to think that the modulus is a heavy
mode. However, because the superfluid state breaks
Lorentz invariance spontaneously, the situation is more
interesting—both heavy and light modes are some linear
combinations of the phase and the modulus of the complex
scalar field. As a result, the range of the force mediated by
the modulus can be much larger than the Compton wave-
length of the heavy mode.1

II. THEORY

Consider a complex scalar field with quartic self-
interaction and Uð1Þ-invariant coupling to a source J,

L ¼ −j∂Φj2 −m2jΦj2 − λ

2
jΦj4 − 1

Λ2
jΦj2J: ð1Þ

In most of our discussion, we will take the source J to be a
density operator, J ¼ ρ. It should be stressed that because
this is a theory with a mass gap, there are no long-range
correlations in vacuum. In particular, if we take two probe
sources (introduced as J) there will be no long-range
Φ-mediated force between them in vacuum. Another
obvious reason for the absence of such correlation is the
fact that there is only a contact interaction. However, the
situation changes dramatically if we submerge these
sources within a fluid made of Φ particles.
It is well known that if λ ≥ 0, Φ can form a stable

homogenous Bose-Einstein condensate. Moreover, if λ is
strictly positive, then the condensate will exhibit super-
fluidity, resulting in the absence of dissipation for subsonic

motion. In the semi-classical (i.e., mean-field) description,
the unperturbed superfluid state is described by a homo-
geneous classical field configuration, while the excitations
about this state are quantized.
Explicitly, in the absence of sources (i.e., J ¼ 0) the

superfluid state is described, as usual, by the following
solution to the equations of motion

Φ ¼ veiμt; μ2 ¼ m2 þ λv2: ð2Þ

On this background, the Uð1Þ charge density is given by
n ¼ 2μv2, which corresponds to the particle number
density in the superfluid state. In other words, this classical
background is determined by one external parameter, n.
The spectrum of perturbations around this classical

background is also well known. In particular, because of
Goldstone’s theorem (see [21] for the formulation in
Lorentz noninvariant theories), we expect one of the
two degrees of freedom residing in Φ to become gapless.
A straightforward analysis shows that, indeed, one combi-
nation of the modulus and the phase becomes gapless and
propagates with dispersion relation

ω2
k ≃ c2sk2 þ

k4

4m2
; ð3Þ

with sound speed c2s ≡ λn=4m3. Herewe have simplified the
(otherwise cumbersome) expression by taking the non-
relativistic limit k ≪ m and c2s ≪ 1. The second mode is
heavy, with the mass gap 2m, and as such wewill not bother
to write the explicit expression. Since we are interested in
long-range correlations, this mode will be irrelevant.

III. INTERACTION BETWEEN SOURCES

As one can see from (1), the phase of Φ is decoupled
from J due to Uð1Þ invariance. A priori, based on the
intuition from Higgs mechanism, one could naively think
that there can be no long-range interactions between
sources. However, because of the spontaneous breaking
of Lorentz invariance by the background (2), the modulus
of Φ possesses an admixture with the gapless mode. This
makes it possible for the modulus to mediate a force with
range much longer than the Compton wavelength ð2mÞ−1
of the heavy mode.
In order to see how it all works out, let us submerge a

pointlike source within the condensate. Its presence will
obviously distort the homogeneous field configuration (2).
To see this, let us first derive the theory for perturbations.
This can be done using the field decomposition

Φ ¼ ðvþ hÞeiðμtþπÞ; ð4Þ

where h and π represent perturbations of the modulus and
phase, respectively. Substituting this back into the action
we arrive at

1We would like to stress, that spontaneous breaking of Lorentz
invariance is necessary (but generically not sufficient) for
inducing the effect of interest.
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L ¼ _h2 − ð∂jhÞ2 þ ðvþ hÞ2ðλv2 þ 2μ _π þ _π2 − ð∂jπÞ2Þ

−
λ

2
ðvþ hÞ4 − ðvþ hÞ2

Λ2
J: ð5Þ

At this point, one may wonder about our earlier statement
about the heavy mode having a mass gap 2m, since there is
no manifest mass term of this size in the above Lagrangian.
The disappearance of the original mass term is due to the
fact that the time-dependent phase gives rise to a tachyonic
mass, which cancels the original one with λv2ðvþ hÞ2
leftover [22].2 However, the main contribution to the gap
originates from the kinetic mixing rather than from the
mass term.
For simplicity, we are interested in the force mediated by

h between pointlike, static sources. In the static limit the
Lagrangian density reduces to

Lstatic ¼ −ð∂jhÞ2 þ ðvþ hÞ2ðλv2 − ð∂jπÞ2Þ

−
λ

2
ðvþ hÞ4 − ðvþ hÞ2

Λ2
J: ð6Þ

Notice that π enters (6) quadratically and does not couple to
baryons directly. Therefore it can be set to zero without
contradicting the classical equations of motion.
For field configurations corresponding to small devia-

tions from the superfluid state, i.e., h ≪ v, we obtain the
following linear equation of motion for h

