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1 Introduction

The quantum transportation of charges induced by anomaly is an interesting phenomenon.1

For example, the chiral magnetic effect (CME) [3–7] refers to the generation of currents

parallel to an external magnetic field. And the chiral vortical effect (CVE) [8–14] refers

to the generation of a current due to rotational motion in the charged fluid. Recently,

it has also been pointed out that anomalous transport also occurs in a conformally flat

gravitational spacetime due to Weyl anomaly [15, 16]. It should be noted that these kinds

of anomalous transport occurs only in a material system where the chemical potentials

are non-vanishing, or in a curved spacetime. As anomaly is an intrinsic property of the

vacuum, it is interesting to ask if anomalous current transport could be realized in vacuum

without the presence of material system.

One of the most well known manifestation of the quantum nature of the vacuum is the

Casimir effect [17–19]. This occurs since the energy of the vacuum is sensitive to the change

in the boundary condition. Recently the Casimir effect has been analyzed in full generality

for arbitrary shape of boundary and for arbitrary spacetime metric, and universal relations

between the Casimir coefficients and the boundary central charge in a boundary conformal

field theory (BCFT) have been discovered [20]. The study was based on a field theory

analysis of the properties of the energy momentum tensor in the vicinity of boundary. In a

recent paper [21], we generalized the analysis to boundary system with U(1) symmetry and

discovered a new type of anomalous current in the vicinity of the boundary due to Weyl

anomaly.2 In four dimensions, it was found that a current is induced near the boundary

due to the presence of a background field strength

Ja =
4b1Fan
x

, x ∼ 0, a = 0, 1, 2, 3. (1.1)

1For a review see for example refs. [1, 2].
2Interestingly, [32] find that there is some evidence that non-Weyl anomalies such as ’t Hooft anomalies

are inconsistent with the existence of a boundary.
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Here x is the geodesic distance from the boundary, n is the direction of the inward pointing

normal, and b1 is the bulk central charge which appears in the Weyl anomaly [22]3

A =

∫
M

√
g
[
b1FµνF

µν + curvature terms
]
. (1.2)

For the normalization of the gauge field kinetic term S = −1/(4e2)
∫
F 2, b1 is related to the

beta function as b1 = −β(e)
2e3

. Similar results were also found for higher dimensions where

the anomalous current is determined universally by the central charge. We remark that the

induced current (1.1) holds for not just boundary conformal field theories (BCFTs), but

also for more general boundary quantum field theories (BQFTs) which are covariant, gauge

invariant, unitary and renormalizable. Unlike the previous kinds of anomalous transport,

this anomalous transport occurs in zero temperature vacuum in flat spacetime without the

need of material support. And it is an intrinsic manifestation of the dependence of the

quantum vacuum on boundary like the Casimir effect. Finally, it should be mentioned that

there are boundary contributions to the current density which can exactly cancel the ap-

parent “divergence” in the bulk current (1.1) at x = 0 and define a finite total current [21].

BQFTs/BCFTs [27, 28] describe physical systems with boundaries. In recent years, the

field of BCFTs has developed rapidly. In addition to traditional field theory techniques,

see, e.g. [20, 29–36], holographic models of BCFTs have been developed in [20, 37–42]

which allow for non-perturbative analysis of the boundary systems. Holographic dual of

BCFT was originally introduced by Takayanagi [37] by considering a Neumann boundary

condition in the bulk dual manifold. However the tensor type embedding equations of the

proposal contain too many constraints in general and cannot be solved consistently for

general shape of boundary. The difficulty was analyzed in [40, 41] and a consistent model

of holographic BCFT was found by replacing the tensor type embedding equation by a

scalar type embedding equation. More recently we found that [20] the original set of tensor

embedding equations can also be consistent if one is to allow for a non-FG expansion of

the metric in the bulk.

