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A R T I C L E I N F O A B S T R A C T 

Editor: P. Brax The theory of gravity with a quadratic contribution of scalar curvature is investigated using a dynamical systems 
approach. The simplest Friedmann–Robertson–Walker metric is employed to formulate the dynamics in both the 
Jordan frame and the conformally transformed Einstein frame. We show that, in both frames, there are stable de 
Sitter states where the expansion of the Hubble function naturally includes terms corresponding to an effective 
dark matter component. Using the invariant centre manifold, we demonstrate that, in the Einstein frame, there 
exists a zero-measure set of initial conditions that lead from an unstable to a stable de Sitter state. Additionally, 
the initial de Sitter state is associated with a parallelly propagated singularity. We show that the formulations of 
the theory in the Jordan frame and the Einstein frame are physically nonequivalent.

1. Introduction and the model

Sakharov was the first to notice that the Einstein-Hilbert action in-

tegral is the lowest order in an infinite series of corrections in curva-

ture invariants [1]. Then it was noticed that the gravitational theory 
can be treated as an effective field theory with a cut-off scale [2–4]. 
The first 𝑓 (𝑅) theory was investigated in [5], and quadratic contribu-

tions to the Einstein field equations were considered in [6]. Finally, the 
idea of inflation as a transient phenomenon in 𝑅2 cosmology emerged 
[7–16].

Dynamical systems analysis has been widely used in cosmological 
applications since the seminal papers by Belinskii [17,18], and stability 
analysis of cosmological models is of utmost importance [19–23]. In 
the present paper, we extend stability analysis by using the concept of 
structural stability [24,25].

The most general action integral for the gravitational theory can be 
presented as an infinite series in curvature invariants [26,27]

𝑆 =∫ d4𝑥
√
−𝑔

(
−2𝜙0Λ +𝜙0𝑅 + 𝑐1𝑅2 + 𝑐2𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑐3𝑅𝜇𝜈𝛼𝛽𝑅𝜇𝜈𝛼𝛽 +… 

)
+ 16𝜋 𝑆𝑚 (1)

where 𝜙0 is a dimensional constant, and 𝑐1, 𝑐2, 𝑐3 are dimensionless 
constants of the theory. We work in units where the speed of light and 
the Planck constant are set to 𝑐 = ℏ = 1.

E-mail address: orest.hrycyna@ncbj.gov.pl.

1.1. Jordan frame

We begin with the following truncated Sakharov action integral [1] 
for gravitational theory:

𝑆𝑔 = ∫ d4𝑥
√
−𝑔

(
−2𝜙0Λ + 𝜙0𝑅+ 𝑐1𝑅2) (2)

where the constant 𝜙0 and the cosmological constant Λ have dimensions 
of 𝑀2. 𝑐1 is a dimensionless constant of the theory.

We introduce the following redefinition of the dynamical variable:

𝜑 = 𝜙0 + 2𝑐1𝑅 (3)

which implies that the Ricci scalar can be expressed as

𝑅 =
𝜑−𝜙0
2𝑐1

. (4)

Substituting this into the action integral, we obtain

𝑆𝑔 = ∫ d4𝑥
√
−𝑔

(
𝜑𝑅− 2𝜙0Λ −

(𝜑−𝜙0)2

4𝑐1

)
. (5)

This is a special case of the Brans-Dicke theory with 𝜔BD ≡ 0, known as 
the O’Hanlon theory [28]. The action integral can be presented as

𝑆𝑔 = ∫ d4𝑥
√
−𝑔 (𝜑𝑅− 2𝑉 (𝜑)) , (6)
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where the scalar field potential function is

𝑉 (𝜑) = 𝜙0Λ +
(𝜑− 𝜙0)2

8𝑐1
= 𝜙0

(
Λ+ Λ̃

(
𝜑 
𝜙0

− 1
)2

)
, (7)

and we have introduced the dimensionful constant

Λ̃ =
𝜙0
8𝑐1

, (8)

which can be interpreted as the Einstein frame cosmological constant.

We must remember that the scalar field presented in the theory has 
a gravitational origin, and its ontology is completely different from that 
in particle physics.

Variation of the action integral (6) with respect to the metric tensor, 
𝛿𝑆𝑔∕𝛿𝑔𝜇𝜈 = 0, yields the field equations for the theory:

𝜑

(
𝑅𝜇𝜈 −

1
2
𝑔𝜇𝜈𝑅

)
+ 𝑉 (𝜑)𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝜑−∇𝜇∇𝜈𝜑 = 0 , (9)

where □ = 𝑔𝛼𝛽∇𝛼∇𝛽 . Variation of the action with respect to the scalar 
field, 𝛿𝑆𝑔∕𝛿𝜑 = 0, gives

𝑅 = 2𝜕𝑉 (𝜑)
𝜕𝜑 

= 2𝑉 ′(𝜑) . (10)

Taking the trace of the field equations yields the scalar field equation of 
motion:

□𝜑+ 2
3
(
2𝑉 (𝜑) −𝜑𝑉 ′(𝜑)

)
= 0 . (11)

We now consider the flat Friedmann–Robertson–Walker metric:

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)
(
d𝑥2 + d𝑦2 + d𝑧2

)
, (12)

and obtain the following energy conservation condition:

𝐻2 = −𝐻 �̇�

𝜑
+
𝜙0
𝜑 

(
Λ
3 
+ Λ̃

3 

(
𝜑 
𝜙0

− 1
)2

)
, (13)

the acceleration equation:

�̇� = −2𝐻2 + 2 Λ̃
3 

(
𝜑 
𝜙0

− 1
)
, (14)

and the equation of motion for the scalar field:

�̈� = −3𝐻�̇�+ 4𝜙0

(
Λ
3 
− Λ̃

3 

(
𝜑 
𝜙0

− 1
))

, (15)

where an over-dot denotes differentiation with respect to cosmological 
time 𝑡.