ðΔ − 2λv2Þh ¼ v
Λ2

J: ð7Þ

It follows that the range of the force is given by

l ¼ 1ffiffiffiffiffiffiffiffiffi
2λv2

p ≃
1

2mcs
≫

1

2m
: ð8Þ

The field-configuration sourced by a pointlike source,
J ¼ Mδð3Þðx⃗Þ, is

hðrÞ ¼ −
v
Λ2

M
4πr

e−r=l ðweak fieldÞ: ð9Þ

Thus for r ≪ l the force between pointlike sources follows
an inverse-square law. What is interesting is that the force
becomes literally long-range (l → ∞) in the λ → 0 limit.
The reason this is somewhat surprising is that we usually
associate a 1=r2 force with the existence of a massless
mediator with dispersion relation ωk ∼ k. In the case of
vanishing self-interaction, on the other hand, the gapless
dispersion relation is ωk ¼ k2=2m, yet the force goes as

1=r2. The reason for this lies in the fact that, due to kinetic
mixing, the gapless mode enters the amplitude of the
complex scalar field with a momentum dependent form
factor, as detailed in the Appendix.
To make this point clear, let us spell out the Lagrangian

with λ ¼ 0 at leading order in perturbations

Lλ¼0 ¼ _h2− ð∂jhÞ2þ _̃π2− ð∂jπ̃Þ2þ4mh _̃π−2
v
Λ2

hJ; ð10Þ

where we have redefined the phase by π̃ ≡ πv for con-
venience. As we can see, the kinetic part is symmetric in h
and π̃ up to a mixing term h _̃π. Furthermore, without the
latter there would be two gapless modes in the spectrum. In
fact, the kinetic mixing is the only term where the mass
scale m appears. The observation that h would be a
massless mode in the absence of the kinetic mixing, is
precisely the reason why it is capable of mediating a long
range force between static sources.
Indeed, as detailed in the Appendix, integrating out π̃

and taking the nonrelativistic limit results in the effective
action

Lh
λ¼0 ¼ _̂h

2
− ĥ

Δ2

4m2
ĥ − 2

v
Λ2

� ffiffiffiffiffiffiffi
−Δ

p

2m
ĥ

�
J; ð11Þ

where ĥ≡ ffiffiffiffiffi
−Δ

p
2m h is canonically normalized. This expres-

sion speaks for itself. The gapless mode (in this formulation
described by h) mediates the long range force due to
nontrivial derivative interaction with the source. This
observation indicates that the modulus of the complex
field in the original formulation (10) contained the admix-
ture of the gapless mode with a momentum (i.e., derivative)
dependent form factor.

IV. WEAKLY DISTORTED BEC

The linear approximation h ≪ v underlying the weak-
field profile (9) is valid on sufficiently large scales, r ≫ r�,
where

r� ≡ M
4πΛ2

: ð12Þ

On scales smaller than r�, the superfluid profile is signifi-
cantly altered by the source, and one must solve the full
nonlinear equation for h. We will do so momentarily. For
now, notice that if instead of a point source we considered
an object of homogeneous density ρ, then its radius R
should be greater than r� in order for the superfluid to be
only marginally distorted, and thus for the linear approxi-
mation to be valid, everywhere. In other words, such a
source should satisfy

2It was shown in [23] that in some theories finite temperature
effects could also give a tachyonic contribution to the mass,
leading to symmetry nonrestoration at high temperature; while
here the effect is due to finite density.
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ρR2

Λ2
< 1 ðweak distortionÞ ð13Þ

in order for the condensate to remain in the linear regime.

V. STRONGLY DISTORTED BEC

The above discussion immediately raises the question:
what happens when sources are dense/large enough to
violate (13)? Although an analytic treatment of this
problem is in general difficult, fortunately the analysis
simplifies in λ → 0 limit. In this limit the condensate’s
building blocks are noninteracting, which incidentally
corresponds to the case considered in [1].
For a static source, the equation of motion for h derived

from (6) reduces to

Δh ¼ vþ h
Λ2

J: ð14Þ

This is a generalization of (7) (albeit with λ ¼ 0), where h is
not assumed small compared to v. Assuming a homo-
geneous density source,

