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Abstract Both scalar fields and (generalized) Chaplygin
gases have been widely used separately to characterize the
dark sector of the universe. Here we investigate the cosmo-
logical background dynamics for a mixture of both these
components and quantify the fractional abundances that are
admitted by observational data from supernovae of type Ia
and from the evolution of the Hubble rate. Moreover, we
study how the growth rate of (baryonic) matter perturbations
is affected by the dark-sector perturbations.

1 Introduction

The standard cosmological model, the �CDM model (�
denotes the cosmological constant, CDM stands for cold
dark matter), assumes the presently observed cosmic substra-
tum mainly to consist of a cosmological-constant type dark
energy (DE) together with pressureless CDM. These dark
components make up about 95% of the cosmic energy bud-
get. “Usual”, i.e. baryonic, matter only contributes with less
than 5%. The present fractions of radiation and curvature are
dynamically negligible. The standard model describes well
a large number of observations and its parameters have been
determined by now with high precision [1]. On the other
hand, the theoretical status of the standard model is anything
but satisfactory. The model relies on the existence of a dark
sector which is physically not really understood. Moreover,
despite its observational success there remain tensions [2].
While no straightforward fundamental progress seems to be
in sight at the moment, this situation requires further (semi-)
phenomenological studies of potential deviations from the
standard model as well as of modifications both of the mat-
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ter sector (right-hand side of Einstein’s equations) and of the
geometric sector (left-hand side of Einstein’s equations).

The simple cosmological-constant model has been
“dynamized” in several ways. Even before the advent of the
observations of supernovae of type Ia (SNIa) by [3–5] which
supported the idea of a universe in accelerated expansion, a
scalar field (SF) has been suggested as an agent that might
drive the cosmological dynamics [6,7]. Further studies along
this line were performed in [8–18].

A fluid dynamical description which is able to account
both for an early matter-dominated phase and for effects sim-
ilar to those generated by a cosmological constant has been
established in terms of (generalized) Chaplygin gases. The
original Chaplygin gas [19] is characterized by an equation
of state (EoS) p = − A

ρ
. It was applied to cosmology in [20]

followed by [21,22]. A phenomenological generalization to

an EoS p = − A

ρα
with a constant α > −1 was introduced

in [23], where also its relation to a scalar-field Lagrangian
of a generalized Born–Infeld type was clarified. For α = 1
this generalization reduces to the original Chaplygin gas, for
α = 0 it is related to the �CDM model. An appealing feature
of the (generalized) Chaplygin gas (GCG) is its capability of
a unified description of the dark sector. Its energy density
is changing smoothly from that of nonrelativistic matter at
high redshift to an almost constant far-future value. Thus it
interpolates between an early phase of decelerated expan-
sion, necessary for successful structure formation, and a late
period in which it acts similarly as a cosmological constant,
generating an accelerated expansion. Cosmological models
relying on the dynamics of generalized Chaplygin gases have
been widely studied in the literature [24–35].

While both SF-based models and models aiming at a uni-
fied description of the dark sector of the type of GCGs have
separately attracted ample attention, our aim in this paper is
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to investigate a model in which a GCG and a SF are simulta-
neously present (GCSF model) in addition to a pressureless
matter component which is supposed to describe the baryon
fraction of the universe. By suitable parameter choices the
GCSF model has two �CDM limits which allows us to inves-
tigate deviations from the latter in various directions. We use
SNIa and H(z) data to test whether the observations admit
a dark sector of the GCSF type. The SF dynamics will be
described with the help of the CPL parametrization [36,37].
While this may seen as a loss of generality, it has the advan-
tage of providing us with an explicit analytic expression for
the Hubble rate. The existence of an analytic solution of the
background dynamics is essential for the perturbation anal-
ysis. This solution determines the coefficients of the system
of coupled first-order perturbation equations.

The best-fit values of the background analysis are then
used for a study of the growth rate of the (baryonic) matter
perturbations. With the help of a simplifying parametrization
of the dark-sector perturbations we investigate the impact of
the latter on the matter-perturbation growth.