The dynamical equation for the scalar file (15), together with the ac-

celeration equation (14), subject to the energy conservation condition 
(13), completely determines the dynamical behaviour of the model. Var-

ious dimensionless dynamical variables [29–33] can be introduced to 
parametrise the phase space and investigate the dynamics of the model.

In section 2.1, we present a complete dynamical system analysis of 
the model, where we find all the asymptotic states and determine their 
character and physical interpretation.

1.2. Einstein frame

When investigating modified and extended theories of gravity, one 
usually employs a conformal transformation procedure to achieve math-

ematical simplification of the theory [3,10]. However, we should be 
aware of the important ontological consequences of this technique, par-

ticularly as it results in matter generation through a mathematical pro-

cedure.

The conformal transformation of the metric tensor

�̃�𝜇𝜈 =Ω2𝑔𝜇𝜈 ,

with the conformal factor

Ω2 = 𝜑 
𝜙0
, (16)

transforms the action integral (6) of the Jordan frame into the Einstein 
frame:

�̃� = �̃�𝑔 + 16𝜋�̃�𝜑 , (17)

where the gravitational part is given by

�̃�𝑔 = 𝜙0 ∫ d4𝑥
√
−�̃� �̃� , (18)

and the substantial matter part is in form of the scalar field with the 
following action integral:

�̃�𝜑 = − 1 
16𝜋 ∫ d4𝑥

√
−�̃�

(
𝜔(𝜑)
𝜑 

�̃�𝜇𝜈∇𝜇𝜑 ∇𝜈𝜑+ 2𝑉 (𝜑)
)

(19)

where

𝜔(𝜑) = 3
2
𝜙0
𝜑 
, 𝑉 (𝜑) = 𝜙0

𝜙2
0

𝜑2

(
Λ+ Λ̃

(
𝜑 
𝜙0

− 1
)2

)
,

and

Λ̃ =
𝜙0
8𝑐1

,

is the cosmological constant in the Einstein frame.

We can use the following scalar field redefinition:

𝜑 
𝜙0

= exp

(√
16𝜋
3𝜙0

�̃�

)
,

to work with a canonically normalised, minimally coupled scalar field 
cosmology with the following action integral:

𝑆(𝐸) = 𝑆(𝐸)
𝑔

+ 16𝜋𝑆(𝐸)
�̃�
. (20)

The gravitational part of the theory can be presented as

𝑆(𝐸)
𝑔

= 𝜙0 ∫ d4𝑥
√
−�̃�

(
�̃�− 2Λ̃

)
, (21)

while the normalised scalar field action is

𝑆
(𝐸)
�̃�

= −1
2 ∫ d4𝑥

√
−�̃�

(
�̃�𝜇𝜈∇𝜇�̃�∇𝜈�̃�+ 2𝑈 (�̃�)

)
, (22)

where the scalar field potential function is now given by

𝑈 (�̃�) =
𝜙0Λ̃
4𝜋

(
Λ+ Λ̃
2Λ̃

exp

(
−

√
16𝜋
3𝜙0

�̃�

)
− 1

)
exp

(
−

√
16𝜋
3𝜙0

�̃�

)
.

Within the dynamical system approach used in this paper, we can easily 
show that the physical and dynamical description of the model given 
by the action integral (17) are completely equivalent to those given by 
the action (20). To facilitate a straightforward dynamical and physical 
comparison between the frames, we will work with the original, non-

normalised scalar field and the action integral for the theory (17).

Variation of the action integral with respect to the metric tensor, 
𝛿�̃�∕𝛿�̃�𝜇𝜈 = 0, gives the following field equations:

�̃�𝜇𝜈 −
1
2
�̃�𝜇𝜈�̃� = 8𝜋

𝜙0
�̃� (𝜑)
𝜇𝜈

(23)

where the energy-momentum tensor for the scalar field is

�̃� (𝜑)
𝜇𝜈

= 1 
8𝜋
𝜔(𝜑)
𝜑 

∇𝜇𝜑 ∇𝜈𝜑− 1 
16𝜋

𝜔(𝜑)
𝜑 

�̃�𝜇𝜈 �̃�
𝛼𝛽∇𝛼𝜑 ∇𝛽𝜑− 1 

8𝜋
𝑉 (𝜑)�̃�𝜇𝜈 .