J ¼ ρ ¼ const for r ≤ R; ð15Þ

and J ¼ 0 for r > R, we can easily find the spherically
symmetric classical solution which matches the decaying
configuration at infinity and therefore recovers the unper-
turbed BEC asymptotically. Inside the source, the solution
(with nonsingular boundary condition at the origin) is

hinðrÞ ¼ v

�
−1þ Λsech½R

ffiffi
ρ

p
Λ �ffiffiffi

ρ
p sinh½r

ffiffi
ρ

p
Λ �

r

�
: ð16Þ

Outside the source the solution is of the long-range form

houtðrÞ ¼ −
v
Λ2

Meff

4πr
; ð17Þ

with

Meff ≡ 4π

3
ρR3 ×

3Λ2

R2ρ

�
1 −

Λ
R

ffiffiffi
ρ

p tanh
�
R

ffiffiffi
ρ

p
Λ

��
: ð18Þ

As one can see, the effective mass Meff perceived by a
probe located outside the source depends on the density and
the size of the source.3 In particular, it is easy to see that the
relevant combination is

x≡ R
ffiffiffi
ρ

p
Λ

: ð19Þ

For low-density sources, x ≪ 1, the effective mass is very
close to the gravitational mass, i.e.,

Meff jx≪1 ≃
4π

3
ρR3 ðlow-density=unscreenedÞ: ð20Þ

For x ≫ 1 the effective mass gets significantly screened
compared to the gravitational mass,

Meff jx≫1 ≃ 4πΛ2R ðhigh-density=screenedÞ: ð21Þ

Notice that large-x limit corresponds to small Λ; in fact, a
closer look reveals that x > 1 corresponds to (21) being
smaller than the object’s mass.4 In other words, in this high-
density limit the most of the source mass is screened,
except the thin shell of thickness Λ2=ρR. The higher is the
density, the thinner the shell gets. Furthermore, in this limit
h becomes independent of the object density (and inde-
pendent of Λ):

hðrÞ ¼ −v
R
r

ðhigh-density=screenedÞ: ð22Þ

Thus, remarkably, the h-hair of a high-density homo-
geneous source is its size. This is precisely what happens
in the symmetron [24] and chameleon [25,26] and screen-
ing mechanisms, where screening is achieved by making
the scalar mediator respectively heavy or weakly-coupled
inside dense sources. See [27] for a review of screening
mechanisms. Note that the condensate density (equiva-
lently, v) merely sets the overall field strength. The field
profile and screening effect are completely oblivious to it.
To summarize, there are three interesting limiting cases

for the emergent force between two sources submerged
within the condensate, depending on their respective
densities:

(i) Unscreened source and unscreened probe: The force
mediated by h between two low-density (x ≪ 1)
sources takes the Newtonian form

Fh ¼
v2

4πΛ4

M1M2

r2
: ð23Þ

(ii) Screened source and screened probe: For two high-
density (x ≫ 1) sources, the effective masses can be
well approximated by (21). The resulting force is

3Here, by effective mass we refer to the one sourcing h-field.
The gravitational field, of course, is unaffected by this screening.
In other words, Meff simply represents an “h hair.”

4This screening effect can be understood intuitively by
noticing that, according to (14), h acquires a mass within the
source, which drives symmetry restoration within the source.
This is similar to the symmetron screening mechanism [24],
albeit in a Lorentz-violating background. In other words, high-
density sources basically expel the condensate from their core and
recover Φ ¼ 0 background in the center.
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Fh ¼ 4πv2
R1R2

r2
: ð24Þ

Notice that the force is independent ofΛ in this limit.
(iii) Screened source and unscreened probe: For a system

comprised of a high-density source 1, and a low-
density source 2, we get

Fh ¼
v2

Λ2

R1M2

r2
: ð25Þ

In this case the force still depends on the coupling
strength Λ.

The following remark is in order. The above results in the
strongly distorted regime were obtained by setting J ¼ ρ in
(14). In this case, the interaction vertex Lint ¼ −jΦj2J=Λ2

corresponds to a repulsive contact interaction between Φ
and matter quantum in vacuum. On the other hand, if we
instead set J ¼ −ρ it would correspond to an attractive
interaction. Interestingly, in the weak-field regime h ≪ v,
corresponding to low-density sources, the force is attractive
independently of the sign of Lint. This is similar to Kohn-
Luttinger effect for fermions, and for bosonic system it was
pointed out by [1]. However, in the strongly-distorted
regime, corresponding to a homogeneous source with
density and size satisfying R2ρ=Λ2 > 1, a gradient insta-
bility emerges in the attractive case, i.e., for J ¼ −ρ.
This is easy to see by noticing that inside the source the

interaction term generates an additional contribution to the
mass term. To see this, let us assume that ρ=Λ2 ≪ m2, for
otherwise the heavy mode residing in Φ would become
unstable. Moreover, even if the heavy mode is stable it is
easy to see that the Goldstone boson (gapless mode
residing in Φ) acquires the following dispersion relation
inside the source

ω2
k ¼ � ρ

4Λ2m2
k2 þ k4

4m2
for J ¼ �ρ: ð26Þ

Evidently the density-dependent contribution is tachyonic
for J ¼ −ρ, indicating a gradient instability. Specifically,

for J ¼ −ρ perturbations with wave number k < k� ≡
ffiffi
ρ

p
Λ

are unstable.5 On the other hand, we can only meaningfully
talk about such soft modes as long as the source radius R is

larger than k−1� , i.e., if R
ffiffi
ρ

p
Λ ¼ x > 1. Thus the instability

kicks in whenever BEC distortions cease to be linear.
In other words, in the attractive case, as we crank up the

density of the source there is a critical density above which
the condensate gets destabilized. In the repulsive case, in
contrast, the condensate manages to maintain long-range
coherence and exhibits a mass screening discussed above.

