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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger The superconformal index 𝑍 of the 6d (2,0) theory on 𝑆5 ×𝑆1 (which is related to the localization 
partition function of 5d SYM on 𝑆5) should be captured at large 𝑁 by the quantum M2 
brane theory in the dual M-theory background. Generalizing the type IIA string theory limit 
of this relation discussed in arXiv :2111 .15493 and arXiv :2304 .12340, we consider semiclassically 
quantized M2 branes in a half-supersymmetric 11d background which is a twisted product of 
thermal AdS7 and 𝑆4. We show that the leading non-perturbative term at large 𝑁 is reproduced 
precisely by the 1-loop partition function of an “instanton” M2 brane wrapped on 𝑆1 × 𝑆2

with 𝑆2 ⊂ 𝑆4. Similarly, the (2,0) theory analog of the BPS Wilson loop expectation value is 
reproduced by the partition function of a “defect” M2 brane wrapped on thermal AdS3 ⊂ AdS7. 
We comment on a curious analogy of these results with similar computations in arXiv :2303 .15207

and arXiv :2307 .14112 of the partition function of quantum M2 branes in AdS4 × 𝑆7∕ℤ𝑘 which 
reproduced the corresponding localization expressions in the ABJM 3d gauge theory.
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1. Introduction

The 6d (2,0) superconformal field theory should be describing the low-energy dynamics of 𝑁 coincident M5 branes. It is expected 
to be dual [1] to 11d M-theory theory on the AdS7 × 𝑆4 background, which is a limit of the M5 brane solution of 11d supergravity 
[2]2

𝑑𝑠211 = 𝑎2
(
𝑑𝑠2AdS7

+ 1
4𝑑𝑠

2
𝑆4

)
, 𝐹4 = 𝑑𝐶3 = 𝜋2𝑎3 vol𝑆4 , 𝑎3 = 8𝜋𝑁 𝓁3

𝑃
. (1.1)

Due to the lack of an intrinsic definition of the (2,0) theory and having only 𝑁 as a free parameter, it is not clear how to define 
non-trivial observables (computable, e.g., by localization) that can be used to test this AdS/CFT duality.3

To introduce an extra parameter one may consider some “orbifolding” of (1.1) (by analogy, e.g., with the ABJM theory [10] of 
multiple M2 branes on ℝ8∕ℤ𝑘 dual to M-theory on AdS4 ×𝑆7∕ℤ𝑘). One option is to consider the (2,0) theory on 𝑆5 ×𝑆1

𝛽
where 𝛽 is 

the length of the circle. The dual M-theory background may then have the AdS7 part with the corresponding 𝑆5 ×𝑆1
𝛽

boundary, i.e. 
𝑑𝑠2AdS7

= 𝑑𝑥2 + sinh2 𝑥 𝑑𝑆5 + cosh2 𝑥 𝑑𝑦2 where 𝑦 ≡ 𝑦 + 𝛽 and 𝑑𝑆5 is the metric of a unit-radius 5-sphere.4

Dimensionally reducing on the 𝑦-circle, i.e. considering the limit of 𝛽 → 0, the M5 brane solution will reduce to the D4 brane 
solution of type IIA 10d supergravity, while the (2,0) theory on 𝑆5 × 𝑆1

𝛽
is expected to be related to the maximally supersymmetric 

5d SYM theory on 𝑆5. The 5d SYM theory does not have a first-principles definition being nonrenormalizable, i.e. the (2,0) theory 
should be thought of as its UV completion (cf. [12]). Yet this relation may be useful at a heuristic level as one may attempt to define 
free energy of the SYM theory on 𝑆5 by analogy with 4d SYM theory where it can be computed from localization.

It turns out that the requirement of preservation of 16 real supersymmetries demands introducing an extra R-symmetry twist in 
the (2,0) theory on 𝑆5 × 𝑆1

𝛽
, or a twist in the 𝑆4 part of the background (1.1). This was understood in [13] when constructing the 

type IIA solution which corresponds to a D4 brane world volume wrapped on 𝑆5. The 11d uplift of this solution is related by an 
analytic continuation to the following 11d background [13–15]

𝑑𝑠211 = 𝑎2
([
𝑑𝑥2 + sinh2 𝑥𝑑𝑆5 + cosh2 𝑥𝑑𝑦2

]
+ 1

4

[
𝑑𝑢2 + cos2 𝑢𝑑𝑆2 + sin2 𝑢 (𝑑𝑧+ 𝑖𝑑𝑦)2

])
, (1.2)

𝐶3 = −1
8𝑎

3 cos2 𝑢 vol𝑆2 ∧(𝑑𝑧+ 𝑖𝑑𝑦) . (1.3)

Here the 𝑆4 part 𝑑𝑢2 + cos2 𝑢 𝑑𝑆2 + sin2 𝑢 𝑑𝑧2 got the 2𝜋 periodic angle 𝑧 shifted by 𝑖𝑦 where 𝑦 ∈ (0, 𝛽) is the circular 11d coordi-

nate.5 This background is related to (1.1) by a periodic identification and a coordinate shift so is an obvious solution of the 11d 
supergravity.6 We will denote the first 7d part of (1.2) as AdS7,𝛽 and the 4d part as �̃�4 and somewhat loosely refer to (1.2) as a 
“direct product” AdS7,𝛽 × �̃�4.

Our aim in this paper is to consider the quantum M2 brane in the (𝑁, 𝛽) dependent background (1.2), (1.3) and compute its 
partition function in the semiclassical (large tension T2 = 𝑎3𝑇2 =

2
𝜋
𝑁 ≫ 1) expansion near particular classical solutions similarly to 

how that was done in the AdS4 ×𝑆7∕ℤ𝑘 case in [18,19]. This will represent an M-theory generalization of the type IIA string theory 
semiclassical computations done in the limit 𝛽 → 0, 𝑁 →∞ with fixed 𝑁𝛽 in [15,20].

2 Here 𝑑𝑠2AdS7 and 𝑑𝑠2
𝑆4 are the metrics of the unit-radius AdS7 and 𝑆4 . We shall often use the notation 𝑑𝑆𝑛 ≡ 𝑑𝑠2

𝑆𝑛 . 𝓁𝑃 is the 11d Planck constant related to 
the gravitational constant in the (Euclidean) 11d supergravity action 𝑆11 = − 1

2𝜅2
11
∫ 𝑑11𝑥

√
𝐺(𝑅 − 1

2⋅4!
𝐹 2
𝑀𝑁𝐾𝐿

+ ...) as 2𝜅2
11 = (2𝜋)8𝓁9

𝑃
and to the M2 brane tension as 

𝑇2 =
1

(2𝜋)2𝓁3
𝑃

. Also, vol𝑆4 is the normalized volume 4-form of 𝑆4 , i.e. ∫
𝑆4 vol𝑆4 = 1 with vol(𝑆4) = 8𝜋2

3
.

3 Almost all of the available information comes from the 11d supergravity effective action and supersymmetry considerations that may be used, e.g., to determine 
the M-theory predictions for the a- and c- conformal anomaly coefficients of the (2,0) theory (see, e.g., [3–7]) and thus, in particular, the expression for its free energy 
on 𝑆6 (that should have the same structure as the free energy of the N = 4 SYM on 𝑆4): 𝐹 ∼ a(𝑁) logΛ + const. One may also find a defect conformal anomaly by 
using M2 brane probe in AdS7 ×𝑆4 background as discussed in [8,9] and refs. there.

4 In general, introducing a thermal circle one would need to consider also black hole like geometry with the corresponding asymptotics [11]. This will not be the 
case here as we will be interested in the background corresponding to a superconformal index with an extra R-symmetry twisting and periodic fermions.

5 This complex background becomes real after 𝑦 → 𝑖𝑡 with the time-like direction 𝑡 here playing the role of the 11d circle.
6 Note that near 𝑥 = 0, 𝑢 = 0 and relevant part of the metric becomes 𝑑𝑦2 + 𝑑𝑢2 + 𝑢2(𝑑𝑧 + 𝑖𝑑𝑦)2 so that it may be thought of as a special case of a (complex or 
2

time-like) Melvin twist discussed in [16] and, in particular, in 11d context in [17]).
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We will provide a check of the AdS7/CFT6 correspondence in this setting by establishing matching of quantum M2 brane results 
with the large 𝑁 expansion of the supersymmetric partition function of the (2,0) theory on 𝑆5 × 𝑆1

𝛽
with R-symmetry twist (and 

periodic fermions), identified with the corresponding superconformal index computed in [21,22].7

As the non-abelian (2,0) theory does not have an explicit Lagrangian formulation, its supersymmetric partition function on 𝑆5 ×𝑆1

that should be equal to the index cannot be computed directly, but it may be interpreted as a partition function of the 5d SYM theory 
(assuming the latter has a well-defined UV completion). Then the superconformal index may be interpreted as a (properly defined) 
localization result for the partition function of 5d SYM on 𝑆5 with 𝑔2

YM
proportional to 𝛽 up to a length scale factor. By analogy with 

the 4d SYM theory, this suggests also to consider the localization expression for the BPS Wilson loop expectation value (cf. [24]) 
which may be then compared with an M2 brane semiclassical computation as in [18].

Denoting by 𝑍𝑁 (𝛽) the index of the (2, 0) theory on 𝑆5 × 𝑆1
𝛽

one finds for the large 𝑁 , fixed 𝛽 expansion of the corresponding 
free energy 𝐹𝑁 (𝛽) = − log𝑍𝑁 (𝛽) [21,22]

𝐹𝑁 (𝛽) = 𝐹
pert
𝑁

(𝛽) + 𝐹
np
𝑁
(𝛽) , 𝐹

pert
𝑁

(𝛽) = −( 16𝑁
3 − 1

8𝑁)𝛽 +
∞∑
𝑛=1

𝑐𝑛 𝑒
−𝑛𝛽 , (1.4)

𝐹
np
𝑁
(𝛽) = 1

4 sinh2 𝛽

2

𝑒−𝑁𝛽 +O(𝑒−2𝑁𝛽 ) . (1.5)

For the natural analog of the Wilson loop one finds for large 𝑁 [21,22]

⟨𝑊 ⟩ = 1
2sinh 𝛽

2

𝑒𝑁𝛽 +O(𝑁0) . (1.6)

Below we will reproduce the expressions (1.5) and (1.6) on the M-theory side, by performing semiclassical M2-brane computations 
in the background (1.2), (1.3). In the case of the non-perturbative contribution to free energy in (1.5), the classical M2 brane solution 
will be wrapped on 𝑆1

𝛽
× 𝑆2 with 𝑆1

𝛽
⊂AdS7,𝛽 and 𝑆2 ⊂ �̃�4. In the case of the Wilson loop (1.6), the dual M2 brane solution will be 

wrapped on AdS3,𝛽 ⊂AdS7,𝛽 , where AdS3,𝛽 is the “thermal” AdS3 background.

In both cases, the exponents in (1.5) and (1.6) will come from the classical M2 brane action while the 𝛽 dependent prefactors will 
be precisely reproduced by the one-loop M2 brane fluctuation determinants as in [18,19]. Our results will generalize to the finite 𝛽
case the analogous computations in the type IIA string-theory limit in [15,20].

The plan of the paper is as follows. In section 2 we review the localization results for the (2, 0) theory superconformal index and 
the analog of the supersymmetric Wilson loop, leading to (1.5), (1.6). In section 3 we discuss the general structure of the M2 brane 
semiclassical partition function. Section 4 presents the details of the calculation of this partition function in the case of the 𝑆1

𝛽
× 𝑆1

M2 brane instanton background reproducing (1.5). Section 5 addresses similar computation in the case of the M2 brane wrapped on 
AdS3,𝛽 reproducing the Wilson loop expectation value in (1.6). Section 6 contains a summary and concluding remarks. Appendices 
contain some technical details used in the main part of the paper.