(24)

The trace of the field equations is

�̃� = −8𝜋
𝜙0
�̃� (𝜑) , (25)

where the trace of the energy-momentum tensor of the scalar field is
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�̃� (𝜑) = − 1 
8𝜋
𝜔(𝜑)
𝜑 

�̃�𝜇𝜈∇𝜇𝜑 ∇𝜈𝜑− 1 
8𝜋

4𝑉 (𝜑) . (26)

Variation of the scalar field action integral, 𝛿�̃�𝜑∕𝛿𝜑=0, gives the 
equation of motion for the scalar field:

2𝜔(𝜑)
𝜑 

□̃𝜑+
(
𝜔′(𝜑)
𝜑 

− 𝜔(𝜑)
𝜑2

)
�̃�𝜇𝜈∇𝜇𝜑 ∇𝜈𝜑− 2𝑉 ′(𝜑) = 0 . (27)

Working with the Einstein frame spatially flat FRW metric

d�̃�2 = −d𝑡2 + �̃�2
(
𝑡
)(

d𝑥2 + d𝑦2 + d𝑧2
)
,

we obtain the energy conservation condition:

�̃�2 = 1
4
�̇�2

𝜑2 +
𝜙2
0

𝜑2

(
Λ
3 
+ Λ̃

3 

(
𝜑 
𝜙0

− 1
)2

)
, (28)

the acceleration equation from the trace of the field equations:

̇̃𝐻 = −3
4
�̇�2

𝜑2 (29)

and the equation of motion for the scalar field:

�̈� = −3�̃��̇�+ �̇�2

𝜑 
+ 4

𝜙2
0
𝜑 

(
Λ
3 
− Λ̃

3 

(
𝜑 
𝜙0

− 1
))

, (30)

where an over-dot denotes differentiation with respect to the Einstein 
frame cosmological time 𝑡.

In section 2.2 we present a dynamical system analysis of the inves-

tigated model.

2. Dynamical system analysis

2.1. Jordan frame

To parametrise the phase space and investigate the dynamical be-

haviour of the model, we introduce the following dimensionless dynam-

ical variables [29–31,34]

𝑥 = �̇�

𝐻𝜑
, 𝑧 = 𝜑 

𝜙0
. (31)

Then, the energy conservation condition (13), normalised to the present 
value of the Hubble constant 𝐻0, can be written in the following form:

𝐻2

𝐻2
0

= ΩΛ̃,0
𝜆+ (𝑧− 1)2

𝑧(1 + 𝑥) 
=

ΩΛ,0

𝜆 
𝜆+ (𝑧− 1)2

𝑧(1 + 𝑥) 
, (32)

where ΩΛ,0 =
Λ 

3𝐻2
0

is the present value of the energy density associated 

with the Jordan frame cosmological constant, while ΩΛ̃,0 =
Λ̃

3𝐻2
0

is the 

present value of the energy density associated with the Einstein frame 
cosmological constant Λ̃. The parameter 𝜆 is defined as

𝜆 =
ΩΛ,0

ΩΛ̃,0
= Λ

Λ̃
= 8𝑐1

Λ 
𝜙0
.

The acceleration equation (14) expressed in terms of the dimension-

less dynamical variables is:

�̇�

𝐻2 = −2 + 2(𝑥+ 1) 𝑧(𝑧− 1) 
𝜆+ (𝑧− 1)2

. (33)

Finally, using the equation of motion for the scalar field (15), we obtain 
the following dynamical system:

d𝑥 
d ln𝑎

= −𝑥(𝑥+ 1) − 𝑥
(
�̇�

𝐻2 + 2
)
− 4(1 + 𝑥) 𝑧− (1 + 𝜆) 

𝜆+ (𝑧− 1)2
,

d𝑧 
d ln𝑎

= 𝑥𝑧 ,
(34)

which completely describes the dynamics of the model under investiga-

tion.

In the dynamical systems approach to cosmological models, we are 
interested in asymptotic states of the dynamics, which can correspond 
to various epochs in the evolution of the universe. Asymptotic states are 
points in the phase space where the right-hand sides of the dynamical 
equations vanish.

First, we find two saddle type critical points located at (𝑥∗ = −1, 𝑧∗ =
0) and (𝑥∗ = 4, 𝑧∗ = 0). The acceleration equation (33), evaluated at 
these points, gives

�̇�

𝐻2

||||
∗
= −2 .

Physically, these states correspond to a transient radiation-like expan-

sion of the universe.

The most interesting critical point is located at (𝑥∗ = 0, 𝑧∗ = 1 + 𝜆), 
with the energy conservation condition and the acceleration equation 
calculated at this point:

𝐻2

𝐻2
0

||||
∗
= ΩΛ,0 , 

�̇�

𝐻2

||||
∗
= 0 ,

which corresponds to the de Sitter state. The eigenvalues of the lineari-

sation matrix are

𝑙1 = −3
2
− 1

2

√
9 − 16

𝜆 
, 𝑙2 = −3

2
+ 1

2

√
9 − 16

𝜆 
,

and we determine the character of the critical point as follows: for 𝜆 <
0: 𝑙1 < 0, 𝑙2 > 0 – a saddle; for 0 < 𝜆 < 16

9 : 𝑅𝑒[𝑙1] < 0, 𝑅𝑒[𝑙2] < 0 – 
a stable focus (a sink); for 𝜆 ≥ 16

9 : 𝑙1 < 0, 𝑙2 < 0 – a stable node. We 
conclude that the de Sitter state under consideration corresponds to an 
asymptotically stable critical point for 𝜆 > 0. Since 𝜆 = Λ∕Λ̃, we deduce 
that, to ensure stability of the de Sitter state, both the Jordan frame 
cosmological constant Λ and the Einstein frame cosmological constant 
Λ̃ must be positive.