In Sect. 2 we recall the basic properties of the GCG and
SF components of the dark sector and find the Hubble rate
of the GCSF model. The background data analysis and its
interpretation is the subject of Sect. 4. Section 5 is devoted
to the sub-horizon dynamics of matter perturbations, while
Sect. 6 summarizes our results.

2 The cosmic substratum

2.1 Cosmic medium as a whole

We assume a perfect-fluid structure of the cosmic medium
as a whole, described by the energy-momentum tensor

Tik = ρuiuk + phik, hik = gik + uiuk, T ik
;k = 0, (1)

where ρ = Tikui uk is the total energy density, p = 1
3Tikh

ik

is the total pressure and ui is the four-velocity of the cosmic
substratum as a whole, normalized to uiui = −1.

2.2 Decomposition into 3 components

The total energy-momentum tensor in (1) is split into a GCG
(subindex c), a SF component (subindex s) and a matter com-
ponent (subindex m),

T ik = T ik
c + T ik

s + T ik
m . (2)

We assume perfect-fluid structures of each of the compo-
nents as well (A = c, s,m) and separate energy-momentum
conservation

T ik
A = ρAu

i
Au

k
A+ pAh

ik
A , hikA = gik +uiAu

k
A, T ik

A ;k = 0,

(3)

where ρA = T ik
A uAiuAk . In general, the four-velocities of

the components are different from each other and from the
total four-velocity ui as well.

2.3 Equations of state

The equation of state for the GCG is

pc = − A

ρα
c

. (4)

A simple scalar field (quintessence) is characterized by an
EoS parameter ωq ,

ωq =
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ)

. (5)

This parameter is restricted to −1 ≤ ωq ≤ 1. Under
more general circumstances, e.g., for non-minimally cou-
pled scalar fields or scalar fields with a non-standard kinetic
term a phantom-type EoS is possible as well. For the SF we
use the effective fluid description

ps = ωsρs, (6)

which is supposed to cover both the quintessence and the
phantom cases. As far as the matter component with

pm = 0 (7)

is concerned, our main interest here is baryonic matter, but
in some special cases below also CDM will be included.

3 Background dynamics

3.1 Conservation equations

For a homogeneous, isotropic and spatially flat universe with
a Robertson–Walker metric, the total energy-momentum
conservation in (1) reduces to

ρ̇ + 3H (ρ + p) = 0, (8)

where H = ȧ
a is the Hubble rate and a is the scale factor

of the Robertson–Walker metric. In this background all the
four-velocities are assumed to coincide,

uac = uas = uam = ua . (9)

The energy conservation equations for the components are

ρ̇A + 3H (ρA + pA) = 0. (10)
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3.2 Energy densities

3.2.1 Chaplygin gas

With the EoS (4) we obtain the energy density ρc,

pc = − A

ρα
c

⇒ ρc =
[
A + Ba−3(1+α)

] 1
1+α

, (11)

where B is a non-negative constant, or

ρc = ρc0

[
Ā + (

1 − Ā
)
a−3(1+α)

] 1
1+α

, Ā = A

ρ1+α
c0

, (12)

where ρc0 is the energy density for a = 1. An EoS parameter
ωc is introduced via

ωc ≡ pc
ρc

= − Ā

(
ρc0

ρc

)1+α

(13)

and the adiabatic sound speed by

ṗc
ρ̇c

= −α
pc
ρc

. (14)

For Ā = 0 the GCG reduces to a pure matter component.