2. Localization expressions for the free energy and Wilson loop

The superconformal index of 𝑈 (𝑁) (2,0) theory on 𝑆5 × 𝑆1
𝛽

was found [21,22] to be given by a matrix model which is the same 
as for the supersymmetric 3d pure Chern-Simons theory solved in [25]. The result may be represented as a product of two factors8

𝑍𝑁 (𝑞) ≡ 𝑒−𝐹𝑁 (𝛽) =𝑍
(0)
𝑁

(𝑞)𝑍 inst
𝑁

(𝑞) , 𝑞 ≡ 𝑒−𝛽 , (2.1)

𝑍
(0)
𝑁

(𝑞) =
( 𝛽

2𝜋

)𝑁∕2
𝑒
𝑁(𝑁2−1)

6 𝛽
𝑁−1∏
𝑛=1

(1 − 𝑒−𝑛𝛽 )𝑁−𝑛 , 𝑍 inst
𝑁

(𝑞) =
[
𝜂
(2𝜋𝑖

𝛽

)]−𝑁
. (2.2)

We shall refer to 𝑍𝑁 as partition function. 𝐹𝑁 (𝛽) = − log𝑍𝑁 (𝑞) may be interpreted as a “supersymmetric” free energy.9

To study the expansion of the partition function 𝑍𝑁 at large 𝑁 and fixed 𝛽, it is convenient to apply a modular transformation 
to the 𝜂-function factor 𝑍 inst

𝑁
(𝑞) in 𝑍𝑁 . This gives

𝑍𝑁 (𝑞) = 𝑞𝜖0(𝑁)𝑍𝑁 (𝑞) , 𝜖0(𝑁) = −1
6𝑁(𝑁2 − 1) − 1

24𝑁 = −1
6𝑁

3 + 1
8𝑁 , (2.3)

7 Ref. [21] started with the abelian 6d (2, 0) theory (i.e. tensor multiplet) with 32 supersymmetries and by introducing a Scherk-Schwarz-like R-symmetry twist 
obtained a theory on 𝑆5 ×𝑆1 with 16 supersymmetries and a subgroup 𝑆𝑂(2) ×𝑆𝑂(3) of the original 𝑆𝑂(5) R-symmetry. The 𝑆𝑂(2) ⊂ 𝑆𝑂(5) twist was necessary to 
have constant spinors on 𝑆5 . Upon dimensional reduction, the R-symmetry twist leads to extra mass terms in the 5d SYM action. The construction was then extended 
to the non-abelian case via 5d SYM connection, and using supersymmetric localization provided the expression for the perturbative partition function in the form of 
a matrix model [21], which was supplemented by all instanton corrections in [22]. The 𝑆𝑂(2) twist corresponds to the introduction of a chemical potential coupled 
to the R-charge and the corresponding localization matrix model computes the (unrefined) superconformal index of the (2, 0) theory (see also [23]).

8 Here the Dedekind function is 𝜂(𝜏) = 𝑞
1
24
∏∞

𝑛=1(1 − 𝑞𝑛) where 𝑞 = 𝑒2𝜋𝑖𝜏 . Its modular transformation is 𝜂(−1∕𝜏) =
√
−𝑖𝜏 𝜂(𝜏).
3

9 In the interpretation of 𝐹𝑁 (𝛽) as a free energy of 5d SYM theory on 𝑆5 one may set 𝛽 = 𝑔2
YM

2𝜋𝑅
where 𝑅 is an effective length scale.
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𝑍𝑁 (𝑞) =
𝑁∏
𝑛=1

∞∏
𝑚=0

1
1 − 𝑞𝑛+𝑚

, (2.4)

where 𝜖0(𝑁) is the “supersymmetric Casimir energy” [26–28].

The partition function (2.4) has an expansion in powers of 𝑞 with integer 𝑁 -dependent coefficients. The coefficients take finite 
values for large 𝑁 : the 𝑁 →∞ limit 𝑍∞(𝑞) of 𝑍𝑁 is the MacMahon function

𝑍𝑁 (𝑞)
𝑁→∞
→ 𝑍∞(𝑞) , 𝑍∞(𝑞) =

∞∏
𝑛=1

(1 − 𝑞𝑛)−𝑛 = 1 + 𝑞 + 3𝑞2 + 6𝑞3 + 13𝑞4 + 24𝑞5 +⋯ . (2.5)

The expression 𝑍∞ may be interpreted as the unrefined superconformal index counting BPS states of 11d supergravity on AdS7 ×𝑆4, 
i.e. given by the sum over Kaluza-Klein states of the 𝑆4 compactification [21].

Finite 𝑁 corrections to the partition function can be read off from (2.4) after writing it in the following equivalent form

𝑍𝑁 (𝑞) =𝑍∞(𝑞)
∞∏
𝑛=0

∞∏
𝑚=0

(1 − 𝑞𝑁+𝑛+𝑚+1) . (2.6)

Expanding log𝑍𝑁 in powers of 𝑞𝑁 , summing over 𝑛, 𝑚, and exponentiating back gives

𝑍𝑁 (𝑞) =𝑍∞(𝑞)
[
1 − 𝑞

(1 − 𝑞)2
𝑞𝑁 + 2𝑞3

(1 − 𝑞2)2(1 − 𝑞)2
𝑞2𝑁 +⋯

]
=𝑍∞(𝑞)

[
1 − 1

4 sinh2 𝛽

2

𝑒−𝑁𝛽 + 1
32 sinh4 𝛽

2 cosh
2 𝛽

2

𝑒−2𝑁𝛽 +⋯
]
. (2.7)

Combining (2.3) and (2.7), we can write the large 𝑁 , fixed 𝛽 expansion of the free energy 𝐹𝑁 in (2.1) as a sum of a perturbative 
and non-perturbative parts

𝐹𝑁 (𝛽) = 𝐹
pert
𝑁

(𝛽) + 𝐹
np
𝑁
(𝛽) , (2.8)

𝐹
pert
𝑁

(𝛽) = 𝜖0(𝑁)𝛽 + 𝐹 (𝛽) , 𝐹 (𝛽) ≡ −log𝑍∞(𝑞) =
∞∑
𝑛=1

𝑐𝑛 𝑒
−𝑛𝛽 , (2.9)

𝐹
np
𝑁
(𝛽) = 1

4 sinh2 𝛽

2

𝑒−𝑁𝛽 +O(𝑒−2𝑁𝛽 ) , (2.10)

where 𝜖0(𝑁) is given in (2.3) and 𝑐𝑛 in (2.9) following from (2.5) are 𝑐1 = −1, 𝑐2 = −5
2 , 𝑐3 = −10

3 , ....
The leading 𝑁3𝛽 term in the perturbative part of (2.9) where 𝜀0 = − 1

24 (4𝑁
3 − 3𝑁) as in (2.3) should originate from the 11d 

supergravity action ∫ 𝑅 + ... evaluated on the corresponding dual background AdS7,𝛽 × �̃�4 in (1.2), (1.3).10 The first subleading 
𝑁𝛽 term in 𝐹 pert

𝑁
should originate from the 𝑅4 invariant in the 11d effective action, by analogy with the case of the 11d effective 

action evaluated on the standard AdS7 × 𝑆4 background, reproducing [4] the order 𝑁 term in the coefficient a = 4𝑁3 − 9
4𝑁 − 7

4
of the conformal anomaly of the (2,0) theory on 𝑆6.11 Let us note that in general the supersymmetric Casimir energy of a 6d (2,0) 
supersymmetric theory on 𝑆5 ×𝑆1 should be related to the conformal c-anomaly coefficient as [27] 𝜖0 = − 1

24 c. For the 𝑆𝑈 (𝑁) (2,0) 
theory one has c = 4𝑁3 − 3𝑁 − 1 [3,6] which is thus consistent with (2.3) (the −1 term is absent in the 𝑈 (𝑁) case).

The term 𝐹 (𝛽) in (2.9) should be reproduced by the 1-loop 11d supergravity partition function on AdS7,𝛽 × �̃�4 (with periodic 
boundary conditions on fermions). The supergravity index 𝑍∞(𝑞) was found in [21] from the BPS KK spectrum of 𝑆4 compactification 
of 11d supergravity [31], adding also an R-charge shift to the Hamiltonian (conjugate to the Euclidean “time” 𝑦) when defining the 
index. This R-charge shift corresponds effectively to computing a supersymmetric partition function on AdS7,𝛽 ×�̃�4 with the 𝑧 → 𝑧 +𝑖𝑦

shift in a 𝑆4 angle as in (1.2). There is again an analogy with how the constant 𝑁0 term in the a-coefficient of 6d conformal anomaly 
is found from the 1-loop 11d supergravity effective action on AdS7 ×𝑆4 with 𝑆6 boundary [5].

10 The computation of the 𝑁3 term in the free energy from the supergravity action in thermal AdS7 ×𝑆4 has a priori no reason to match the coefficient in the index 
asymptotics, see a discussion in Appendix A. Reproducing the coefficient of this leading 𝑁3 contribution attempted in [29,30] requires adding finite “counterterms” 
to the low-dimensional effective supergravity action that were claimed to be needed to preserve supersymmetry. Let us also note that, in view of the relation between 
the supersymmetric Casimir energy and the c-coefficient of the conformal anomaly [27], one may expect that to match the former on the supergravity side one may 
need a more subtle procedure than just directly evaluating the supergravity action on the AdS7 × 𝑆4 background: to capture the c-anomaly one needs to perturb the 
AdS7 boundary metric to have a non-zero 6d Weyl tensor [3].
11 Note that while in the case of AdS7 with 𝑆6 boundary the value of 11d effective action is proportional to vol(AdS7) = 𝜋3

3
log𝜀 (where 𝜀 → 0 is an IR cutoff) and 

thus computes the a-anomaly coefficient, in the case of the 𝑆5 ×𝑆1
𝛽

boundary we have vol(AdS7,𝛽 ) = − 5𝜋4

48
𝛽 (see Appendix A) and thus the local ∫ (𝑅 +𝑅4) part of the 
4

11d effective action evaluated on AdS7,𝛽 ×𝑆4 is finite and linear in 𝛽 .



Nuclear Physics, Section B 998 (2024) 116400M. Beccaria, S. Giombi and A.A. Tseytlin

The large 𝑁 expansion (2.7) of the superconformal index of the (2, 0) theory was interpreted in [32,33] as representing the 11d 
supergravity index 𝑍∞(𝑞) corrected by the contributions of other BPS states corresponding to wrapped M2 branes (that here play 
the role of “giant gravitons”, cf. [34]).

Below we will prove that the leading −[4 sinh2 𝛽

2 ]
−1𝑒−𝑁𝛽 term in (2.7) or in (2.10) originates precisely from the partition function 

of M2 brane wrapped on 𝑆1
𝛽
× 𝑆2, in full analogy with how that happened [19] for the instanton M2 brane in AdS4 × 𝑆7∕ℤ𝑘

background in the ABJM case.

By analogy with the familiar N = 4 SYM case [35], it is possible to insert into the matrix model integral found in [21,22] a 
counterpart of the Wilson loop operator 𝑊 (𝑋) = Tr 𝑒𝑋 (where 𝑋 is the matrix which is the integration variable). One may interpret ⟨𝑊 ⟩ as the expectation value of a suitable [21,22] supersymmetric Wilson loop in the SYM theory on 𝑆5 (cf. [24])12 or rather 
of a corresponding 2-defect operator in the (2,0) theory on 𝑆5 × 𝑆1

𝛽
that wraps 𝑆1 of 𝑆5 as well 𝑆1

𝛽
. The resulting matrix model 

expectation value is [21,22] (using the original Wilson loop computation in 𝑈 (𝑁) Chern-Simons matrix model [36])

⟨𝑊 ⟩ = 𝑒
𝑁𝛽
2

sinh 𝑁𝛽

2

sinh 𝛽

2

= 1
2 sinh 𝛽

2

𝑒𝑁𝛽 − 1
2sinh 𝛽

2

. (2.11)

On the M-theory side this expression is expected to be reproduced by the M2 brane semiclassical contributions of the two saddle 
points: of AdS3,𝛽 corresponding to M2 ending on 𝑆1 of the 𝑆5 boundary of AdS7,𝛽 part of (1.2) (having non-zero classical action) 
and of a degenerate M2 brane wrapping only 𝑆1

𝛽
(with zero action). As we will show below, the fluctuation determinants near the 

first saddle point reproduce precisely the prefactor [2 sinh 𝛽

2 ]
−1 in (2.11), which is again in full analogy with a similar computation 

in the AdS4 ×𝑆7∕ℤ𝑘 case in [18].

3. Semiclassical expansion of M2 brane path integral

Our aim will be to consider a semiclassical expansion of the Euclidean M2 brane path integral near particular classical solutions in 
the “twisted” version (1.2), (1.3) of the AdS7 ×𝑆4 background. While the M2 brane action [37] is highly non-linear, when expanded 
near a classical solution with a non-degenerate induced 3d metric it can be straightforwardly quantized in a static gauge. Then the 
leading 1-loop result for its partition function is well defined (has no UV logarithmic divergences) [38–40,9,18,19].

The bosonic part of the M2 brane action may be written as

𝑆 = 𝑆V +𝑆WZ, 𝑆V = 𝑇2 ∫ 𝑑3𝜉
√
𝑔, 𝑔𝑎𝑏 = 𝜕𝑎𝑋

𝑀𝜕𝑏𝑋
𝑁 𝐺𝑀𝑁 (𝑋), (3.1)

𝑆WZ = −𝑖 𝑇2 ∫ 𝑑3𝜉
1
3!
𝜀𝑎𝑏𝑐𝐶𝑀𝑁𝐾 (𝑋)𝜕𝑎𝑋𝑀𝜕𝑏𝑋

𝑁𝜕𝑐𝑋
𝐾, 𝑇2 =

1
(2𝜋)2𝓁3

𝑃

. (3.2)

Here 𝑆V is the induced volume (or Dirac-Nambu-Goto) term, while 𝑆WZ represents the coupling to the 𝐶3 potential of 11d super-

gravity. The explicit form of the fermionic part of the M2 brane action is also known, in particular, for the cases of the maximally 
supersymmetric AdS4 × 𝑆7 or AdS7 × 𝑆4 backgrounds [41,42]. It can also be found for the AdS7,𝛽 × �̃�4 background (1.2), (1.3)

related to AdS7 × 𝑆4 by an “orbifolding” and coordinate redefinition. The 1-loop computation discussed below will require only the 
knowledge of the quadratic fermionic term in the M2 brane action expanded near a bosonic background 𝑋𝑀 (𝜉) [41,39,43,17,44]

𝑆𝐹 = 𝑖𝑇2 ∫ 𝑑3𝜉
[√

𝑔 𝑔𝑎𝑏𝜕𝑎𝑋
𝑀 �̄� Γ𝑀�̂�𝑏𝜃 −

1
2
𝜀𝑎𝑏𝑐𝜕𝑎𝑋

𝑀𝜕𝑏𝑋
𝑁 �̄� Γ𝑀𝑁�̂�𝑐𝜃 + ...