The linearised solutions in the vicinity of the de Sitter state are given 
by

𝑥(𝑎) = 𝑥∗ + 𝑙1
(1 +𝜆)Δ𝑥 − 𝑙2Δ𝑧
(1 +𝜆)(𝑙1 − 𝑙2) 

(
𝑎 
𝑎(𝑖)

)𝑙1
− 𝑙2

(1 +𝜆)Δ𝑥 − 𝑙1Δ𝑧
(1 +𝜆)(𝑙1 − 𝑙2) 

(
𝑎 
𝑎(𝑖)

)𝑙2
,

𝑧(𝑎) = 𝑧∗ +
(1 + 𝜆)Δ𝑥− 𝑙2Δ𝑧

𝑙1 − 𝑙2

(
𝑎 
𝑎(𝑖)

)𝑙1
−

(1 + 𝜆)Δ𝑥− 𝑙1Δ𝑧
𝑙1 − 𝑙2

(
𝑎 
𝑎(𝑖)

)𝑙2
,

(35)

where Δ𝑥 = 𝑥(𝑖) − 𝑥∗ and Δ𝑧 = 𝑧(𝑖) − 𝑧∗ are the initial conditions in the 
phase space, and 𝑎(𝑖) is the initial value of the scale factor.

The linearised solutions can be used to find the approximate be-

haviour of the Hubble function (32) in the vicinity of the de Sitter state. 
Up to quadratic terms in the initial conditions Δ𝑥 and Δ𝑧, we find the 
following:

𝐻2

𝐻2
0

≈ ΩΛ,0

+
ΩΛ,0

1 + 𝜆

(
(1 − 𝑙1)

(1 + 𝜆)Δ𝑥− 𝑙2Δ𝑧
𝑙1 − 𝑙2

(
𝑎 
𝑎(𝑖)

)𝑙1

− (1 − 𝑙2)
(1 + 𝜆)Δ𝑥− 𝑙1Δ𝑧

𝑙1 − 𝑙2

(
𝑎 
𝑎(𝑖)

)𝑙2 )

+
ΩΛ,0

𝜆(1 + 𝜆)2

(
(1 − 𝜆𝑙1 + 𝜆𝑙21)

(
(1 + 𝜆)Δ𝑥− 𝑙2Δ𝑧

𝑙1 − 𝑙2

)2(
𝑎 
𝑎(𝑖)

)2𝑙1

+ (1 − 𝜆𝑙2 + 𝜆𝑙22)
(
(1 + 𝜆)Δ𝑥− 𝑙1Δ𝑧

𝑙1 − 𝑙2

)2(
𝑎 
𝑎(𝑖)

)2𝑙2

− (10 + 3𝜆)
((1 + 𝜆)Δ𝑥− 𝑙1Δ𝑧)((1 + 𝜆)Δ𝑥− 𝑙2Δ𝑧)

(𝑙1 − 𝑙2)2

(
𝑎 
𝑎(𝑖)

)−3
)
,

(36)
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where the last term can be naturally interpreted as an effective dark 
matter component in the model,

Ω𝑑𝑚 =Ω𝑑𝑚,𝑖
(
𝑎 
𝑎(𝑖)

)−3
,

and the initial value of the energy density of the effective dark matter 
can be expressed as

Ω𝑑𝑚,𝑖 = −ΩΛ,0
10 + 3𝜆 

𝜆(1 + 𝜆)2
(
9 − 16

𝜆 
)

×
((

(1 + 𝜆)Δ𝑥+ 3
2
Δ𝑧

)2
− 1

4

(
9 − 16

𝜆 

)
Δ𝑧2

)
.

(37)

This term has to be positive in order to effectively imitate a dark 
matter component in the theory. For ΩΛ,0 > 0 and 𝜆 > 16

9 , we can always 
find initial conditions in the phase space where Ω𝑑𝑚,𝑖 > 0, while for 
ΩΛ,0 > 0 and 0 < 𝜆 < 16

9 , the sign of the term does not depend on the 
initial conditions. We must remember that this effect is a result of the 
dynamical behaviour of the model.

Next, we proceed to investigate the dynamical behaviour of the 
model at infinite values of the scalar field 𝜑. By introducing the 
dynamical variable 𝑣 = 1

𝑧 , we obtain the following dynamical sys-

tem:

d𝑥 
d ln𝑎

= −(𝑥+ 1)
(
𝑥+ 2𝑥 1 − 𝑣 

𝜆𝑣2 + (1 − 𝑣)2
+ 4𝑣 1 − (1 + 𝜆)𝑣 

𝜆𝑣2 + (1 − 𝑣)2

)
,

d𝑣 
d ln𝑎

= −𝑥𝑣 ,
(38)

and, in the same way, we obtain the energy conservation condition (32)

and the acceleration equation (33).

Using the standard procedure, we search for asymptotic states lo-

cated at 𝑣∗ = 0. We find two critical points corresponding to infinite 
values of the scalar field 𝜙. The first critical point, located at (𝑥∗ =
−1, 𝑣∗ = 0) is an unstable node with the following linearised solutions 
in the vicinity of this state:

𝑥(𝑎) = −1 +Δ𝑥
(
𝑎 
𝑎(𝑖)

)3
,

𝑣(𝑎) = Δ𝑣
(
𝑎 
𝑎(𝑖)

)
,

(39)

where Δ𝑥, Δ𝑧 are the initial conditions, and 𝑎(𝑖) is the initial value of 
the scale factor. The energy conservation condition (32) and the accel-

eration equation (33) calculated at this state give

𝐻2

𝐻2
0

||||
∗
=∞ , �̇�

𝐻2

||||
∗
= −2 ,

which suggest that the effective equation of state parameter is 𝑤eff = 1
3

and it corresponds to a radiation-like expansion of the universe.

