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Abstract: We investigate the effects of field temperature T (f) on the entanglement har-
vesting between two uniformly accelerated detectors. For their parallel motion, the thermal
nature of fields does not produce any entanglement, and therefore, the outcome is the same
as the non-thermal situation. On the contrary, T (f) affects entanglement harvesting when
the detectors are in anti-parallel motion, i.e., when detectors A and B are in the right and
left Rindler wedges, respectively. While for T (f) = 0 entanglement harvesting is possible
for all values of A’s acceleration aA, in the presence of temperature, it is possible only
within a narrow range of aA. In (1 + 1) dimensions, the range starts from specific values
and extends to infinity, and as we increase T (f), the minimum required value of aA for
entanglement harvesting increases. Moreover, above a critical value aA = ac harvesting
increases as we increase T (f), which is just opposite to the accelerations below it. There
are several critical values in (1 + 3) dimensions when they are in different accelerations.
Contrary to the single range in (1+1) dimensions, here harvesting is possible within several
discrete ranges of aA. Interestingly, for equal accelerations, one has a single critical point,
with nature quite similar to (1 + 1) dimensional results. We also discuss the dependence
of mutual information among these detectors on aA and T (f).
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1 Introduction

Quantum entanglement is a fascinating phenomenon distinguishing quantum and classical
physics and has acquired immense practical importance through quantum communication
and cryptography [1, 2]. There has been a growing interest to realize entanglement and
understand its nature for relativistic particles in flat and in curved spacetimes, see [3–16].
In this regard, entanglement extraction from the quantum field vacuum became very im-
portant for the fundamental understandings of the vacuum and the background spacetime.
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This phenomenon is better known as entanglement harvesting [4, 9, 17–21], which states
that from quantum fields, one can harvest entanglement among atoms or other suitable
systems interacting with the field. Entanglement harvesting acquires additional signifi-
cance from the possibility of its experimental verification and utilization of the extracted
entanglement in quantum information-related purposes [22–24]. In the pioneering works
by Reznik [4, 18], he provided an understanding of entanglement harvesting in a system of
two accelerated atoms by considering them as point-like two-level Unruh-DeWitt particle
detectors [25] interacting with background massless scalar field. Unruh-DeWitt particle de-
tectors are hypothetical detectors, conceptualized to understand the Unruh effect [26, 27].
He showed that entanglement extraction was possible between two causally disconnected
anti-parallelly accelerated detectors in the separate Rindler wedges, signifying the quantum
vacuum’s role for harvested entanglement.

There has been plenty of works related to entanglement harvesting in different space-
time backgrounds, and one can look into [10, 28–37] for a thorough anthology. In all these
works, one usually investigates a system composed of two initially non-entangled detec-
tors interacting with the background quantum field. The aim is to study the later time
density matrix only for the detectors, where the field degrees of freedom are being traced
out. For entanglement harvesting, i.e., for the two qubits to be entangled, it is necessary
to have negative eigenvalues of the partial transposition of the detector density matrix.
It should be noted that in initial works [4, 9] the authors found these eigenvalues to be
dependent on quantities estimated from positive frequency Wightman functions connect-
ing different spacetime events of the same or different detectors. However, recent rigorous
investigations [38–40] have suggested proper time ordering into the picture, which results
in the inception of Feynman propagator rather than Wightman function in the estimation
of the eigenvalues. These recent methods provide a meticulous and more general formula-
tion for the understanding of entanglement harvesting. However, even with these changes,
most previous perceptions regarding entanglement extraction corresponding to accelerated
observers — like one can harvest entanglement between two anti-parallelly accelerated de-
tectors but not for parallelly accelerated observers — remain the same. Although, the
individual contributions of the retarded Green’s function and the Wightman function from
the Feynman propagator remain an interesting arena to venture further.

On the other hand, the effects of a thermal bath on entanglement harvesting remain
equally interesting (see [41, 42]). In nature, an environment with thermal background is
much more practical. Including the thermal nature in the model and investigating the
effects in the physical quantities will approach a more realistic situation and thereby help
to know the exact features of our surroundings. In this regard, one may mention that
the thermal nature of fields has already been included in various investigations related
to Unruh-De Witt detectors; like calculation of response functions in case of a single de-
tector, [43–46], and two entangled detectors [47]. In [41, 42, 48] it is predicted that the
entanglement extraction gets depleted with increasing temperature of the thermal field.
Then it will be pretty fascinating to study the situation of entanglement harvesting for
accelerated observers interacting with thermal fields, which is not there in the literature up
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to our knowledge. In this regard, in literature [38, 40] the Feynman propagators and the
positive frequency Wightman functions, necessary to understand entanglement extraction,
are estimated in the Minkowski position space. Then for the calculations relating to ac-
celerated observers, the relevant transformations to Rindler coordinates are made to those
Green’s functions, and this method does not encounter any particular issue. However, con-
sider a similar description of the Feynman propagators and the Wightman functions for
thermal fields. The resulting Green’s functions do not remain time translational invariant
with the detectors’ proper times. In [47] the authors have discussed this issue and con-
sidered Rindler modes with the vacuum for the Unruh modes to describe the Wightman
functions corresponding to accelerated observers in a thermal bath, which are time trans-
lational invariant. This method, in line with the chain of thoughts also presented in [39],
circumvents the previously mentioned issue by expressing the Green’s functions in terms
of modes and their momentum space integrals rather than a position space representation.

In this work, we are going to investigate the condition for entanglement harvesting and
study the concurrence [38, 40, 49], a measure of the harvested entanglement, for two accel-
erated Unruh-DeWitt detectors interacting with a massless thermal scalar field in (1 + 1)
and (1 + 3) dimensions. In particular, we consider the interaction between the two-level
point-like detectors and the scalar field to be of monopole type. We observe that the specific
form of this monopole moment operator is not needed to understand the role of the space-
time trajectories and the thermal bath in entanglement extraction. We use the prescription
as provided in [47] for the construction of the Green’s functions and follow the formulation
of articles [38, 40] for entanglement harvesting. We arrive at the same assertions that en-
tanglement extraction is possible only for the anti-parallelly accelerated detectors and not
for the parallelly accelerated ones, and also encounter the phenomena of degrading entan-
glement extraction with increasing temperature of the thermal bath [41, 42]. However, the
situation is a bit more involved in our case as we observe this degradation happening in the
low acceleration regimes. We observe that in (1 + 1) dimensions, above a specific value of
acceleration, thermal bath enhances the entanglement harvesting. While below this specific
acceleration, the same is degraded with increasing background field temperature. There-
fore, for anti-parallel detectors, a notion of phase transition-like phenomena is encountered
around a critical acceleration value. However, we found that the range of acceleration in
which entanglement harvesting is possible is consistently decreasing with the increasing
temperature of the thermal bath. In (1 + 3) dimensions, for equal accelerations of the
detectors, the characteristics of concurrence are the same as the (1 + 1) dimensional case.
However, for unequal detectors’ accelerations, we encounter multiple transition points for
aA, the acceleration of detector A, when the acceleration aB of detector B is fixed. We
notice that between these transition points, the nature of the concurrence flips with the
temperature of the thermal bath compared to the adjacent regions. In that case, contrary
to the single range of aA in (1 + 1) dimensions, we now have discrete ranges of acceleration
aA for entanglement harvesting to be possible for a fixed temperature of the thermal bath.
It is observed that a non-vanishing contribution is coming from the retarded part of the
Feynman propagator when the detectors have unequal magnitudes of accelerations. We
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have also investigated the nature of mutual informationM among the two detectors. Here
M is non-vanishing for parallel motion, whereas it vanishes in the anti-parallel situation.
For a non-vanishing case,M increases with the increase in temperature of the background
field. On the other hand, it decreases with the growth of acceleration of the first detector.

In section 2 we begin with a brief discussion of our model set-up of two two-level point-
like atomic detectors interacting with the vacuum massless scalar field through monopole
couplings. We consider the detectors initially in their separable ground state. This section
also discusses the entanglement harvesting condition and entanglement measures obtained
from the final form of the detector density matrix. In section 3 we elucidate on accelerated
observers in a thermal bath and provide the expressions of the Green’s functions for the
situation of parallelly and anti-parallelly accelerating observers, considering the Rindler
field decomposition with the Unruh operators and Unruh mode vacuum. Subsequently,
in section 4 the condition for entanglement harvesting is analyzed first for two parallelly
and then for two anti-parallelly accelerated observers in a thermal bath using the Green’s
functions of section 3. In this section, we study the entanglement measure concurrence
and, in section 5 investigate the mutual information between the two detectors to discuss
the notable outcomes. We conclude this article in section 6 with a discussion of our results.

2 Model set-up: a summary of the main results

Having said our motivation in the introduction, let us now talk about the model which will
be dealt with in this article. The model on which we will concentrate here was originally
introduced in [38–40]. Therefore, without going into the details of this and the derivation
of the required formulas, the final expressions which are needed in this paper will be
summarised here. Also a brief idea of the model will be given in order to be acquainted
with the notations and symbols, we will use.