]
, (3.3)

𝑔𝑎𝑏 = 𝜕𝑎𝑋
𝑀𝜕𝑏𝑋

𝑁𝐺𝑀𝑁 (𝑋), 𝐺𝑀𝑁 =𝐸𝐴
𝑀
𝐸𝐴
𝑁
, Γ𝑀 =𝐸𝐴

𝑀
(𝑋)Γ𝐴 , (3.4)

�̂�𝑎 = 𝜕𝑎𝑋
𝑀�̂�𝑀, �̂�𝑀 =D𝑀 − 1

288 (Γ
𝑃𝑁𝐾𝐿

𝑀
+ 8Γ𝑃𝑁𝐾𝛿𝐿

𝑀
)𝐹𝑃𝑁𝐾𝐿 , (3.5)

where �̂�𝑀 is the generalized 11d spinor covariant derivative [45] and D𝑀 = 𝜕𝑀 + 1
4Γ𝐴𝐵𝜔

𝐴𝐵
𝑀

.13

The action (3.1) computed on the twisted AdS7 × 𝑆4 background (1.2), (1.3) depends on the effective dimensionless M2 brane 
tension

T2 = 𝑎3𝑇2 =
2
𝜋
𝑁 . (3.6)

Thus the semiclassical large tension expansion of the M2 brane partition function should correspond to the large 𝑁 expansion on the 
dual field theory side.

12 As discussed in [22], representing 𝑆5 as a Hopf fibration over ℂℙ2 suggests the following field theory analog of this operator: 𝑊 = Tr
[
P exp∮ 𝑑𝑠 (𝑖𝐴𝑚�̇�

𝑚+𝜙 |�̇�|)], 
where 𝑥𝑚(𝑠) wraps the Hopf fiber.
13 In the static gauge 𝑋𝑎 = 𝜉𝑎, 𝑋𝐼 = 0 (𝐼 = 1, ..., 8) the natural 𝜅-symmetry gauge is like in flat space [41,39]: (1 + Γ)𝜃 = 0, Γ = 1

6
√
𝑔
𝜀𝑎𝑏𝑐𝜕𝑎𝑋

𝑀𝜕𝑏𝑋
𝑁𝜕𝑐𝑋

𝐾Γ𝑀𝑁𝐾 or 
5

alternatively (1 + Γ1...8)𝜃 = 0.
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In general, for an M2 solution with a non-vanishing classical action 𝑆cl = T2�̄�cl (where �̄�cl represents the total value of the sum of 
the volume and the WZ term in (3.1), (3.2)) the M2 brane partition function Z expanded near this background will contain a factor 
𝑒−𝑆cl = 𝑒−T2�̄�cl = 𝑒−𝑝𝑁 where 𝑝 may depend on the parameter 𝛽 of the background (1.2), (1.3).

Given an M2 brane classical solution 𝑋𝑀 = 𝑋𝑀 (𝜉) (𝑀 = 1, … , 11) we may choose the static gauge identifying three of the 
𝑋𝑀 coordinates with the M2 world-volume coordinates 𝜉𝑎 (𝑎 = 1, 2, 3) and also fix a 𝜅-symmetry gauge for the fermions. Then the 
remaining 8 bosonic and 8 fermionic fluctuations will produce a 𝛽-dependent 1-loop prefactor in the M2 brane partition function Z

Z = ∫ [𝑑𝑋 𝑑𝜃] 𝑒−𝑆[𝑋,𝜃] = Z1 𝑒
−T2�̄�cl

[
1 +O(T−1

2 )
]
, 𝑆cl = T2 �̄�cl , (3.7)

Z1 = 𝑒−Γ1 , Γ1 =
1
2
∑
𝑘

𝜈𝑘 logdet Δ𝑘 , (3.8)

where Δ𝑘 are 2nd-derivative fluctuation operators and 𝜈𝑘 = ±1 for the bosons and fermions.

Below we will consider the M2 branes wrapped on 𝑆1
𝛽
. The leading non-perturbative 𝑒−𝑁𝛽 term in the free energy (2.10) will 

be reproduced by the solution that wraps also the 𝑆2 in the �̃�4 part of the metric in (1.2). We will also consider the solution that 
wraps an AdS3,𝛽 part of AdS7,𝛽 in (1.2) (ending on the big circle of 𝑆5) that will reproduce the leading 𝑒𝑁𝛽 term in the Wilson loop 
expectation value in (2.11).

4. 𝑺𝟏
𝜷
×𝑺𝟐 M2 solution: matching non-perturbative free energy

Let us consider the classical M2 brane solution that is wrapped on 𝑆1
𝛽

in AdS7,𝛽 and 𝑆2 in the �̃�4 part of the metric (1.2). It is 
an analog of the instanton M2 brane in AdS4 × 𝑆7∕ℤ𝑘 discussed in [19]. Explicitly, we may choose the coordinate 𝑦 in (1.2) to be 
𝜉3 (assuming now that 𝜉3 ∈ (0, 𝛽)) and the coordinates of the unit-radius 𝑆2 to be 𝜉1 and 𝜉2, with the rest of the coordinates in (1.2)

being trivial, i.e. 𝑥 = 0, 𝑢 = 0, etc.14

The corresponding value of the classical M2 brane action in (3.1) (cf. (3.6)) is then15

𝑆V,cl = 𝑇2 𝑎
3r2 vol(𝑆1

𝛽
×𝑆2) = 1

4
T2 𝛽 4𝜋 = 2𝑁𝛽 , r ≡ 1

2
, (4.1)

𝑆WZ,cl = −𝑖 𝑇2 ∫ 𝐶3 = −1
8
𝑇2𝑎

3 ∫ 𝑑𝑦 ∧ vol𝑆2 = −1
8
T2 𝛽 4𝜋 = −𝑁𝛽 , (4.2)

𝑆cl = 𝑆V,cl +𝑆WZ,cl =𝑁𝛽 . (4.3)

Thus 𝑒−𝑆cl matches the exponential factor in the leading term in the non-perturbative part of free energy (2.10).16

4.1. Quadratic fluctuation Lagrangian

To discuss fluctuations near this classical solution we will choose a natural static gauge, i.e. set the fluctuations of 𝑦 and 𝑆2

coordinates to be zero. Let us first discuss fluctuations in the AdS7,𝛽 directions of (1.2) parametrizing its metric as

𝑑𝑠2AdS7,𝛽
=

(1 + 1
4𝜒

2)2

(1 − 1
4𝜒

2)2
𝑑𝑦2 +

𝑑𝜒𝑝𝑑𝜒𝑝

(1 − 1
4𝜒

2)2
, 𝜒𝑝 = (𝜒1,… , 𝜒6), 𝑦 ≡ 𝑦+ 𝛽. (4.4)

In the static gauge 𝑦 = 𝜉3 the 6 fluctuations 𝜒𝑝 are thus functions of 𝜉3 ≡ 𝜉3 + 𝛽 and the unit 2-sphere coordinates. As 𝐶3 in (1.3)

does not involve AdS7,𝛽 coordinates, we need to consider the quadratic fluctuation term of the 𝑆𝑉 part of the M2 brane action (3.1)

only. Let us introduce the notation 𝑔𝑖𝑗 (𝑖, 𝑗 = 1, 2) for the unit-radius 𝑆2 metric so that the 3d induced metric may be written as

𝑑𝑠2 = 𝑔𝑎𝑏𝑑𝜉
𝑎𝑑𝜉𝑏 = 𝑔𝑖𝑗 (𝜉)𝑑𝜉𝑖𝑑𝜉𝑗 + 𝑑𝜉3𝑑𝜉3 , 𝑔𝑖𝑗 (𝜉)𝑑𝜉𝑖𝑑𝜉𝑗 = 𝑑𝜉21 + sin2 𝜉1 𝑑𝜉22 . (4.5)

Then expanding to quadratic order in 𝜒𝑝 we get

𝑆V = T2r2 ∫ 𝑑3𝜉
√
𝑔
(
1 +ℒ2,V +⋯

)
, (4.6)

ℒ2,V(𝜒) =
1
2r2

[
𝑔𝑖𝑗 𝜕𝑖𝜒

𝑝𝜕𝑗𝜒
𝑝 + r2𝜒𝑝𝜒𝑝 + r2(𝜕3𝜒𝑝)2

]
. (4.7)

14 Keeping a general constant value of the coordinate 𝑢 and computing the classical action one can check that 𝑢 = 0 is an extremum. Note also that the shift of 𝑧 by 
𝑖𝑦 in (1.2) is irrelevant at the classical level at the 𝑢 = 0 point.
15 Here we introduced for convenience the notation r for the relative factor 1

2
between the radii of AdS7 and 𝑆4 metrics in (1.1) and (1.2).

16 A similar computation in the type IIA string limit (i.e. 𝛽 → 0 with 𝜉 = 𝛽𝑁 = fixed) was done in [20]. Wrapping M2 on 2-sphere 𝑛 times we get a “multi-

instanton” contribution 𝑆cl = 𝑛𝑁𝛽 and thus may match the subleading 𝑒−𝑛𝑁𝛽 terms in the free energy 𝐹 np in (2.10). Note that if we consider an “anti-instanton” 
solution with reversed orientation of the 𝑆2 → 𝑆2 map the contribution of the 𝐶3 term (3.2) in the action will then have the opposite sign and thus we will get 
𝑆cl = 2𝑁𝛽 +𝑁𝛽 = 3𝑁𝛽 . This “anti-instanton” solution should not be supersymmetric and thus presumably should not be contributing to the free energy (we thank 
6

the authors of [20] for this suggestion).
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The overall factor 1
r2 here can be rescaled away by redefining 𝜒𝑝. Expanding 𝜒𝑝 in Fourier modes in the periodic 𝜉3 coordinate we 

get an equivalent 2d theory on 𝑆2 for a tower of 6 scalar fields 𝜒𝑝
𝑛 with masses (𝜕3 → 𝑖 2𝜋

𝛽
𝑛)

𝑀2
𝜒,𝑛 = r2(1 + 𝑛2

𝛽
) = 1

4
+ 1

4
𝑛2
𝛽
, 𝑛

𝛽
≡ 2𝜋𝑛

𝛽
, 𝑛 = 0,±1,±2, ... . (4.8)

The remaining 2 fluctuations in �̃�4 directions of (1.2) correspond to 𝑢 and 𝑧 coordinates which represent a 2-sphere subspace 
𝑑𝑢2 + sin2 𝑢 𝑑𝑧2. Using the Cartesian parametrization for this 2-sphere17

𝑑𝑢2 + sin2 𝑢𝑑𝑧2 = 𝑑𝐴2 + 𝑑𝐵2

[1 + 1
4 (𝐴

2 +𝐵2)]2
, (4.9)

we may use 𝐴 and 𝐵 as the two fluctuation fields. Rescaling them by (T2)1∕2 (cf. (4.6)) we then get the following counterpart of 
(4.7) coming from the volume part of the M2 brane action in (3.1)

ℒ2,V(𝐴,𝐵) =
1
2

[
𝑔𝑖𝑗 (𝜕𝑖𝐴𝜕𝑗𝐴+ 𝜕𝑖𝐵𝜕𝑗𝐵)

+ r2(𝜕3𝐴)2 + r2(𝜕3𝐵)2 − (r2 + 2)(𝐴2 +𝐵2) + 4𝑖 r2𝐴𝜕3𝐵
]
. (4.10)

Here the mixing term 𝐴𝜕3𝐵 is due to the presence of 𝑑𝑦 = 𝑑𝜉3 in the (𝑑𝑧 + 𝑖𝑑𝑦)2 term in (1.2) (cf. [17]).

