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We report the first lattice QCD calculation of pion valence quark distribution with next-to-next-to-
leading order perturbative matching correction, which is done using two fine lattices with spacings a ¼
0.04 and 0.06 fm and valence pion mass mπ ¼ 300 MeV, at boost momentum as large as 2.42 GeV. As a
crucial step to control the systematics, we renormalize the pion valence quasidistribution in the recently
proposed hybrid scheme, which features a Wilson-line mass subtraction at large distances in coordinate
space, and develop a procedure to match it to the MS scheme. We demonstrate that the renormalization and
the perturbative matching in Bjorken-x space yield a reliable determination of the valence quark
distribution for 0.03≲ x≲ 0.80 with 5%–20% uncertainties.

DOI: 10.1103/PhysRevLett.128.142003

Understanding the hadron inner structure remains one of
the top fundamental questions in nuclear and particle
physics. As the lightest hadrons in nature, pions are the
Nambu-Goldstone bosons of quantum chromodynamics
(QCD), and their quark and gluon structures can help us to
understand the origins of hadron mass and dynamical chiral
symmetry breaking. The parton distribution functions
(PDFs), which describe 1D momentum densities of quarks
and gluons in a hadron, are the simplest and most important
quantities that have been extensively studied from global
high-energy scattering experiments and will be probed at
unprecedented precision at the future Electron-Ion Collider
[1,2]. Besides the experimental efforts, the first-principles
calculations of PDFs using lattice QCD are also expected to
provide useful predictions.
Computation of the PDFs on a Euclidean lattice has been

extremely difficult because they are defined from light-
cone correlations with real-time dependence in Minkowski
space. For a long time, only the lowest moments of the
PDFs were calculable as they are matrix elements of local
gauge-invariant operators. For reviews see Refs. [3,4].
Less than a decade ago, a breakthrough was made by

large-momentum effective theory (LaMET) [5–7], which
starts from a Euclidean “quasi-PDF” (qPDF) in a boosted
hadron and obtains the PDF through a large-momentum
expansion and perturbative matching of the qPDF in
Bjorken-x (longitudinal momentum fraction) space.
Over the years, LaMET has led to much progress in the
calculation of PDFs and other parton physics [4,7], which
reinvigorated the field as other proposals [8–13] are also
being studied and implemented.
Despite substantial progress, lattice calculation of the

PDF x dependence has yet to achieve essential control
of the systematic uncertainties [14]. In the LaMET
approach, lattice renormalization is one of the most
important sources of error. The nonlocal quark bilinear
operator OΓðzÞ≡ ψ̄ðzÞΓWðz; 0Þψð0Þ, where Γ is a Dirac
matrix and zμ ¼ ð0; 0; 0; zÞ, which defines the qPDF,
suffers from a linear power divergence in the Wilson line
Wðz; 0Þ that must be subtracted before taking the con-
tinuum limit. The most popular methods so far are the
regularization independent momentum subtraction scheme
[15–18] and other ratio schemes [19–22], which use the
matrix element of OΓðzÞ in an off-shell quark [15–18], a
static or boosted hadron [19,22], or the vacuum state
[20,21] as the renormalization factor. At small z the matrix
elements in these schemes satisfy a factorization relation to
the light-cone correlation [13,23–25]. However, at large z
they introduce nonperturbative effects [26] that propagate
to the qPDF via Fourier transform (FT) of the matrix
elements, which contaminates the LaMET matching in x
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space. To overcome this limitation, the hybrid scheme [27]
was proposed to subtract the linear divergence at large z and
match the result to the MS scheme, thus preserving the
LaMET matching after FT. To date, the hybrid scheme
has not been used in calculating the PDFs, except for a
recent work on meson distribution amplitudes [28]. Apart
from renormalization, the accuracy of perturbative match-
ing also controls the precision of the calculation. In all the
existing lattice calculations, the matching was done at only
next-to-leading order (NLO), and it is not until recently
that the next-to-next-to-leading order (NNLO) matching
was derived for the nonsinglet quark qPDF in the MS
scheme [21,29].
In this Letter we present a state-of-the-art calculation of