This resonates with the observed screening effect for
repulsive interactions. Indeed, whenever the source repels
the condensate degrees of freedom, it is trying to expel the
condensate from within itself. Correspondingly jvþ hj is
always smaller than v. In fact, in very dense objects the
condensate density practically vanishes at the center of the
source.
This suggests a nice physical interpretation of the

screening of h-hair. In order to source the hair, the source
needs to be submerged within the condensate, as the
strength of the hJ coupling depends on the condensate
density. Moreover, the condensate is removed (or sup-
pressed) from the location of the source, which in turn
results in a weaker h-hair. In the attractive case, we have the
opposite situation: the source wants to accrete the entire
condensate, which results in the aforementioned instability
for high-density sources.

VI. REGIME OF VALIDITY

From (1) the interaction between the condensate degrees
of freedom and the source is a higher-dimensional operator
suppressed by Λ. Therefore, the theory at hand must be
viewed as an effective field theory. Naively the cutoff is Λ,
and to justify neglecting operators of higher dimension one
should require

v ≪ Λ: ð27Þ

It is interesting to notice that this is the bound we obtained
in the weakly distorted condensate. In the strongly-dis-
torted case, high-density sources suppress the local con-
densate density compared to v, which makes (27) even
easier to satisfy.
Note that demanding v ≪ Λ is conservative, as the actual

strong coupling scale could be much higher than Λ. For
example, suppose that J is the energy-density operator for a
fermion ψ of mass mb (GeV for a baryon):

L ∝
mb

Λ2
jΦj2ψ̄ψ : ð28Þ

In this case the actual strong coupling scale of this operator
is Λ0 ¼ Λ2=mb. As we will see from phenomenological
considerations later, the scale Λ will generally be a few
orders of magnitude below the Planck scale, but much
larger than GeV. Thus we generically expect mb ≪ Λ,
which implies Λ0 ≫ Λ. Nevertheless, when studying the
phenomenological implications of our mechanism we will
be imposing the conservative bound (27).

VII. DARK MATTER CONTEXT

The emergent long-range effect discussed above could
have interesting ramifications for scalar dark matter mod-
els. For concreteness, suppose thatΦ describes dark matter,
while J is the trace of the baryonic energy-momentum

5For applications to galactic dynamics discussed below, it is
easy to argue that the maximal instability rate, achieved for
k ∼ k�, is much faster than the Hubble rate.
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tensor, J ¼ −Tμ
μ. Let us further assume that dark matter

forms a Bose-Einstein condensate in the central regions of
galaxies, large enough to encompass part (or all) of the
baryonic disk (see [8]). For simplicity we set λ ¼ 0, to
capitalize on the analytical nonlinear screening solutions
derived earlier.6 In this case stability is achieved by
quantum pressure, which results in a BEC core with radius
comparable to the Jeans length:

LJ ¼ 2π

�
2ρDMm2

M2
Pl

�−1=4

≃ 12 kpc

�
m

10−22 eV

�
−1=2

�
ρDM

10−26 g=cm3

�
−1=4

: ð29Þ

This result, however, neglects the repulsive interaction
between baryons and dark matter. More generally, the
dispersion relation for density fluctuations around the
homogeneous dark matter condensate in the presence of
a baryon density ρb is

ω2
k ¼ −4πGNρDM þ ρb

4Λ2m2
k2 þ k4

4m2
; ð30Þ

This generalizes (26) for repulsive interactions, by includ-
ing a tachyonic mass term that comes from the mixing with
gravity and leads to Jeans’ instability. For the fiducial low-
surface brightness (LSB) galaxy considered below, i.e.,
ρb ≃ 3 × 10−26 g=cm3, one can easily show that the second
term dominates over the third one for the relevant scales as
long as Λ < 10−4MPl. Thus the extent of the BEC core can
be significantly greater than (29).
Baryons within the core experience an additional force