For the contribution of the WZ term in (3.2) with 𝐶3 in (1.3) one finds using that 𝜕3𝑦 = 1 (cf. (4.2))

𝑆WZ = −𝑖𝑇2 ∫ 𝐶3 =
𝑖

8
T2 ∫ cos3 𝑢 (𝜕3𝑧+ 𝑖)𝑑𝜉3 ∧ vol𝑆2 = −1

8
T2 ∫ 𝑑3𝜉

√
𝑔 cos3 𝑢 (1 − 𝑖𝜕3𝑧). (4.11)

Expanding to quadratic order in the fluctuations 𝐴, 𝐵 we get the following addition to (4.10)

ℒ2,WZ(𝐴,𝐵) =
3

16r2
(𝐴2 +𝐵2) − 3

8r2
𝑖𝐴𝜕3𝐵 . (4.12)

Summing up (4.10) and (4.12) gives (setting r = 1
2 and ignoring a total derivative)

ℒ2(𝐴,𝐵) =
1
2
𝑔𝑖𝑗 (𝜕𝑖𝐴𝜕𝑗𝐴+ 𝜕𝑖𝐵𝜕𝑗𝐵) +ℒ2,𝑀 (𝐴,𝐵) , (4.13)

ℒ2,𝑀 (𝐴,𝐵) = −3
8
(𝐴2 +𝐵2) + 1

8
[
(𝜕3𝐴)2 + (𝜕3𝐵)2

]
− 𝑖𝐴𝜕3𝐵 . (4.14)

Setting 𝜙 = 𝐴+𝑖𝐵√
2
, �̄� = 𝐴−𝑖𝐵√

2
we get

ℒ2,𝑀 (𝜙) = 1
2
(
𝜙 �̄�

)( 0 −3
4 + 𝜕3 −

1
4𝜕

2
3

− 3
4 − 𝜕3 −

1
4𝜕

2
3 0

)(
𝜙

�̄�

)
. (4.15)

Expanding 𝜙(𝜉) in Fourier modes in 𝜉3 we get an effective 2d Lagrangian for a tower of complex scalars on 𝑆2 (cf. (4.8))

ℒ2(𝜙) =
∞∑

𝑛=−∞

(
𝑔𝑖𝑗𝜕𝑖𝜙𝑛𝜕𝑗 �̄�𝑛 +𝑀2

𝜙,𝑛
𝜙𝑛�̄�𝑛

)
, (4.16)

𝑀2
𝜙,𝑛

= −3
4
+ 𝑖𝑛

𝛽
+ 1

4
𝑛2
𝛽
= 1 + 1

4
(𝑛

𝛽
+ 2𝑖)2 . (4.17)

In the limit 𝛽 → 0 the current problem should reduce to the type IIA string computation considered in [20]: the string spectrum 
should be the 𝑛 = 0 level of the M2 brane spectrum. Indeed, the 𝑛 = 0 values of the masses of the 6 fluctuations in (4.8) and 2 
fluctuations in (4.17) agree with the bosonic string fluctuation masses in Table 1 of [20].

The fermionic part of the M2 brane action directly corresponds (upon double dimensional reduction as in [46]) to the fermionic 
part of type IIA superstring action. In the superstring limit one finds [20] that the quadratic part of the GS action is equivalent to 
8 fermions in 𝑆2 geometry with the square of the Dirac operator containing the mass term with 𝑀2 = −1

4 . Explicitly, the 2d Dirac 
operator is given by (cf. [20,19]): D = 𝑖𝜎𝑘D𝑘 +𝑀𝜎3 where 𝜎𝑎 are the three Pauli matrices with the 𝜎3 term originating from the 
terms with Γ11 factors in the membrane action (3.3). Its square is Δ1

2
= −D2 + 1

4𝑅
(2) +𝑀2, where 𝑅(2) = 2 is the curvature of the 

2-sphere. In the type IIA string limit [20] one gets 𝑀 = −1
2 𝑖.

Starting directly with the M2 brane action (3.3), in the present case with 𝑦 = 𝑥11 = 𝜉3 there are two different 𝑀𝜎3 contributions 
to the fermionic D operator. One is coming from the non-zero 𝑦-component of 𝐹4 field strength corresponding to 𝐶3 in (1.3) that 

1 2 2 2
7

17 Explicitly, 𝑢 = arccos
[1− 4 (𝐴 +𝐵 )]

[1+ 1
4 (𝐴

2+𝐵2)]2
, 𝑧 = arctan 𝐵

𝐴
.
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gets contracted with Γ𝑦 or Γ11 in (3.5). This corresponds upon double dimensional reduction to a similar term in the type IIA string 
action leading precisely to the above −1

2 𝑖 contribution to 𝑀 .

In addition, there is a contribution of the Γ11𝜕3 term in the covariant derivative in (3.3), (3.5) (cf. also Eq. (4.29) in [19]).18 This 
gives an extra −1

2𝑛𝛽 contribution to the fermion mass 𝑀 so that in total 𝑀 = −1
2𝑛𝛽 −

1
2 𝑖.

As a result, we get 8 towers of 2d fermions on 𝑆2 with

𝑀2
𝜃,𝑛

= 1
4
(𝑛

𝛽
+ 𝑖)2 = −1

4
+ 𝑖

2
𝑛
𝛽
+ 1

4
𝑛2
𝛽
. (4.18)

Combined with the 6+2 towers of bosons in (4.8) and (4.17) this represents the complete M2 brane fluctuation spectrum.

4.2. One-loop M2 brane partition function

The expressions for the determinants of the standard bosonic and fermionic massive field operators on 𝑆2 in the 1-loop contribu-

tion in (3.8) are well known. In general, using spectral zeta-function regularization one has logdet Δ = −𝜁Δ(0) logΛ2 − 𝜁 ′Δ(0). Like in 
[18,19] the total coefficient 𝜁Δ(0) of the log UV divergence vanishes if we use the Riemann zeta-function regularization of the sum 
over the modes (that removes power divergences)

𝜁tot (0) =
∑
𝑛∈ℤ

2 = 2 + 4𝜁𝑅(0) = 0 . (4.19)

Here the coefficient 2 is related to the value of the Euler number of 𝑆2 (cf. [47]). The finite −𝜁 ′Δ(0) parts of logdet Δ for the bosonic 
(Δ0 = −𝐷2 +𝑀2) and fermionic (Δ1

2
= −D2 + 1

2 +𝑀2) fields on 𝑆2 are given by (we follow the notation in [20,19])

logdet Δ0 = 𝑠 1
2
( 14 −𝑀2) , logdet Δ 1

2
= 𝑠0(−𝑀2) , (4.20)

𝑠𝑝(𝜇) ≡ −4𝜁 ′(−1, 𝑝) +

𝜇

∫
0

𝑑𝑥
[
𝜓(𝑝+

√
𝑥) +𝜓(𝑝−

√
𝑥)
]
, (4.21)

where 𝜁 ′(𝑥, 𝑎) is the derivative of the Hurwitz 𝜁 -function over 𝑥 and 𝜓 is the logarithmic derivative of the Γ-function.

As a result, combining together the contributions of the above (6+2) bosonic and 8 fermionic determinants and summing over 𝑛
we find

Γ1 =
∑
𝑛∈ℤ

𝑈
(2𝜋𝑛

𝛽

)
, 𝑈 (𝜈) = 3𝑠 1

2

(
− 𝜈2

4

)
+ 𝑠 1

2

(
(1 − 𝑖𝜈

2 )
2)− 4𝑠0

(
( 12 −

𝑖𝜈

2 )
2) . (4.22)

Using (4.21) we observe that19

𝑈 (0) = 𝑖𝜋 − 2 log2 , 𝑈 (𝜈) +𝑈 (−𝜈) = −4 log2 + 2 log(1 + 𝜈2), 𝜈 > 0 . (4.23)

Thus, like in the case of the instanton M2 brane solution in AdS4 × 𝑆7∕ℤ𝑘 in [19], all non-trivial 𝜓 -function dependent terms from 
(4.21) cancel out in the sum of the bosonic and fermionic contributions20 and we end up with

Γ1 = 𝑖𝜋 − 2 log2 +
∞∑
𝑛=1

[
− 4 log2 + 2 log

(
1 + 4𝜋2𝑛2

𝛽2

)]
= 𝑖𝜋 − 2 log2

(
1 + 2 𝜁𝑅(0)

)
+ 2 log

(
2 sinh 𝛽

2
)
= log

(
− 4sinh2 𝛽

2
)
. (4.24)

As a result, the 1-loop factor in the M2-brane partition function (3.7) on this M2 instanton background is given by

Z1 = 𝑒−Γ1 = − 1
4 sinh2 𝛽

2

. (4.25)

Taking into account that, as discussed in [19], the field-theory free energy should be matched by minus the M2 brane partition 
function, we thus reproduce the prefactor in the leading non-perturbative term in the free energy in (2.10). This generalizes to finite 
𝛽 case the matching found in the string theory limit in [20].

18 To find the quadratic fermionic term in the M2 brane action what matters is the form of the classical bosonic 𝑋𝑀 (𝜉) background that gives the induced 3-bein 
contracted with Γ𝑀 . In the present case this is coming from the 𝑦-dependent terms in the metric (1.2). On the classical solution 𝑢 = 0, 𝑥 = 0, 𝑦 = 𝜉1 , the only term 
that is relevant originates simply from the 𝑑𝑦2 term in (1.2).
19 Recall that 𝜁 ′

𝑅
(−1) = 1

12
− log𝖠 and 𝜁 ′(−1, 1

2
) = − 1

24
− 1

24
log2 + 1

2
log𝖠 where 𝖠 is Glaisher’s constant.

20 Note that these cancellations would not happen if we were to ignore the 𝑧 → 𝑧 + 𝑖𝑦 twist in the metric (1.2) which appears to be consistence with its need for 
8

preservation of supersymmetry.
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5. 𝐀𝐝𝐒𝟑,𝜷 M2 solution: matching Wilson loop expectation value

In analogy with the discussion in the AdS4 × 𝑆7∕ℤ𝑘 case in [18], the leading term in the circular BPS Wilson loop expectation 
value in (2.11) is to be reproduced by the M2 brane partition function expanded near the solution that ends on a circle of the 𝑆5

part of the boundary and is also wrapped on the 11d 𝑦-circle of AdS7,𝛽 while being point-like in �̃�4 part of in (1.2). This should 
generalize to the M-theory (finite 𝛽) level the related computation done in the type IIA string theory limit in [15].

Denoting by 𝜑 ≡ 𝜑 + 2𝜋 the circular coordinate of 𝑆5, the relevant AdS3,𝛽 ⊂AdS7,𝛽 part of the metric (1.2) and thus the induced 
metric for the classical M2 solution 𝑥 = 𝜉1, 𝜑 = 𝜉2, 𝑦 = 𝜉3 ≡ 𝜉3 + 𝛽 will be that of “thermal” AdS3,𝛽

𝑑𝑠2AdS3,𝛽
= 𝑑𝑥2 + sinh2 𝑥𝑑𝜑2 + cosh2 𝑥𝑑𝑦2 → 𝑔𝑎𝑏(𝜉)𝑑𝜉𝑎𝑑𝜉𝑏 = 𝑑𝜉21 + sinh2 𝜉1 𝑑𝜉22 + cosh2 𝜉1 𝑑𝜉23 . (5.1)

The corresponding classical M2 brane action gets only the volume contribution (3.1), i.e.

𝑆V,cl = T2 vol(AdS3,𝛽 ) = −𝑁𝛽 . (5.2)

The computation of the regularized volume of AdS2𝑛+1,𝛽 with boundary 𝑆2𝑛−1 × 𝑆1
𝛽

is reviewed in Appendix A. Explicitly,

vol(AdS3,𝛽 ) =

𝛽

∫
0

𝑑𝑦

2𝜋

∫
0

𝑑𝜑

𝑥0

∫
0

𝑑𝑥 sinh𝑥 cosh𝑥 = 𝛽 𝜋 sinh2 𝑥0 =
1
4
𝜋𝛽

( 1
𝜀2

− 2 + 𝜀2
)
→ −1

2
𝜋𝛽 , (5.3)

where we set 𝑥0 = − log𝜀 as IR cutoff (𝜀 → 0) and dropped power divergence. Using (3.6) we thus get the value in (5.2) which indeed 
matches the exponent of the first term in (2.11) (see also [48]). The second term in (2.11) may be expected to come from an M2 
brane solution with vanishing 3-volume but this remains to be clarified.

5.1. Quadratic fluctuation Lagrangian

Choosing the static gauge in which the fluctuations of 𝑥, 𝜑 and 𝑦 are set to zero one can check (see below) that since the classical 
solution is trivial in the �̃�4 directions, the only contribution to the quadratic fluctuation action comes from the volume part (3.1) of 
the M2 brane action.

The part of the quadratic fluctuation Lagrangian depending only on the AdS7,𝛽 coordinates in (1.2) is represented by the four 𝑆5

directions that have trivial classical values. Parametrizing the 𝑆5 metric as21

𝑑𝑆5 =
(1 − 1

4𝑤
2)2

(1 + 1
4𝑤

2)2
𝑑𝜑2 +

𝑑𝑤𝑟𝑑𝑤𝑟

(1 + 1
4𝑤

2)2
, 𝑟 = 1,… ,4 , (5.4)

and expanding in powers of 𝑤𝑟 we get from (3.1) (we rescale away the overall factor of tension)

𝑆2,V(𝑤) = 1
2 ∫ 𝑑3𝜉

√
𝑔𝑔𝑎𝑏 sinh2 𝜉1

(
𝜕𝑎𝑤𝑟𝜕𝑏𝑤𝑟 − 𝛿𝑎2𝛿𝑏2𝑤

2) . (5.5)

Setting

𝑤𝑟 =
1

sinh 𝜉1
�̃�𝑟 , (5.6)

and integrating by parts we get

𝑆2,V(�̃�) = ∫ 𝑑3𝜉
√
𝑔ℒ2,V(�̃�) , ℒ2,V(�̃�) = 1

2
(
𝑔𝑎𝑏𝜕𝑎�̃�𝑟 𝜕𝑏�̃�𝑟 + 3�̃�𝑟�̃�𝑟

)
. (5.7)

To find the contribution of the other 4 bosonic fluctuations corresponding to �̃�4 directions in (1.2) we note that the leading part 
of the �̃�4 metric expanded near 𝑢 = 0 is 14 [𝑑𝑢

2 + 𝑑𝑆2 + 𝑢2(𝑑𝑧 + 𝑖 𝑑𝜉3)2]. Using Cartesian coordinates (𝐴, 𝐵) to parametrize the (𝑢, 𝑧)
plane and 𝑣𝑘 (𝑘 = 1, 2) for 𝑆2, i.e.