The models [40, 41] and [20] of holographic BCFT have been applied to study the one

point function of stress tensor. Boundary Weyl anomaly as well as new universal relations

between the generalized Casimir coefficients and the central charges have been obtained

in both models, and the results agree exactly, except for a different representation of the

central charges as functions of the holographic BCFT parameter. In this paper, we study

the anomalous current transport in this two models of holographic BCFTs, and show that

to the leading order of closeness to the boundary, the holographic current is determined

universally by the central charges of the Weyl anomaly. We also show that the current

is independent of boundary conditions in four dimensions while it depends on boundary

conditions in higher dimensions. The results agree with those obtained in [21] and generalize

3For parity-odd theory, it is possible that the Weyl anomaly includes one additional term [23–25] ∆A =

b2
∫
M

√
gεijklFijFkl. This is just a total derivative term and gives the Chern-Simons action on the boundary

after the integral. However it is controversial whether such terms are allowed [26]. Even such terms are

allowed, [25] notice that the coefficients b2 are imaginary, which would violate the unitarity. Thus for

unitary QFT we are interested of, the most general form of Weyl anomaly is given by (1.2).

– 2 –
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Figure 1. BCFT on M and its dual N .

to theories that do not necessary admit a Lagrangian formulation. That the two proposals

of holographic models yield again the same results for the anomalous current. This confirms

our previous speculation that the two models of holographic BCFT correspond to two

different kinds of BCFT which admit different holographic descriptions [20].

The paper is organized as follows. In section 2, we derive the holographic current

for 4d BCFTs and show that it is independent of boundary conditions and is determined

entirely by the bulk central charge. In section 3, we generalize our discussions to higher

dimensions and show that the holographic current depends on boundary conditions in

higher dimensions. In section 4, we study the back reactions of Maxwell’s fields to AdS

spacetime and derive the holographic Weyl anomaly for 5d BCFTs. The paper is ended

with some future discussions in section 5.

2 Holographic current for 4d BCFT

Consider a boundary conformal field theory (BCFT) defined on a manifold M with a

boundary P . Takayanagi [37] proposed to extend the d dimensional manifold M to a

(d + 1) dimensional asymptotically AdS space N such that ∂N = M ∪Q, where Q is a d

dimensional manifold with boundary ∂Q = ∂M = P . See figure 1.

To investigate the renormalized current in holographic models of BCFT, let us add a

U(1) gauge field to the holographic model. Following [37–39], we consider the following

gauge invariant action for holographic BCFT (16πGN = 1)

I =

∫
N

√
G

(
R− 2Λ− 1

4
FµνFµν

)
+ 2

∫
Q

√
γ(K − T ). (2.1)

Here F is the bulk field strength which reduces to F on the boundary M . The constant

parameter T can be regarded as the holographic dual of boundary conditions of BCFT [40,

41]. The central issue in the construction of the AdS/BCFT is the determination of the

location of Q in the bulk. Takayanagi [37] proposed to impose the Neumann boundary

condition (NBC) on Q. In our case this means we have on Q:

Kαβ − (K − T )γαβ = 0, (2.2)

FµνnµQΠν
α = 0, (2.3)

where nQ is the inward-pointing normal vector on Q, and Π is the projection operator

which gives the vector field and metric on Q: Āα = Πν
αAµ and γαβ = Πµ

αΠν
βGµν . As

– 3 –
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discussed in [40, 41], the tensor embedding equations (2.2) admit no solution in general if

the bulk metric is assumed to admit a FG expansion. On the other hand, (2.2) becomes

consistent if a non-FG expanded bulk metric is adopted. Another possible holographic

model for BCFT [40, 41] is to consider a mixed boundary condition on the metric whereby

one obtains the scalar embedding equation

K =
d

d− 1
T, (2.4)

together with (2.3). This model is also consistent. Both models yield the same consistent

results for the Weyl anomaly as well as giving the same universal relations between the

generalized Casimir coefficients and the central charges, the later of which are however

parametrized differently in terms of T for the two holographic models. In the following,

we will consider both proposals of holographic BCFT. Quite amazingly, we find again that

both models give the same results for the induced current when the result is expressed in

terms of the central charges. This is quite remarkable and is a reconfirmation of the earlier

indication that the two proposals of holographic models corresponds to two different kinds

of BCFT [20].

Now back to our case. For simplicity, let us consider the case of a flat half space x ≥ 0.

