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Abstract We interpret the X1(2900) as an S-wave D̄1K
molecular state in the Bethe–Salpeter equation approach with
the ladder and instantaneous approximations for the kernel.
By solving the Bethe–Salpeter equation numerically with the
kernel containing one-particle-exchange diagrams and intro-
ducing three different form factors (monopole, dipole, and
exponential form factors) in the verties, we find the bound
state exists. We also study the decay width of the decay
X1(2900) to D−K+.

1 Introduction

Recently, two new open flavor states were observed by LHCb
collaboration in the D−K+ invariant mass distribution of
B+ → D+D−K+, and the parameters are determined to be
[1]

X0(2900) : M = 2.866 ± 0.007 ± 0.002 GeV,

� = 57 ± 12 ± 4 MeV,

X1(2900) : M = 2.904 ± 0.005 ± 0.001 GeV,

� = 110 ± 11 ± 4 MeV,

respectively. Since the resonances X0(2900) and X1(2900)

are observed in the D−K+ channel, they should be mani-
festly exotic and have minimal quark content c̄dus̄. These
two states are new fully open flavor states after the discovery
of X (5568) (sub̄d̄), which was reported by D0 collaboration
in the Bsπ invariant mass distribution in 2016. However,
since then LHCb, CMS, CDF, and ATLAS Collaborations
have not found evidence for X (5568) [2–5].
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In the past decades, a growing number of good candidates
of exotic states have been observed, with lots of them contain-
ing cc̄ or bb̄ quarks [6,7]. Thus, the discovery of X0(2900)

and X1(2900) have drawn a lot of attentions. The X0(2900)

can be interpreted as a csūd̄ compact tetraquark both in the
universal quark mass picture [8] and in the quark model [9],
but not within an extended relativized quark model [10]. In
Ref. [11], the authors used the two-body chromomagnetic
interactions to find that the X0(2900) can be interpreted as a
radial excited tetraquark and the X1(2900) can be an orbitally
excited tetraquark. It was also suggested the X0(2900) can
be interpreted as the S-wave D∗−K ∗+ molecule state and
the X1(2900) as the P-wave c̄s̄ud compact tetraquark state
[12]. In the chiral constituent quark model, it was shown show
that no candidate of X (2900) was founded in the I J P = 00+
and I J P = 01+ csq̄q̄ system, while there were two states
in the P-wave excited csq̄q̄ system, D1 K̄ and DJ K̄ , which
could be candidates of X (2900) [13]. From the QCD Sum
Rules, the X0(2900) and X1(2900) were studied in molecu-
lar and diquark-antidiquark tetraquark pictures, respectively,
and the results for masses are in good agreement with the
observed masses in the experiment [14]. Investigations bases
the one-boson exchange model [15] and the phenomenologi-
cal Lagrangian approach [16], showed that the X0(2900) can
be a D∗ K̄ ∗ molecule, but the X1(2900) can not. In Ref. [17],
the decay width for X0(2900) → D̄K process was found
to be in agreement with the experimental data with the S-
wave D̄∗K ∗ scenario for X0(2900) in the effective lagrangian
approach. The study in Ref. [18] showed that the X1(2900)

as a D̄1K is disfavored within the meson exchange model. In
Ref. [19], in the quasipotential Bethe–Salpeter (BS) equation
approach, the authors supported the assignment of X0(2900)

as a D∗ K̄ ∗ molecular state and X1(2900) as a D̄1K virtual
state.

Considering the mass of X1(2900) is about 10 MeV below
the D̄1K threshold, it is natural to explore the existence of
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the S-wave D̄1K molecule. In this work, we will focus on the
X1(2900) in the BS equation approach, investigating whether
the X1(2900) can be an S-wave D̄1K bound state. We will
also to study the decay width of X1(2900) → D−K+.

In the rest of the manuscript we will proceed as follows.
In Sect. 2, we will establish the BS equation for the bound
state of an axial-vector meson (D̄1) and a pseudoscalar meson
(K ). Then we will discuss the interaction kernel of the BS
equation and calculate numerical results of the Lorentz scalar
functions in the normalized BS wave function in Sect. 3. In
Sect. 4, the decay width of the X1(2900) to D−K+ final state
will be calculated. In Sect. 5, we will present a summary of
our results.