𝐴 = 𝑢 cos𝑧 , 𝐵 = 𝑢 sin𝑧 , 𝑑𝑆2 =
𝑑𝑣𝑘𝑑𝑣𝑘

(1 + 1
4𝑣

2)2
, (5.8)

we get the quadratic fluctuation Lagrangian (rescaling all 4 fields by factor of r = 1
2 ; here 𝑖, 𝑗 = 1, 2)22

ℒ2,V(𝑣𝑘,𝐴,𝐵) =
1
2
𝑔𝑎𝑏

(
𝜕𝑎𝑣𝑘𝜕𝑏𝑣𝑘 + 𝜕𝑎𝐴𝜕𝑏𝐴+ 𝜕𝑎𝐵𝜕𝑏𝐵

)
− 1

2
1

cosh2 𝜉1
(𝐴2 +𝐵2) + 2𝑖

cosh2 𝜉1
𝐴𝜕3𝐵

21 Same result for quadratic fluctuations is found if we use the Hopf fibration parametrization of the 𝑆5 metric, i.e. 𝑑𝑆5 = (𝑑𝜑′ +𝐴)2 + 𝑑𝑠2
ℂℙ2 where 𝐴 depends on 

ℂℙ2 coordinates.
9

22 Explicitly, we use that ∫ 𝑑3𝜉 sinh 𝜉1 cosh 𝜉1
1

cosh2 𝜉1
[(𝜕3𝐴)2 + (𝜕3𝐵)2 −𝐴2 −𝐵2 + 2𝑖(𝐴𝜕3𝐵 −𝐵𝜕3𝐴)] = ∫ 𝑑3𝜉

√
𝑔 𝑔33

[
(𝜕3𝐴 − 𝑖𝐵)2 + (𝜕3𝐵 + 𝑖𝐴)2

]
.
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= 1
2

(
𝑔𝑎𝑏𝜕𝑎𝑣𝑘𝜕𝑏𝑣𝑘 + 𝑔𝑖𝑗 (𝜕𝑖𝐴𝜕𝑗𝐴+ 𝜕𝑖𝐵𝜕𝑗𝐵) + 𝑔33[(𝜕3𝐴− 𝑖𝐵)2 + (𝜕3𝐵 + 𝑖𝐴)2]

)
. (5.9)

Note that the (𝐴, 𝐵) mixing term may be formally diagonalized by a 𝜉3-dependent “rotation”

𝐴 = cos𝜓 𝑋 + sin𝜓 𝑌 , 𝐵 = −sin𝜓 𝑋 + cos𝜓 𝑌 , 𝜓 = 𝑖𝜉3 , (5.10)

(𝜕3𝐴− 𝑖𝐵)2 + (𝜕3𝐵 + 𝑖𝐴)2 = (𝜕3𝑋)2 + (𝜕3𝑌 )2. (5.11)

Since 𝜉3 is periodic, this redefinition is only formal as it shifts the value of the 𝑆1
𝛽

mode number (cf. (4.8)) as 𝑛
𝛽
→ 𝑛

𝛽
+ 𝑖 and this 

should be taken into account.

Indeed, here we have a coupling of the complex scalar 𝐴 + 𝑖𝐵 to a constant 3d gauge potential with the component A3 = −𝑖 in 
the 𝑆1

𝛽
direction which can not be gauged away.23 Its origin is related to the presence of the twist 𝑧 → 𝑧 + 𝑖𝑦 in the metric (1.2). This 

shift is similar to what we found in the �̃�4 part of the fluctuation Lagrangian (4.17) in the 𝑆2 instanton case where 𝑛
𝛽
+ 2𝑖 rather 

than 𝑛
𝛽
+ 𝑖 was due to the contribution of the WZ term.24

Finally, let us note that the 𝐶3 coupling term (3.2) evaluated on the background (1.3) gives

𝑆WZ = −𝑖𝑇2 ∫ 𝐶3 =
𝑖

8
T2 ∫ cos3 𝑢 (𝑑𝑧+ 𝑖𝑑𝑦) ∧

𝑑𝑣1 ∧ 𝑑𝑣2

(1 + 1
4 (𝑣

2
1 + 𝑣22))

2
. (5.12)

Since 𝑦 = 𝜉3, expanding to quadratic order in the fields projected on the world-volume this reduces to a total derivative term 
𝜖𝑖𝑗𝜖𝑘𝑙𝜕𝑖𝑣𝑘𝜕𝑗𝑣𝑙 and thus does not indeed contribute to the leading order.

As for the fermionic fluctuation Lagrangian, it can be found by a generalization of its string theory (𝛽 → 0) limit discussed in [15]. 
We should get 8 fermions in AdS3,𝛽 with D = 𝑖𝜎𝑘D𝑘 +𝑀𝜎3 where 𝑀 = 3

2 . The 𝜕3 derivative term in D𝑘 produces (upon Fourier 
expansion in 𝜉3) a mode number 𝑛

𝛽
contribution as in (4.8), (4.18). Also, as in the case of the (𝐴, 𝐵) fields in (5.9), here the covariant 

derivative contains (in addition to the standard AdS3,𝛽 spin connection) a constant 𝑈 (1) potential term, reflecting again the presence 
of the twist in the metric (1.2), i.e. we have (cf. [17])

D3 = 𝜕3 − 𝑖A3 + ..., A3 = −1
2 𝑖 . (5.13)

5.2. One-loop M2 brane partition function

The fluctuation Lagrangian represents a collection of massive bosons and fermions propagating in AdS3,𝛽 , i.e. in “thermal” AdS3
with 𝑆1 ×𝑆1

𝛽
boundary. The expressions for the corresponding determinants are well-known from the literature (see, e.g., [49–51]).

For a scalar field with mass 𝑀 one finds [50]25

Γ(Δ)(𝛽) ≡ 1
2
logdet(−𝐷2 +𝑀2) =𝐸𝑐(Δ)𝛽 −

∞∑
𝑛=1

𝑒−𝛽𝑛Δ

𝑛(1 − 𝑒−𝛽𝑛)2
, (5.14)

Δ= 1 +
√
1 +𝑀2 . (5.15)

Here Δ is the conformal dimension of the “dual boundary field” and 𝐸𝑐 is the Casimir energy

𝐸𝑐(Δ) =
1

2Γ(𝑧)

∞

∫
0

𝑑𝛽 𝛽𝑧−1
𝑒−𝛽Δ

(1 − 𝑒−𝛽 )2
|||𝑧→−1

= 1
24

(Δ − 1) (1 − 4Δ+ 2Δ2) . (5.16)

For 𝛽 →∞ we have Γ(Δ)(𝛽) =𝐸𝑐(Δ) 𝛽 +O(𝑒−𝛽Δ), while for 𝛽 → 0 one finds (see Appendix B)

Γ(Δ)(𝛽) = − 𝜁(3)
𝛽2

+ 𝜋2(Δ − 1)
6𝛽

−𝒞(Δ) + 1
12

(5 − 12Δ+ 6Δ2) log𝛽

+ (1 − 20Δ+ 50Δ2 − 40Δ3 + 10Δ4)
2880

𝛽2 +O(𝛽4) , (5.17)

𝒞(Δ) =(Δ − 1)
[1
2
log(2𝜋) − logΓ(Δ)

]
+ 𝜁 ′(−1,Δ) . (5.18)

We still need to address the following subtlety: the scalars 𝐴, 𝐵 in (5.9) are not just massless scalars in AdS3,𝛽 but are coupled also 
to a flat but topologically non-trivial 𝑈 (1) gauge potential in 𝜉3 direction that leads to a shift 𝑛′

𝛽
= 𝑛

𝛽
+ 𝑖 of the 𝑆1

𝛽
mode number. To 

23 Equivalently, this is the 𝑆𝑂(2) gauge field coupled to Φ𝑘 = (𝐴, 𝐵) via 𝐷3Φ𝑘 = 𝜕3Φ𝑘 + 𝜀𝑘𝑙A3Φ𝑙 , cf. [17].
24 Again, the origin of this shift can be traced to the structure of the metric in (1.2): in view of the definition of 𝐴, 𝐵 in (5.8), redefining 𝑧 → 𝑧 + 𝑖𝜉3 translates into 

the rotation (5.10).
25 This expression was found in [50] (for the Casimir contribution see [52]) by applying the method of images to the heat kernel for the thermal quotient of AdS3 . 
10

It is rederived in an alternative way in Appendix C below by using the explicit expansion in modes along the two boundary circles 𝑆1 ×𝑆1
𝛽
, cf. (C.17).
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account for the effect of such coupling on the scalar determinant we may use the path integral representation for the log det or heat 
kernel of the fluctuation operator in (5.9) defined on the complex scalar 𝐴 + 𝑖𝐵 in which the coupling to a background 3d gauge 
field A𝑎 appears as a phase factor exp[𝑖 ∫ 𝑑𝜏A ⋅ �̇�]. For constant

A3 = −𝑖𝜅 (5.19)

this gives a factor of 𝑒𝑚𝜅𝛽 where 𝑚 is the number of times the worldline 𝑥(𝜏) wraps around the thermal circle (in (5.9) we have 
𝜅 = 1). This implies the following modification of (5.14)

Γ(Δ,𝜅)(𝛽) = 1
2

[
Γ(Δ+𝜅)(𝛽) + Γ(Δ−𝜅)(𝛽)

]
=𝐸𝑐(Δ, 𝜅)𝛽 − 1

2

∞∑
𝑛=1

1
𝑛

𝑒−𝛽𝑛Δ(𝑒−𝛽𝜅 + 𝑒𝛽𝜅 )
(1 − 𝑒−𝛽𝑛)2

, (5.20)

𝐸𝑐(Δ, 𝜅) =
1
2
[𝐸𝑐(Δ + 𝜅) +𝐸𝑐(Δ − 𝜅)] = 1

24
(Δ − 1)(1 − 4Δ+ 2Δ2 + 6𝜅2) . (5.21)

This is derived directly using the 𝑆1 × 𝑆1
𝛽

mode expansion in Appendix C, see (C.25).

The determinant of the squared massive Dirac operator in AdS3,𝛽 , i.e. Δ1
2
= −D2 + 1

4𝑅
(3) +𝑀2, where 𝑅(3) = −6, is given by the 

same expression as in (5.14) but instead of the relation between Δ and 𝑀 in the scalar case in (5.15) here one has (see, e.g., [53])

Δ= 1 + |𝑀| . (5.22)

Eq. (5.22) is the 𝑑 = 3 case of the standard AdS𝑑/CFT𝑑−1 relation for the fermions Δ = 𝑑−1
2 + |𝑀| (see, e.g., [54]).26 The generaliza-

tion to the case of the presence of a constant gauge potential A3 = −𝑖𝜅 is straightforward as this coupling is via the D3 term in the 
covariant derivative and thus the same as in the scalar case. It is given again by (5.20).

We are now ready to compute the total contribution to the 1-loop effective action (3.8) in the present case. According to the 
discussion in the previous subsection we have 4 scalars with 𝑀2 = 3 in (5.7), 2 massless scalars 𝑣𝑘 in (5.9), two scalars (𝐴, 𝐵) in 
(5.9), (5.11) with 𝑀2 = 0 coupled to a constant potential (5.19) with 𝜅 = 1 and 8 fermions with 𝑀 = 3

2 coupled to (5.19) with 𝜅 = 1
2

(see (5.13)).27

Thus we get from (5.14), (5.20)

Γ1 = 4Γ(3,0)(𝛽) + 2Γ(2,0)(𝛽) + 2Γ(2,1)(𝛽) − 8Γ(
5
2 ,

1
2 )(𝛽)

=𝛽

2
−

∞∑
𝑛=1

𝑒−𝛽𝑛

𝑛
= 𝛽

2
+ log(1 − 𝑒−𝛽 ) = log

(
2 sinh 𝛽

2

)
. (5.23)

Like in other similar cases of supersymmetric M2 brane 1-loop effective actions we observe remarkable cancellations of all “compli-

cated” contributions that happen in the sum over all fields.28

The final result for the “defect” M2 brane 1-loop partition function is very simple

Z1 =
1

2 sinh 𝛽

2

, (5.24)

and thus matches the prefactor in the leading term in the Wilson loop expectation value in (2.11).