The second asymptotic state, located at (𝑥∗ = 0, 𝑣∗ = 0), is very 
interesting from both a mathematical and physical point of view. 
The eigenvalues of the linearisation matrix calculated at this point 
are

𝑙1 = −3 , 𝑙2 = 0 ,

and, with one of the eigenvalues vanishing, we have a degenerate non-

hyperbolic critical point. The stability analysis requires the use of the 
centre manifold theorem [29,35,36].

According to this theorem, we can easily find the following equation 
for an invariant manifold:

𝑥 = −4
3
𝑣+ 𝑓 (𝑣) ,

where the function 𝑓 (𝑣) is an arbitrary polynomial:

𝑓 (𝑣) = 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 + 𝑎5𝑣5… ,

Fig. 1. The phase space diagram of the dynamical system (38) in the Jordan 
frame with 𝜆= 1

4
. The invariant centre manifold and a saddle-node degenerated 

critical point at the centre are clearly visible.

and this manifold is called the centre manifold. Using the centre mani-

fold theorem, we can find the constants 𝑎𝑖 to an arbitrary order:

𝑎2 =
4 
27

(1 + 9𝜆) ,

𝑎3 =
4 
81

(1 + 9𝜆) ,

𝑎4 =
4 

2187
(1 + 9𝜆)(29 + 45𝜆) ,

𝑎5 =
4 

19683
(1 + 9𝜆)(23 − 9𝜆) ,

⋮ 

(40)

In this way, we can find the equation for the invariant centre manifold 
to arbitrary precision. Finally, we conclude that the asymptotic state 
under consideration results from a saddle-node bifurcation and can be 
split by adding an arbitrarily small distortion to the model [35,36].

The energy conservation condition (32) and the acceleration equa-

tion (33) calculated at the asymptotic state under considerations 
are

𝐻2

𝐻2
0

||||
∗
=∞ , �̇�

𝐻2

||||
∗
= 0 , �̇�

𝐻2
0

||||
∗
= − 2 

3𝜆
ΩΛ,0 .

Then, using the invariant centre manifold, we find that, as we approach 
the critical point, the scale factor

𝑎→ 0 , �̇�→ 0 , �̈�→ 0 ,

tends to zero faster than �̇� and �̈�.
In Fig. 1, we present the phase space diagram of the dynamical sys-

tem (38), compactified with a circle at infinity, without enforcing any 
physical interpretation of the dynamics. Direction of arrows on the phase 
space curves indicates growing of the scale factor. We can readily ob-

serve the shape of the invariant centre manifold connecting the critical 
point at the centre of the phase space (𝑥∗ = 0, 𝑣∗ = 0) with the point at 
(𝑥∗ = 0, 𝑣∗ = 1 

1+𝜆 ). An interesting property of the dynamics is the exis-

tence of a critical circle at infinity in the phase space.

2.2. Einstein frame

Following the prescription from the previous section on the Jordan 
frame dynamics, we introduce the following dimensionless dynamical 
variables:
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�̃� = �̇�

�̃�𝜑
, 𝑧 = 𝜑 

𝜙0
(41)

where an over-dot now denotes differentiation with respect to the Ein-

stein frame cosmological time 𝑡, and �̃� is the Einstein frame Hubble 
function �̃� = dln �̃�

d𝑡 .

The energy conservation condition (28), normalised to the present 
value of the Einstein frame Hubble constant, is

�̃�2

�̃�2
0

=
Ω̃Λ,0

𝜆 
𝜆+ (𝑧− 1)2

𝑧2
(
1 − 1

4 �̃�
2
) = Ω̃Λ̃,0

𝜆+ (𝑧− 1)2

𝑧2
(
1 − 1

4 �̃�
2
) , (42)

where Ω̃Λ,0 =
Λ 

3�̃�2
0

is the present value of the energy density resulting 

from the Jordan frame cosmological constant, and Ω̃Λ̃,0 =
Λ̃

3�̃�2
0

is the 

present value of the energy density of the Einstein frame cosmological 
constant. Their ratio is

𝜆 =
Ω̃Λ,0

Ω̃Λ̃,0
= Λ

Λ̃
= 8𝑐1

Λ 
𝜙0
.

The acceleration equation (29) expressed in the dimensionless variables 
is

̇̃𝐻

�̃�2
= −3

4
�̃�2 . (43)

Finally, using the equation of motion for the scalar field (30), we find 
the following dynamical system, which completely describes the model 
under investigation:

d�̃�
d ln �̃�

= −3
(
1 − 1

4
�̃�2
)(

�̃�− 4
3

1 + 𝜆− 𝑧 
𝜆+ (𝑧− 1)2

)
,

d𝑧 
d ln �̃�

= �̃�𝑧 ,
(44)

where the “time parameter” along phase curves is the Einstein frame 
scale factor �̃�.

Solving the right-hand side of the dynamical system, we find four 
critical points in the phase space. One, located at (�̃�∗ = 4

3 , 𝑧
∗ = 0), is a 

saddle-type critical point with the effective equation of state parame-

ter 𝑤eff = −1
9 . The next two, with effective equation of state parameter 

𝑤eff = 1 corresponding to Zeldovich stiff matter [37,38]. One, located 
at (�̃�∗ = +2, 𝑧∗ = 0) is an unstable node, while the second, located at 
(�̃�∗ = −2, 𝑧∗ = 0), is a saddle.