3.2.2 Scalar field in CPL parametrization

For the general EoS (4) one has

ps = ωsρs ⇒ ρs = ρs0a
−3 exp

[
−3

∫
ωs(a)

da

a

]
,

(15)

which can either be quintessence with (5) or phantom matter
with ωs < −1. The adiabatic sound speed is

ṗs
ρ̇s

= ωs − ω̇s

3H (1 + ωs)
. (16)

For the purpose of this paper we adopt the frequently used
CPL [36,37] parametrization ωs = ω0 +ω1 (1 − a) with the
help of which we have the explicit formula

ρs = ρs0a
−3(1+ω0+ω1) exp [3ω1 (a − 1)]. (17)

In this manner the scalar-field dynamics is reduced to a two-
parameter fluid description. Such approximation is expected
to make sense close to the present time, i.e., for small redshift.
The total EoS parameter of the cosmic substratum is

ω = p

ρ
= pc + ps

ρ
. (18)

3.3 The Hubble rate

Friedmann’s equation reads

3H2 = 8πGρ = 8πG (ρc + ρs + ρm) . (19)

Introducing the fractional quantities

�c0 = 8πGρc0

3H2
0

, �s0 = 8πGρs0

3H2
0

, �m0 = 8πGρm0

3H2
0

,

(20)

the Hubble rate is given by

H2

H2
0

= ρ

ρ0
= �c0

[
Ā + (

1 − Ā
)
a−3(1+α)

] 1
1+α

+�s0a
−3(1+ω0+ω1)e3ω1(a−1) + �m0a

−3. (21)

With the explicit expression (21) the background dynamics is
analytically known. The �CDM model is recovered both for
α = 0 together with ρs0 = 0 (no SF, the GCG accounts both
for DE and CDM) and for A = 0 together with ω0 = −1 and
ω1 = 0 (vanishing kinetic term of the SF, the GCG accounts
for CDM only).

4 Observations and statistical analysis

Now we confront the CGSF model with data from SNIa and
H(z) data. The five free parameters of the model are α, �s0,
Ā,ω1 andh, whereh is defined by H0 = 100h kms−1 Mpc−1.
The parameter ω0 will be fixed to either ω0 = −1.0 or,
alternatively, to ω0 = −1.05 or ω0 = −0.95. To get a better
understanding of the combined model, we shall also evaluate
the limiting cases of a vanishing SF contribution (the GCG
describes the entire dark sector) as well as the case of a SF
with a certain amount of pressureless matter (no GCG).

We use the binned set of supernovae data from the JLA
compilation [38]. This test relies on the observed distance
modulus μobs(z) of each binned SN Ia data at some redshift
z,

μth(z) = 25 + 5log10
dL(z)

Mpc
, (22)

where the luminosity distancedL in a spatially flat Robertson–
Walker metric, is given by the formula

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
. (23)
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Table 1 Best-fit values for the
five-parameter CGSF model
with ω0 and �m0 fixed (first
three lines). Fourth line: pure
GCG, no SF, fixed baryon
content, fifth line: pure GCG, no
SF, fixed additional matter
content. Second-last line: pure
SF, no GCG, fixed baryon
fraction, last line: pure SF, no
GCG, fixed matter fraction

Model χ2
min α �s0 Ā ω1 h

GCSF, ω0 = −1.05, �m0 = 0.04 52.425 8.000 0.761 0.050 0.599 0.708

GCSF, ω0 = −1.00, �m0 = 0.04 51.046 8.000 0.768 0.050 0.514 0.706

GCSF, ω0 = −0.95, �m0 = 0.04 50.533 8.000 0.775 0.050 0.432 0.704

GCG, �m0 = 0.04 50.562 −0.166 0.000 0.728 – 0.701

GCG, �m0 = 0.30 56.933 −57.188 0.000 0.059 – 0.689

SF, ω0 = −1.00, �m0 = 0.04 71.383 – 0.96 – 1.475 0.720

SF, ω0 = −1.00, �m0 = 0.30 55.363 – 0.70 – −0.510 0.702

The binned JLA data set contains 31 data points. The corre-
sponding χ2 function is constructed according to

χ2
SN = (μth(z) − μobs(z))

† C−1 (μth(z) − μobs(z)) , (24)

where C is the covariance matrix [38].
As a second observational source we consider the evalua-

tion of differential age data of old galaxies that have evolved
passively [39–43]. Here we use the 36 measurements of H(z)
listed in [44] which consist of 30 differential age measure-
ments and six data from an analysis of baryon acoustic oscil-
lations (BAO). The relevant relation here is