We consider two two-level point-like Unruh-DeWitt detectors, one carried by Alice and
denoted by A. Another denoted by B, which is carried by Bob. The detector states are
denoted by |Ejn〉, with the symbols denoting the nth state of jth detector, i.e., j = A,B

and n = 0, 1. These states are non degenerate so that Ej1 6= Ej0, and it is assumed that
∆Ej = Ej1 − E

j
0 > 0. We consider these detectors to be interacting through monopole

interactions mj(τj) with a massless, minimally coupled scalar field Φ(X). The interaction
action corresponding to this system is

Sint =
∫ ∞
−∞

[
cAκA(τA)mA(τA)Φ (XA(τA)) dτA + cBκB(τB)mB(τB)Φ (XB(τB)) dτB

]
, (2.1)

where, cj denote the couplings between the individual detectors and the scalar field,
κj(τj) the switching functions and τj the individual detector proper times. The ini-
tial detector field state is considered to be the one at the asymptotic past, denoted by
|in〉 = |0〉|EA0 〉|EB0 〉. Whereas the final detector state at asymptotic future is |out〉 =
T
{
eiSint |in〉

}
. Treating the coupling constants cj perturbatively and tracing out the field

degrees of freedoms one can obtain the density matrix corresponding to the final state in
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the basis of
{
|EA1 〉|EB1 〉, |EA1 〉|EB0 〉, |EA0 〉|EB1 〉, |EA0 〉|EB0 〉

}
as

ρAB =


0 0 0 c

A
c

B
ε

0 c2
A
PA c

A
c

B
PAB c2

A
W

(N)
A + c

A
c

B
W

(S)
A

0 c
A
c

B
P ∗

AB c2
B
PB c2

B
W

(N)
B + c

A
c

B
W

(S)
B

c
A
c

B
ε∗ c2

A
W

(N)∗
A +c

A
c

B
W

(S)∗
A c2

B
W

(N)∗
B +c

A
c

B
W

(S)∗
B 1−(c2

A
PA + c2

B
PB)

+O(c4) ,

(2.2)
where, the expressions of Pj , ε, PAB, W (N)

j , and W (S)
j are given by

Pj = |〈Ej1|mj(0)|Ej0〉|2 Ij
ε = 〈EB1 |mB(0)|EB0 〉〈EA1 |mA(0)|EA0 〉Iε

PAB = 〈EA1 |mA(0)|EA0 〉〈EB1 |mB(0)|EB0 〉†IAB
W

(N)
j = 〈Ej1|mj(0)|Ej0〉

[ (
〈Ej1|mj(0)|Ej1〉 − 〈E

j
0|mj(0)|Ej0〉

)
I(N)
j,1 − i〈E

j
0|mj(0)|Ej0〉I

(N)
j,2

]
W

(S)
j = −i〈Ej1|mj(0)|Ej0〉〈E

j′

0 |mj′(0)|Ej
′

0 〉I
(S)
j , (2.3)

where j′ 6= j and the quantities I,s are given by

Ij =
∫ ∞
−∞

dτ ′j

∫ ∞
−∞

dτj e
−i∆Ej(τ ′

j−τj)GW (X ′j , Xj),

Iε = −i
∫ ∞
−∞

dτ ′B

∫ ∞
−∞

dτA ei(∆E
Bτ ′

B+∆EAτA)GF (X ′B, XA),

IAB =
∫ ∞
−∞

dτ ′B

∫ ∞
−∞

dτA ei(∆E
AτA−∆EBτ ′

B)GW (X ′B, XA),

I(N)
j,1 =

∫ ∞
−∞

dτ ′j

∫ ∞
−∞

dτj ei∆E
jτj θ(τ ′j − τj)GW (X ′j , Xj),

I(N)
j,2 =

∫ ∞
−∞

dτ ′j

∫ ∞
−∞

dτj ei∆E
jτj GR(Xj , X

′
j),

I(S)
j =

∫ ∞
−∞

dτ ′j′

∫ ∞
−∞

dτj ei∆E
jτj GR(Xj , X

′
j′) . (2.4)

Here in these expressions the switching functions have not appeared as we have considered
them κj(τj) = 1; i.e. the detectors are interacting with fields all the time. On the other
hand, the quantities GW (Xj , Xj′), GF (Xj , Xj′), and GR(Xj , Xj′) respectively denote the
positive frequency Wightman function with Xj > Xj′ , the Feynman propagator, and the
retarded Green’s function, and their expressions are

GW
(
Xj , Xj′

)
≡ 〈0M |Φ (Xj) Φ

(
Xj′

)
|0M 〉 ,

GF
(
Xj , Xj′

)
≡ −i〈0M |T

{
Φ (Xj) Φ

(
Xj′

)}
|0M 〉 ,

GR
(
Xj , Xj′

)
≡ iθ(t− t′)〈0M |

[
Φ
(
Xj′

)
,Φ (Xj)

]
|0M 〉. (2.5)

The details of the derivation can be followed from [38]. The condition for entanglement,
based on a general analysis for a bipartite system [50, 51], is obtained from the negative
eigenvalue of the partial transposition of the reduced density matrix from eq. (2.2), and
this condition results in

PAPB < |ε|2 , (2.6)
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which can also be cast, in terms of the integrals, into the form [38, 40]

IAIB < |Iε|2 . (2.7)

Now one can use the relation between Feynman propagator and the Wightman function
iGF

(
Xj , Xj′

)
= GW

(
Xj , Xj′

)
+iGR

(
Xj′ , Xj

)
= GW

(
Xj , Xj′

)
+θ(T ′−T )

{
GW

(
Xj′ , Xj

)
−

GW
(
Xj , Xj′

) }
to simplify the calculation of the integral Iε. In particular, one can now

express that integral as

Iε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA) ×

[GW (XB, XA) + θ(TA − TB) {GW (XA, XB)−GW (XB, XA)}] . (2.8)

We will use the above form for our purpose. It is observed that one only needs the expres-
sions of the integrals IA, IB and Iε for verification of the condition (2.7) for entanglement
harvesting. From eq. (2.4) and (2.8) we observe that all of these integrals can be evaluated
in terms of the positive frequency Wightman functions.

When the condition for entanglement harvesting (2.7) is satisfied, it is convenient to
study different entanglement measures. In this regard, one relevant entanglement measure
is the negativity [52–55], which signifies the upper bound of the distillable entanglement
and is obtained from the sum of all negative eigenvalues of the partial transpose of ρAB.
In the two qubits case another important and more convenient entanglement measure is
the concurrence C(ρAB) [38, 40, 49], from which entanglement of formation EF (ρAB) is
estimated, see [38, 40, 56–58]. For two-qubits, the concurrence is given by, see [38],

C(ρAB) = max
[
0, 2c2

(
|ε| −

√
PAPB

)
+O(c4)

]
= max

[
0, 2c2|〈EB1 |mB(0)|EB0 〉||〈EA1 |mA(0)|EA0 〉|

(
|Iε| −

√
IAIB

)
+O(c4)

]
, (2.9)

where, an equal magnitude of the coupling constant cA = cB = c between different detectors
and the scalar field is assumed. It should be noted that the quantities |〈Ej1|mj(0)|Ej0〉|
are specified by the detectors’ internal structure and do not take contributions from the
considered spacetime and background scalar fields. Since we are interested to investigate
the entanglement harvesting due to the motions of these detectors, then for a specific
detector configuration it is only relevant to study the nature of

CI =
(
|Iε| −

√
IAIB

)
(2.10)

as far as concurrence is concerned. It should also be noted that in the symmetric case IA =
IB, which for example, can happen in the case of the equal magnitude of the acceleration
of the two detectors, this relevant quantity signifying the concurrence is given by CI =
(|Iε| − Ij), see [38, 40]. In our later analysis, we shall be studying this CI to talk about the
entanglement measure in our considered system. Particularly, by this, we will be investing
the nature of entanglement harvesting for different parameters of our system.
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On the other hand, the total correlations, i.e., the entirety of classical and quantum
correlations, between the two detectors A and B with the observers Alice and Bob is
quantified by mutual informationM, defined as

M(ρAB) ≡ S(ρA) + S(ρB)− S(ρAB) , (2.11)

where, ρA ≡ TrB(ρAB) and ρB ≡ TrA(ρAB) are the reduced density matrices corresponding
to the detectors A and B, and S(ρ) ≡ −Tr(ρ ln ρ) is the von Neumann entropy correspond-
ing to the state with ρ to be the density matrix. Using the expression of the density matrix
from eq. (2.2), and considering the equal couplings between the field and the two detectors,
one can express the mutual information of (2.11) as [42]

M(ρAB) = c2[P+ lnP+ + P− lnP− − PA lnPA − PB lnPB
]

+O(c4) , (2.12)

where, the quantities P± are given by

P± = 1
2
[
PA + PB ±

√
(PA − PB)2 + 4|PAB|2

]
. (2.13)

We mention that one may encounter situations when both the concurrence and mutual
information are not simultaneously non-zero for a specific system. Between the concurrence
and mutual information, if only the latter is non-zero, the correlation is considered classical.
Therefore, it is necessary to investigate both of these measures to understand the correlation
between the two detectors.

3 Accelerated observers in a thermal bath

This section discusses the relevant coordinate systems for our accelerated observers. We
realized that the whole analysis is more convenient under the decomposition of field modes
in the Rindler frame and writing the Rindler annihilation and creation operators in terms
of those of Unruh modes’. This will be introduced in a separate subsection. Finally, all the
required positive frequency Wightman functions, both in (1 + 1) and (1 + 3) dimensions,
for these fields will be evaluated with respect to the Minkowski vacuum, which is also the
vacuum for Unruh modes.

3.1 Coordinate systems

The motion of a uniformly accelerated object is described by the Rindler coordinates
which correspond to specific regions in the Minkowski spacetime, known as the Rindler
wedges [59]. One can move to these Rindler coordinates from the flat Minkowski coordi-
nates (T,X, Y, Z) in (3 + 1) dimensions, with the line element

ds2 = −dT 2 + dX2 + dY 2 + dZ2 , (3.1)

by a coordinate transformation relating the time T and the spatial direction in which the
object is accelerated. Without loss of generality we consider that particular axis of accel-
eration to be along the Minkowski X direction. Then the other two coordinates (Y, Z)
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remain unchanged by the Rindler transformation. The transformations to the coordinates
(η, ξ) in the right Rindler wedge (RRW), i.e., the region |T | < X in the Minkowski space-
time; and to (η′, ξ′) in the left Rindler wedge (LRW), confined in a region |T | < −X of the
Minkowski spacetime, are

T = eaξ

a
sinh aη, X = eaξ

a
cosh aη in RRW ;

T = −e
aξ′

a
sinh aη′, X = −e

aξ′

a
cosh aη′ in LRW. (3.2)

Both of these transformations lead to the same line-element corresponding to an accelerated
observer in terms of the Rindler coordinates, expressed as

ds2 = e2aξ
[
−dη2 + dξ2

]
+ dY 2 + dZ2 . (3.3)

One can perceive that these transformations in (1 + 1) dimensions are trivially same as in
that case the coordinates Y and Z cease to exist. In RRW and LRW one can estimate the
proper times and proper accelerations to be

τ = eaξη, b = ae−aξ in RRW ;
τ ′ = −eaξ′

η′, b′ = ae−aξ
′ in LRW . (3.4)

Then the coordinate transformations (3.2) in terms of proper time and acceleration become

T = 1
b

sinh bτ , X = 1
b

cosh bτ in RRW;

T = 1
b′

sinh b′τ ′, X = − 1
b′

cosh b′τ ′ in LRW. (3.5)

One can notice that η, −η′ denote the proper times in RRW and LRW respectively while
a is the proper acceleration of the observer when ξ = 0 = ξ′.