The bulk metric reads

ds2 =
dz2 + dx2 + δabdy

adyb

z2
. (2.5)

In this case, (2.2) reduces to (2.4), and Q is given by [37]

x = − sinh ρ z, (2.6)

where we have re-parametrized T = 3 tanh ρ. As for the solution for the vector field, due to

the planar symmetry of the boundary, we consider Aµ that depends only on the coordinates

z and x. The Maxwell equations ∇µFµν = 0 can be solved with Az = Az(z), Ax = Ax(x)

and Aa satisfying,

z∂2xAa − ∂zAa + z∂2zAa = 0. (2.7)

One can solve the above equation by separation of variables Aa(z, x) = Z(z)X(x), and then

substitute the general solutions to (2.3) to obtain the solution by brute force. However

there is a quicker trick. Inspired by similar considerations in [20], let us take the following

ansatz for the vector field

Aa = A(0)
a + xf1

( z
x

)
A(1)
a + x2f2

( z
x

)
A(2)
a + · · · , (2.8)

where we set fi(0) = 1 so that Aa reduce to the guage field Aa at the AdS boundary z = 0.

Here A(i) are the expansion coefficients of Aa about the boundary:

Aa = A(0)
a + xA(1)

a + · · · . (2.9)

In particular, A
(1)
a is given by the field strength at the boundary:

A(1)
a = Fxa = Fna. (2.10)

– 4 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
5

Note that in the derivative expansions we have O(A(i)) ∼ O(∂)i. Substituting (2.8)

into (2.7) we get

s(s2 + 1)f ′′1 (s)− f ′1(s) = 0, (2.11)

at the linear order O(∂). Recall that f1(0) = 1, we have the solution f1(s) = 1 − c1 +

c1
√

1 + s2, and (2.8) reads

Aa = A(0)
a +

(
(1− c1)x+ c1

√
x2 + z2

)
A(1)
a , (2.12)

where we have ignored the higher order terms since they are irrelevant to the current (1.1) of

orderO(∂), or equivalently, O(F ). Note also that we have analytic continuated x
√

1 + z2

x2
to

√
x2 + z2 in order to get smooth solution at x = 0. Imposing the boundary condition (2.3)

on Q, we get c1 = 1. One can check directly that the solution Az = Az(z),Ax = Ax(x) and

Aa = A(0)
a +A(1)

a

√
x2 + z2 (2.13)

is indeed an exact solution to the Maxwell equations and the boundary condition (2.3) in

AdS.

From the gravitational action (2.1), we can derive the holographic current as [43]

〈Ja〉 = lim
z→0

δI

δAa
= lim

z→0

√
GFza (2.14)

Substituting the solutions (2.5), (2.13) into (2.14), we obtain

〈Ja〉 = ∂2zAa|z=0 = −Fan
x

+O(1), (2.15)

where we have used (2.10). On the other hand, the holographic Weyl anomaly of (2.1) is

obtained in [44] with the central charge given by

b1 = −1

4
. (2.16)

Now it is clear that the holographic BCFT satisfies the universal law of current (1.1). It

is remarkable that current (2.15) is independent of the parameter T , which shows that

near-boundary current for 4d BCFT is indeed independent of boundary conditions.

3 Holographic current in higher dimensions

In this section, we study the holographic current for BCFTs in higher dimensions. We

verify that the leading term of the current is determined universally by the central charge

of Weyl anomaly. However unlike the 4d case, the current depends on boundary conditions

in higher dimensions.

We start with the gravitational action

I =

∫
N

√
G

(
R− 2Λ− 1

4
FµνFµν

)
+ 2

∫
Q

√
γ(K − T ). (3.1)

– 5 –
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We work in AdS spacetime (2.5) with the bulk boundary Q given by (2.6). Focus on

the leading order of current, we can ignore the back reactions of the Maxwell’s fields to

spacetime and the location of the bulk boundary. For plane boundary, Aµ depends on only

the coordinates z and x. For general dimension d, the Maxwell’s equations can be solved

with Az = Az(z), Ax = Ax(x) and

z∂2xAa − (d− 3)∂zAa + z∂2zAa = 0. (3.2)

Similarly, the boundary condition (2.3) becomes

(∂xAa + sinh ρ∂zAa)
∣∣∣
x=−z sinh ρ

= 0. (3.3)

As before, we consider the ansatz for the gauge field

Aa = A(0)
a +A(1)

a xf
( z
x

)
, (3.4)

where f(0) = 1 and A
(i)
a are constants. The Maxwell’s equations (3.2) becomes

s(s2 + 1)f ′′(s)− (d− 3)f ′(s) = 0. (3.5)

It has the general solution

f(s) = 1 + αd
sd−2 2F1

(
d−3
2 , d−22 ; d2 ;−s2

)
d− 2

, (3.6)

where αd is an integration constant. It should be mentioned that, in order to get regular

solutions at x = 0, suitable analytic continuation of the hypergeometric function should be

taken when one express the above solutions in terms of the coordinates z and x. With the

ansatz (3.4), the boundary condition (3.3) is simplified to

cosh ρ coth ρf ′(−cschρ) + f(−cschρ) = 0. (3.7)

Substituting (3.6) into (3.7), we get the integration constant

αd =
(2− d)csch3ρ(− coth ρ)d

cschρ 2F1

(
d−3
2 , d−22 ; d2 ;−csch2ρ

)
(coth ρ cschρ)d + (d− 2) cosh ρ coth4 ρ(−cschρ)d

.