H(z) = − 1

1 + z

dz

dt
. (25)

The spectroscopic redshifts of galaxies are known with very
high accuracy. A differential measurement of time dt at a
given redshift interval allows one to obtain values for H(z).
The chi-square function for the analysis of the H(z) data is

χ2
H =

NH∑
i=1

(
H th(zi ) − Hobs(zi )

)2

σ 2
i

, (26)

where NH is the number of data points and σi is the observa-
tional error associated to each observation Hobs while H th is
the theoretical value predicted by the GCSF model.

Combining the information from both tests, we construct
the total chi-square function as

χ2
Total = χ2

SN + χ2
H. (27)

The one-dimensional probability distribution functions (PDF)
are obtained from the likelihood function

L = Ae−χ2
Total(α,�s0, Ā,ω1,h)/2 (28)

by suitable marginalization procedures.
The results of the statistical analysis for the most gen-

eral case with all five parameters left free are listed in the
first three lines of Table 1. The matter part is fixed here to

�m0 = 0.04, i.e., purely baryonic matter. The reduced Hub-
ble rate, α and Ā are almost unaffected by a change in ω0. The
present EoS parameter of the GCG, which according to (13)
coincides with minus Ā, is close to zero, i.e., this component
behaves like dust. The value of α is unexpectedly large. The
fraction �s0 has a slight tendency to increase with increas-
ing ω0 (decreasing |ω0|). The �s0 values are larger than the
corresponding value ��0 of the �CDM model. The EoS
parameter ω1 is positive and decreases with decreasing |ω0|.
The fourth and fifth lines of Table 1 describe GCG universe
models without a SF contribution. The value �m0 quanti-
fies the matter contribution additional to that part which is
already taken into account by the GCG itself. In the fourth line
�m0 = 0.04 is assumed as in the three previous lines. By con-
sidering �m0 = 0.3 (fifth line) we admit a larger additional
matter fraction. Strictly speaking, such choice is against the
motivation of a unified description of the dark sector, but it is
included here for comparison. In the fourth line we recover
the conventional, well-known Chaplygin-gas dynamics. The
fifth line with a present EoS parameter −0.059 does not cor-
respond to an accelerated expansion of the present universe.
There might have been accelerated expansion in the past,
however. The last two lines of Table 1 describe SF universes
with ω0 = −1 without a CGC. In the second-last line the
matter fraction �m0 = 0.04 is purely baryonic again, i.e.,
the SF accounts for the entire dark sector, in the last line with
�m0 = 0.3 the universe is made of a SF and CDM. This case
is close to the �CDM model at the present time. One may
suspect that the large value of α and the small values of Ā
(both not typical for viable Chaplygin-gas models) in the first
three lines indicate degeneracies in the parameter space. To
get a consistent picture we performed an alternative analysis
the results of which are summarized in Table 2. The values
of α, �s0, Ā and ω1 in Table 2 are obtained by fixing h to
its best-fit values h ≈ 0.7, resulting from a marginalization
over the remaining variables. Otherwise, the configurations
are the same as in Table 1. The differences in the param-
eter values of both tables are remarkable, those of Table 2
are closer to expectations for Chaplygin-gas cosmologies. In
Table 2 the SF fraction for the mixed model (first three lines)
is somewhat lower than that of the corresponding �CDM
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Table 2 Best-fit values for the
CGSF model. Configurations as
in Table 1 but with h fixed to its
best-fit value

Model α �s0 Ā ω1

GCSF, ω0 = −1.05, �m0 = 0.04 −0.079 0.632 0.412 0.571

GCSF, ω0 = −1.00, �m0 = 0.04 −0.006 0.653 0.536 0.284

GCSF, ω0 = −0.95, �m0 = 0.04 0.086 0.670 0.614 0.630

GCG, �m0 = 0.04 −0.169 0.000 0.729 –

GCG �m0 = 0.30 −32.247 0.000 0.063 –

SF, ω0 = −1.00, �m0 = 0.04 – 0.96 – 1.476

SF, ω0 = −1.00, �m0 = 0.30 – 0.70 – −0.511

Fig. 1 One-dimensional PDFs for the five-parameter CGSF model with ω0 = −1 and h fixed to its best-fit value