3.2 Scalar field decomposition corresponding to an accelerated observer

To address the situation of an accelerated observer in a thermal bath one can consider
expressing the thermal two-point function in terms of the Minkowski modes and then
make the Rindler coordinate transformation from eq. (3.5). However, the Green’s function
obtained in this way, for thermal field, is not time translational invariant in terms of proper
time and a prescription to obtain unit time detector response using them is not possible [47].
On the other hand, one can also express the scalar field Φ(x) in terms of the Rindler
modes and operators for which the corresponding vacuum is the Rindler vacuum. Then
using the procedure as presented by Unruh in 1976 (see [26]), by transforming the Rindler
operators to the Unruh operators which correspond to the vacuum of the Unruh modes
(which is here Minkowski vacuum), one can construct Wightman function corresponding
to accelerating observers in thermal Minkowski background. This way of construction
provides the proper time translation invariance in a natural way and analysis becomes
analytically more tractable (e.g. see [47]).
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The procedure of decomposing the scalar field in terms of the Unruh operators is
elaborately discussed in [60, 61]. Here we give a brief recollection of the construction and
refer to the article [47] for further understandings. We first consider the case in (1 + 1)
dimensions and the (1 + 3) dimensional result will follow accordingly. The equation of
motion for a minimally coupled, massless free scalar field Φ is expressed as 2Φ = 0.

3.2.1 (1+1) dimensions

In terms of the Rindler coordinates in (1 + 1) dimensions this equation has solutions,
suggesting set of modes in the right and left Rindler wedges as [60, 61]

Ruk = 1√
4πω

eikξ−iωη in RRW

= 0 in LRW
Luk = 1√

4πω
eikξ+iωη in LRW

= 0 in RRW. (3.6)

The scalar field is expressed in terms of the Rindler modes and operators, see [60], as
Φ(X) = ∑∞

k=−∞

[
bRk

Ruk + bR
†

k
Ru∗k + bLk

Luk + bL
†

k
Lu∗k

]
, where superscript L and R cor-

respond to the left and the right Rindler wedges respectively, and the annihilation operators
annihilate the Rindler vacuum |0R〉, i.e. bRk |0R〉 = 0 = bLk |0R〉. In the right or left Rindler
wedges where the field modes Luk = 0 or Ruk = 0, the scalar field takes the form

ΦR(X) =
∞∑

k=−∞

[
bRk

Ruk + bR
†

k
Ru∗k

]
,

or ΦL(X) =
∞∑

k=−∞

[
bLk

Luk + bL
†

k
Lu∗k

]
. (3.7)

One can use this scalar field decomposition in terms of the Rindler modes and opera-
tors to obtain a two-point function corresponding to an accelerated observer in Minkowski
vacuum. Here, it should be noted that the operators bRk and bLk in eq. (3.7) do not anni-
hilate the Minkowski vacuum, and the operations of the Rindler ladder operators on the
Minkowski vacuum is obtained from the cumbersome calculations of Bogoliubov transfor-
mation. However, there is a simpler way out of this situation as provided by Unruh [26],
where he prescribed field modes out of these Rindler modes which are analytic in the whole
region of the Minkowski spacetime. These Unruh modes have the positive frequency ana-
lyticity property with respect to the Minkowski time, same as the Minkowski modes. This
enables one to decompose the scalar field in terms of these Unruh modes and operators,
which annihilate the Minkowski vacuum. The Unruh modes are obtained from the combi-
nation of the Rindler modes Ruk + e−πω/a Lu∗−k and Ru∗−k + eπω/a Luk, see [60]. In terms
of the Unruh modes and operators the scalar field is expressed as [60]

Φ(X) =
∞∑

k=−∞

1√
2 sinh πω

a

[
d1
k

(
e
πω
2a Ruk + e−

πω
2a Lu∗−k

)
+ d2

k

(
e−

πω
2a Ru∗−k + e

πω
2a Luk

)]
+ h.c. ,

(3.8)
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where h.c. stands for Hermitian conjugate. The Unruh annihilation operators annihilate
the Minkowski vacuum d1

k|0M 〉 = d2
k|0M 〉 = 0 . To obtain the positive frequency Green’s

function using the field decompositions of eq. (3.7), one needs a transformation between
the Rindler operators and the Unruh operators, see [60], which is

bLk = 1√
2 sinh πω

a

[
e
πω
2a d2

k + e−
πω
2a d1†
−k

]

bRk = 1√
2 sinh πω

a

[
e
πω
2a d1

k + e−
πω
2a d2†
−k

]
, (3.9)

and, it is similar to the Bogoliubov transformation. Then putting this transformation in
eq. (3.7) one can get the expression of the field in the RRW and LRW in terms of the
Unruh operators as

ΦR(X) =
∞∑

k=−∞

1√
2 sinh πω

a

[
d1
k e

πω
2a Ruk + d2

k e
−πω2a Ru∗−k

]
+ h.c. ,

ΦL(X) =
∞∑

k=−∞

1√
2 sinh πω

a

[
d1
ke
−πω2a Lu∗−k + d2

ke
πω
2a Luk

]
+ h.c. . (3.10)

Now these expression of the scalar fields in RRW and LRW can be used to obtain the ex-
pressions of the positive frequency Green’s function corresponding to accelerated observers
in thermal bath.

3.2.2 (1+3) dimensions

Like the above analysis, in (1 + 3) dimensions also, one can proceed in a similar manner
to get the Scalar field in terms of the Unruh operators. In particular, from the equation of
motion 2Φ = 0 one can get the Rindler modes in the right and the left Rindler wedges as

Ruω,kp = 1
2π2

√
sinh

(
πω
a

)
a

K
[
iω

a
,
|kp|eaξ

a

]
e−iωη+i ~kp.~x in RRW

= 0 in LRW

Luω,kp = 1
2π2

√
sinh

(
πω
a

)
a

K
[
iω

a
,
|kp|eaξ

a

]
eiωη+i ~kp.~x in LRW

= 0 in RRW , (3.11)

where, K [n, z] denotes the modified Bessel function of the second kind of order n, ~x is
perpendicular to the direction of acceleration, i.e., in the Y −Z plane, see [59, 62, 63], and
~kp denotes the transverse wave vector in the Y − Z plane. Like the (1 + 1) dimensional
case here also one can construct the Unruh modes [59] out of the Rindler modes, which
are analytic in the whole Minkowski spacetime and gives positive frequency mode solutions
with respect to the Minkowski time. Then in (1 + 3) dimensions the scalar field in the
RRW and LRW using the Unruh operators, see [47, 59] for a detailed description, can be
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expressed in forms

ΦR(X) =
∞∑
ω=0

∞∑
kp=−∞

1√
2 sinh πω

a

[
d1
ω,kpe

πω
2a Ruω,kp + d2

ω,kpe
−πω2a Ru∗ω,−kp

]
+ h.c. ,

ΦL(X) =
∞∑
ω=0

∞∑
kp=−∞

1√
2 sinh πω

a

[
d1
ω,kpe

−πω2a Lu∗ω,−kp + d2
ω,kpe

πω
2a Luω,kp

]
+ h.c. . (3.12)

This is exactly same as the (1 + 1) dimensional expression with the Rindler field modes
Ruω,kp and Luω,kp are now given by different expressions, and the sum is now on ω and two
components of kp rather than one wave vector k of the (1 + 1) dimensional case.

3.3 Two-point correlators for thermal field

Considering a scalar field Φ(X) = Φ(T,X) in equilibrium with a thermal bath of tempera-
ture T (f) = 1/(kBβ), where kB is the Boltzmann constant, the thermal Green’s (Wightman)
function can be obtained by taking Gibbs ensemble average of the operator Φ(X2)Φ(X1) as

Gβ(X2;X1) = 〈Φ(X2)Φ(X1)〉β

= 1
Z

Tr
[
e−βHΦ(X2)Φ(X1)

]
, (3.13)

where, X1 andX2 are two events in the spacetime, Z = Tr[exp(−βH)] denotes the partition
function, and H denotes the Hamiltonian of free massless scalar field.

3.3.1 (1+1) dimensions

In (1 + 1) dimensions to obtain the thermal Green’s function corresponding to accelerated
observers, with respect to Rindler modes, we consider massless scalar field where ω = ωk =
|k|. The Hamiltonian related to the kth excitation corresponding to the Unruh operators,
which respect the Unruh vacuum, is Hk = (d1†

k d
1
k + d2†

k d
2
k)ωk. Then the thermal Green’s

function, defined by eq. (3.13), corresponding to an accelerated observer, see [47], can be
expressed as

GβWR
(∆ξjl,∆ηjl) =∫ ∞

−∞

dk

8πωk
√

sinh πωk
aj

sinh πωk
al

×

[
1

1− e−βωk

{
eik∆ξjl−iωk∆ηjl e

πωk
2

(
1
aj

+ 1
al

)
+ eik∆ξjl+iωk∆ηjl e

−πωk2

(
1
aj

+ 1
al

)}

+ 1
eβωk − 1

{
e−ik∆ξjl+iωk∆ηjl e

πωk
2

(
1
aj

+ 1
al

)
+ e−ik∆ξjl−iωk∆ηjl e

−πωk2

(
1
aj

+ 1
al

)}]
, (3.14)

where, j, l denote different detectors, and ∆ξjl = ξj,2 − ξl,1, ∆ηjl = ηj,2 − ηl,1. For
observers in the left Rindler wedge immersed in a thermal bath the Wightman function
GβWL

(∆ξjl,∆ηjl) is obtained from the expression of eq. (3.14) with ∆ηjl → −∆ηjl.
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Similarly for observers with one in the right Rindler wedge and one in the left Rindler
wedge immersed in a thermal bath the Wightman function can be expressed, using the
appropriate field modes from eq. (3.10), as

GβWLR
(∆ξjl,∆ηjl) =∫ ∞

−∞

dk

8πωk
√

sinh πωk
aj

sinh πωk
al

×

[
1

1− e−βωk

{
eik∆ξjl−iωk∆ηjl e

−πωk2

(
1
aj
− 1
al

)
+ eik∆ξjl+iωk∆ηjl e

πωk
2

(
1
aj
− 1
al

)}

+ 1
eβωk − 1

{
e−ik∆ξjl+iωk∆ηjl e

−πωk2

(
1
aj
− 1
al

)
+ e−ik∆ξjl−iωk∆ηjl e

πωk
2

(
1
aj
− 1
al

)}]
, (3.15)

where, we have considered the jth detector to be in the left Rindler wedge and the de-
tector denoted by l is in the right Rindler wedge. We also mention that the Wightman
function GβWRL

(∆ξjl,∆ηjl), where the detectors denoted by j and l are in right and left
Rindler wedges is obtained from the complex conjugate of the expression in the right hand
side of eq. (3.15). It should be noted that from eq. (3.14) the thermal Green’s function
corresponding to a single accelerated detector can also be obtained by making aj = al.