The final critical point, located at (�̃�∗ = 0, 𝑧∗ = 1+𝜆), with the energy 
conservation condition and the acceleration equation

�̃�2

�̃�2
0

||||
∗
=

Ω̃Λ,0

1 + 𝜆
, 

̇̃𝐻

�̃�2

||||
∗
= 0 ,

corresponds to the de Sitter state. The eigenvalues of the linearisation 
matrix are

𝑙1 = −3
2
− 1

2

√
9 − 16

𝜆 
, 𝑙2 = −3

2
+ 1

2

√
9 − 16

𝜆 
,

and we determine the character of the critical point as follows: for 𝜆 < 0: 
𝑙1 < 0, 𝑙2 > 0 – a saddle; for 0 < 𝜆 < 16

9 : 𝑅𝑒[𝑙1] < 0, 𝑅𝑒[𝑙2] < 0 – a stable 
focus (a sink); for 𝜆 ≥ 16

9 : 𝑙1 < 0, 𝑙2 < 0 – a stable node.

The linearised solutions near the de Sitter state are

�̃�(�̃�) = 𝑥∗ + 𝑙1
(1 + 𝜆)𝑙1Δ�̃�− 𝑙2Δ𝑧
(1 + 𝜆)(𝑙1 − 𝑙2) 

(
�̃�

�̃�(𝑖)

)𝑙1
− 𝑙2

(1 + 𝜆)𝑙2Δ�̃�− 𝑙1Δ𝑧
(1 + 𝜆)(𝑙1 − 𝑙2) 

(
�̃�

�̃�(𝑖)

)𝑙2
,

𝑧(�̃�) = 𝑧∗ +
(1 + 𝜆)Δ�̃�− 𝑙2Δ𝑧

𝑙1 − 𝑙2

(
�̃�

�̃�(𝑖)

)𝑙1
−

(1 + 𝜆)Δ�̃�− 𝑙1Δ𝑧
𝑙1 − 𝑙2

(
�̃�

�̃�(𝑖)

)𝑙2
,

(45)

where Δ�̃� = �̃�(𝑖) − �̃�∗ and Δ𝑧 = 𝑧(𝑖) − 𝑧∗ are the initial conditions in 
the phase space, while �̃�(𝑖) is the initial value of the scale factor in the 
Einstein frame.

We note that the stability conditions and the linearised solutions 
have exactly the same form as in the Jordan frame case.

Using the linearised solution to expand the Hubble function (42) up 
to quadratic terms in initial conditions Δ�̃� and Δ𝑧, we find the following 
approximation:

�̃�2

�̃�2
0

≈
Ω̃Λ,0

1 + 𝜆

+
Ω̃Λ,0

4𝜆(1 + 𝜆)3

(
(4 + 𝜆𝑙21)

(
(1 + 𝜆)Δ�̃�− 𝑙2Δ𝑧

𝑙1 − 𝑙2

)2(
�̃�

�̃�(𝑖)

)2𝑙1

+ (4 + 𝜆𝑙22)
(
(1 + 𝜆)Δ�̃�− 𝑙1Δ𝑧

𝑙1 − 𝑙2

)2(
�̃�

�̃�(𝑖)

)2𝑙2

− 16
((1 + 𝜆)Δ�̃�− 𝑙1Δ𝑧)((1 + 𝜆)Δ�̃�− 𝑙2Δ𝑧)

(𝑙1 − 𝑙2)2

(
�̃�

�̃�(𝑖)

)−3
)
,

(46)

where the last term in this equation can be naturally interpreted as an 
effective dark matter component of the model:

Ω̃𝑑𝑚 = Ω̃𝑑𝑚,𝑖
(
�̃�

�̃�(𝑖)

)−3

and the initial value of the energy density is

Ω̃𝑑𝑚,𝑖 = −4
Ω̃Λ,0

𝜆(1 + 𝜆)3
(
9 − 16

𝜆 
)

×
((

(1 + 𝜆)Δ�̃�+ 3
2
Δ𝑧

)2
− 1

4

(
9 − 16

𝜆 

)
Δ𝑧2

)
.

(47)

The conditions for the positivity of this term are exactly the same as 
in the Jordan frame case. For an asymptotically stable de Sitter state, we 
have 𝜆 > 0. Then, for 0 < 𝜆 < 16

9 , the sign of Ω̃𝑑𝑚,𝑖 does not depend on the 
initial conditions Δ�̃� and Δ𝑧. For 𝜆 > 16

9 , we can always find regions of 
the phase space where Ω̃𝑑𝑚,𝑖 is positive. Again, we must remember that 
this effective dark matter term is the result of the dynamical behaviour 
of the model.

We can now proceed to investigate dynamics of the model at infinite 
values of the scalar field 𝜑 in the same manner as in the Jordan frame 
case. Introducing dynamical variable 𝑣 = 1

𝑧 , we find the following dy-

namical system:

d�̃�
d ln �̃�

= −3
(
1 − 1

4
�̃�2
)(

�̃�+ 4
3
𝑣

1 − (1 + 𝜆)𝑣 
𝜆𝑣2 + (1 − 𝑣)2

)
,

d𝑣 
d ln �̃�

= −�̃�𝑣 ,
(48)

and in the same way we find the energy conservation condition (42).