pion valence quark PDF using high-statistics, superfine-
spacing, and large-momentum lattice data [26], with an
adapted hybrid-scheme renormalization and the first-time
implementation of NNLO matching. The pion valence PDF
has been extracted from global fits [30–33] and studied
in lattice QCD [26,34–40], with both at NLO accuracy.
In this work, we subtract the linear divergence in OΓðzÞ
with subpercent precision, and develop a procedure to
match the lattice subtraction scheme to MS, a crucial step in
the hybrid scheme to reduce the power corrections [27].
We derive the NNLO hybrid-scheme matching and apply it
to the qPDF, showing good perturbative convergence and
reduced scale-variation uncertainty compared to NLO
matching. Finally, we demonstrate that our analysis yields
a reliable determination of the PDF for 0.03≲ x≲ 0.80
with 5%–20% uncertainties.
Our lattice data was produced using gauge ensembles in

2þ 1 flavor QCD generated by the HotQCD Collaboration
[41] with highly improved staggered quarks [42], including
two lattice spacings a ¼ 0.04 and 0.06 fm, and volumes
L3
s × Lt ¼ 644 and 483 × 64, respectively. We use tadpole-

improved clover Wilson valence fermions on the hyper-
cubic (HYP) smeared [43] gauge background, with a
valence pion mass mπ ¼ 300 MeV. Furthermore, the
Wilson line in OΓðzÞ is constructed from HYP-smeared
gauge links. We use pion momenta Pz ¼ ð2πnzÞ=ðLsaÞ
with 0 ≤ nz ≤ 5, resulting in Pz as large as 2.42 GeV.
The qPDF f̃vðx; Pz; μÞ is defined in a boosted pion state

jPi with four-momentum Pμ ¼ ðPt; 0; 0; PzÞ:

f̃vðx; Pz; μÞ ¼
Z

dz
2π

eixP
zzh̃ðz; Pz; μÞ; ð1Þ

where h̃ðz; Pz; μÞ≡ hPjOγtðzÞjPi=ð2PtÞ, and μ is the MS
scale. The operatorOΓðzÞ can be renormalized under lattice
regularization as [44–46]

OB
Γðz; aÞ ¼ e−δmðaÞjzjZOðaÞOR

ΓðzÞ; ð2Þ

where “B” and “R” denote bare and renormalized
quantities. The factor ZOðaÞ includes all the logarithmic

ultraviolet (UV) divergences which are independent of z,
while the Wilson-line mass correction δmðaÞ includes the
linear UV divergence ∝ 1=a and can be expressed as

δmðaÞ ¼ m−1ðaÞ
a

þm0; ð3Þ

where m−1ðaÞ is a series in the strong coupling αsð1=aÞ,
and m0 is an OðΛQCDÞ constant originating from the
renormalon ambiguity in m−1ðaÞ [47].
The hybrid scheme is implemented as follows: For

0 ≤ z ≤ zS with a ≪ zS ≪ 1=ΛQCD, we form the ratio
h̃ðz; Pz; aÞ=h̃ðz; 0; aÞ to cancel the UV divergences and
the cutoff effects from z ∼ a [19]; at z > zS we subtract
δmðaÞ and determine ZOðaÞ by imposing a continuity
condition of the renormalized matrix elements at z ¼ zS.
There are different ways to calculate δmðaÞ [27,46,48–51].
We determine δmðaÞ from the combination of the static
quark-antiquark potential, V latðrÞ [41,52], and the free
energy of a static quark at nonzero temperature [53–55],
with the following normalization scheme,

V latða; r ¼ r0Þ þ 2δmðaÞ ¼ 0.95=r0; ð4Þ

where r0 ¼ 0.469 fm is the Sommer scale for 2þ 1 flavor
QCD [41], and the constant 0.95 defines the scheme. The
linear divergencem−1ðaÞ=a does not depend on the scheme,
whilem0 does. The results are aδm ¼ 0.1586ð8Þ and 0.1508
(12) for a ¼ 0.06 and 0.04 fm, respectively.
Since m0 is scheme dependent, a factor of em̄0jzj with