3.3.2 (1+3) dimensions

One can obtain the thermal Green’s function corresponding to accelerated observers, with
respect to Rindler modes in (1+3) dimensions in a similar manner. The field decomposition
is taken from eq. (3.12) and the Hamiltonian corresponding to the Unruh operators is
Hω,kp = (d1†

ω,kp
d1
ω,kp

+ d2†
ω,kp

d2
ω,kp

)ω. Then in RRW the Green’s function corresponding to
an accelerated observer in thermal bath [47] is

Gβ
W 3D
R

(∆ηjl) =
∫ ∞

0
dω

∫
d2kp
(2π)4

2
√
ajale−iω∆ηjl e

πω
2

(
1
aj

+ 1
al

)
+ eiω∆ηjl e

−πω2

(
1
aj

+ 1
al

)
1− e−βω

+eiω∆ηjl e
πω
2

(
1
aj

+ 1
al

)
+ e−iω∆ηjl e

−πω2

(
1
aj

+ 1
al

)
eβω − 1


K
[
iω

aj
,
|kp|eajξj
aj

]
K
[
iω

al
,
|kp|ealξl
al

]
, (3.16)

where, ∆ηjl = ηj,2 − ηl,1 and ξj is the fixed Rindler spatial coordinate corresponding to
the jth detector. It should be noted that the above Green’s function is time translational
invariant.
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On the other hand, the Wightman function corresponding to two observers with anti
parallel acceleration is

Gβ
W 3D
LR

(∆ηjl) =
∫ ∞

0
dω

∫
d2kp
(2π)4

2
√
ajale−iω∆ηjl e

−πω2

(
1
aj
− 1
al

)
+ eiω∆ηjl e

πω
2

(
1
aj
− 1
al

)
1− e−βω

+ eiω∆ηjl e
−πω2

(
1
aj
− 1
al

)
+ e−iω∆ηjl e

πω
2

(
1
aj
− 1
al

)
eβω − 1


K
[
iω

aj
,
|kp|eajξj
aj

]
K
[
iω

al
,
|kp|ealξl
al

]
. (3.17)

Here also j and l denote detectors in left and in right Rindler wedges, and the Wightman
functionGβ

W 3D
RL

(∆ξjl,∆ηjl), with j and l denoting detectors in right and left Rindler wedges,
is obtained from the complex conjugate of the expression (3.17). The thermal Green’s
function corresponding to a single accelerated detector can be obtained by making aj = al
in eq. (3.16).

Having equipped with all the necessary results we will next investigate the role of tem-
perature of the field on the entanglement harvesting between the two uniformly accelerated
detectors. We will have particular interest here on two situations — (i) both the detectors
are in right wedge and (ii) one is in right wedge and another one is in left wedge. This will
be done in the next section.

4 Entanglement harvesting

In this section we investigate the condition of entanglement extraction from eq. (2.7) for
accelerated detectors in parallel or anti-parallel relative motion in a thermal bath. In
particular, we aim to understand the effects of the thermal bath in addition to the ac-
celeration on this entanglement harvesting condition. We shall also be looking into the
entanglement measure, namely the concurrence, for the aforementioned observers. In this
regard, we first estimate the quantities Ij(∆Ej) for the detectors accelerated in right or
in left Rindler wedge. These are common quantities for both parallel and anti-parallel
situations.

We first consider the (1 + 1) dimensional case. For an observer accelerated in the right
Rindler wedge we take the expression of the Wightman function from eq. (3.14) with equal
acceleration. Then in RRW one can estimate the integral Ij(∆Ej) as

IRj (∆Ej) = 1
2

∫ ∞
−∞

dvj

∫ ∞
−∞

duje
−i∆Ejuj GβWR

(uj)

= δ(0) π

2∆Ejaj
1

sinh π∆Ej
aj

[
e
−π∆Ej

aj

1− e−β∆Ej + e
π∆Ej
aj

eβ∆Ej − 1

]
, (4.1)
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where we have used η′j = τ ′j , ηj = τj for ξ′j = 0 = ξj as observed from eq. (3.4). We have
considered the change of variables vj = τ ′j + τj , uj = τ ′j − τj . In the above expression
the Dirac delta distribution is obtained from δ(0) = (1/2π)

∫∞
−∞ dγj , where γj = ajvj is

a dimensionless parameter characterizing the proper time of the detector. On the other
hand, in a similar manner in LRW also one can estimate the integral ILj (∆Ej) using the
complex conjugate of the Wightman function from eq. (3.14) and the relation between the
Rindler time and the detector proper times η′j = −τ ′j , ηj = −τj in LRW for ξ′j = 0 = ξj
from (3.4). In (1 + 1) dimensions this expression comes out to be the same as the one
obtained for the observer in RRW (4.1), i.e., we get ILj (∆Ej) = IRj (∆Ej).

Similarly, in (1 + 3) dimensions also one can find out the quantities IRj (∆Ej) and
ILj (∆Ej). In particular, these quantities in right and left Rindler wedges are given by
the same expression IRj (∆Ej) = ILj (∆Ej) = Ij3D(∆Ej). With the help of the Wightman
function from eq. (3.16) this expression can be provided as

Ij3D(∆Ej) = 1
2

∫ ∞
−∞

dvj

∫ ∞
−∞

duj e
−i∆Ejuj GβW3D

(uj)

= δ(0) 1
2πa2

j

[
e
−π∆Ej

aj

1− e−β∆Ej + e
π∆Ej
aj

eβ∆Ej − 1

]
Υ
(
∆Ej , aj , aj

)
, (4.2)

where, in this case the quantity Υ
(
∆Ej , aj , aj

)
= πaj∆Ej/(2 sinh (π∆Ej/aj)), and it is

obtained from a general expression of integral

Υ (ε̄, aj , al) =
∫ ∞

0
kp dkp K

[
iε̄

aj
,
kp
aj

]
K
[
iε̄

al
,
kp
al

]
. (4.3)

Now it should be noted that the integrals representing transition probabilities from eq. (4.1),
and (4.2) can be multiplied on both sides by ∆E2

j to make them dimensionless. In this
regard, we define other dimensionless parameters of the system as

αj = aj
∆Ej

; σj = β∆Ej . (4.4)

It will be much more convenient to represent the necessary diagrams in our subsequent
analysis with respect to these dimensionless parameters and quantities. In our subsequent
analysis we specifically consider the situation of two observers accelerated parallelly or
anti-parallelly in a thermal bath, and in particular, going to estimate the integrals Iε.
Then we shall analyze the condition of eq. (2.7), and verify the possibility of entanglement
extraction in those specific cases.

It should also be noted that for the verification of the condition (2.7) it is imperative
to evaluate the expression of Iε. From eq. (2.8) it is observed that the expression of Iε can
be represented it terms of one quantity containing Wightman function and another one
containing the Retarded Green’s function. This second integral containing the Retarded
Green’s function also has a Heaviside step function θ(TA − TB) in it, which emerged from
the representation of the Feynman propagator in terms of the Wightman functions. In a
spacetime where the Wightman functions are constructed considering positive frequency
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modes functions defined with respect to time tj , this step function shall become θ(tA −
tB). From eq. (3.14) to (3.17) all the Wightman functions are constructed using positive
frequency Rindler modes of (3.6) and (3.11). Then with ξ′j = 0 = ξj in right Rindler wedge
tj = tRj = ηj = τj and in left Rindler wedge tj = tRj = −ηj = τj . We shall be explicitly
using these relations in the evaluation of the quantity Iε in our subsequent analysis.

4.1 Parallel acceleration: no harvesting

In this subsection we consider the two observers Alice and Bob to be accelerated parallelly.
We consider them to have the proper accelerations aA and aB and both of them to be in
the right Rindler wedge. For convenience of calculation, in this case we express integral Iε
from eq. (2.8) as

Iε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA) ×[

GW (XB, XA) + θ(tRA − tRB ) {GW (XA, XB)−GW (XB, XA)}
]

= IWε + IRε . (4.5)

Here the first integral IWε contains the Wightman function, while the second integral
IRε represents the contribution of the retarded Green’s function. We shall be using this
expression to evaluate the integral Iε separately in (1 + 1) and (1 + 3) dimensions in our
following studies.

4.1.1 (1+1) dimensions

For the evaluation of IWε and IRε in (1 + 1) dimensions we consider the positive frequency
Wightman function (3.14). In particular, in the expression of this Green’s function the
indices j and l correspond to the detector A and B respectively. The relation between
Rindler times and detector proper times are ηA = τA and ηB = τB, considering ξA = 0 = ξB,
i.e., assuming the accelerating detectors to be fixed at the origin of the respective Rindler
frames, while the proper accelerations are bj = aj . Then the first integral IWε can be
expressed as

IWε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA)GβWR

(XB, XA)

= −δ
(

∆EA + ∆EB
√
aAaB

)
π

∆Ĕ√aAaB
1√

sinh π∆Ĕ
aB

sinh π∆Ĕ
aAe

π∆Ĕ
2

(
1
aB

+ 1
aA

)
1− e−β∆Ĕ

+ e
−π∆Ĕ

2

(
1
aB

+ 1
aA

)
eβ∆Ĕ − 1

 , (4.6)

where the expression of ∆Ĕ is given by ∆Ĕ = (∆EB − ∆EA)/2. For the evaluation of
this integral we have considered a change of variables ṽ = τB + τA and ũ = τB − τA. The
Jacobian of this transformation from τj to v and u is 1/2. On the other hand, using the
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same Wightman function from eq. (3.14) we get the integral IRε to be

IRε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA) θ(τA − τB)

{
GβWR

(XA, XB)−GβWR
(XB, XA)

}
= −δ

(
∆EA + ∆EB
√
aAaB

)
I R

1 , (4.7)

which also contains a Dirac delta distribution, and I R
1 is given by

I R
1 =

∫ ∞
0

dω

ω
√
aAaB

sinh
[
πω
2

(
1
aB

+ 1
aA

)]
√

sinh πω
aB

sinh πω
aA

∫ ∞
0

e−iũ∆Ĕ
(
e−iωũ − eiωũ

)
. (4.8)

In the integrals (4.6) and (4.7) we have encountered expression δ((∆EB + ∆EA)/√aAaB),
which definitely cannot give non-zero contribution as ∆Ej > 0. Then we have Iε = 0 due
to the contributions of IWε and IRε . Whereas from eq. (4.1) we observe that Ij always
are non-zero and also have a multiplicative δ(0). This signifies that for two observers
accelerated parallelly the condition for entanglement harvesting (2.7) is not satisfied in
(1 + 1) dimensions.