(on top of gravity) mediated by h. From large-scale
structure observations, the dark matter cannot be much
lighter than 10−22 eV. Hence (29) implies that, within the
simple model under consideration, the emergent force can
extend at most up to ∼10 kpc distance from the galactic
center. The force is therefore irrelevant in the flat part of the
rotation curves of high-surface brightness (MilkyWay-like)
galaxies, which extend out to ∼50 kpc. However it can be
very much relevant for LSB galaxies whose rotation curves
typically extend to at most 10 kpc. This is fortuitous, since
LSB galaxies arguably pose a more significant challenge to
the standard cold dark matter paradigm.
To quantify the strength of this novel force, consider a

fiducial LSB galaxy, IC 2574, with total baryonic mass
MLSB ≃ 109 M⊙ [28]. The density profile of baryons can be

crudely modeled as a uniform-density sphere of radius
RLSB ≃ 8 kpc. In reality the baryon distribution is of course
neither spherical nor homogeneous, hence the results
derived below are for illustrative purposes only. A more
thorough analysis with realistic baryon distribution will be
considered elsewhere.
Whether the force mediated by dark matter degrees of

freedom is in the unscreened or screened regime is set byΛ:
(i) Linear/unscreened regime: In order for our fiducial

LSB galaxy to weakly-distort the condensate, it
should satisfy (13). With ρLSB ¼ 3MLSB=4πR3

LSB,
this gives

3MLSB

4πRLSBΛ2
≲ 1: ð31Þ

Substituting the fiducial valuesMLSB ≃ 109 M⊙ and
RLSB ≃ 8 kpc, we obtain

Λ≳ 10−4MPl: ð32Þ

In order to compare the dark force to the baryonic
gravity, we use the unscreened force of case (i),
given by (23). It must be stressed that we are
comparing the forces near the edge of the baryonic
distribution, so that (23) can be legitimately used. It
is easy to see that Fh will be comparable or stronger
than gravity if

ρðvÞDMM
2
Pl

m2Λ4
≳ 1; ð33Þ

where ρðvÞDM ≡ 2m2v2 denotes dark matter density

in the absence of baryons. Assuming ρðvÞDM ≃
10−25 g=cm3, condition (33) gives us the following
bound on the dark matter particle mass

m≲ 3 × 10−23 eV ·

�
Λ

10−4MPl

�
−2
: ð34Þ

In light of (32) this requires a dark matter particle
lighter than ∼10−23 eV, which is problematic for
large-scale structure observations [5].

(ii) Strongly distorted/screened regime: The opposite
regime where our LSB galaxy strongly distorts the
condensate, 3MLSB

4πRLSBΛ2 > 1, corresponds to

Λ < 10−4MPl: ð35Þ

In this case, to compare the h-mediated force
with gravity we consider case (iii), with the dark
force given by (25). This assumes an unscreened
probe, which is appropriate for the low-density
hydrogen used to trace rotation curves. Once again,
demanding the dominance of the dark force near the

6It is easy to show that not much is gained by including
repulsive self-interactions, λ ≠ 0. The reason is that if self-
interactions are responsible for stabilizing the BEC core against
gravitational collapse (instead of quantum pressure), then de-
manding that the range of the emergent force be greater than
∼10 kpc requires unrealistic values for the dark matter particle
mass.
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boundary of the baryonic profile for the screened
galaxy, we arrive at

4πρðvÞDMRLSBM2
Pl

m2Λ2MLSB
≳ 1: ð36Þ

Substituting ρðvÞDM ≃ 10−25 g=cm3, as well as our
fiducial LSB parameters MLSB ≃ 109 M⊙ and
RLSB ≃ 8 kpc, we obtain

m≲ 2 × 10−23 eV ·

�
Λ

10−4MPl

�
−1
: ð37Þ

Thus by lowering Λ the dark matter mass can easily
be heavier than 10−22 eV to comply with large-scale
structure constraints. Notice that (37) can be written
equivalently as

mΛ≲ 5 eV2: ð38Þ

To summarize, as long as Λ < 10−4MPl, such that LSB
galaxies are screened, it is possible for the dark force to be
strong enough to compete with the baryonic gravitational
force near the edge of the baryonic distribution, while
having m large enough to avoid obvious conflicts with
structure formation.
Two remarks are warranted here. First, it should be

emphasized that the screened regime of interest corre-
sponds to the removal of significant amount of dark matter
from within the baryonic source. As discussed earlier, this
results from weak repulsive interactions between baryons
and dark matter, which is enhanced due to the high
degeneracy of the BEC. This is an interesting observation
in and of itself, because some LSB galaxies (like IC 2574
considered here) seem to require such a removal mecha-
nism (which, in the standard context, is attributed to
feedback) to improve the rotation curve fit [29].
A second remark is that, although we have been

comparing the dark force to the gravitational force due
to baryons, it is straightforward to repeat the analysis for the
gravitational force due to the dark matter as well. In this
case we would obtain an additional factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mb=MDM

p
on the right-hand side of (37), whereMDM is enclosed mass
at the relevant distance where the comparison is made. This
would only marginally tighten the bound.
Since our scenario involves a long-range force between

baryons, one must worry about solar system tests of gravity.
Because the predictions of the model on such small scales
(compared to galactic scales) are more model-dependent,
for the purpose of this paper we will content ourselves
with making a few general remarks. As already mentioned,
the phenomenology of our model bears close resemblance
to the symmetron screening mechanism [24], hence a
natural possibility is that symmetron screening ensures

compatibility with solar system constraints. It has been
argued recently that a symmetron force could affect galactic
dynamics on ∼kpc scales and impact rotation curve
observations while being phenomenologically viable in
the solar system [30–32]. Alternatively, new effects could
kick in on small scales. For instance, additional dark matter
self-interactions could result in further short-scale screen-
ing, as in the Vainshtein mechanism [33,34]. See [35] for an
example.