2 The BS formalism for D̄1K system

For the molecule composed of an axial-vector meson (D̄1)
and a pseudoscalar meson (K ), its BS wave function is
defined as

χμ (x1, x2, P) = 〈0|T D̄μ
1 (x1)K (x2)|P〉, (1)

where D̄1(x1) and K (x2) are the field operators of the axial-
vector meson D̄1 and the pseudoscalar meson K at space
coordinates x1 and x2, respectively, P = Mv is the total
momentum of bound state and v is its velocity. Let mD̄1

and
mK be the masses of the D̄1 and K mesons, respectively, p
be the relative momentum of the two constituents, and define
λ1=mD̄1

/(mD̄1
+mK ), λ2=mK /(mD̄1

+mK ). The BS wave
function in momentum space is defined as

χ
μ
P (x1, x2, P) = e−i P X

∫
d4 p

(2π)4 e
−i pxχ

μ
P (p), (2)

where X = λ1x1 + λ2x2 is the coordinate of the center of
mass and x = x1 − x2. The momentum of the D̄1 meson is
p1 = λ1P + p and that of the K meson is p2 = λ2P − p.

It can be shown that the BS wave function of the D̄1K
system satisfies the following BS equation:

χ
μ
P (p) = Sμν

D̄1
(p1)

∫
d4q

(2π)4 Kνλ(P, p, q)χλ
P (q)SK (p2), (3)

where Sμν

D̄1
(p1) and SK (p2) are the propagators of D̄1 and K

mesons, respectively, and Kνλ(P, p, q) is the kernel, which is
defined as the sum of all the two particle irreducible diagrams
with respect to D1 and K mesons. For convenience, in the fol-
lowing we use the variables pl(= p · v) and pt (= p − plv)

as the longitudinal and transverse projections of the rela-
tive momentum (p) along the bound state momentum (P),
respectively. Then, in the heavy quark limit the propagator
of D1 is

Sμν
D1

(λ1P + p) = −i (gμν − vμvν)

2ω1 (λ1M + pl − ω1 + iε)
, (4)

and the propagator of the K meson is

SK (λ2P − p) = i

(λ2M − pl)2 − ω2
2 + iε

, (5)

respectively, where ω1(2) =
√
m2

D̄1(K )
+ p2

t (we have

defined p2
t = −pt · pt ).

In the BS equation approach, the interaction between D̄1

and K mesons arises from the light vector-meson (ρ and ω)
exchange. Based on the heavy quark symmetry and the chiral
symmetry, the relevant effective Lagrangian used in this work
is shown in the following [20]:

LD1D1V = igD1D1V (Dν
1b

←→
∂ μD

†
1aν)V

μ
ba

+ ig′
D1D1V (Dμ

1bD
ν†
1a − Dμ†

1a D
ν
1a)(∂μVν − ∂νVμ)ba

+ igD̄1 D̄1V (D̄1bν
←→
∂ μ D̄

ν†
1a )V

μ
ab

+ ig′
D̄1 D̄1V

(D̄μ
1b D̄

ν†
1a − D̄μ†

1a D̄
ν
1b)(∂μVν − ∂νVμ)ab

LKKV = igK KV (Kb
←→
∂ μK

†
a )Vμ

ba + igK̄ K̄ V (K̄b
←→
∂ μ K̄

†
a )Vμ

ba,

(6)

where a and b represent the light flavor quark (u and d), Vμ

is a 3 × 3 Hermitian matrix containing ρ, ω, K ∗, and φ:

V =

⎛
⎜⎜⎝

ρ0√
2

+ ω√
2

ρ+ K ∗+

ρ− − ρ0√
2

+ ω√
2
K ∗0

K ∗− K̄ ∗0 φ

⎞
⎟⎟⎠ . (7)

The coupling constants involved in Eq. (6) are related to each
other as follows [20]:

gD1D1V = −gD̄1 D̄1V = 1√
2
β2gV ,

g′
D1D1V = −g′

D̄1 D̄1V
= 5λ2gV

3
√

2
mD1 ,

gKKV = gV /2,

(8)

where the parameters β2gV and λ2gV are given by 2gρNN

and 3
10mN

(gρNN + fρNN ), respectively, with g2
ρNN/4π =

0.84 and fρNN/gρNN = 6.10 [21]. The parameter gV =
5.8 is determined by the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin relations [20].