(3.8)

Notice that suitable analytic continuation of the hypergeometric function should be taken

in order to get smooth function at ρ = 0. For example, we have for d = 4, 5,

α4 = 1, α5 =
2

π + 4 tan−1
(
tanh

(ρ
2

)) . (3.9)

Now we are ready to derive the holographic current. Substituting (2.5), (3.4) and (3.6)

into (2.14), we obtain

〈Ja〉 = lim
z→0

∂zAa
zd−3

= −αd
Fan
xd−3

+O

(
1

xd−4

)
, (3.10)

which takes the correct near-boundary behavior [21] and agrees with the 4d result (2.15).

Note that αd depends on ρ for d ≥ 5, which means that the near-boundary current depends

on the boundary conditions in higher dimensions. According to [21], αd is related to the

central charge of Weyl anomaly. In the next section, we will show that, similar to the 4d

BCFTs, this is also the case for 5d BCFTs with gravity duals.

– 6 –
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4 Holographic Weyl anomaly

In this section, we calculate the holographic Weyl anomaly of 5d BCFTs. For our purpose,

it is sufficient to focus on the flat space with a plane boundary. Then all the curvatures

and extrinsic curvatures vanish and only the field strength contribute to Weyl anomaly. In

this case the Weyl anomaly takes the form

A =

∫
∂M

dx4
√
h
[
b1FnaF

na + b2FabF
ab
]
, (4.1)

where b1 and b2 are boundary central charges, which depend on BCs. In [21] we have

derived the relation between the current coefficient and the boundary central charge

α5 = 2b1 (4.2)

that holds universally for any BCFT with a path integral formulation. Using our holo-

graphic Weyl anomaly derived below, we prove that the universal relation (4.2) is verified

for any holographic BCFT.

According to [45], holographic Weyl anomaly can be obtained as the UV logarithmic

divergent terms of the gravitational action (3.1). Since the Weyl anomaly (4.1) is of order

O(F 2), we need to solve for the metric up to order O(F 2) and the gauge field up to order

O(F ). This means that we have to take into account of the back reaction of the Maxwell’s

fields to the spacetime metric. The solutions of the Maxwell fields up to order O(F ) has

been obtained in section 3. Without loss of generality, we set all components of the gauge

field to be zero except Ay1 :

Aµ =
(

0, 0, Fxf
( z
x

)
, 0, 0

)
. (4.3)

Here we have denoted F := Fny1 and f(s) is given by (3.6), (3.9). Inspired by [20], we

consider the following ansatz of metric for x > 0

ds2 =
1

z2

[
dz2 +

(
1 + F 2x4X

( z
x

))
dx2 +

(
δab + F 2x4Qab

( z
x

))
dyadyb

]
+O(F 3), (4.4)

where Qab(s) = diag (Q1(s), Q2(s), Q3(s), Q4(s)). The solutions for x < 0 can be ob-

tained by analytic continuation. The ansatz (4.4) works well in odd dimensions. For

even-dimensional BCFTs, we need to add extra terms to (4.4) due to the presence of bulk

Weyl anomaly. We consider

X(0) = 0, Qab(0) = 0, (4.5)

so that the BCFT lives in a flat space. Solving Einstein-Maxwell equations up to order

O(F 2)

Rµν −
R− 2Λ

2
Gµν =

1

2

(
FµρF ρ

ν −
1

4
FσρFσρGµν

)
, (4.6)

– 7 –
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we obtain

96X(s) = 15s4+α5

(
34s3+6s

)
+α2

5

((
60s2+46

)
log
(
s2+1

)
−s2

(
21s2+43

))
−2α5

(
α5s

(
17s2+3

)
+3
(
5s4+6s2+1

))
g(s)