VIII. SUMMARY AND OUTLOOK

In this paper we discussed the explicit example of the
emergence of long-range attractive force in Bose-Einstein
condensates from contact interactions (either attractive or
repulsive). The effect is reminiscent of the Kohn-Luttinger
effect for Fermi liquids, albeit for bosons.
Specifically, in the theory described by (1), sources in

vacuum would only have short-range contact interactions.
In the presence of a BEC of Φ-particles, however, there is
an emergent attractive interaction between sources medi-
ated by the exchange of Φ. The range of this interaction (8)
depends on the self-interaction coupling strength and
becomes strictly long-range in the absence of self-
interaction. This is at face value a curious fact, since
precisely in this limit the BEC stops exhibiting super-
fluidity. Namely, in the limit of negligible interactions,
phonons stop propagating as waves with ωk ¼ csk, and
instead propagate as gapless particles with ωk ¼ k2=2m.
The resolution is that, despite having a higher-gradient
dispersion relation, phonons also couple derivatively to
sources. This is due to kinetic mixing, which results in the
modulus of the complex field containing an admixture of
the gapless mode with nontrivial momentum-dependent
form factor. The end result is an inverse-square law.
An emergent long-range force in the presence of heat

bath was previously pointed out by [1]. However, their
consideration was limited to the noninteracting bosons, and
the effect was established as a thermal loop effect for a
Bose-Einstein distribution, obtained by analyzing the
asymptotic scattering amplitude. A long-range force was
found below critical temperature, though its regime of
validity was not analyzed.
In this work, we have rediscovered the effect using a

much simpler method. In the case of BEC of nonself-
interacting particles (i.e., λ ¼ 0), we have performed a
thorough analysis of the emergent long-range correlation
and have established the following:

(i) For point sources submerged in a BEC, we have
found an effective inverse-square force F ∝ 1=r2,
thus verifying the result of [1].

(ii) Taking into account that the generated force lines in
the presence of the source distort the condensate, we
have shown that there is a shortest distance down to
which the expression for the force may be trusted.
For instance, when dealing with the point source the
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classical field configuration is obtained by matching
the singularities at the location of the source,
however since the linear approximation breaks down
at a finite distance from the source it is unclear to
what extent one can trust the matching procedure.

(iii) Going beyond the analysis of [1], we have consid-
ered a finite-size spherical source of homogeneous
density. This allowed us to solve for the BEC profile
in the presence of such a source beyond the weak-
distortion regime. We found that the weakly dis-
torted profile is valid provided that

M
RΛ2

≪ 1; ð39Þ

Clearly the limit of a point source R → 0 keepingM
fixed grossly violates this inequality.

(iv) For sources that violate (39) and therefore strongly
distort the condensate, we have found that the
condensate density is diminished inside the source
because of repulsive interactions.7 In fact, for
M
RΛ2 ≫ 1 the BEC density in the center of the source
practically vanishes. The resulting profile for h in
this regime is

hðrÞ ¼ −v
R
r
; ð40Þ

which, remarkably, is independent of the source
mass M. This is indicative of screening, more
precisely symmetron screening. In the limit of a
point source, R → 0, we see that the distortion in fact
vanishes.

Furthermore, we have analyzed the impact of self-
interactions on the range l of the emergent force. In other
words, this is the case of a superfluid instead of a BEC. The
range at finite quartic coupling λ is

l ∝
�
λn
m

�
−1=2

: ð41Þ

As an illustrative application, we considered the impli-
cations of our mechanism for BEC dark matter models. In
particular, in any theory where dark matter is an ultralight
(and weakly self-interacting) scalar particle, a long-range
force between baryons should emerge whenever there is s a
contact interaction (however weak) between baryons and
dark matter. In a broad class of scalar dark matter models,
the emergent force can be of comparable strength to gravity
provided that parameters satisfy (37).
More precisely, because of screening we have found that

the dark force is suppressed deep inside the baryonic

distribution, due to the reduction of the dark matter density
within the source, whereas near the edge of the source the
dark force is strong enough to compete with gravity. We
should stress that this result was derived for a spherical
baryonic profile, which is of course a crude approximation
to a galactic disk geometry. We expect the repulsion effect
to be less significant in more realistic disklike distributions,
which will be studied elsewhere. Because of this, the
phenomenological analysis presented here is for illustrative
purposes and should not be taken too literally.
The long-range force discussed in this work could be of