6. Summary and concluding remarks

Let us summarize what we have found above. We considered the semiclassical expansion of the M2 brane partition function Z (3.7)

in the 11d background AdS7,𝛽 × �̃�4 (1.2), (1.3) which is an 𝑆1
𝛽
-compactified and “twisted” version of the maximally supersymmetric 

AdS7 × 𝑆4 limit (1.1) of the multiple M5 brane solution of 11d supergravity. The main dimensionless parameters are 𝛽 (the ratio of 
the length of 11-circle to the scale 𝑎 of AdS7 in (1.1), (1.2)) and the effective M2 brane tension T2 (or 𝑁)

T2 = 𝑎3𝑇2 =
2
𝜋
𝑁, 𝑇2 =

1
(2𝜋)2𝓁3

𝑃

, 𝑎 = 2(𝜋𝑁)1∕3𝓁𝑃 . (6.1)

26 In general, for a spin 𝑠 field in AdS3 with the operator −D2
𝑠
+ 𝜇2 one has Δ = 1 +

√
𝜇2 + 𝑠+ 1. Thus for 𝑠 = 1

2
we get Δ = 1 +

√
𝜇2 + 3

2
. Since here 𝜇2 =

1
4
𝑅(3) +𝑀2 = − 3

2
+𝑀2 we get Δ = 1 + |𝑀|.

27 Note that the corresponding values of Δ with multiplicities 4, 4 and 8 are 3, 2 and 5
2
. This hints at an effective 3d supersymmetry, but its realization for the 

above system of 8+8 scalars and fermions on AdS3,𝛽 should be non-trivial as it appears to require the presence of the flat connection in scalar and fermion covariant 
derivatives originating from the twist in �̃�4 .
28 One may draw an analogy of these cancellations with what happens in the case of supersymmetric partition functions on 𝑆1 × 𝑆𝑑 that are equivalent to 

superconformal indices and thus effectively receive contributions only from BPS states. Indeed, the prefactor 1
4 sinh2 𝛽

2

= 𝑞

(1−𝑞)2
of the M2 brane instanton contribution 

𝑒−𝑁𝛽 in (1.5), (2.7) that we reproduced as the M2 brane partition function in (4.25) may be also interpreted [32] as the superconformal index of 𝑘 = 1 abelian 
ABJM theory [55] or as a supersymmetric partition function of a single N = 8 3d scalar supermultiplet in 𝑆1

𝛽
× 𝑆2 background with extra twist on 𝑆2 required for 

supersymmetry (i.e. corresponding to the presence of rotation generator in the definition of the 3d superconformal index). Similar relation may somehow apply also 
11

to the WL computation in this section.
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Our first example was the “instanton” M2 brane solution that is wrapped on 𝑆1
𝛽

of AdS7,𝛽 and 𝑆2 of �̃�4. We found that in this case 
(see (4.1)-(4.3), (4.25))

𝑆1
𝛽
× 𝑆2 ∶ Z = − 1(

2 sinh 𝛽

2

)2 𝑒−T2�̄�cl
[
1 +O(T−1

2 )
]
, �̄�cl = (1 − 1

2 )𝜋𝛽 = 1
2𝜋𝛽 . (6.2)

We also studied the “defect” M2 brane solution wrapped on the “thermal” AdS3,𝛽 part of AdS7,𝛽 that corresponds to “open” M2 brane 
ending on the 𝑆1 ×𝑆1

𝛽
at the boundary of AdS7,𝛽 (thus representing a Wilson-surface like “defect” in the (2,0) theory that generalizes 

the circular BPS Wilson loop in gauge theory).29 In this case (see (5.2), (5.24))

AdS3,𝛽 ∶ Z = 1
2 sinh 𝛽

2

𝑒−T2�̄�cl
[
1 +O(T−1

2 )
]
, �̄�cl = −1

2𝜋𝛽 . (6.3)

It is useful to compare these results with what was found in [18,19] for similar M2 brane solutions in AdS4 × 𝑆7∕ℤ𝑘 M-theory 
background dual to 𝑈𝑘(𝑁) × 𝑈−𝑘(𝑁) 3d Chern-Simons-matter ABJM theory [10]. This 11d background is the supersymmetric ℤ𝑘

orbifold of the AdS4 ×𝑆7 which is a limit of the multiple M2 brane solution of 11d supergravity (cf. (1.1), (6.1)):

𝑑𝑠211 =𝑅2( 1
4𝑑𝑠

2
AdS4

+ 𝑑𝑠2
𝑆7∕ℤ𝑘

)
, (6.4)

𝑑𝑠2
𝑆7∕ℤ𝑘

= 𝑑𝑠2
ℂℙ3 + (𝑑y +𝐴)2 , y ≡ y + b , b ≡ 2𝜋

𝑘
, (6.5)

𝐹4 = −3
8 𝑖𝑅

3 volAdS4 , 𝑅 =
(
32𝜋2𝑁𝑘

)1∕6
𝓁𝑃 , T2 =𝑅3𝑇2 =

√
2𝑘
𝜋

√
𝑁 . (6.6)

We are assuming the Euclidean signature and 𝐴 depends on the 6 coordinates of ℂℙ3. Here the dimensionless parameters are 𝑘 and 
𝑁 , or b and the effective tension T2.

The M2 brane “instanton” solution considered in [19] is the 11d uplift of the IIA string ℂℙ1 instanton of [56]: it is wrapped on 
the 11d circle y of dimensionless length b = 2𝜋

𝑘
and on ℂℙ1 ⊂ ℂℙ3, so that it has the 𝑆3∕ℤ𝑘 world-volume metric. In this case one 

finds for the M2 brane partition function [19]30

𝑆3∕ℤ𝑘 ∶ Z = 1(
2 sinb

)2 𝑒−T2�̄�cl
[
1 +O(T−1

2 )
]
, �̄�cl = vol(𝑆3∕ℤ𝑘) = 𝜋b = 2𝜋2

𝑘
. (6.7)

This corresponds to the leading 𝑒−2𝜋
√

2𝑁
𝑘 term in the large 𝑁 non-perturbative part of the localization result [57] for the free energy 

of the ABJM theory on 𝑆3 .

Another M2 brane solution in (6.4) considered in [58,18] has world-volume of AdS2 × 𝑆1∕ℤ𝑘 where 𝑆1∕ℤ𝑘 corresponds to the 
y-circle in (6.4) and AdS2 ⊂AdS4 has the 𝑆1 boundary. It may be interpreted as a dual of the circular BPS Wilson loop in the ABJM 
theory. In this case [18]

AdS2 × 𝑆1∕ℤ𝑘 ∶ Z = 1
2 sinb

𝑒−T2�̄�cl
[
1 +O(T−1

2 )
]
, �̄�cl =

1
4 vol(AdS2)b = −1

2𝜋b = − 𝜋2

𝑘
. (6.8)

This matches the leading large 𝑁 term [2 sin 2𝜋
𝑘
]−1𝑒𝜋

√
2𝑁
𝑘 in the localization result [59] for the 12 -BPS Wilson loop in the ABJM 

theory, in the limit of large 𝑁 with 𝑘 fixed.

Comparing (6.2), (6.3) with (6.7), (6.8) we observe close similarities. This suggests some relation by analytic continuation of 
both the backgrounds and the M2 brane solutions. Indeed, the maximally supersymmetric AdS7 ×𝑆4 and AdS4 ×𝑆7 backgrounds are 
related by a formal analytic continuation (like the one between AdS𝑛 and 𝑆𝑛, i.e. 𝑑𝑥2 + sinh2 𝑥 𝑑𝑆𝑛−1 → −(𝑑𝑟2 + sin2 𝑟 𝑑𝑆𝑛−1), 𝑟 = 𝑖𝑥) 
and the same will apply to the M2 brane actions in these backgrounds.

The compactification 𝑦 ≡ 𝑦 + 𝛽 of the circle in AdS7,𝛽 part of (1.2) suggests an analogy with the discrete orbifolding y ≡ y + b
in 𝑆7∕ℤ𝑘 part of (6.4) and thus a similar role of 𝛽 and b, which is indeed evident from the comparison of (6.2), (6.3) with (6.7), 
(6.8). Such analytic continuation suggests that the “instanton” 𝑆1

𝛽
× 𝑆2 M2 solution in AdS7,𝛽 × �̃�4 may be related to the “Wilson 

loop” AdS2 × 𝑆1∕ℤ𝑘 solution in AdS4 × 𝑆7∕ℤ𝑘, and vice versa, the “defect” AdS3,𝛽 solution in AdS7,𝛽 × �̃�4 may be related to the 
“instanton” 𝑆3∕ℤ𝑘 solution in AdS4 ×𝑆7∕ℤ𝑘.31

29 The similar AdS3 “defect” M2 brane solution considered in [9] has 𝑆2 boundary instead of 𝑆1 ×𝑆1
𝛽

and thus has logarithmically divergent classical action related 
to the defect conformal anomaly.
30 Here we ignore the overall factor 4 that accounts for contribution of the anti-instanton saddle and also for the effect of resolution of the 0-mode degeneracy (see 

[20,19]).
31 The factor of 2 mismatch in powers of sinh/sin prefactors in the corresponding M2 brane partition functions may be related to the fact that the analytic 
12

continuation maps a world-volume with 𝑆1 times a 2-sphere topology to 𝑆1 times a disk (AdS2) one.
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Still, some details do not match: the ℤ𝑘 orbifold of 𝑆7 in the Hopf fibration parametrization is not equivalent to an analytic 
continuation of an orbifold of AdS7 with 𝑆5 ×𝑆1 boundary.32 Also, there is no analog of the 𝑧 → 𝑧 + 𝑖𝑦 twist in AdS7,𝛽 × �̃�4 in (1.2)

on the AdS4 × 𝑆7∕ℤ𝑘 side. Thus the reason for the close similarity between the expressions in (6.2), (6.3) and (6.7), (6.8) calls for 
further insight.
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Appendix A. Renormalized volume of 𝐀𝐝𝐒𝟐𝒏+𝟏 with boundary 𝑺𝟐𝒏−𝟏 ×𝑺𝟏

As is well known, the regularized volume of global AdS2𝑛+1 with 𝑆2𝑛 boundary has logarithmic IR divergence, vol(AdS2𝑛+1) =
−2(−1)𝑛𝜋𝑛

𝑛! log𝜀 (where 𝜀 → 0); in particular, vol(AdS7) =
𝜋3

3 log𝜀 (see, e.g., [61]). At the same time, in the case of 𝑆2𝑛−1 ×𝑆1 boundary 
the volume contains only power divergences and thus is finite after one drops them. This is analogous to the case of AdS2𝑛 with 
𝑆2𝑛−1 boundary where vol(AdS2𝑛) =

(−1)𝑛(2𝜋)𝑛
(2𝑛−1)!! .

To find the volume of AdS2𝑛+1 with 𝑆2𝑛−1 × 𝑆1 boundary33

𝑑𝑠2 = 𝑑𝑥2 + sinh2 𝑥𝑑𝑆2𝑛−1 + cosh2 𝑥𝑑𝑦2 , 𝑦 ≡ 𝑦+ 2𝜋 . (A.1)

Let us introduce an IR cutoff 0 < 𝑥 ≤ 𝑥0 in the volume integral

vol(AdS2𝑛+1) = vol(𝑆2𝑛−1 × 𝑆1)

𝑥0

∫
0

𝑑𝑥 cosh𝑥 sinh2𝑛−1 𝑥 = vol(𝑆2𝑛−1 ×𝑆1) 1
2𝑛

sinh2𝑛 𝑥0 . (A.2)

A natural cutoff is 𝑟 = 𝜀2 → 0 in Fefferman-Graham coordinates 𝑑𝑠2 = 1
4𝑟2 𝑑𝑟

2 + 1
𝑟
𝑔𝑚𝑛(𝑥, 𝑟)𝑑𝑥𝑚𝑑𝑥𝑛 which is related to 𝑥0 as 𝑥0 =

− log𝜀.34 Dropping 1
𝜀𝑘

power divergences in (A.2) and setting 𝜀 → 0 gives (using that vol(𝑆𝑛) = 2𝜋
𝑛+1
2

Γ( 𝑛+12 )
)

vol(AdS2𝑛+1) = vol(𝑆2𝑛−1 × 𝑆1) (1 − 𝜀2)2𝑛

22𝑛+1 𝑛𝜀2𝑛
→ vol(𝑆2𝑛−1 ×𝑆1)

(−1)𝑛Γ(𝑛+ 1
2 )

2𝑛2
√
𝜋Γ(𝑛)

= (−1)𝑛𝜋𝑛+1(2𝑛)!
22𝑛−1 (𝑛!)3

. (A.3)

In particular,

vol(AdS3) = −𝜋2, vol(AdS5) =
3𝜋3

8
, vol(AdS7) = −5𝜋4

48
. (A.4)

32 The 𝑆7 metric can be parametrized as 𝑍∗
𝑟
𝑍𝑟 = 1 (𝑟 = 1, 2, 3, 4) with 𝑍𝑟 = 𝑒𝑖y𝑊𝑟 where y = y + 2𝜋 and 𝑊 ∗

𝑟
𝑊𝑟 = 1 parametrize ℂℙ3 so that (see, e.g., [60]) 

𝑑𝑆7 = 𝑑𝑠2
ℂℙ3 + (𝑑y +𝐴)2 , where 𝐴 depends on ℂℙ3 coordinates. Alternatively, we may set 𝑍1 = cos 𝑟 𝑒𝑖𝑦, 𝑍𝑖 = sin 𝑟 𝑈𝑖 (𝑖 = 1, 2, 3), 𝑈 ∗

𝑖
𝑈𝑖 = 1 where 𝑈𝑖 parametrize 𝑆5 . 