Fig. 2 One-dimensional PDFs for the five-parameter CGSF model with ω0 = −0.95 and h fixed to its best-fit value

model (while it was somewhat higher than the latter in Table
1). According to this analysis a certain part of the GCG,
characterized by an EoS parameter ωc0 = − Ā ≈ −0.536
for ω0 = −1, has to contribute to the dark energy as well.
For ω0 = −1.05 and ω0 = −0.95 a similar statement holds
with different values for Ā. At the same time the α are drasti-
cally reduced to values close to zero. These features enforce
our belief that the results of the procedure leading to Table
2 is superior to the five-parameter analysis of Table 1. For
the GCG only (fourth line) we have a present EoS value of
−0.729, almost coinciding with the corresponding value in
Table 1, i.e., the pure GCG dynamics is recovered again. The
results for the pure SF (last two lines) remain unaltered as
well.

A robust picture is obtained in terms of the one-particle
PDFs in Figs. 1, 2, 3, 4 and 5. Figure 1 shows the one-
dimensional PDFs for α, �s0, Ā and ω1 where h was fixed to

its corresponding best-fit value and we assumed ω0 = −1.
The same analysis for ω0 = −0.95 has been performed in
Fig. 2 and for ω0 = −1.05 in Fig. 3. The limiting case that
there is no SF and the dark sector is entirely modeled by
the GCG is visualized in Fig. 4. In Fig. 5 we show the one-
dimensional PDFs for ω1 in the opposite limit in which the
GCG is absent and we are left with a SF cosmology with
matter fractions of 0.04, i.e., the matter is entirely baryonic
(left figure) or a matter fraction of 0.3 corresponding to the
total matter fraction, largely given by CDM.

A comparison of Figs. 1, 2 and 3 indicates that a variation
in ω0 in the vicinity of ω0 = −1 does not substantially affect
the results of the analysis. The stable features are a value
of α close to zero, a present SF fraction slightly larger than
0.6, a present EoS value for the GCG of the order of ωc0 =
− Ā ≈ −0.6 and a positive value smaller than (but of the
order of) one for ω1. The circumstance that �s0 � 0.6 seems
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Fig. 3 One-dimensional PDFs for the five-parameter CGSF model with ω0 = −1.05 and h fixed to its best-fit value

Fig. 4 PDFs for the pure GCG (no SF) with fixed baryon fraction �m0 = 0.04 and h value (left two figures) and with an additional fixed matter
fraction �m0 = 0.3 (right figures)

Fig. 5 PDFs for the pure SF (no GCG) for ω0 = −1 with fixed baryon fraction �m0 = 0.04 (equivalent to �s0 = 0.96), marginalized over h (left
figure) and with an additional fixed matter fraction �m0 = 0.30 (equivalent to �s0 = 0.70) (right figure)

to indicate that the background data prefer a SF dominated
dark sector over a GCG dominated configuration.

In the following section we use the best-fit values listed in
the second line of Table 2 to get insight into the behavior of
matter perturbations. Although done in a simplified manner
this analysis is expected to capture the essential features of
the perturbation dynamics. Notice that for the chosen con-
figuration the matter perturbations are perturbations of the

baryonic matter. After all, it is the baryonic matter distribu-
tion which is observed in galaxy catalogues.