4.1.2 (1+3) dimensions

We consider the positive frequency Wightman function (3.16) for the estimation of the
quantities IWε and IRε in (1 + 3) dimensions. Furthermore, we have identified the indices
j and l with the detectors A and B respectively. Then proceeding like the earlier way the
first integral IWε becomes

IWε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA) Gβ

W 3D
R

(XB, XA)

= −δ
(

∆EA + ∆EB
√
aAaB

)
1

πaAaB
Υ
(
∆Ĕ, aA, aB

)
e

π∆Ĕ
2

(
1
aB

+ 1
aA

)
1− e−β∆Ĕ

+ e
−π∆Ĕ

2

(
1
aB

+ 1
aA

)
eβ∆Ĕ − 1

 . (4.9)

Using the Wightman function (3.16) with the proper identification of the indices j and l
to the detectors A and B, we get the second part of the integral Iε to be

IRε =−
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA) θ(τA − τB)

{
Gβ
W 3D
R

(XA, XB)−Gβ
W 3D
R

(XB, XA)
}

=−δ
(

∆EB + ∆EA
√
aAaB

)
I R

2 , (4.10)

where, the expression of I R
2 is given by

I R
2 =

∫ ∞
0

dω

π2

sinh
[
πω
2

(
1
aB

+ 1
aA

)]
aAaB

Υ
(
∆Ĕ, aA, aB

) ∫ ∞
0

e−iũ∆Ĕ
(
e−iωũ − eiωũ

)
. (4.11)
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Here also in both of the integrals from (4.9) and (4.10) we have δ((∆EB + ∆EA)/√aAaB)
multiplied, which always gives zero contribution when ∆Ej > 0. Then none of the above
quantities IWε or IRε contribute to the non-zero expression of Iε. This signifies that for two
observers accelerated parallelly, the condition for entanglement harvesting is not satisfied
in (1 + 3) dimensions.

In both (1 + 1) and (1 + 3) dimensions, considering parallelly accelerated detectors
in a thermal bath, we observed that the condition for entanglement harvesting is not
satisfied. This was also true in the case of accelerated detectors without a thermal bath,
see [4, 38, 40]. Then one can deduce that here the thermal bath has no additional influence to
make the entanglement harvesting possible. One should also notice that, it is not possible to
distinguish between thermal and non-thermal scalar fields only by analyzing the parallelly
accelerated detectors using entanglement harvesting information.

4.2 Anti-parallel accelerations: harvesting possible

In this subsection, we consider Alice in right and Bob in the left Rindler wedge so that
they are anti-parallelly accelerated in a thermal bath. To evaluate the integral Iε and
to reflect upon the previously obtained result by Reznik [4], where only the Wightman
function rather than the Feynman propagator contributed to this integral, it is convenient
to express it in the form of eq. (4.5). Here also we shall be separately evaluating the
first integral IWε and the second integral IRε , which respectively contains the Wightman
function and the retarded Green’s function, in (1 + 1) and (1 + 3) dimensions.

4.2.1 (1+1) dimensions

Analytical results. In (1+1) dimensions the first part IWε of the integral Iε, is estimated
using the expression of the Wightman function from eq. (3.15). We have also considered
Bob (denoted by B) to be in LRW accelerating anti-parallelly to Alice in RRW (denoted
by A). Then the integral IWε becomes

IWε = −
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA)GβWLR

(XB, XA)

= −δ
(

∆EB −∆EA
√
aAaB

)
1√

sinh π∆Ẽ
aA

sinh π∆Ẽ
aB

π

∆Ẽ√aAaB

[
e
π∆Ẽ

2

(
1
aB
− 1
aA

)
1− e−β∆Ẽ

+ e
−π∆Ẽ

2

(
1
aB
− 1
aA

)
eβ∆Ẽ − 1

]
, (4.12)

where, ∆Ẽ = (∆EB + ∆EA)/2, and δ(z) denotes the Dirac delta distribution. For the
evaluation of this integral we have made the change of variables ṽ = τB+τA and ũ = τB−τA.
One may have considered moving to dimensionless variables γj = τjaj , and then make
change of variables v̄ = γB + γA and ū = γB − γA to obtain the same final result. The
Jacobian corresponding to both of these change of variables is 1/2. Similarly one can
evaluate the second integral IRε . Then using the Wightman function of eq. (2.8) the
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integral IRε can be evaluated to be

IRε =−
∫ ∞
−∞

dτB

∫ ∞
−∞

dτAθ(τA − τB) ei(∆EBτB+∆EAτA)[GβWRL
(XA, XB)−GβWLR

(XB, XA)
]

=
sinh π∆Ẽ

2

(
1
aB
− 1

aA

)
2∆Ẽ

1√
sinh π∆Ẽ

aA
sinh π∆Ẽ

aB

∫ ∞
−∞

e−
i
2 (∆EB−∆EA)ũ θ(ũ) dũ , (4.13)

where, ∆Ẽ = (∆EA + ∆EB)/2. One can evaluate this last integral as∫ ∞
−∞

e−
i
2 (∆EB−∆EA)ũ θ(ũ)dũ =

∫ ∞
0

e−
i
2 (∆EB−∆EA−iε)ũ dũ

= 2
i(∆EB−∆EA−iε) , (4.14)

where a multiplicative regulator of e−εũ/2, with ε > 0, is introduced in the integrand to
evaluate this otherwise diverging integral. It is to be noted that the limit ε → 0 provides
the actual value of the integral. One can express this quantity of eq. (4.14) with the help
of a consequence of the Sokhotski-Plemelj theorem [60]

lim
ε→0+

1
z − iε

= iπ δ(z) + P
(1
z

)
, (4.15)

where, P(1/z) denotes the principal value of (1/z), which is a finite quantity. Then in the
limit of ∆EB → ∆EA the only contributing quantity in IRε is

IRε =
π sinh

{
π∆Ẽ

2

(
1
aB
− 1

aA

)}
∆Ẽ√aAaB

√
sinh π∆Ẽ

aA
sinh π∆Ẽ

aB

[
δ

(
∆EB−∆EA
√
aAaB

)
− i

π
P
( √

aAaB
∆EB−∆EA

)]
. (4.16)

The second quantity of the multiplicative term in the right hand side of this expression
denotes the principle value and it is a finite quantity. It should be mentioned that when
∆EB 6= ∆EA the Dirac delta distribution from eq. (4.16) vanishes and one is left out with
only this finite second term. In this particular situation the integral IWε also vanishes and
the whole Iε = IWε + IRε becomes finite. However, from eq. (4.1) it is observed that the
integrals Ij still keeps the δ(0) terms in them. In that case it is obvious that the condition
from (2.7) remains unfulfilled. On the other hand, when ∆EB = ∆EA only the Dirac delta
distribution contributes in the expression of IRε . In this situation, IWε is also non zero, and
there are multiplicative factors of δ(0) in IWε and IRε like the Ij . Then it is evident that
only for ∆EB = ∆EA the condition (2.7) for entanglement harvesting may get satisfied.

Let us now make a comment on the contribution related to the retarded Green’s
function. It is observed from (4.16) that the integral IRε in general vanishes when the two
anti parallelly moving observers have equal magnitude of accelerations i.e. aA = aB. It
is noticed that even in Green’s function level when the accelerations of the anti-parallelly
accelerated detectors are equal the quantity GβWRL

(XA, XB)−GβWLR
(XB, XA) = 0, denoting

the retarded Green’s function in the integral of (4.13). This is expected as left Rindler
wedge is causally disconnected from the right wedge. However, it remains non-zero for
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scenarios when aA 6= aB, although both are causally disconnected and retarded Green’s
function with respect to Minkowski mode vanishes (or when aA = 0 = aB) when they are
spacelike separated. It may be mentioned that when aA = aB then they can be regarded
as “similar frames” (as LRW is mirror image of RRW) and hence since retarded Green’s
function vanishes in Minkowski frame, it must vanish in any other frame. Whereas for
aA 6= aB we do not have such similarity and we may take this as investigations of field
operators from two “dis-similar frames”. In this case the commutator of the fields may not
be the same as it was earlier. In the above exactly this thing has been reflected in IRε . In
summary, the relative acceleration between the frames introduces this non-triviality. We
will see later that in (1 + 3) case, compared to (1 + 1) dimensional analysis, this has a big
role to give a distinct feature in the entanglement harvesting.

From eq. (4.12) and (4.16) we obtain the expression of the integral Iε corresponding to
two anti-parallelly accelerated observers as Iε = IWε + IRε . As we have already discussed
these expressions are non-zero and comparable to Ij only when ∆EA and ∆EB are equal,
we then consider ∆EA = ∆EB = ∆E. In that case we also have ∆Ẽ = ∆E, and the
condition for entanglement harvesting from eq. (2.7) becomes

(
e
−π∆E

aA

1− e−β∆E + e
π∆E
aA

eβ∆E − 1

)(
e
−π∆E

aB

1− e−β∆E + e
π∆E
aB

eβ∆E − 1

)
<

4
[
e
π∆E

2

(
1
aB
− 1
aA

)
1− e−β∆E + e

−π∆E
2

(
1
aB
− 1
aA

)
eβ∆E − 1 − sinh

{
π∆E

2

( 1
aB
− 1
aA

)}]2

. (4.17)

From this expression (4.17) depicting the condition for entanglement harvesting for two
anti-parallelly accelerated observers, we see that contribution of the retarded Green’s func-
tion exists when the detectors have different magnitudes of acceleration, i.e., aA 6= aB.