Then the 𝑆7 metric is 𝑑𝑆7 = 𝑑𝑟2 + sin2 𝑟 𝑑𝑆5 + cosh2 𝑟 𝑑𝑦2 . To relate this to the first Hopf fibration parametrization of the metric we need to redefine 𝑈𝑖 by 𝑒𝑖𝑦 and 
identify 𝑦 with y. Then the orbifold of y will act also on 𝑆5 . But orbifolding 𝑦 ≡ 𝑦 + b in the second form of the metric does not act on 𝑆5 . Thus the two orbifolds are 
not equivalent.
33 This space may be viewed as “thermal” AdS2𝑛+1 , i.e. is obtained from Minkowski signature AdS2𝑛+1 by analytic continuation and periodical identification of the 

Euclidean time.

34 For comparison, in the case of AdS2𝑛+1 with 𝑆2𝑛 boundary, i.e. 𝑑𝑠2 = 𝑑𝑥2 + sinh2 𝑥 𝑑𝑆2𝑛 , we get ∫ 𝑥0
0 𝑑𝑥 sinh2𝑛 𝑥 = (−1)𝑛Γ(𝑛+ 1

2 )√
𝜋Γ(𝑛+1)

𝑥0 +⋯, where dots stand for powers 
13

of sinh𝑥0 leading to powers of 1
𝜀

and subleading finite terms. Multiplying by vol(𝑆2𝑛), one gets vol(AdS2𝑛+1) = − 2(−1)𝑛𝜋𝑛

𝑛!
log𝜀.
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As an application, let compute the value of the 11d supergravity action on AdS7,𝛽 × 𝑆4 of radius 𝑎 where 𝛽 is the length of the 𝑆1

circle 𝑦 as in (1.2). Compactifying on 𝑆4 (that has radius 𝑎2 ) we get

𝑆11 = − 1
2𝜅2

11

(𝑎
2
)4 vol(𝑆4) ∫ 𝑑7𝑥

√
𝑔
(
𝑅(7) − 2Λ

)
, 2𝜅2

11 = (2𝜋)8𝓁9
𝑃
, (A.5)

where for the AdS7 solution one has 𝑅(7) = −42
𝑎2

, Λ = −15
𝑎2

. Since vol(𝑆4) = 8𝜋2
3 , we get

𝑆11 = − 1
(2𝜋)8

( 𝑎

𝓁𝑃
)9 8𝜋

2

3
( 1
2
)4(−12) 𝛽

2𝜋
vol(AdS7) =

𝜋

(2𝜋)8
( 𝑎

𝓁𝑃
)9𝛽 vol(AdS7) . (A.6)

Using (A.4), i.e. vol(AdS7) = −5𝜋4
48 , and (1.1) implying ( 𝑎

𝓁𝑃
)9 = 29𝜋3𝑁3 we end up with

𝑆11 = − 5
24

𝑁3𝛽 . (A.7)

The same result is found also for the “twisted” AdS7,𝛽 × �̃�4 background in (1.2) (the shift 𝑧 → 𝑧 + 𝑖𝑦 along the 𝑆4 isometry 𝑧-direction 
does not change the value of the 11d volume form ∼ 𝑑𝑦 ∧ 𝑑𝑧 ∧ ...). At the same time, the leading large 𝑁 term in the free energy in 
(2.9), is 𝐹 pert

𝑁
= −1

6𝑁
3𝛽 + ..., so there is a 5∕4 mismatch with (A.7).

This discrepancy was noted in [62,48], see also [63]. A way to resolve it at the level of 7d gauged supergravity with extra (non-

invariant) counterterms was suggested in [30]. It is unclear at the moment how to reach the same conclusion directly at the level 
of 11d supergravity action, i.e. to see how the leading-order term can distinguish between the standard and “supersymmetric” free 
energy. One may contemplate adding some non-invariant boundary terms, but this issue needs further clarification.

Appendix B. 𝜷 → 𝟎 expansion of scalar free energy in thermal 𝐀𝐝𝐒𝟑,𝜷

Here we discuss several methods to compute the small 𝛽 expansion of the non-Casimir part of the scalar log det in (5.14), i.e. of 
the function

𝑓 (𝛽;Δ) ≡
∞∑
𝑛=1

𝑞𝑛Δ

𝑛(1 − 𝑞𝑛)2
, 𝑞 = 𝑒−𝛽𝑞 , Δ ≥ 2, (B.1)

that can be written equivalently as

𝑓 (𝛽;Δ) = −
∞∑

𝓁,𝓁′=0
log(1 − 𝑞𝓁+𝓁

′+Δ) = −
∞∑
𝑛=0

(𝑛+ 1) log(1 − 𝑞𝑛+Δ). (B.2)

The first method is to expand 𝑓 in (B.1) at small 𝛽 and sum the terms using Riemann zeta-function regularization (i.e. multiplying 
by 𝑛𝑠, summing, and taking the finite part of the 𝑠 → 0 limit). This gives

(I): 𝑓 (𝛽;Δ) = 𝜁(3)
𝛽2

− 𝜋2(−1 +Δ)
6𝛽

+ 1
12

𝛾E(5 − 12Δ+ 6Δ2) + 1
24

(−1 +Δ)(1 − 4Δ+ 2Δ2)𝛽

+ (−1 + 20Δ− 50Δ2 + 40Δ3 − 10Δ4)
2880

𝛽2

+ (−5 + 42Δ+ 63Δ2 − 420Δ3 + 525Δ4 − 252Δ5 + 42Δ6)
3628800

𝛽4 +⋯ . (B.3)

The constant 𝛾E term is regularization dependent and is related to the dropped pole ∼ 1
𝑠
.

Another method is to expand 𝑓 in (B.2) at small 𝛽, multiply by (𝑛 + Δ)𝑠, sum over 𝑛 and then take the finite part of the 𝑠 → 0
limit. This way we obtain

(II): 𝑓 (𝛽;Δ) =𝒞(Δ) − 1
12

(5 − 12Δ+ 6Δ2) log𝛽 + 1
24

(−1 +Δ)(1 − 4Δ+ 2Δ2)𝛽

+ (−1 + 20Δ− 50Δ2 + 40Δ3 − 10Δ4)
2880

𝛽2

+ (−5 + 42Δ+ 63Δ2 − 420Δ3 + 525Δ4 − 252Δ5 + 42Δ6)
3628800

𝛽4 +⋯ , (B.4)

𝒞(Δ) =(Δ − 1)
[1
2
log(2𝜋) − logΓ(Δ)

]
+ 𝜁 ′(−1,Δ). (B.5)
14

Comparing to (B.3), we see that we miss the 1
𝛽2

and 1
𝛽

terms and the 𝛾E term is replaced by the log𝛽 term.
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A rigorous (third) method is to follow [64].35 Starting again from (B.2) and differentiating over 𝛽 gives

𝑓 ′(𝛽;Δ) = −
∞∑
𝑛=0

(𝑛+ 1)(𝑛+Δ)
𝑒(Δ+𝑛)𝛽 − 1

= −
∞∑
𝑛=0

∞∑
𝑚=1

(𝑛+ 1)(𝑛+Δ)𝑒−(Δ+𝑛)𝑚𝛽 . (B.6)

Now using that 𝑒−𝑥 = 1
2𝜋𝑖 ∫𝐶 𝑑𝑠 𝑥−𝑠 Γ(𝑠) (where the contour 𝐶 is along the imaginary axis with large enough real part of 𝑠) gives the 

Mellin representation

𝑓 ′(𝛽;Δ) = 1
2𝜋𝑖 ∫

𝐶

𝑑𝑠

∞∑
𝑛=0

∞∑
𝑚=1

(Δ + 𝑛)−𝑠𝑚−𝑠𝛽−𝑠Γ(𝑠)(𝑛+ 1)(𝑛+Δ) = 1
2𝜋𝑖 ∫

𝐶

𝑑𝑠𝛽−𝑠𝐺(𝑠), (B.7)

𝐺(𝑠) = Γ(𝑠)[𝜁(−2 + 𝑠,Δ) + (1 −Δ)𝜁(−1 + 𝑠,Δ)]𝜁(𝑠). (B.8)

Closing the contour to the left we get for the 𝛽 → 0 expansion (up to exponentially suppressed terms denoted by dots)

𝑓 ′(𝛽;Δ) = −
∞∑
𝑛=0

Res
𝑠=3−𝑛

(𝛽−𝑠𝐺(𝑠)) + ... (B.9)

Integrating this over 𝛽 gives

(III): 𝑓 (𝛽;Δ) =𝒞(Δ) + 𝜁(3)
𝛽2

− 𝜋2(Δ − 1)
6𝛽

− 1
12

(5 − 12Δ+ 6Δ2) log𝛽

+ 1
24

(−1 +Δ)(1 − 4Δ+ 2Δ2)𝛽 + (−1 + 20Δ− 50Δ2 + 40Δ3 − 10Δ4)
2880

𝛽2

+ (−5 + 42Δ+ 63Δ2 − 420Δ3 + 525Δ4 − 252Δ5 + 42Δ6)
3628800

𝛽4 +⋯ , (B.10)

where 𝒞(Δ) is yet undetermined integration constant. By doing numerics, we found that (B.10) is the correct expansion with 𝒞(Δ)
being the same as in (B.5). The expansion (B.10) reproduces the two singular 1

𝛽2
and 1

𝛽
terms in (B.3) and the logarithm in (B.4).

For example, this gives for Δ = 3

𝑓 (𝛽; 3) = 𝜁(3)
𝛽2

− 𝜋2

3𝛽
+ 1

12

(
1 − 12 log 𝖠

2𝜋

)
− 23

12
log𝛽 + 7𝛽

12
− 121𝛽2

2880
+ 251𝛽4

725760
+⋯ . (B.11)

Appendix C. Scalar determinant in 𝐀𝐝𝐒𝟑,𝜷 from expansion in modes on 𝑺𝟏 ×𝑺𝟏
𝜷

Here we derive the expression in (5.14) by directly expanding in Fourier modes in the two 𝑆1 × 𝑆1
𝛽

boundary angles.36 Let us 
start with the scalar operator 𝐾 ≡Δ0 = −𝐷2 +𝑀2 in the AdS3,𝛽 metric (5.1) in the explicit coordinate form (here 𝑀2 = Δ(Δ −2) as 
in (5.15))

𝐾 = − 1
sinh 𝜉1 cosh 𝜉1

𝜕1(sinh 𝜉1 cosh 𝜉1𝜕1) −
1

sinh2 𝜉1
𝜕22 −

1
cosh2 𝜉1

𝜕23 + Δ(Δ − 2) . (C.1)

Redefining 𝜉1 →
1
2𝜌 and expanding in modes so that 𝜕2 → 𝑖 𝑚, 𝜕3 → 𝑖 𝑛

𝛽
= 𝑖 2𝜋

𝛽
𝑛, we get a “radial” 1d operator

𝐾𝑚,𝑛 = − 4
sinh𝜌

𝑑

𝑑𝜌

(
sinh𝜌 𝑑

𝑑𝜌

)
+ 𝑚2

sinh2 𝜌

2

+
𝑛2
𝛽

cosh2 𝜌

2

+ Δ(Δ − 2), 𝑛
𝛽
= 2𝜋

𝛽
𝑛 , 𝑛,𝑚 ∈ℤ. (C.2)

By applying the Gelfand-Yaglom theorem (see, e.g., [65]) we have

log
det𝐾𝑚,𝑛

det𝐾𝑚,0
= lim

𝜌→∞
log

𝜓𝑚,𝑛(𝜌)
𝜓𝑚,0(𝜌)

, (C.3)

𝐾𝑚,𝑛 𝜓𝑚,𝑛(𝜌) =0, 𝜓𝑚,𝑛(𝜌)
𝜌→0
→ 𝜌|𝑚| +⋯ . (C.4)

The solution of (C.4) is

𝜓𝑚,𝑛(𝜌) = 2|𝑚|(tanh 𝜌

2
)|𝑚| (cosh 𝜌

2
)−Δ 2𝐹1

(Δ+ |𝑚|− 𝑖𝑛
𝛽

2
,
Δ+ |𝑚|+ 𝑖𝑛

𝛽

2
,1 + |𝑚|, tanh2 𝜌

2

)
, (C.5)

and as a consequence of (C.3)

35 Another rigorous approach is based on the temperature inversion relations as in [49].
36 As usual, the determinant will be defined using analytic regularization so that power divergences will be ignored (there is no logarithmic divergence in the present 
15

3d case).
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log
det𝐾𝑚,𝑛

det𝐾𝑚,0
= log

Γ(Δ2 + |𝑚|
2 )2

Γ(Δ2 + |𝑚|
2 − 𝑖

𝑛
𝛽

2 )Γ(Δ2 + |𝑚|
2 + 𝑖

𝑛
𝛽

2 )
. (C.6)