m̄0 ∼OðΛQCDÞ is needed to match the lattice scheme to
MS, otherwise the LaMET expansion of the qPDF will
include a power correction ∝ m̄0=Pz [27], which slows
down convergence to the PDF as Pz grows. It was proposed
that m̄0 can be obtained by comparing the subtracted matrix
elements of OΓðzÞ [51] or Wðz; 0Þ [49] with their MS
operator product expansion (OPE), whose accuracy
requires z≲ 0.2 fm [27]. But because of discretization
effects, the window of z that can be used is actually narrow.
Our new procedure for the hybrid scheme is distinct by

the determination of m̄0. In order to use larger z, we
construct the following ratio and compare it to a form
motivated by the OPE of h̃ðz; 0; μÞ,

lim
a→0

eδmðaÞðz−z0Þ h̃ðz;0;aÞ
h̃ðz0;0;aÞ

¼ e−m̄0ðz−z0ÞC0ðμ2z2ÞþΛz2

C0ðμ2z20ÞþΛz20
; ð5Þ

where z; z0 ≫ a, and the parameter Λ ∼OðΛ2
QCDÞ. The

Wilson coefficient C0 is known to NNLO [21,25,29], and
m̄0 and Λz2 originate from the leading UV and infrared
renormalons in C0 [20]. According to Eq. (2), the left-hand
side of Eq. (5) must have a continuum limit if δmðaÞ
includes all the linear divergences, which is renormaliza-
tion group (RG) invariant. We choose z ≥ z0 ¼ 0.24 fm
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and find agreement between the a ¼ 0.04 fm and a ¼
0.06 fm ratios at subpercent level up to z ∼ 1 fm. Then we
extrapolate the lattice ratios to the continuum with a2

dependence [26], and fit the result to the right-hand side of
Eq. (5). For z0 ≤ z ≤ 0.4 fm, we obtain decent plateaus and
χ2 values for both m̄0 and Λ with the NNLO C0. By
definition m̄0 cancels the lattice scheme dependence of
δmðaÞ, as changing the scheme only shifts δmðaÞ by a
constant, but m̄0 will inherit the OðΛQCDÞ ambiguity in the
MS scheme. SinceC0 is at fixed order, both m̄0 andΛ depend
on μ, which we vary to estimate the related uncertainty in the
final result. At μ ¼ 2.0 GeV, m̄0 ¼ 0.137ð2Þ GeV and
Λ ¼ −0.058ð1Þ GeV2, so the power correction is not neg-
ligible. Therefore, we modify the hybrid scheme by cor-
recting the Λz2 term in h̃ðz; 0; μÞ at short z as

h̃ðz; zS;Pz;μ; aÞ ¼ N
h̃ðz;Pz; aÞ
h̃ðz;0; aÞ

C0ðz2μ2Þ þΛz2

C0ðz2μ2Þ
θðzS − zÞ

þNeδm
0ðz−zSÞ h̃ðz;Pz;aÞ

h̃ðzS;0; aÞ
C0ðz2Sμ2Þ þΛz2S

C0ðz2Sμ2Þ
× θðz− zSÞ; ð6Þ

where δm0 ¼ δmþ m̄0, andN ¼ h̃ð0; 0; aÞ=h̃ð0; Pz; aÞ nor-
malizes h̃ðz; zS; Pz; μ; aÞ to one at z ¼ 0. SinceC0 is at fixed
order, h̃ðz; zS; Pz; μ; aÞ depends on μ despite the fact that it
should be RG invariant. Such a renormalization is performed
through bootstrap loops so that the correlation between
different Pz and z is taken care of.
The hybrid-scheme matrix elements are shown in Fig. 1.

At small z, h̃ðz; PzÞ is dominated by the leading-twist
contribution. At large z, the spacelike correlator for pion
valence quarks will exhibit an exponential decay ∝ e−meff jzj
where meff is an effective mass related to the system [56].
When plotted as a function of λ ¼ zPz, h̃ðλ; PzÞ should
scale in Pz at small λ, with slight violation due to QCD
evolution. Its exponential decay will emerge at a larger λ
with greater Pz and with decay ratemeff=Pz. In the Pz → ∞
limit, the exponential decay vanishes at finite λ (z → 0),

and only the leading-twist contribution remains, which
almost scales in Pz and features a power-law decay at large
λ that corresponds to small-x PDF [27]. This picture is
consistent with Fig. 1.
The next step is a FT. We truncate the matrix elements at