Numerical analysis. In figure 1 we have plotted the quantity CI of (2.10) signifying
the concurrence, with respect to σ, which is proportional to the inverse temperature of the
thermal bath σ = β∆E, considering two anti-parallelly accelerated observers with different
accelerations in (1 + 1) dimensions. The curves in this figure correspond to fixed αB = 1
and different fixed αA. It is to be noted that the quantity CI plotted in the figure is
obtained using the expressions from (4.1), (4.12) and (4.16) when ∆EB = ∆EA without
the multiplicative δ(0) term. Removing this delta function from CI can be interpreted as
taking a rate per unit proper time, like discussed in literature [40]. From figure 1 we have
the following observations.

• For low acceleration αA of the first detector (e.g. αA = 1/2) the quantity CI is
negative for very high temperature of the thermal bath, and it tends to increase
with increasing β and becomes positive at some much large β or low temperature
of the thermal bath. Therefore thermal fields do not allow entanglement at high
temperature. Entanglement can start only from certain value of temperature of
thermal bath to lower values when the first detector moves with small acceleration.
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Figure 1. In (1+1) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the inverse temperature σ = β∆E for different fixed αA =
aA/∆E. The other parameter is fixed at αB = aB/∆E = 1.

• For high acceleration αA of the first detector (αA = 1/0.002) the quantity CI is
positive for very high temperature of the thermal bath, and it tends to decrease with
increasing β but never becomes negative at much larger β or low temperature of the
thermal bath. So for large values of acceleration, we will have entanglement at any
temperature of bath.

• With these it is observed that there is a characteristic change in the nature of these
curves depending on the value of αA — for low values of αA the entanglement increases
with increase of β while after certain value of αA entanglement decreases with increase
of β. We call the value of acceleration αA = αc as critical value around which these
curves have different nature. In figure 1 this is given by the almost straight line which
is green in color.

To find this critical value note that the change is nature is prominent for very low value
of β; i.e. at higher temperature of the bath. So it will be sufficient to investigate CI for
very low value of σ. Also in this regime the critical line (which is green in figure 1) is
straight. Therefore the vanishing of the slope of the curve in low value of σ will yield αc.
One can series expand the derivative of CI with respect to σ in this case, in small σ regimes
and observe that it is of the form (∂/∂σ)C(ρAB) = (1/σ2)C1 + C2 + O(σ). Then in high
temperature regime one can predict about the transition point αc by making C1 = 0 (this
is leading term) with αA = αc, which provides us with the expression

C1 = π√
sinh

(
π
αc

)
sinh

(
π
αB

)
(√

cosh
(
π

αc

)
cosh

(
π

αB

)
− 2 cosh

(
π(αB − αc)

2αcαB

))
= 0 .

(4.18)

It can be checked that the above equation yields the value of αc as 4.82026 for our choice
of parameter value αB = 1. Note that this is exactly the value of αA for which the critical
curve (green in color in figure 1) was obtained numerically.
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Figure 2. In (1+1) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the acceleration of the first detector αA for different fixed
inverse temperature of the thermal bath σ. The other parameters are fixed at αB = 1.
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Figure 3. In (1+1) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the acceleration of the first detector αA for different fixed
inverse temperatures of the thermal bath σ. The other parameters are fixed at αB = 1. In particular
we have depicted the curves of figure 2 in lower regime of 1/αA.

In figure 2 we have plotted CI signifying the concurrence with respect to the acceler-
ation of the first detector αA for different fixed σ. From this figure one can observe that
the temperature of the thermal bath has a diminishing effect on the entanglement measure
for low values of the acceleration of the first detector αA. It is observed that for smaller
αA with low β (if ∆E is kept fixed then β changes in unison with σ), i.e., for very high
temperature, the condition for entanglement harvesting is failing, while for high αA the
condition again gets satisfied. We have also depicted the same curves as shown in figure 2
in lower regimes of 1/αA in figure 3. From this curve we observe that, above a certain
value of αA, which is the critical value αc, the thermal bath has an enhancing effect on
concurrence (denoted by CI). Then the plots depicted in figure 2 and 3 together predict
the same phenomena provided by figure 1, i.e., for low accelerations thermal bath has a
diminishing effect and for high accelerations thermal bath has an enhancing effect on the
entanglement measure, and there is a perceivable critical value of acceleration separating
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Figure 4. In (1+1) dimensions the derivative with respect to σ of the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly accelerating detectors for varying σ. The other parameters αB = 1
and αA are fixed.
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Figure 5. In (1+1) dimensions the derivative with respect to σ of the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly accelerating detectors for varying acceleration of the first detector
αA. The temperatures of the thermal bath σ and other parameter αB = 1 are fixed.

these two regimes of accelerations. In figure 4 and 5 we have further plotted the derivative
of CI with respect to σ for varying σ and αA for the perception of αc. Figure 4 shows that
some curves contains negative slope while others have positive slope for initial values of β.
Similarly figure 5 signifies that the derivative of the quantity, denoting concurrence, with
respect to σ becomes zero at a particular value of αA. All these reassured the existence
the aforesaid critical value of αA.

It is to be noted that in the equal magnitude of acceleration limit the second integral
from eq. (4.16) coming from the retarded Green’s function vanishes and one is left with
only Iε = IWε . In this particular case we consider aA = aB = a, and the condition for
entanglement harvesting from eq. (2.7) is then given by

e−
π∆E
a

1− e−β∆E + e
π∆E
a

eβ∆E − 1 < 2 eβ∆E + 1
eβ∆E − 1 , (4.19)

which for the zero temperature of the thermal bath, i.e., in the β → ∞ limit, becomes
e
π∆E
a > 1/2. This basically reinstates the fact that in the zero temperature case the entan-

glement can be harvested for anti-parallelly accelerated detectors with any possible equal
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Figure 6. In (1+1) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the inverse temperature of the thermal bath σ for equal
magnitude of proper accelerations, i.e., αA = αB .
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Figure 7. In (1+1) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with same magnitude of acceleration for varying acceleration of the detectors
α and different fixed σ.

acceleration, which is also observed from [4, 40] though considering the detectors in (1 + 3)
dimensions. In figure 6 and figure 7 we have plotted CI = |Iε|−Ij respectively with respect
to varying σ and α. From these figures also we observe the same phenomena as perceived
before. Here also we see that below a certain critical α entanglement harvesting is not
possible for low β or high temperature of the thermal bath and the entanglement measure
increases with increasing β. On the other hand, above this critical acceleration entangle-
ment measure decreases with increasing β, but remains positive. In figure 7 this behavioral
change of the curves after a certain critical acceleration αc is much more prominent than
the previous ones with different accelerations. It should be noted that in this equal ac-
celeration case, by making the derivative of the quantity CI with respect to σ equal to
zero, one can obtain the critical value of acceleration αc = π/ log [2 +

√
3], which is around

αc ≈ 2.385 and is independent of σ. This is depicted by a straight line in figure 6. In
figure 8 and 9 the derivative of CI is plotted with respect to varying α and σ, which also
signifies the earlier mentioned slope change about the critical value of α. This reconfirms
the existence of the aforesaid criticality.
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Figure 8. In (1 + 1) dimensions the quantity (∂/∂σ)
(
∆E2 (|Iε| −

√
IAIB

))
is plotted for two

anti-parallelly accelerating detectors with respect to the equal magnitude of proper accelerations
αA = αB for fixed inverse temperature of the thermal bath σ. The critical acceleration, where this
quantity is σ independent, is αc = 2.3854.
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Figure 9. In (1 + 1) dimensions the quantity (∂/∂σ)
(
∆E2 (|Iε| −

√
IAIB

))
is plotted for two

anti-parallelly accelerating detectors with respect to the inverse temperature of the thermal bath σ
for equal magnitude of proper accelerations αA = αB . The critical acceleration, where this quantity
is σ independent, is αc = 2.3854.

4.2.2 (1+3) dimensions

Analytical results. From eq. (2.8) we observe that there are two specific terms in the
integral Iε. One involving a Wightman function and another involving a retarded Green’s
function. The second term involving the retarded Green’s function is recently conceived
through rigorous analysis of the model for entanglement harvesting. Like the (1+1) dimen-
sional case in (1 + 3) dimensions also we shall explicitly evaluate these terms. We express
the first quantity using the Wightman function of eq. (3.17), i.e., considering the observer
B to be accelerating anti-parallelly in LRW with respect to observer A in RRW, as

IWε =−
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA ei(∆E
BτB+∆EAτA)Gβ

W 3D
LR

(XB, XA) (4.20)

=−δ
(

∆EB−∆EA
√
aAaB

)
1

aAaB

Υ
(
∆Ẽ, aB, aA

)
π

[
e
π∆Ẽ

2

(
1
aB
− 1
aA

)
1− e−β∆Ẽ

+ e
−π∆Ẽ

2

(
1
aB
− 1
aA

)
eβ∆Ẽ − 1

]
,
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where, ∆Ẽ = (∆EB + ∆EA)/2, and δ(z) denotes the Dirac delta distribution. For the
evaluation of this integral we have considered change of variables ṽ = τB + τA and ũ =
τB − τA, and we shall be using this same change of variables to evaluate the next integral
also. Then one can evaluate the second part of the integral Iε from eq. (2.8) as

IRε =−
∫ ∞
−∞

dτB

∫ ∞
−∞

dτAθ(τA − τB) ei(∆EBτB+∆EAτA)[Gβ
W 3D
RL

(XA, XB)−Gβ
W 3D
LR

(XB, XA)
]

= sinh
{
π∆Ẽ

2

( 1
aB
− 1
aA

)} 2Υ
(
∆Ẽ, aB, aA

)
(2π)2√aAaB

∫ ∞
−∞

e−
i
2 (∆EB−∆EA)ũ θ(ũ) dũ . (4.21)

Like the previous (1 + 1) dimensional case, using (4.15) the contributing part of this ex-
pression here can be evaluated to be

IRε =
sinh

{
π∆Ẽ

2

(
1
aB
− 1

aA

)}
Υ
(
∆Ẽ, aB, aA

)
πaAaB

×
[
δ

(
∆EB −∆EA
√
aAaB

)
− i

π
P
( √

aAaB
∆EB −∆EA

)]
. (4.22)

Like the (1 + 1) dimensional case here also we observe that when ∆EB 6= ∆EA the
integral IRε becomes finite, whereas IWε vanishes. On the other hand, from (4.2) we observe
that the integrals Ij have a multiplicative δ(0) term in them. Then in this situation one
cannot harvest any entanglement. Entanglement harvesting may become possible only
when ∆EB = ∆EA. In that case we consider ∆EB = ∆EA = ∆E, which also results
in ∆Ẽ = ∆E. Then from eq. (4.20) and (4.22) one can obtain the expression of the
integral Iε corresponding to two anti-parallelly accelerated observers in (1 + 3) dimensions
as Iε = IWε + IRε , and then get the condition for entanglement harvesting (2.7) to be(

e
−π∆E

aA

1− e−β∆E + e
π∆E
aA

eβ∆E − 1

)(
e
−π∆E

aB

1− e−β∆E + e
π∆E
aB

eβ∆E − 1

)
Υ (∆E, aA, aA) Υ (∆E, aB, aB) <

4
[
e
π∆E

2

(
1
aB
− 1
aA

)
1− e−β∆E + e

−π∆E
2

(
1
aB
− 1
aA

)
eβ∆E − 1 − sinh

{
π∆E

2

( 1
aB
− 1
aA

)}]2

Υ (∆E, aA, aB)2 .