Thus

Γ(Δ)(𝛽) ≡ 1
2
logdet𝐾 = 1

2
∑

𝑛,𝑚∈ℤ
logdet𝐾𝑚,𝑛 = −1

2
∑

𝑛,𝑚∈ℤ
log

[
Γ
(Δ
2
+ |𝑚|

2
− 𝑖

𝑛
𝛽

2

)
Γ
(Δ
2
+ |𝑚|

2
+ 𝑖

𝑛
𝛽

2

)]
, (C.7)

where we dropped 𝑛-independent term as 
∑

𝑛∈ℤ 1 = 1 + 2𝜁𝑅(0) = 0. As in [66] we may use that

log
[
Γ(𝑥+ 𝑖𝑦)Γ(𝑥− 𝑖𝑦)

]
= 2 logΓ(𝑥) −

∞∑
𝑘=0

log
[
1 + 𝑦2

(𝑥+ 𝑘)2
]
. (C.8)

Then from (C.7) we get

Γ(Δ)(𝛽) = 1
2

∑
𝑛,𝑚∈ℤ

∞∑
𝑘=0

log
[
1 +

𝑛2
𝛽

(Δ + |𝑚|+ 2𝑘)2
]
. (C.9)

The set |𝑚| + 2𝑘 with 𝑚 ∈ℤ and 𝑘 ∈ℕ0 can be replaced by a sum over 𝑘 ∈ℕ0 with multiplicity 𝑘 + 1. Thus,

Γ(Δ)(𝛽) = 1
2
∑
𝑛∈ℤ

∞∑
𝑘=0

(𝑘+ 1) log
[
1 +

𝑛2
𝛽

(Δ + 𝑘)2
]
. (C.10)

The 𝑛 = 0 term vanishes and separating the divergent part of the sum over 𝑛 we get37

Γ(Δ)(𝛽) = Γ(Δ)div (𝛽) + Γ(Δ)reg(𝛽) , (C.11)

Γ(Δ)div (𝛽) =
∞∑
𝑛=1

∞∑
𝑘=0

(𝑘+ 1) log
𝑛2
𝛽

(Δ + 𝑘)2
, Γ(Δ)reg(𝛽) =

∞∑
𝑛=1

∞∑
𝑘=0

(𝑘+ 1) log
[
1 + (Δ + 𝑘)2

𝑛2
𝛽

]
. (C.12)

Computing Γ(Δ)div (𝛽) using again the Riemann zeta-function regularization gives

Γ(Δ)div (𝛽) =
∞∑
𝑘=0

(𝑘+ 1)
∞∑
𝑛=1

log
𝑛2
𝛽

(Δ + 𝑘)2
=

∞∑
𝑘=0

(𝑘+ 1)
∞∑
𝑛=1

[−2 log(Δ + 𝑘) + 2 log 2𝜋
𝛽

+ 2 log𝑛]

=
∞∑
𝑘=0

(𝑘+ 1)
[
log(Δ + 𝑘) − log 2𝜋

𝛽
+ log(2𝜋)

]
=

∞∑
𝑘=0

(𝑘+ 1)
[
log(Δ + 𝑘) + log𝛽

]
. (C.13)

Here the sum over 𝑘 may also be computed using zeta-function regularization but it is useful not to do this before combining it with 
Γ(Δ)reg(𝛽).

Since

∞∑
𝑛=1

log
(
1 + 𝑎2

𝑛2

)
= log sinh(𝜋𝑎)

𝜋𝑎
= 𝜋𝑎− log(𝜋𝑎) − log2 + log(1 − 𝑒−2𝜋𝑎) , (C.14)

we find that Γ(Δ)reg(𝛽) in (C.12) (here for 𝑎 = 1
2𝜋 (Δ + 𝑘)𝛽) may be written as

Γ(Δ)reg(𝛽) =
∞∑
𝑘=0

(𝑘+ 1)
[1
2
(Δ + 𝑘)𝛽 − log((Δ + 𝑘)𝛽) + log(1 − 𝑒−(Δ+𝑘)𝛽 )

]
. (C.15)

Adding (C.13) and (C.15) gives

Γ(Δ)(𝛽) = 1
2𝛽

∞∑
𝑘=0

(𝑘+ 1)(Δ + 𝑘) +
∞∑
𝑘=0

(𝑘+ 1) log
(
1 − 𝑒−(Δ+𝑘)𝛽

)
. (C.16)

Doing the sum in the first term using Hurwitz zeta-function regularization gives finally the expression [50] equivalent (cf. (B.1), 
(B.2)) to the one in (5.14), (5.16)

Γ(Δ)(𝛽) = 1
24

(Δ − 1)(1 − 4Δ+ 2Δ2)𝛽 +
∞∑
𝑘=0

(𝑘+ 1) log(1 − 𝑞Δ+𝑘) . (C.17)
16

37 Note that here the “reg” part may still contain a divergent contribution from the sum over 𝑘 (see below).
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Note that in the 𝛽 → 0 expansion the first “Casimir” term cancels against the linear in 𝛽 term in the second term in (C.17) (see 
(B.10)).

C.1. Including the twist 𝜕3 → 𝜕3 − 𝜅 or 𝑛
𝛽
→ 𝑛

𝛽
+ 𝑖𝜅

Let us now consider the determinant of the scalar operator including the coupling to the flat gauge potential in the 𝜉3 direction 
(5.13), (5.19), i.e. 𝜕3 → 𝜕3 − 𝜅 or 𝑛

𝛽
→ 𝑛

𝛽
+ 𝑖𝜅 where 𝑛

𝛽
= 𝛽

2𝜋 . Repeating the above calculation with 𝑛
𝛽
→ 𝑛

𝛽
+ 𝑖𝜅 we get in (C.14)

∑
𝑛∈ℤ

log
(
1 + 𝑎2

𝑛2

)
→

∑
𝑛∈ℤ

log
(
1 + 𝑎2

(𝑛+ 𝑖
𝛽𝜅

2𝜋 )
2

)
, (C.18)

where the sum can be computed using∑
𝑛∈ℤ

log
(
1 + 𝑎2

(𝑛+ 𝑖𝑏)2
)
= log |||1 − sinh2(𝜋𝑎)

sinh2(𝜋𝑏)
||| . (C.19)

This leads to the following modification of the expression (C.11), (C.12) for the determinant in (C.7)

Γ(Δ,𝜅)(𝛽) = Γ(Δ,𝜅)div (𝛽) + Γ(Δ,𝜅)reg (𝛽) , Γ(Δ,𝜅)div (𝛽) = 1
2

∞∑
𝑛∈ℤ

∞∑
𝑘=0

(𝑘+ 1) log
(𝑛

𝛽
+ 𝑖𝜅)2

(Δ + 𝑘)2
, (C.20)

Γ(Δ,𝜅)reg (𝛽) = 1
2

∞∑
𝑘=0

(𝑘+ 1) log
[ sinh2( (𝑘+Δ)𝛽2 )

sinh2( 𝛽𝜅2 )
− 1

]
. (C.21)

This can be written in a form similar to (B.1) as follows. For the divergent part of the sum over 𝑛 we get (ignoring again a sum of a 
constant assuming 𝜁𝑅 regularization)

Γ(Δ,𝜅)div (𝛽) = 1
2

∞∑
𝑘=0

(𝑘+ 1)
[
log(𝛽

2𝜅2

4𝜋2 ) +
∞∑
𝑛=1

log
[
(𝑛+ 𝑖

𝛽𝜅

2𝜋
)2
]
+

∞∑
𝑛=1

log
[
(𝑛− 𝑖

𝛽𝜅

2𝜋
)2
]]

= 1
2

∞∑
𝑘=0

(𝑘+ 1)
[
log(𝛽

2𝜅2

4𝜋2 ) + 2 log
( 4𝜋
𝛽𝜅

sinh 𝛽𝜅

2
)]

=
∞∑
𝑘=0

(𝑘+ 1) log(2 sinh 𝛽𝜅

2
) . (C.22)

Using that

log
[ sinh2 (𝑘+Δ)𝛽

2

sinh2 𝜅𝛽

2

− 1
]
= −2 log(2 sinh 𝛽𝜅

2 ) + 𝛽(𝑘+Δ) + log[(1 − 𝑞𝑘+Δ+𝜅 )(1 − 𝑞𝑘+Δ−𝜅 )] , (C.23)

for the Γ(Δ,𝜅)reg (𝛽) part we get38

Γ(Δ,𝜅)reg (𝛽) = 1
2

∞∑
𝑘=0

(𝑘+ 1)
[
− 2 log(2 sinh 𝛽𝜅

2 ) + 𝛽(𝑘+Δ) +
∑
±

log(1 − 𝑞𝑘+Δ±𝜅 )
]

(C.24)

= −
∞∑
𝑘=0

(𝑘+ 1) log(2 sinh 𝛽𝜅

2 ) + 1
24 (Δ − 1)(1 − 4Δ+ 2Δ2 + 6𝜅2)𝛽 + 1

2

∑
±

∞∑
𝓁,𝓁′=0

log(1 − 𝑞𝓁+𝓁
′+Δ±𝜅 )

= −
∞∑
𝑘=0

(𝑘+ 1) log(2 sinh 𝛽𝜅

2
) + 1

24 (Δ − 1)(1 − 4Δ+ 2Δ2 + 6𝜅2)𝛽 − 1
2

∑
±

∞∑
𝑛=1

1
𝑛

𝑞𝑛(Δ±𝜅 )
(1 − 𝑞𝑛)2

.

Adding together (C.22) and (C.24) we finally get the finite expression quoted in (5.20), (5.21)

Γ(Δ,𝜅)(𝛽) = 1
24

(Δ − 1)(1 − 4Δ+ 2Δ2 + 6𝜅2)𝛽 − 1
2

∞∑
𝑛=1

1
𝑛

𝑞𝑛(Δ+𝜅 )
(1 − 𝑞𝑛)2

− 1
2

∞∑
𝑛=1

1
𝑛

𝑞𝑛(Δ−𝜅 )
(1 − 𝑞𝑛)2

. (C.25)

The small 𝛽 expansion of Γ(Δ,𝜅)(𝛽) can be found as in (B.1), (B.10):

Γ(Δ,𝜅)(𝛽) = − 𝜁(3)
𝛽2

− 𝜋2(Δ − 1)
6𝛽

− C(Δ, 𝜅) + 1
12

(5 − 12Δ+ 6Δ2 + 6𝜅2) log𝛽 −
∞∑
𝑛=1

C2𝑛(Δ, 𝜅)𝛽2𝑛, (C.26)

where

38 The Casimir term is computed by splitting Δ = 1 (Δ + 𝜅) + 1 (Δ − 𝜅) and using Hurwitz zeta function regularization, i.e. introducing a factor (𝑘 + Δ ± 𝜅)𝑠 and 
17

2 2
dropping singular terms in the limit 𝑠 → 0.
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C(Δ, 𝜅) = 1
2
[C(Δ + 𝜅) + C(Δ − 𝜅)] , (C.27)

C2(Δ, 𝜅) =
−1 + 20Δ− 50Δ2 + 40Δ3 − 10Δ4

2880
+ 1

288
(−5 + 12Δ− 6Δ2)𝜅2 − 𝜅4

288
, (C.28)

C4(Δ, 𝜅) =
−5 + 42Δ+ 63Δ2 − 420Δ3 + 525Δ4 − 252Δ5 + 42Δ6

3628800

+ (1 − 20Δ+ 50Δ2 − 40Δ3 + 10Δ4)𝜅2

57600
+ (5 − 12Δ+ 6Δ2)𝜅4

34560
+ 𝜅6

86400
, ... (C.29)

C.2. Alternative derivation by Poisson resummation

An alternative way to derive the expression for the log det in (C.7) is to apply the Poisson resummation trick

∑
𝑛∈ℤ

𝑓 (𝑛) =
∑
𝓁∈ℤ

𝑓 (𝓁), 𝑓 (𝓁) = F[𝑓 ] ≡
∞

∫
−∞

𝑑𝑛𝑓 (𝑛) 𝑒−2𝜋𝑖𝓁𝑛. (C.30)

Since

F
[
log(1 + 𝑎2𝑛2)

]
= − 1|𝓁| exp(− 2𝜋|𝓁||𝑎| )

, (C.31)

this gives

Γ(Δ)(𝛽) = 1
2
∑
𝓁∈ℤ

∞∑
𝑘=0

(𝑘+ 1) 1|𝓁| 𝑒−|𝓁|(Δ+𝑘)𝛽 . (C.32)

If we separate the 𝓁 = 0 term, we obtain

Γ(Δ)(𝛽) = “𝓁 = 0 term” +
∞∑
𝑘=0

(𝑘+ 1) log(1 − 𝑒−(Δ+𝑘)𝛽 ). (C.33)

This can be generalized to the case of a non-zero 𝜅-shift using that

F
[
log(1 + 𝑎2(𝑛+ 𝑖𝑏)2

]
= 𝑒2𝜋𝓁𝑏 F[log(1 + 𝑎2𝑛2)], (C.34)

which leads to the last term in (C.24).
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