particular relevance to explain empirical galactic scaling
relations, such as the mass discrepancy acceleration rela-
tion. In contrast to a fundamental modification of gravity,
which would be subject to stringent constraints on various
scales, an effective force emerging from dark matter
dynamics can be confined to galactic scales, thereby
alleviating possible concerns with universal fifth forces.
We should caution that the emergent force is an inverse-
square law, F ∝ 1=r2, whereas galactic scaling relations
prefer an ultra long-range F ∝ 1=r force. Thus the current
work should be viewed as a stepping stone in the search for
a suitable emergent force that can explain galactic scaling
relations. We will explore generalizations of our model
along these lines elsewhere.
In this work, we have limited the phenomenological

discussion to galactic scales. However, the emergent long
range effects could affect large scale observables as well.
For instance, the possible imprint of this force on CMB
peaks was considered in [36]; where the analysis was
performed for BEC of nonself-interacting particles. Taking
into account our finding about the density dependent range
of the emergent force in the presence of self-interaction, it
would be interesting to revisit the analysis of [36] and
explore the full parameter space.

ACKNOWLEDGMENTS

We would like to thank Gia Dvali for useful discussions.
J. K. is supported in part by the U.S. Department of
Energy (HEP) Award No. DE-SC0013528, NASA ATP
Grant No. 80NSSC18K0694, the Charles E. Kaufman
Foundation of the Pittsburgh Foundation, and a W.M.
Keck Foundation Science and Engineering Grant.

Note added.—While putting the finishing touches to this
paper we came across some recent works [37,38] on the
subject. In particular, the effect of the emergent long range
force of [1] was rediscovered using classical field theory
techniques, in the case of a nonself-interacting, massive,
real scalar field with nonlinear interaction with a source.
There are some similarities with the present work.
Specifically, it was shown in [37] that if the scalar field
has an oscillating background with a frequency equal to the
mass of the scalar field (i.e., if the BEC is formed), the mass
term cancels out, resulting in the scalar field mediating a

7As we have seen, in the case of attractive interactions between
the source and Φ, the condensate is destabilized by sources
violating (39).
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long-range force, albeit with an oscillating pre-factor.
Furthermore, the approach of [37] was used in [38] to
calculate the scalar profile created by the extended dis-
tribution of baryons. There it was shown that, depending on
the compactness of the source, the scalar density could get
significantly screened or amplified, depending on the sign
of the coupling between the scalar field and baryons.
An important difference with the present work is that

we instead considered a complex scalar field. This, as
we saw, makes the analysis and the generalization to the
self-interacting theory much easier. One immediate conse-
quence is the force between static sources is time-
independent in our case, whereas the force mediated by
a real scalar has a rapid oscillatory pre-factor that can be
removed by averaging over time (corresponding to the
nonrelativistic limit [39]).8 Furthermore, for attractive
interactions between the scalar field and baryons (would
be amplified regime) we showed that the static configura-
tion is unstable in the presence of highly-dense sources, a
point that was overlooked in earlier works. Moreover, we
showed that the presence of self-interactions (which can be
easily incorporated with a complex scalar field), leading to
the superfluidity of the condensate, limits the range of the
emergent force. The inclusion of self-interactions for the
real scalar field is possible but more involved as one must
deal with an anharmonic oscillator at the background level.
Last but not least, we clarified the physical origin of the
long-range force, as the consequence of phonon exchange
with higher-derivative gradient term and derivative cou-
pling to the source.

APPENDIX: PHONON-MEDIATION

In this Appendix we further elaborate on the origin of the
emergent long range force and discuss its connection with
the massless excitation of the condensate. For simplicity,
we begin with the noninteracting case (λ ¼ 0), for which
the emergent force is truly long range. We will then come
back and switch on λ to show how it alters the argument.
Our starting point is the linearized theory (10) for the

condensate degrees of freedom:

Lλ¼0 ¼ h□hþ π̃□π̃ þ 4mh _̃π − 2
v
Λ2

hJ; ðA1Þ

where, as before, π̃ ≡ πv. The analysis simplifies if we
integrate out one of the two degrees of freedom out. One
would naturally be inclined to integrate out the modulus h,
since it usually propagates the heavy mode. However, as we
will see, the physics is more transparent if one instead
solves for π̃.
For pedagogical purposes, let us first see what happens if

we integrate out h. This can be done, at tree-level, using its
equation of motion:

h ¼ 1

−□

�
2m _̃π −

v
Λ2

J

�
: ðA2Þ

Substituting this back into (A1), we arrive at the following
Lagrangian density

Lπ̃
λ¼0 ¼ _̃π

4m2

−□
_̃πþ π̃□π̃− 4

mv
Λ2

J
1

−□
_̃πþ v2

Λ4
J

1

−□
J: ðA3Þ

Evidently in this formulation the theory is of a higher-
derivative nature. This is hardly surprising, as we are trying
to describe twoLagrangiandegrees of freedomusing a single
real scalar field π̃. Nevertheless, let us press on and bring the
theory to a canonical form using the field redefinition