(4.23)

Numerical analysis. In figure 10 we have plotted the quantity CI=∆E2(|Iε|−
√
IAIB),

which signifies the concurrence, with respect to αA for different fixed temperature of the
thermal bath. Like the (1 + 1) dimensional case here also we have removed the δ(0) factor
from CI , which now describes a rate of concurrence per unit proper time. On the other hand,
in figure 11 and figure 12 we have plotted this CI with respect to the inverse temperature
of the thermal bath σ = β∆E for different fixed αA. From both of these figures we
observe that higher temperature of the thermal bath results in a failure of the condition for
entanglement harvesting for accelerations much lower than the critical acceleration, which
is in agreement with the understandings gained from the (1 + 1) dimensional analysis.
However, the characteristics of the curves obtained from figure 10 are turbulent compared
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Figure 10. In (1+3) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the acceleration of the first detector αA for different fixed σ.
The other parameter is fixed at αB = 1.
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Figure 11. In (1+3) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the inverse temperature of the thermal bath σ for different
fixed accelerations αA. The other parameter is fixed at αB = 1.

to the (1 + 1) dimensional curves of figure 2 in similar situation. It is also noticed that
unlike the (1 + 1) dimensional case there are multiple transition points of αA in curves of
figure 10. After crossing each of these transition points the characteristics of CI flips with
respect to β, i.e., in some of the regions, in between these transition points, CI increases with
increasing β, and in the neighboring regions CI decreases with increasing β. In figure 13
and 14 we have plotted the derivative of CI with respect to σ for varying σ and αA to
further confirm the positions of the transition points. Another intriguing thing to notice
is that in (1 + 1) dimensions for αA 6= αB we observed that for a fixed temperature of
the thermal field entanglement harvesting is possible for any accelerations above a certain
acceleration. However, here in (1+3) dimensions this is not the case, as now entanglement
harvesting is possible in discrete ranges of αA for certain values of fixed temperatures of
the thermal fields.

It is to be noted that in the equal magnitude of acceleration limit the second integral
from eq. (4.22) coming from the retarded Green’s function vanishes and one is left with
only Iε = IWε . In this particular case aA = aB = a, and the condition for entanglement
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Figure 12. In (1+3) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the inverse temperature of the thermal bath σ for different
fixed accelerations αA, and αB is fixed at αB = 1. Here the set of fixed αA is different than the
ones considered in figure 11. However, here also one can observe a transition in the nature of the
curves as αA changes.
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Figure 13. In (1 + 3) dimensions the derivative with respect to σ of the quantity
∆E2 (|Iε| −

√
IAIB

)
is plotted for two anti-parallelly accelerating detectors for varying σ. The

other parameters αB = 1 and αA are fixed.
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Figure 14. In (1 + 3) dimensions the derivative with respect to σ of the quantity
∆E2 (|Iε| −

√
IAIB

)
is plotted for two anti-parallelly accelerating detectors for varying acceler-

ation of the first detector αA. The temperatures of the thermal bath σ and other parameter
αB = 1 are fixed.
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Figure 15. In (1+3) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to the inverse temperature of the thermal bath σ for equal
magnitude of proper accelerations, i.e., αA = αB .
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Figure 16. In (1+3) dimensions the quantity ∆E2 (|Iε| −
√
IAIB

)
is plotted for two anti-parallelly

accelerating detectors with respect to 1/α for fixed inverse temperatures of the thermal bath σ for
equal magnitude of proper accelerations, i.e., αA = αB .

harvesting from eq. (4.23) becomes same as the one from the (1 + 1) dimensional case
of eq. (4.19). Then it is expected that the entanglement measure CI in (1 + 3) should
be qualitatively same as the one from (1 + 1) dimensions. However, it is quantitatively
different in the (1 + 3) dimensional case compared to the (1 + 1) dimensional case with
equal acceleration. In figure 15 and 16 we have further plotted this quantity CI signifying
the concurrence, in this case in (1 + 3) dimensions. Here also the concurrence shows
similar characteristics as was observed in the (1 + 1) dimensional case. From figure 16 it
is clear that the temperature of the thermal bath diminishes the range of acceleration in
which entanglement extraction is possible. However, it enhances the amount of concurrence
above a certain value of acceleration thus enhancing the entanglement extraction in that
region. Furthermore, in figure 17 and 18 we have plotted the derivative of CI with respect
to σ in this case for varying σ and α for the perception of αc. It should be noted that
in (1 + 3) dimensions one is left out with only one transition point, contrary to multiple
transition points in αA from figure 10, when equal accelerations are considered.
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Figure 17. In (1 + 3) dimensions the quantity (∂/∂σ)
(
∆E2 (|Iε| −

√
IAIB

))
is plotted for two

anti-parallelly accelerating detectors with respect to the inverse temperature of the thermal bath σ
for equal magnitude of proper accelerations αA = αB .
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Figure 18. In (1 + 3) dimensions the quantity (∂/∂σ)
(
∆E2 (|Iε| −

√
IAIB

))
is plotted for two

anti-parallelly accelerating detectors with respect to the equal magnitude of proper accelerations
αA = αB for fixed inverse temperature of the thermal bath σ.

5 Mutual information

From eq. (2.12) and (2.13) it is observed that the mutual information corresponding to
the two accelerated detectors interacting with background thermal field can be estimated
by estimating the quantities Pj and PAB. From eq. (4.1) and (4.2) one can find out the
expressions of Pj in (1 + 1) and (1 + 3) dimensions corresponding to observers accelerated
parallelly or anti-parallelly. Then here we only have to find out the expression of PAB
to understand the nature of the mutual information for the considered detector pair. In
particular we are going to estimate IAB of (2.4) from which it is straightforward to estimate
PAB using eq. (2.3). We shall first consider the prallelly and then anti-parallelly accelerated
detectors to estimate these quantities.

5.1 Parallel acceleration

5.1.1 (1+1) dimensions

We consider the Wightman function of eq. (3.14) corresponding to parallelly accelerated
detectors interacting with thermal fields, and consider a change of variables ṽ = τB + τA
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and ũ = τB − τA to evaluate the integral IAB as

IAB =
∫ ∞
−∞

dτB

∫ ∞
−∞

dτAe
i(∆EAτA−∆EBτB) GβWR

(XB, XA)

= δ

(
∆EA −∆EB
√
aAaB

)
π

∆Ẽ√aAaB
1√

sinh π∆Ẽ
aB

sinh π∆Ẽ
aAe

−π∆Ẽ
2

(
1
aB

+ 1
aA

)
1− e−β∆Ẽ

+ e
π∆Ẽ

2

(
1
aB

+ 1
aA

)
eβ∆Ẽ − 1

 , (5.1)

where ∆Ẽ = (∆EB +∆EA)/2. It is to be noted that when ∆EB 6= ∆EA, due to the Dirac
delta distribution δ

(
(∆EA −∆EB)/√aAaB

)
in front of the expression (5.1), the quantity

IAB (i.e., PAB) vanishes. Then one can observe from eq. (2.13) that the quantities P±
become PA and PB, which in turn leads to zero value of the mutual information from (2.12).

One has non vanishing mutual information only when PAB 6= 0, i.e., when ∆EB =
∆EA. We get ∆Ẽ = ∆E by considering ∆EB = ∆EA = ∆E. In that case it is observed
that there will be a multiplicative δ(0) term in the expression of IAB similar to the case of
Ij of (4.1). One can remove this δ(0) term attributed to considering a rate per unit proper
time of IAB. On the other hand, from (2.3) it is observed that for the exact evaluation of
PA, PB, and PAB it is imperative to know the expectation value 〈Ej1|mj(0)|Ej0〉, which can
be estimated for an explicit choice of the monopole operator mj(0) = |Ej1〉〈E

j
0|+ |E

j
0〉〈E

j
1|.

It is to be noted that in the expression of the concurrence from (2.9) there was a common
multiplicative term |〈EB1 |mB(0)|EB0 〉||〈EA1 |mA(0)|EA0 〉|, which we neglected concentrating
only on the effect of the spacetime on detector response. However, for the case of the mu-
tual information of (2.12) one cannot pull out a common multiplicative expectation of the
monopole operator and we have to explicitly put their values for a numerical evaluation.
In particular, for both j = A and j = B it is observed that 〈Ej1|mj(0)|Ej0〉 = 1. Then using
eq. (2.3), (2.4), (2.12), and (2.13) one can explicitly evaluate the mutual information in
this case. In figure 19 we have plotted the rate of mutual information with respect to the
temperature of the thermal field T (f) (∼ 1/σ = 1/(β∆E)), which shows that with increas-
ing temperature the mutual information increases. From this figure it is also observed that
with increasing acceleration of the first detector (signified by αA) the mutual information
decreases.

5.1.2 (1+3) dimensions

We consider the positive frequency Wightman function (3.16) for the estimation of the
quantity IAB in (1 + 3) dimensions, which becomes

IAB =
∫ ∞
−∞

dτB

∫ ∞
−∞

dτAe
i(∆EAτA−∆EBτB) Gβ

W 3D
R

(XB, XA)

= δ

(
∆EA−∆EB
√
aAaB

)
1

πaAaB
Υ
(
∆Ẽ, aA, aB

)e
−π∆Ẽ

2

(
1
aB

+ 1
aA

)
1− e−β∆Ẽ

+ e
π∆Ẽ

2

(
1
aB

+ 1
aA

)
eβ∆Ẽ − 1

 . (5.2)
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Figure 19. In (1 + 1) dimensions the quantityM(ρAB)/c2 per unit proper time is plotted, which
signifies the mutual information, for two parallelly accelerating detectors with respect to the tem-
perature of the thermal field T (f)(∼ 1/σ) for different fixed proper accelerations αA, where αB = 1.
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Figure 20. In (1 + 3) dimensions the quantityM(ρAB)/c2 per unit proper time is plotted, which
signifies the mutual information, for two parallelly accelerating detectors with respect to the tem-
perature of the thermal field T (f)(∼ 1/σ) for different fixed proper accelerations αA, where αB = 1.