Then, at the tree level, in the t-channel the kernel for the
BS equation of the D̄1K system in the lader approximation
includes the following term (see Fig. 1):

K τσ
direct (P, p, q;mV ) = −(2π)4δ4(p′

1 + p′
2 − p1 − p2)cI

×
{
gD1D1V gDDV (p1 + q1)γ (p2 + q2)ρg

τσ

× �ργ (k,mV ) + g′
D1D1V gDDV (p2 + q2)ρ

× [
kτ �ρσ (k,mV ) − kσ �ρτ (k,mV )

] }
,

(9)
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Fig. 1 One-particle exchange diagrams induced by vector mesons ρ

and ω

where mV (V = ρ, ω) represents the mass of the exchanged
light vector meson ρ or ω , cI is the isospin coefficient:
c0 = 3, 1 and c1 = −1, 1 for ρ and ω, respectively, �μν

represents the propagator for the light vector meson.
In order to describe the phenomena in the real world, we

should include a form factor at each interacting vertex of

hadrons to include the finite-size effects of these hadrons.
For the meson-exchange case, the form factor is assumed to
take the following forms:

FM (k) = �2
M − m2

�2
M − k2

,

FD(k) = (�2
D − m2)2

(�2
D − k2)2

,

FE (k) = e(k2−m2)/�2
E ,

(10)

in the monopole (M), dipole (D), and exponential (E) mod-
els, respectively, where �, m and k represent the cutoff
parameter, the mass of the exchanged meson and the momen-
tum of the exchanged meson, respectively. The value of �

is near 1 GeV which is the typical chiral symmetry breaking
scale.

In general, for an axial-vector meson (D1) and a pseu-
doscalar meson (K ) bound state, the BS wave function χ

μ
P (p)

has the following form:

χ
μ
P (p) = f0(p)p

μ + f1(p)P
μ + f2(p)ε

μ

+ f3(p)ε
μναβ pαPβεν, (11)

where fi (p) (i = 0, 1, 2, 3) are Lorentz-scalar functions and
εμ represents the polarization vector of the bound state. After
considering the constraints imposed by parity and Lorentz
transformations, it is easy to prove that χ

μ
P (p) can be sim-

plified as

χ
μ
P (p) = f (p)εμναβ pαPβεν, (12)

where the scalar function f (p) contains all the dynamics.
In the following derivation of the BS equation, we will

apply the instantaneous approximation, in which the energy
exchanged between the constituent particles of the binding
system is neglected. In our calculation we choose the absolute
value of the binding energy Eb of the D̄1K system (which is
defined as Eb = M − mD1 − mK ) less than 30 MeV. In this
case the exchange of energy between the constituent particles
can be neglected.

Substituting Eqs. (4), (5), (9) and (10) into Eq. (3) and
using the covariant instantaneous approximation in the ker-
nel, pl = ql , one obtains the following expression:

f (p) =
∫

d4q

(2π)4

i

6ω1(λ1M + pl − ω1 + iε)[(λ2M − pl)2 − ω2
2 + iε][−(pt − qt )2 − m2

V ]
×

{
gD̄1 D̄1V gKKV [4(λ1M + pl)(λ2M − pl)

+(pt + qt )
2 + (p2

t − q2
t )

2/m2
V

]
+ g′

D̄1 D̄1V
gKKVω2(pt · qt − q2

t )/(λ2M − ω2))
}
F2(kt ) f (q),

(13)

where kt = pt−qt is the momentum of the exchanged meson
in the covariant instantaneous approximation.

In Eq. (13) there are poles in the plane of pl at −λ1M +
ω1 − iε, λ2M + ω2 − iε and λ2M − ω2 + iε. By choosing
the appropriate contour, we integrate over pl on both sides of
Eq. (13) in the rest frame of the bound state, then we obtain
the following equation:

f̃ (pt ) =
∫

dq3
t

(2π)3
1

12ω1ω2(M − ω1 − ω2)
[
−(pt − qt )2 − m2

V

]

×
{

3gD̄1 D̄1V
gK KV [4ω2(M − ω2)

+(pt + qt )
2 + (p2

t − q2
t )2/m2

V

]

+ 2g′
D̄1 D̄1V

gK KV ω2(pt · qt − q2
t )/(λ2M − ω2)

}
F2(kt ) f̃ (qt ),

(14)

where f̃ (pt ) ≡ ∫
dpl f (p).