5 Matter perturbations

In the absence of anisotropic stresses and in the longitudinal
gauge scalar metric perturbations are described by the line
element
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ds2 = − (1 + 2φ) dt2 + a2 (1 − 2φ) δαβdxαdxβ. (29)

Denoting first-order variables by a hat symbol, the perturbed
time components of the four-velocities are

û0 = û0 = û0
A = 1

2
ĝ00 = −φ. (30)

Under this condition the total first-order energy perturbation
is the sum of the first-order perturbations of the components
of the cosmic medium,

ρ̂ = ρ̂m + ρ̂c + ρ̂s . (31)

Introducing the fractional quantities

δ = ρ̂

ρ
, δm = ρ̂m

ρm
, δc = ρ̂c

ρc
, δs = ρ̂s

ρs
, (32)

one has

δ = �mδm + �cδc + �sδs, (33)

where

�m = �m0
H2

0

H2 a
−3, (34)

�c = �c0
H2

0

H2

[
Ā + (

1 − Ā
)
a−3(1+α)

] 1
1+α

, (35)

�s = �s0
H2

0

H2 a
−3(1+ω0+w1)e3ω1(a−1) (36)

with
H2

0
H2 from (21).

The equation for the fractional matter perturbations δm in
the quasi-static, sub-horizon approximation is

δ̈m + 2H δ̇m + k2

a2 φ = 0, (37)

where k is the comoving wave number. Einstein’s field equa-
tions relate φ to the (comoving) energy-density perturbations
via the Poisson equation,

k2

a2 φ = −4πGρδ. (38)

Combining (37) and (38) does not result in a closed equation
for the matter perturbations, since δm is generally coupled to
the perturbations of the other components. Formally, we may
write

δ =
[
�m + �c

δc

δm
+ �s

δs

δm

]
δm . (39)

Only for known ratios δc
δm

and δs
δm

there would be a closed
second-order equation for δm . This means, to obtain δm one

has to solve the entire coupled dynamics of δm , δc and δs . To
get a rough idea of how the fluctuations of the GCG and the
SF components affect the matter fluctuations we introduce
the simple parametrizations

δc

δm
= μac,

δs

δm
= νas, (40)

in which the constant parameters μ and ν represent the values
of δc

δm
and δs

δm
, respectively, at the present time. The powers

c and s account for deviations in the dynamics of the per-
turbations in terms of their dependence on the scale factor.
While such parametrization does not replace the necessity of
an exact solution, we expect it to provide us with a provi-
sional insight concerning the complicated coupled perturba-
tion dynamics, at least close to a = 1, i.e., at small redshift.
Under such condition the equation for δm becomes

δ̈m +2H δ̇m −4πGρ
[
�m + μac�c + νas�s

]
δm = 0, (41)

equivalent to

δ′′
m + 3

2
(1 − ω)

δ′
m

a
− 3

2

[
�m + μac�c + νas�s

] δm

a2 = 0,

(42)

with

ω = p

ρ
= ωc�c + ωs�s, (43)

where ωC is defined in (13) and ωS = ω0 + ω1 (1 − a). All
background coefficients in Eq. (42) are analytically known.
This allows us to study the behavior of matter perturbations
for different combinations of the parameters μ and ν as well
as of the powers c and s for the best-fit values of the back-
ground quantities.

In Figs. 6, 7, 8 and 9 we visualize the scale-factor depen-
dence of the fractional matter perturbation δm for various
combinations of the parameters introduced in (40). Figure 6
shows how variations of the parameter μ influence the mat-
ter growth. For comparison we include also the curve for
the �CDM model. Apparently, μ values of the order of one
make the matter perturbations similar to those of the standard
model. For μ � 1 there is a clear tendency to a lower growth
than predicted by the standard model, i.e., to less structure
formation. A value of μ ≈ 1 means that currently the fluc-
tuations in the GCG component are of the same order as
the baryonic matter fluctuations. Although there is no sepa-
rate CDM component in the present configuration, the GCG
accounts for that part of the dynamics which in the standard
model is described by CDM. In this sense, for μ ≈ 1, CDM
fluctuations as part of the GCG fluctuations are roughly of
the same order as the baryonic matter fluctuations. Figure 7
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Fig. 6 The matter perturbation δm as a function of the scale factor a
for ν = c = s = 0. The dotted curve corresponds to μ = 1.05, the
dashed curve to μ = 1.0 and the dot-dashed curve to μ = 0.95. The
solid curve represents the �CDM model