Next, we look for asymptotic states located at infinite values of the 
scalar field 𝜑. One of the states, located at (�̃�∗ = 2, 𝑣∗ = 0), is a saddle 
type critical point, and the second with the coordinates (�̃�∗ = −2, 𝑣∗ =
0), is an unstable node. At both sates, the energy conservation condition 
is infinite, while the acceleration equation (43) is

̇̃𝐻

�̃�2

||||
∗
= −3,

with effective equation of state parameter 𝑤eff = 1, which corresponds 
to the Zeldovich stiff matter [37,38].

The most interesting critical point is located at the centre of the phase 
space (�̃�∗ = 0, 𝑣∗ = 0). The eigenvalues of the linearisation matrix calcu-

lated at this point are
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𝑙1 = −3 , 𝑙2 = 0 ,

and, with one of the eigenvalues vanishing, we have a degenerate non-

hyperbolic critical point. As in the Jordan frame case, the stability anal-

ysis requires the use of the centre manifold theorem [29,35,36].

We can easily find the following equation for an invariant mani-

fold:

�̃� = −4
3
𝑣+ ℎ(𝑣) ,

where the function ℎ(𝑣) is an arbitrary polynomial:

ℎ(𝑣) = 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 + 𝑎5𝑣5… ,

and this manifold is called the centre manifold. Using the centre 
manifold theorem, we can find the constants 𝑎𝑖 to an arbitrary or-

der:

𝑎2 = − 4 
27

(5 − 9𝜆) ,

𝑎3 = − 4 
81

(7 − 45𝜆) ,

𝑎4 = − 4 
2187

(49 − 1494𝜆+ 81𝜆2) ,

𝑎5 = − 4 
19683

(−119 − 11970𝜆+ 6885𝜆2) ,

⋮ 

(49)

In this way, we can find the equation for the invariant centre mani-

fold to arbitrary precision. Finally, we conclude that the asymptotic 
state under consideration results from a saddle-node bifurcation and 
can be split by adding an arbitrarily small distortion to the model 
[35,36].

The energy conservation condition (42) and the acceleration equa-

tion (43) calculated at this asymptotic state give

�̃�2

�̃�2
0

||||
∗
= 1 
𝜆
Ω̃Λ,0 = Ω̃Λ̃,0 , 

̇̃𝐻

�̃�2

||||
∗
= 0 ,

and with the constant energy conservation condition and the vanishing 
acceleration equation, we conclude that this critical point corresponds 
to the de Sitter state.

We must be aware that if the de Sitter state is reached asymptot-

ically, the model might not be automatically non-singular. The scalar 
curvature invariants would be finite in this case, but a parallelly prop-

agated singularity could be present [39,40]. Using the invariant cen-

tre manifold of the dynamics in the vicinity of the de Sitter state, we 
find

̇̃𝐻

�̃�2

(
�̃�(𝑖)

�̃�0

)2
= −3

4
Ω̃Λ,0

𝜆 
�̃�2
𝜆𝑣2 + (1 − 𝑣)2

1 − 1
4 �̃�

2

(
�̃�

�̃�(𝑖)

)−2

≈ −4
3
Ω̃Λ,0

𝜆 
𝑣2
𝜆𝑣2 + (1 − 𝑣)2

1 − 4
9𝑣

2

(
�̃�

�̃�(𝑖)

)−2
→ −∞ ,

(50)

and this quantity diverges to infinity as �̃�→ 0 at the de Sitter state rep-

resented by the topological saddle-node bifurcation point.

Using the invariant centre manifold theorem, we have shown that 
there exists a zero-measure set of initial conditions that lead from an 
unstable to a stable de Sitter state. This suggests the possibility of tran-

sient cosmological evolution between different de Sitter phases.

In Fig. 2, we present the complete phase space diagram of the dy-

namical system (48), compactified with a circle at infinity of the phase 
space. The direction of arrows on the phase space curves indicates grow-

ing of the Einstein frame scale factor �̃�. One can easily notice presence 
of the invariant centre manifold connecting critical point at the centre of 
the phase space (�̃�∗ = 0, 𝑣∗ = 0) with the point at (�̃�∗ = 0, 𝑣∗ = 1 

1+𝜆 ). The 
saddle-node topological structure of the critical point (�̃�∗ = 0, 𝑣∗ = 0) is 
clear.

Fig. 2. The phase space diagram of the dynamical system (48) in the Einstein 
frame with 𝜆= 1

4
. The invariant centre manifold and a saddle-node degenerated 

critical point at the centre are clearly visible.

3. Frames comparison and conclusions

Now, we will investigate the correspondence between asymptotic 
states in the Jordan frame formulation of the theory and its conformally 
transformed Einstein frame counterpart. The conformal transformation 
between metric tensors is given by

�̃�𝜇𝜈 =Ω2𝑔𝜇𝜈 ,

where 𝑔𝜇𝜈 is the metric tensor in the Jordan frame and �̃�𝜇𝜈 is the metric 
tensor in the Einstein frame, with the conformal factor

Ω2 = 𝜑 
𝜙0

> 0 .

We find that the scale factor and the cosmological time transform ac-

cording to

�̃� =Ω𝑎 , d𝑡 =Ωd𝑡 .

In dynamical system analysis, we have used phase space variables in 
the Einstein and Jordan frames:

�̃� =
d𝜑
d𝑡

�̃�𝜑
, 𝑥 =

d𝜑
d𝑡 
𝐻𝜑

.