Now, we can solve the BS equation numerically and study
whether the S-wave D̄1K bound state exists or not. It can be
seen from Eq. (14) that there is only one free parameter in
our model, the cutoff �, which enters through various phe-
nomenological form factors in Eq. (10). It contains the infor-
mation about the extended interaction due to the structures
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of hadrons. In fact, in a pioneering work of the molecular
approach to exotic hadrons [22] the finite size effects of the
exchanged mesons were clearly and simply explained and
the order of magnitude of the cutoff was fixed by nuclear
physics problems, in particular by that of the deuteron. In
this work, we shall treat � as a parameter and vary it in a
wide range 0.8–4.8 GeV when the binding energy Eb is in
the region from −5 to −30 MeV to see if the BS equation
has solutions. Concerning the necessity of the inclusion of
finite size effects of the exchanged mesons, which nowadays
is routinely put forward, it is worth mentioning the paper of

To find out the possible molecular bound states, one only
needs to solve the homogeneous BS equation. One numerical
solution of the homogeneous BS equation corresponds to a
possible bound state. The integration region in each integral
is discretized into n pieces, with n being sufficiently large.
In this way, the integral equation is converted into an n × n
nmatrix equation, and the scalar wave function will now be
regarded as an n-dimensional vector. Then, the integral equa-
tion can be illustrated as f̃ (n)(pt ) = A(n×n)(pt , qt ) f̃ (n)(qt ),
where f̃ (n)(pt )( f̃ (n)(qt )) is an n-dimensional vector, and
A(n×n)(pt , qt ) is an n × n matrix, which corresponds to the
matrix labeled by pt and qt in each integral equation. Gener-
ally, pt (qt ) varies from 0 to +∞. Here, pt (qt ) is transformed
into a new variable t that varies from −1 to 1 based on the
Gaussian integration method,

pt = μ + w log

[
1 + y

1 + t

1 − t

]
, (15)

where μ is a parameter introduced to avoid divergence in
numerical calculations, w and y are parameters used in con-
trolling the slope of wave functions and finding the proper
solutions for these functions. Then one can obtain the numer-
ical results of the BS wave functions by requiring the eigen-
value of the eigenvalue equation to be 1.0.

In our calculation, we choose to work in the rest frame of
the bound state in which P = (M, 0). We take the averaged
masses of the mesons from the PDG [23], mD1 = 2420.8
MeV, mK = 494.98 MeV, mρ = 775.26 MeV, and mω =
782.65 MeV. After searching for possible solutions in the
isoscalar channel of the D̄1K system, we find the bound state
exists. We list some values of Eb and the corresponding �

for the three different form factor models in Table 1.

3 The normalization condition of the BS wave function

To find out whether the bound state of the D̄1K system exists
or not, one only needs to solve the homogeneous BS equation.
However, when we want to calculate physical quantities such
as the decay width we have to face the problem of the nor-
malization of the BS wave function. In the following we will
discuss the normalization of the BS wave function χ

μ
P (p).

In the heavy quark limit, the normalization of the BS wave
function of the D̄1K system can be written as [24]

i
∫

d4 pd4q

(2π)8 χ̄
μ
P (p)

∂

∂P0
[IPμν(p, q)]χν(q) = 2EP , (16)

where IPμν(p, q) = (2π)4δ4(p − q)S−1
μν (p1)S−1(p2).

In the rest frame, the normalization condition can be writ-
ten in the following form:

− i
∫

d4 p

(2π)4

{
4M2 p2

t

[
λ2

1(6λ2
2M

2 − 6λ2Mpl + p2
l − ω2

2)

+ 2λ1λ2 pl(3λ2M − 2pl) + λ2
2(p

2
l − ω2

1)
]
f 2(q) = 1.

(17)

From Eqs. (13) and (14), we obtain

f (p) = iω2(M − ω1 − ω2)

π(λ1M + pl − ω1 + iε)(λ2M − pl + ω2 − iε)(λ2M − pl − ω2 + iε)
f̃ (pt ). (18)

Then, one can recast the normalization condition for the BS
wave function into the form

−
∫

d3 pt
8π5

M2 p2
t ω1

ω2
2(M − ω1 − ω2)2

{
λ2

2(p
2
t − ω2

1)(λ2M − ω1 − 3ω2) + λ3
1(λ

2
2M

3 − 2Mω2
2)

+ λ1λ2[2λ3
2M

3 + λ2M(p2
t − ω2

1) − 4ω2
2(ω1 − ω2) − 2λ2

2M
2(ω1 + 3ω2)]

+ λ2
1[3λ3

2M
3 − 6λ2Mω2

2 + 2ω2
2(ω1 + ω2) − λ2

2M
2(ω1 + 3ω2)]

}
f̃ 2(pt ) = 1.