Fig. 7 The matter perturbation δm as a function of the scale factor a
for ν = s = 0 and μ = 1.0. The dotted curve describes c = 0, the
dashed curve c = 0.1 and the dot-dashed curve c = −0.1. Apparently,
any non-vanishing s leads to unacceptable strong deviations from the
�CDM model (solid curve)

Fig. 8 The matter perturbation δm as a function of the scale factor a
for μ = 0.5 and ν = 0.5. For ν-values of the order of the values for μ

there is substantial disagreement with the �CDM model (solid curve)

Fig. 9 The matter perturbation δm for c = s = 0 with ν = 0.1 and
μ-values as in Fig. 6. (dotted curve for μ = 1.05, dashed curve for
μ = 1.0, dot-dashed curve for μ = 0.95). For ν � 0.1 the curves
remain in the vicinity of the �CDM reference curve

shows the consequence of a variation in the power c. Any
deviation from c = 0 leads to a substantial deviation from
the standard model. As to be seen from Fig. 8, even a mod-
erate value of ν of ν = 0.5 together with μ = 0.5 leads to a
strong deviation from the �CDM curve. This indicates that ν
has to be rather small compared with μ, implying that fluctu-
ations of the scalar-field component are not relevant on sub-
horizon scales which is in accord with the well-known result
of [45]. Figure 9 confirms that values around μ ≈ 1 with
ν � 1 remain in the vicinity of the �CDM model. While
the background is dynamically dominated by the scalar-field
component, the fluctuations of this component are irrelevant
compared with the fluctuations of the GCG component.

6 Summary

In this paper we allowed for a competition between a gener-
alized Chaplygin gas (GCG) and a scalar field (SF) to find
which of these is preferred by the data as the dynamically
dominating component of the cosmic substratum. Both GCG-
and SF-based models have found ample use separately to
describe the dark sector with the intention to “dynamize” the
cosmological constant. To assess the background dynamics
we used SNIa data from the JLA sample and H(z) data both
from the differential age of old galaxies that have evolved
passively and from BAO. Our combined CGSF model is
characterized by 5 free parameters, where we used the CPL
parametrization ωs = ω0+ω1 (1 − a) for the scalar field. We
fixed ω0 and the baryon fraction. The general analysis with all
five parameters left free indicates degeneracies in the param-
eter space. A two-step analysis in which the Hubble constant
is fixed to its best-fit values by a suitable marginalization pro-
cedure results in a viable two-component model of the dark
sector. The limiting cases of pure Chaplygin-gas and pure
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scalar-field dark sectors are consistently recovered. A robust
picture is obtained in terms of the one-particle distribution
functions for each of the parameters. The observation seem
to prefer a SF fraction of more than 60%, leaving less than
40% for the GCG. Moreover, we found a GCG parameter
α close to zero and a present EoS parameter for the GCG
between −0.6 and −0.7. The CPL parameter ω1 is positive
and of the order of one.

An approximate perturbation analysis reveals that for fluc-
tuations of the GCG energy density that are of the same order
as fluctuations of the matter density the growth rate of the lat-
ter remains close to the result for the �CDM model. Since the
GCG component accounts for properties that are ascribed to
CDM, this does not come as a surprise. For μ � 1 the matter
growth is reduced which corresponds to less structure for-
mation, a possibly desired feature, given the overproduction
of small-scale structure in the standard model. On the other
hand, fluctuations of the SF energy density of the order of the
matter fluctuations result in unacceptable strong deviations
from the standard model. Perturbations in the SF compo-
nent have to be much smaller than perturbations in the GCG
component. This is consistent with the result that SF fluctua-
tions are negligible on sub-horizon scales [45]. In conclusion,
while the SF dominates the homogeneous and isotropic back-
ground dynamics, it is the GCG component which governs
the matter growth. A more advanced analysis with a detailed
gauge-invariant perturbation theory will be the subject of a
forthcoming paper.
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