Here also ∆Ẽ = (∆EB + ∆EA)/2, and for ∆EB 6= ∆EA Dirac delta distribution
δ
(
(∆EA −∆EB)/√aAaB

)
in (5.2) provides vanishing IAB (or PAB). This leads to van-

ishing mutual information.
The mutual information is non vanishing only when ∆EB = ∆EA. Here also

considering 〈Ej1|mj(0)|Ej0〉 = 1 we have estimated the mutual information using the
eq. (2.3), (2.4), (2.12), and (2.13), and we plotted the rate of mutual information with
respect to the temperature of the thermal field T (f) (∼ 1/σ) in figure 20. From this figure
we conclude that in (1+3) dimensions also the mutual information increases with increasing
temperature of the thermal field and decreasing acceleration of the first detector (signified
by αA).

5.2 Anti-parallel acceleration

5.2.1 (1+1) dimensions

We consider the Wightman function from eq. (3.15) corresponding to two anti-parallelly
accelerated observers in (1 + 1) dimensional thermal bath, and a change of variables ṽ =
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τB + τA and ũ = τB − τA to evaluate the quantity IAB from (2.4). One can express this
integral IAB as

IAB =
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA e
i(∆EAτA−∆EBτB) GβWLR

(XB, XA)

= δ

(
∆EA + ∆EB
√
aAaB

)
π

∆Ĕ√aAaB
1√

sinh π∆Ĕ
aB

sinh π∆Ĕ
aAe

−π∆Ĕ
2

(
1
aB
− 1
aA

)
1− e−β∆Ĕ

+ e
π∆Ĕ

2

(
1
aB
− 1
aA

)
eβ∆Ĕ − 1

 , (5.3)

where ∆Ĕ = (∆EB − ∆EA)/2. Then it is obvious that for ∆EA > 0 and ∆EB > 0 the
Dirac delta distribution sitting in front of this expression δ

(
(∆EA + ∆EB)/√aAaB

)
will

provide a vanishing contribution. Thus IAB vanishes and so vanishes PAB. Then from
eq. (2.13) one can estimate the quantities P± to be PA and PB, which in turn leads to
the expression of mutual information from (2.12) to be vanishing upto O(c2). This result
persuades one to conclude that the mutual information corresponding to two anti-parallelly
accelerated detectors in a thermal bath is zero in (1 + 1) dimensions.

5.2.2 (1+3) dimensions

We consider the positive frequency Wightman function (3.17) corresponding to anti-
parallelly accelerated observers for the estimation of the quantity IAB in (1+3) dimensions,
which becomes

IAB =
∫ ∞
−∞

dτB

∫ ∞
−∞

dτA e
i(∆EAτA−∆EBτB) Gβ

W 3D
LR

(XB, XA)

= δ

(
∆EA + ∆EB
√
aAaB

)
1

πaAaB
Υ
(
∆Ĕ, aA, aB

)e
−π∆Ĕ

2

(
1
aB
− 1
aA

)
1− e−β∆Ĕ

+ e
π∆Ĕ

2

(
1
aB
− 1
aA

)
eβ∆Ĕ − 1

 .
(5.4)

Here also ∆Ĕ = (∆EB − ∆EA)/2 and similar to the (1 + 1) dimensional case the Dirac
delta distribution δ

(
(∆EA + ∆EB)/√aAaB

)
sitting in front of this expression will provide

a vanishing contribution. This leads to a vanishing PAB and in turn vanishing mutual
information upto O(c2) from (2.12). Then in (1 + 3) dimensions also one can conclude
that the mutual information corresponding to two anti-parallelly accelerated detectors in
a thermal bath is zero.

6 Discussion

The possibility of constructing a plausible experimental setup in contact with a thermal
bath is much higher, as, in nature, the background is thermal than a purely non-thermal
field vacuum. Therefore it is much more relevant to understand realistic situations in our
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surroundings to study physical phenomena in the presence of a thermal bath or by consid-
ering the thermal fields. We have considered studying entanglement harvesting with two
accelerated Unruh-DeWitt detectors interacting with a background thermal massless scalar
field in this work. We have constructed the relevant Green’s functions corresponding to
accelerated observers in thermal bath considering the Rindler modes with the vacuum for
the Unruh modes to avoid dealing with Wightman functions which are not time transla-
tional invariant. We used the prescription of [47] for constructing the Green’s functions and
followed the entanglement harvesting mechanism of articles [38, 40]. It is observed that for
zero temperature of the thermal bath, i.e., in the limit β →∞, in both (1 + 1) and (1 + 3)
dimensions considering the equal magnitude of accelerations for the two observers but mov-
ing anti-parallelly, we always get the condition for entanglement harvesting to be satisfied.
It ensures that entanglement extraction is possible for any finite non-zero acceleration in
zero temperature background, which is in fact known from the earlier works of [4].

Furthermore, for non-zero temperature of the thermal bath with equal magnitude of
acceleration of the anti-parallelly accelerated observers in both (1 + 1) and (1 + 3) dimen-
sions we get identical conditions for entanglement harvesting (eq. (4.19)). The quantity CI
signifying concurrence also shows similar behavior in (1 + 1) and (1 + 3) dimensions, which
can be observed from figure 6, 7 and 15, 16. An interesting fact we noticed from figure 7
and 16 is that with increasing temperature of the thermal bath (decreasing β or σ), the
range of acceleration, in which entanglement can be harvested, is decreasing, which is in
agreement with the results of previous works [41, 42]. We observe that higher acceleration
is needed to initiate entanglement harvesting with the higher temperature of the thermal
bath. However, once for a certain temperature, entanglement harvesting starts with some
initial acceleration in this system; it keeps on harvesting for all other higher accelerations.
On the other hand, above a certain critical acceleration a = ac we see the amount of entan-
glement harvested, denoted by concurrence, to be increasing with increasing temperature
of the thermal bath, showing a characteristic opposite compared to the region below a = ac,
which is like a phase transition.

We also observe in (1 + 1) dimensions from eq. (4.12) and (4.16) that for aA = aB = a

and in the limit of a→ 0 the whole quantity Iε without the multiplicative delta distribution
vanishes, making the condition for entanglement extraction to break down. Then it is
obvious that in the requirement of entanglement harvesting, an accelerated observer and a
static observer in a thermal bath do not act in equal footing.

On the other hand, from earlier research works, it was known that the integral, rep-
resenting the correlation between the two-detectors and responsible for mathematically
realizing the entanglement harvesting, is related to the Wightman function GW (X ′B, XA)
between two detector events. However, the recent investigations [38–40] suggest that this
integral is related to the Feynman propagator GF (X ′B, XA). In particular, we observed that
this additional contribution could be identified to be dependent on the Retarded Green’s
function. In our case we observed a finite contribution from the Retarded Green’s function
GR(X ′B, XA). In condition for entanglement extraction from eq. (4.17) and (4.23) we ob-
served that the contribution from the Retarded Green’s function can be identified through
a quantity of sinh {π∆E (1/aB − 1/aA) /2}. Then for all aA 6= aB this quantity has a
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non-zero contribution. However, when aA = aB the contributions from GF (X ′B, XA) and
GW (X ′B, XA) are the same. Finally it is to be noticed that when aA 6= aB, by observing the
plots of CI with respect to the acceleration of the first detector, it is possible to distinguish
between the cases of (1 + 1) and (1 + 3) dimensions. Notably, in (1 + 1) dimensions the
curves of fixed σ (figure 2) shows monotonic nature, while in (1 + 3) dimensions (figure 10)
this is not the case with various peaks and valleys. In (1 + 3) dimensions this results in
multiple transition points of accelerations aA between which the nature of concurrence with
respect to the temperature of the thermal bath flips compared to the adjacent regions, also
restricting the entanglement harvesting to discrete ranges of acceleration aA for certain
fixed temperatures of the thermal bath.

An investigation of mutual information among the detectors has also been done here.
We found that this vanishes for the anti-parallel situation, whereas it is non-vanishing for
the parallel case. In the latter situation, mutual information increases with the increase in
background field temperature while decreasing with the first detector’s proper acceleration.

We want to mention here the nature of the curves in figure 7 and figure 16 which we
did not discuss in the main text. In the equal acceleration case aA = aB in both (1+1) and
(1+3) dimensions, it is observed that after a specific critical acceleration, the entanglement
extraction rate tends to decrease with increasing acceleration. The possible reason can be
as follows. When the acceleration of the detector is substantial (i.e. aA →∞), the detector
moves very near to the null surface denoted by X = −T and X = T and also feels a
very high temperature due to its acceleration (temperature is given by Unruh expression
a/(2π)). In this regime, the thermal bath due to acceleration becomes equally relevant
along with the real thermal bath on the nature of entanglement harvesting. Since we
already observed that temperature could reduce the entanglement between the detectors,
both temperatures due to the Unruh effect and the thermal bath may play a role in the
decreasing nature of concurrence. It is happening in a very high acceleration regime as
there the Unruh temperature also becomes appreciable to affect entanglement harvesting.
So in this regime, acceleration is showing its double standards — on one side, it is helping
in entanglement, but on another side, it is also suppressing this phenomenon. In lower
accelerations, the Unruh temperature is not so palpable to affect entanglement harvesting.
Therefore there the acceleration plays only the role in helping entanglement. In this regard,
we point out that this reason is only a suggestive one, and further investigation is needed
to find any conclusive explanation.

Finally, we mention that in this paper, we deeply investigated the effect of background
temperature on entanglement harvesting between two uniformly accelerated detectors. As
we mentioned, this situation mimics a much more realistic situation, and hence the re-
sults have practical importance. As we mentioned above, the background temperature
introduces several interesting noticeable features absent when the temperature is zero.
Therefore we feel that the present study is significant in entanglement harvesting between
the observers through their interaction with the background quantum fields and helps in
the progress of the above subject.
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