Using the following transformations for the Hubble function between 
the frames,

�̃� = 𝐻

Ω 

(
1 + 1

2
d lnΩ2

d ln𝑎 

)
,

together with the conformal factor Ω2 = 𝜑 
𝜙0

, we find the following equa-

tions relating phase space variables in the Jordan frame and the Einstein 
frame:

𝑥 = �̃�

1 − 1
2 �̃�
, �̃� = 𝑥 

1 + 1
2𝑥
. (51)

In Fig. 3, we present the phase space diagrams in physical regions 𝜑 > 0
for both frames.

We begin our discussion of the correspondence between the frames 
with the Jordan frame critical point (𝑥∗ = −1, 𝑣∗ = 0), which is an un-

stable node. The equation of state parameter calculated at this state is 
𝑤eff = 1

3 which corresponds to radiation-like expansion of the universe. 
We have shown that this state is the single unstable critical point with
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Fig. 3. Phase space diagrams in the Jordan frame and in the Einstein frame with 𝜆= 1
4
. The shaded regions where 𝐻2 < 0 or �̃�2 < 0 are unphysical. The invariant 

centre manifolds and the saddle-node degenerated critical points are clearly visible. The mathematical structures of the models are equivalent, but their physical 
content is different.

an open and dense set of initial conditions giving rise to the beginning of 
the universe. The state under consideration is located at 𝜑∗ =∞ where, 
in our analysis, 𝜑 ∝𝑅, and from the original action integral of the the-

ory (2), we find that we arrive at an asymptotically conformally and 
scale-invariant theory.

From the equation (51), we find that the Jordan frame state (𝑥∗ =
−1, 𝑣∗ = 0) corresponds to the Einstein frame state (�̃�∗ = −2, 𝑣∗ = 0). 
The Einstein frame physical state is described by Zeldovich stiff matter 
[37,38], with the equation of state parameter 𝑤eff = 1. We have found 
that in the Einstein frame analysis there are two such critical points 
in the form of an unstable node, which give rise to the beginning of 
a universe starting from the stiff matter state. This state is completely 
different from the Jordan frame state.

Next, we compare the centre of the phase space the critical points 
(𝑥∗ = 0, 𝑣∗ = 0) and (�̃�∗ = 0, 𝑣∗ = 0). In the Jordan frame, this state is de-

scribed by the vanishing of the acceleration equation while the energy 
conservation condition diverges, and it corresponds to a singularity. In 
the Einstein frame, the corresponding state is of the de Sitter type but 
still plagued by a parallelly propagated singularity. The physical inter-

pretation of both states is completely different.

The mathematical description of both states shows that they are in 
the form of degenerate non-hyperbolic critical points of a saddle-node 
bifurcation. For both states, we have found invariant centre manifolds 
with an arbitrary polynomial approximation. It is easy to show that both 
manifolds are invariant under the transformations (51). We conclude 
that the mathematical structure is preserved while the physical inter-

pretation is changed.

The final critical points correspond to the de Sitter states. We can 
easily notice that the stability conditions and linearised solutions in the 
vicinity of the states are exactly the same in both frame. In the Jor-

dan frame, the energy conservation condition for the asymptotic state 
is given by

𝐻2

𝐻2
0

||||
∗
= ΩΛ,0 =

Λ 
3𝐻2

0

,

while in the Einstein frame it is

�̃�2

�̃�2
0

||||
∗
=

Ω̃Λ,0

1 + 𝜆
=

Λ 
3�̃�2

0

1 + 𝜆
,

where 𝜆 = Λ
Λ̃ is the ratio between the Jordan frame cosmological con-

stant and the Einstein frame cosmological constant. The energy density 
for the states in both frames is different unless measurements of the 
present value of the Hubble function depend on the frame.

In this paper, we investigated a theory of gravity derived from the 
truncated Sakharov action integral with a quadratic contribution of 
scalar curvature with the following Lagrangian −2𝜙0Λ+𝜙0𝑅+𝑐1𝑅2. We 
have shown that when the simplest flat Friedmann–Robertson–Walker 
metric is employed the dynamics in both the Jordan frame and the con-

formally transformed Einstein frame can be reduced to two dimensional 
dynamical system. In both frames, we found stable de Sitter states where 
the expansion of the Hubble function naturally includes terms corre-

sponding to an effective dark matter component.

It is worth stressing that more general 𝑓 (𝑅) theories of gravity rep-

resent viable cosmological solutions. In particular, cosmological models 
based on monomial scalar curvature terms 𝑅𝑛 in theories of gravity give 
rise to accelerated expansion as an attractor solution for a large set of 
initial conditions [41].

It is well known that the nature of solutions can change after a con-

formal transformation. While the mathematical structure of the dynami-

cal system may be preserved, the physical interpretation of the solutions 
can be different in the Jordan and Einstein frames [42,43].

In our analysis, we have shown that the de Sitter states in both frames 
have the same stability conditions and linearised solutions. However, 
the energy densities associated with these states are different unless the 
measurements of the present value of the Hubble function are frame-

dependent. We can conclude that while the qualitative behaviour of the 
solutions is preserved, the quantitative aspects can differ.

Moreover, the critical points corresponding to infinite values of 
the scalar field 𝜑 exhibit different physical interpretations in the two 
frames. In the Jordan frame, the state (𝑥∗ = −1, 𝑣∗ = 0) corresponds to a 
radiation-like expansion, while in the Einstein frame, the corresponding 
state (�̃�∗ = −2, 𝑣∗ = 0) is described by Zeldovich stiff matter. This is why 
we have to carefully interpret the physical implications of solutions in 
different frames.
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