(19)
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Table 1 Values of Eb and corresponding cutoff �M , �D , and �E for I = 0 and I = 1 D̄1K bound states for the monopole, dipole, and exponential
form factors, respectively

Eb (MeV) −5 −10 −15 −20 −25 −30

I=0 �M (MeV) 1208 1261 1297 1327 1352 1375

�D(MeV) 1668 1756 1817 1867 1910 1948

�E (MeV) 1159 1231 1280 1321 1356 1386

I=1 �M (MeV) 1541 1649 1723 1783 1835 1880

�D(MeV) 1897 2371 2492 2589 2671 2744

�E (MeV) 1571 1708 1804 1881 1947 2006

The wave function obtained in the previous section (which
is calculated numerically from Eq. (14)) can be normalized
by Eq. (19).

In our case, the binding energy Eb = MX1(2900)−(MD̄1
+

MK ) � −12.4 MeV, where we have used the mass of the
X1(2900) as 2904 MeV. From our calculations, we find the
I = 0 D̄1K system can be assigned as the X1(2900) state
when the cutoff � = 1280 MeV, 1788 MeV, and 1257 MeV for
the monopole, dipole, and exponential form factors, respec-
tively, the I = 1 D̄1K system can be the X1(2900) state when
the cutoff � = 1688 MeV, 2434 MeV, and 1758 MeV for
the monopole, dipole, and exponential form factors, respec-
tively. The corresponding numerical results of the normalized
Lorentz scalar function, f̃ (pt ), are given in Fig. 2a and b for
the X1(2900) states with I = 0 and I = 1 in the D̄1K
molecule picture for the monopole form factor. The curves
for the numerical results of the normalized Lorentz scalar
functions with the dipole and exponential form factors are
found to be similar to those of the monopole form factor. In
other words, the wave functions are not sensitive to the types
of form factors.

4 The decay of X1(2900) → D−K+

Besides investigating whether the bound state of the D̄1K
system can be X1(2900) or not, we can also study the
decay of the X1(2900) as the S-wave D̄1K bound state. The
X1(2900) can decay to D−K+ via the Feynman diagrams
in Fig. 3. which are induced by the effective Lagrangians for
the D1DV and KKV vertices (which have been given in Eq.
(6)) as the following [20]:

LDD1V = gDD1V D
μ
1bVμbaD

†
a + g′

DD1V

(Dμ
1b

←→
∂ νD†

a)(∂μVν − ∂νVμ)ba

+ gD̄D̄1V D̄
†
aVμba D̄

μ
1b + g′

D̄ D̄1V

(D̄μ
1b

←→
∂ ν D̄†

a)(∂μVν − ∂νVμ)ba + H.c.,

(20)

where the coupling constants are given as gDD1V =
−gD̄D̄1V = − 2√

3
ζ1gv

√
mDmD1 , g′

DD1V
= −g′

D̄ D̄1V
=

1√
3
μ1gV [20], with the two parameters ζ1 and μ1 being

involved in the coupling constants, about which the infor-
mation is very scarce leading them undetermined. However,
in the heavy quark limit, we can roughly assume that the

(a) (b)

Fig. 2 Numerical results of the normalized Lorentz scalar function f̃ (pt ) for the X1(2900) in the I = 0 (a) and I = 1 (b) D̄1K molecular picture
with the monopole form factor

123
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Fig. 3 The diagrams contributing to the X1(2900) → D−K+ decay
process induced by ρ and ω

coupling constants gDD1V and g′
DD1V

are equal to gD∗D0V

(=ζgV
√

2mD∗mD0 ) and g′
D∗D0V

(=1/
√

2μgV ), respectively.

The parameters μ = 0.1 GeV−1 and ζ = 0.1 are taken in
Ref. [25].

According to the above interactions, we can write down
the amplitude for the decay X1(2900) → D−K+ induced by
light vector meson (ρ and ω) exchanges as shown in Fig. 3,
as the following:

M =gKKV
√

2E
∫

d4 p

(2π)4 F
2(k)

[
gD̄D̄1V (p2 + p′

2)
α�αμ(k,mV )

+ g′
D̄ D̄1V

(p1 + p′
1)

ν(p2 + p′
2)

α

(
kμ�αν(k,mV ) − kν�αμ(k,mV )

) ]
χ

μ
P (p)

(21)

In the rest frame, we define p′
1 = (E ′

1,−p′
1) and p′

2 =
(E ′

2,p
′
2) to be the momenta of D and K , respectively.