zL or λL ¼ zLPz where h̃ðλLÞ ∼ 0, and extrapolate to ∞ to
remove the unphysical oscillations from a truncated FT
[27]. The extrapolation form is Ae−meff jzj=jλjd, where A,
meff , and d are the parameters. Since meff is independent of
Pz, by fitting to thePz ¼ 0matrix elements we find that it is
around 0.1 GeV, which is not far from the phenomeno-
logical estimate of 0.2–0.5 GeV in HQET [57]. Therefore,
we impose meff > 0.1 GeV, as well as A > 0 and d > 0, to
ensure a convergent FTon each bootstrap sample. Since the
FT converges fast with the exponential decay, the extrapo-
lation mainly affects the small-x region apart from remov-
ing the unphysical oscillations. To verify this we vary zL,
which turns out to have little impact, and use different meff
bounds and extrapolation forms, which lead to consistent
qPDFs down to x ∼ 0.05.
Then, we match the qPDF f̃vðx; λS; Pz; μÞ to the MS

PDF fvðx; μÞ through LaMET [25,27,58,59]:

fvðx; μÞ ¼
Z

∞

−∞

dy
jyjC

−1
�
x
y
;
μ

yPz ; jyjλS
�
f̃vðy; λS; Pz; μÞ

þO
� Λ2

QCD

ðxPzÞ2 ;
Λ2
QCD

ðð1 − xÞPzÞ2
�
; ð7Þ

where λS ¼ zSPz, zS ¼ 0.24 fm, and the power corrections
are controlled by the parton and spectator momenta xPz

and ð1 − xÞPz [27]. Here C−1 is the inverse of the hybrid-
scheme matching coefficient C, which we derive at
NNLO [60] by conversion from the MS result [21,29].
Based on Eq. (7), we can directly calculate the PDF with
Pz-controlled power corrections for x ∈ ½xmin; xmax�.
In Fig. 2 we show the results of perturbative matching.

The matching drives the qPDF to smaller x and reduces the

FIG. 1. Renormalized matrix elements in the hybrid scheme.
FIG. 2. Comparison of PDFs obtained from the qPDF with
NLO and NNLO matching corrections.
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statistical errors at moderate x, because matching effec-
tively relates the qPDF from finite Pz to infinity, and the
qPDF evolves to smaller x as Pz increases. The NNLO
correction is generally smaller than the NLO correction,
which indicates good perturbative convergence, a crucial
criterion for precision calculation. Besides, by varying μ
and evolving the matched results to the same μ, we find that
the scale-variation uncertainty is reduced at NNLO, which
is further evidence of improved precision. The matching
correction diverges as x → 0, implying that resummation of
small-x logarithms is needed. A resummation is also
necessary as x → 1 [40], but these resummations are not
needed for moderate x.
We compare thePDFs obtained at differentPzwithNNLO

matching in Fig. 3. At moderate x, the Pz dependence is
remarkably reduced, and the results appear to converge for
Pz ≥ 1.45 GeV, which strongly indicates the effectiveness
of LaMET matching. At x≳ 1, each PDF curve has a small
nonvanishing tail due to the power corrections in Eq. (7),
but they decrease with larger Pz. To estimate the size of
the power corrections, we fit the PDFs obtained at a ¼
0.04 fm, Pz ¼ f1.45; 1.94; 2.42g GeV, and a ¼ 0.06 fm,
Pz ¼ f1.72; 2.15g GeV to the ansatz fvðxÞ þ αðxÞ=P2

z for
each fixed x, wherewe ignore thea dependence as it has been
found that the matrix elements haveOða2P2

zÞ effects that are
less than 1% [26]. Since this fit is mainly affected by the
datasets at lowerPzwith smaller statistical errors,whichhave
larger power corrections, we use the result atPz ¼ 2.42 GeV
instead of the fitted fvðxÞ as our final prediction. The
power correction at Pz ¼ 2.42 GeV is estimated to be
αðxÞ=½P2

zfvðxÞ�< 0.10 for 0.01< x < 0.80. It is surprising
that the results are insensitive toPz for x as small as 0.01, nor
do they showdependence on the extrapolation form in the FT
as we have checked. This can be explained by that, under
matching, the qPDF contributes to the PDF at larger xwhich
has less dependence onPz or the extrapolation. Nevertheless,
it must be pointed out that the smallness here is only relative,
as αðxÞ=P2

z still diverges as x → 0.