π̃ →

ffiffiffiffiffiffiffiffi
−□

p

2m
π̃: ðA4Þ

The result is

Lπ̃
λ¼0 ¼ _̃π2− π̃

□
2

4m2
π̃−2

v
Λ2

�
_̃πffiffiffiffiffiffiffiffi
−□

p
�
Jþ v2

Λ4
J

1

−□
J: ðA5Þ

Until now we have not made any approximation that would
freeze out the heavy mode. As such the condensate sector
propagates two dynamical degrees of freedom. Indeed, the
propagator of π̃ has two poles: one gapless and one with
gap 2m.
At this point we focus on low energy excitations with

k ≪ m, which implies that the frequency of the gapless
mode satisfies ωk ≪ k ≪ m. This freezes out the heavy
mode, since its on-shell production is energetically for-
bidden. In this limit the effective theory reduces to

Lπ̃
λ¼0 ¼ _̃π2− π̃

Δ2

4m2
π̃− 2

v
Λ2

J
1ffiffiffiffiffiffiffi
−Δ

p _̃πþ v2

Λ4
J

1

−Δ
J; ðA6Þ

wherewe have assumed the source is nonrelativistic as well.
Of particular interest is the last term, which describes a long-
range interaction between sources. We stress this was
obtained by integrating out the modulus h, which had an
admixture of the gapless mode due to kinetic mixing.
Naively this long-range effect does not appear to be related
to π̃, since the latter’s coupling to the source is separately
present. Furthermore, since the π̃-source coupling involves a

8This difference in the behavior could be understood by
examining the properties of the background field configurations.
In case of the real field, although the energy density of the field
configuration corresponding to the condensate state is constant,
the pressure is an oscillating function of time. In other words, the
time-translation is completely broken and hence we should in
general expect time-dependent effects. For the complex field,
there is an unbroken combination of time-translation and U(1)
symmetry. As a result, neither pressure nor energy density are
time-dependent. The only spontaneously broken spacetime sym-
metries manifest at the level of perturbations are boosts. It is only
in the nonrelativistic limit that this difference disappears.
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time derivative, at face value it would seem that π̃ is
incapable of mediating any interaction between static
sources.
The correct interpretation is more subtle. In reality, the

full long-range effect is the result of contributions from the
last two terms in (A6). Although we have chosen to express
the interaction in this way, this does not change the fact
that the long-range force is mediated by the gapless
(phonon) mode.
To convince the reader of the validity of this statement,

we present an alternative derivation of the low-energy
effective action where long-range interactions are mani-
festly mediated by phonons.9 For this purpose, let us go
back to (A1) and instead integrate out π̃. It will become
clear in a moment that this approach is even simpler.
Solving the equation of motion for π̃, we obtain

π̃ ¼ 2m _h
□

: ðA7Þ

This is similar to (A2), except that J does not partake in it.
Substituting this back into the Lagrangian, we get

Lh
λ¼0 ¼ _h

ð2mÞ2
−□

_hþ h□h − 2
v
Λ2

hJ: ðA8Þ

Just like (A3), the higher-derivative nature of this formu-
lation follows from the fact that it describes two Lagrangian
degrees of freedom with one real scalar field. Performing a

field redefinition similar to (A4), ĥ ¼
ffiffiffiffiffiffi
−□

p
2m h, and taking the

nonrelativistic limit which freezes out the gapped mode, we
arrive at

Lĥ
λ¼0 ¼ _̂h

2
− ĥ

Δ2

4m2
ĥ − 2

v
Λ2

J

ffiffiffiffiffiffiffi
−Δ

p

2m
ĥ: ðA9Þ

The origin of the long-range force is now clear. In this
formulation the only dynamical degree of freedom is a
phonon with dispersion relation ωk ¼ k2=2m. Furthermore,
this mode couples to the source with a momentum-
dependent form factor. The combination of the quadratic
dispersion relation and momentum-dependent coupling
results in the gapless mode mediating a 1=r2 force.
We conclude by illustrating the effect of finite λ on the

above argument. As is well known, self-interactions gen-
erate a sound speed for phonons. In fact it is straightforward
to show that (A9) becomes

Lĥ
λ>0 ¼ _̂h

2
− ĥ

�
−c2sΔþ Δ2

4m2

�
ĥ − 2

v
Λ2

J

ffiffiffiffiffiffiffi
−Δ

p

2m
ĥ; ðA10Þ

with c2s ≡ λv2=2m2. It follows that the range of interaction
shrinks to l ¼ ð2mcsÞ−1, despite the fact that the mediator
remains gapless.
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