According to the kinematics of the two-body decay of the
initial state in the rest frame, one has

E ′
1 = M2 − m

′2
2 + m

′2
1

2M
, E ′

1 = M2 − m
′2
1 + m

′2
2

2M
,

|p′
1| = |p′

2| =
√

[M2 − (m′
1 + m′

2)
2][M2 − (m′

1 − m′
2)

2]
2M

,

(22)

and

d� = 1

32π2 |M|2 |p′|
M2 d�, (23)

where |p′
1| and |p′

2| are the norm of the 3-momentum of the
particles in the final states in the rest frame of the initial bound
state and M is the Lorentz-invariant decay amplitude of the
process.

Substituting the normalized numerical solutions of the BS
equation, and the cutoff � are 1280 MeV, 1788 MeV, and
1257 MeV with I = 0 and 1688 MeV, 2434 MeV, and 1758
MeV with I = 1 for the monopole, dipole, and exponential
form factors, respectively. The decay widths of the X1(2900)

to D−K+ can be obtained as following:

�X1(2900)(I=0)→D−K+

=

⎧⎪⎨
⎪⎩

70.73 MeV with monopole form factor,

98.75 MeV with dipole form factor,

60.38 MeV with exponential form factor,

(24)

and

�X1(2900)(I=1)→D−K+

=

⎧⎪⎨
⎪⎩

28.14 MeV with monopole form factor,

18.13 MeV with dipole form factor,

12.78 MeV with exponential form factor.

(25)

From our calculation results, we can see that different
form factors have a great influence on the decay width, and
different cutoff � for the same form factor also have a great
influence on the decay width.

5 Summary and discussion

In this paper, we studied the X1(2900) with the hadronic
molecule interpretation by regarding it as a bound state of D̄1

and K mesons in the BS equation approach. In our model,
we applied the ladder and instantaneous approximations to
obtain the kernel containing one-particle-exchange diagrams
and introduced three different form factors (the monopole
form factor, the dipole form factor, and the exponential form
factor) at the interaction vertices. From the calculating results
we find that there exist bound states of the D̄1K system. The
binding energy depends on the value of the cutoff �. For the
I = 0 D̄1K system, we find the cutoff regions in which the
solutions (with the binding energy Eb ∈ (−5, −30) MeV)
for the ground state of the BS equation can be found (in units
of MeV): �M ∼ (1208, 1375), �D ∼ (1668, 1948), and
�E ∼ (1159, 1386) for the monopole form factor, the dipole
form factor, and the exponential form factor, respectively. For
the I = 1 D̄1K system, we find two the regions (in units of
MeV): �M ∼ (1541, 1880), �D ∼ (1897, 2744), and �E ∼
(1571, 2006) in which the solutions of the BS equation can be
found. Thus, we can confirm that X1(2900) can be regarded
as the S-wave D̄1K molecules in our model.

On the other hand, in Ref. [18], the possibility of explain-
ing X1(2900) as a D̄1K molecule was excluded in the non-
relativistic limit by means of the Schrödinger equation. In
the quasipotential Bethe–Salpeter equation approach [19],
the D̄K bound state with I (J P ) = 0(1−) only appears at
a large cutoff � of about 4 GeV while a virtual state with
I (J P ) = 0(1−) from the D̄K interaction can be found when
� is decreased. Therefore, more theoretical and experimental
studies are needed for this state.
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We applied the numerical solutions for the BS wave func-
tions with the corresponding cutoff (� = 1280 MeV, 1788
MeV, and 1257 MeV for I = 0 and � = 1688 MeV, 2434
MeV, and 1758 MeV for I = 1 with the monopole, dipole,
and exponential form factors, respectively.) to calculate the
decay widths of X1(2900) → D−K+ induced by ρ and ω

exchanges. We predict the decay widths are 70.73, 98.75, and
60.38 MeV and 28.14, 18.13, and 12.78 MeV for X1(2900)

as I = 0 and I = 1 D̄1K molecules with the corresponding
cutoff in the decay process, respectively. From our study, the
X1(2900) is suitable as I = 0 D̄1K molecular state. There
are two uncertain factors in the calculation of the decay width,
one is that the parameters ξ1 and μ1 have not been determined
since the information about them is very scarce, the other is
that we can not give the definite value of the cutoff �.
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