Our final prediction for the pion valence quark PDF
(BNL-ANL21) is shown in Fig. 4, which is obtained from
the qPDF at a ¼ 0.04 fm, zS ¼ 0.24 fm, zL ¼ 0.92 fm,
μ ¼ 2.0 GeV, and Pz ¼ 2.42 GeV with exponential
extrapolation and NNLO matching. The red band repre-
sents the statistical error, and the light purple band includes
the error from scale variations, which is obtained by
repeating the same analysis for μ ¼ 1.4 and 2.8 GeV
and evolving the PDFs to μ ¼ 2.0 GeV with the NLO
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi kernel. Since
the hybrid-scheme parameter m̄0 depends on μ, the small
scale variation in the final result demonstrates that the
renormalization uncertainty is well under control. We
require that the Oðα3sÞ matching correction at μ ¼
2.0 GeV be smaller than 5%, which propagates geomet-
rically to <37% at NLO and <14% at NNLO, thus
excluding x < 0.03 and x > 0.88. A list of the above
uncertainties at selected x is shown in Table I. We neglect
the FT uncertainty as it is extremely small. As for mπ

dependence, our associated calculation of the second PDF
moment at mπ ¼ 140 MeV [61] shows consistency within
5% statistical uncertainty, which will be validated by a
direct comparison in the future. Previous studies [62,63]
also suggest that the finite volume correction is less than
1% for our lattice setup. At last, by limiting the estimated
power corrections to be less than 10%, we determine the
PDF at 0.03≲ x≲ 0.80 with 5%–20% uncertainties. See
all analysis details in Ref. [64]. Our result is in great
agreement with the recent global fits by xFitter [31] and

FIG. 3. The PDFs obtained from the qPDFs with NNLO
matching at different Pz.

JAM21NLO

XFitter

FIG. 4. Comparison of our prediction of fvðxÞ, BNL-ANL21,
to global fits and BNL20. The shaded regions x < 0.03 and x >
0.8 are excluded by requiring that estimates of Oðα3sÞ and power
corrections be smaller than 5% and 10%, respectively.

TABLE I. Statistical and systematic uncertainties at given x.

x Statistical Scale Oðα3sÞ Power corrections Oða2P2
zÞ

0.03 0.10 0.04 <0.05 <0.01 <0.01
0.40 0.07 <0.01 <0.05 0.04 <0.01
0.80 0.15 0.03 <0.05 0.10 <0.01
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JAM21NLO [32] for 0.2< x < 0.6, but deviates from the
earlier GRVPI1 [30] and ASV [33] fits. When compared to
a previous analysis of the same lattice data (BNL20) [26],
which used a short-distance factorization of the matrix
elements at NLO, and a parametrization of the PDF, our
new result has shifted central values and considerably
reduced uncertainties at moderate x, but still agrees within
errors. With finite Pz and statistics, lattice QCD can only
make predictions for x ∈ ½xmin; xmax�. The PDF parametri-
zation correlates the information at all x ∈ ½0; 1�, so the
larger uncertainties at moderate x in BNL20 could be
propagated from the uncontrolled errors in the end-point
regions. Besides, there is no practical estimate of the model
uncertainty in the parametrization. Therefore, the LaMET
calculation for x ∈ ½xmin; xmax� is more reliable as it does the
power expansion and matching directly in x space.
In summary, we have performed a state-of-the-art lattice

QCD calculation of the x dependence of pion valence quark
PDF, where we developed a procedure to renormalize the
qPDF in the hybrid scheme and match it to the MS PDF at
NNLO. The final results show reduced perturbation theory
uncertainty and converge at moderate xwith pion momenta
greater than 1.45 GeV, which allows us to reliably estimate
the systematic errors. This calculation can be improved
with physical pion mass, continuum extrapolation, and
higher statistics for the matrix elements at long distances
and at larger boost momenta.
Our renormalization procedure can also be incorporated

into the lattice calculations of gluon PDFs, distribution
amplitudes, generalized parton distributions and transverse
momentum distributions. With the systematics under
control, we can expect lattice QCD to provide reliable
predictions for these quantities in the future.
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