+3α2
5

(
5s4+6s2+1

)
g(s)2,

384Qa(s) = 12s
(
5s3−4λa

(
5s2+3

))
−6α5s

(
13s2+3

)
+α2

5

(
−96s4−109s2+40log

(
s2+1

))
+2
(
α2
5

(
139s2+69

)
s+72λa

(
s2+1

)2
+α5

(
−39s4+42s2+9

))
g(s)

−3α2
5

(
7s4+54s2+23

)
g(s)2, a= 1,2,3,

384Q4(s) = −12s
(
3s3−4(λ1+λ2+λ3)(5s2+3)

)
−α5s(38s2−6)+α2

5

(
48s4−s2+40log

(
s2+1

))
+
(
α5(90s4+36s2−6)−2α2

5

(
41s2+39

)
s−144(λ1+λ2+λ3)

(
s2+1

)2)
g(s)

+α2
5

(
−9s4+54s2+39

)
g(s)2, (4.7)

where λ1, λ2, λ3 are integration constants, s = z/x and g(s) = tan−1(s) for x > 0. In order

to get continuous solutions at x = 0, one must perform suitable analytic continuation for

g(s). In this way, we get g(x, z) = π
2 − 2 tan−1

(
x/(z +

√
z2 + x2)

)
.

It should be mentioned that the back-reacted spacetime (4.4), (4.7) is well-defined and

has no physical divergence at x = 0. To see this, let us calculate the following geometric

invariants. We have

lim
x→0

R = −30 +
z4

16

((
4 + π2

)
α2
5 − 4πα5 + 4

)
F 2 +O(F 3) (4.8)

lim
x→0

RµνR
µν = 150− 5z4

8

((
4 + π2

)
α2
5 − 4πα5 + 4

)
F 2 +O(F 3) (4.9)

lim
x→0

RµνρσR
µνρσ = 60− z4

4

((
4 + π2

)
α2
5 − 4πα5 + 4

)
F 2 +O(F 3), (4.10)

which are indeed finite at x = 0. Note that the perturbation solutions work well only for

small F . Strictly speaking, one can only define ‘small’ for a dimensionless number. Thus by

‘small’ we actually means Fx2 � 1 and Fz2 � 1 (Note that x and z can be large but Fx2

and Fz2 should keep small). From (4.8), (4.9), (4.10), it is clear that the back reactions

to spacetime are not only finite and also small. Recall that we are interested in the near-

boundary current. According to [21], by ‘near’ it means x� 1/
√
F . Thus the perturbation

solutions with Fx2 � 1 are sufficient for our purpose. Finally, we want to mention that

the back-reacted spacetime (4.4), (4.7) is asymptotically AdS in the sence that

lim
z→0

Rµνρσ = −(δµρ δ
ν
σ − δµσδνν ) +O(F 3), (4.11)

where we have set the AdS radius l = 1.

Following [20], we assume embedding function of Q takes the form

x = − sinh(ρ)z + λ4F
2z5 +O(F 3) (4.12)

– 8 –
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where λ4 is a function of ρ. This is to be solved using either of the boundary conditions (2.2)

or (2.4), and define consistent model of holographic BCFT respectively. Let us first consider

the boundary condition (2.2) on Q [37]

Kαβ − (K − T )γαβ = 0. (4.13)

In this case, the intergation constants are fixed by the extra equations in (4.13):

λ1 =
1

6

(
α5 (2−3α5p(ρ))+3sinh(ρ)(α5p(ρ)+1)2

)
,

λ2 = λ3 =
1

6

(
α5 (3α5p(ρ)+2)−3sinh(ρ)(α5p(ρ)+1)2

)
,

λ4 =
α5(−40cosh(2ρ)−15cosh(4ρ)+87)+12(6sinh(ρ)+sinh(3ρ))

3840

+
α2
5

(
17sinh(ρ)−71sinh(3ρ)+4sinh3(ρ)(43cosh(2ρ)+57) log

(
coth2(ρ)

))
3840

−
p(ρ)

(
α5

(
α5(40cosh(2ρ)+15cosh(4ρ)−87)−6(21sinh(ρ)+5sinh(3ρ))cosh2(ρ)

))
3840

+
α2
5p(ρ)2(21sinh(ρ)+5sinh(3ρ))cosh2(ρ)

1280
, (4.14)

where p(ρ) := −2 tan−1
(

sinh(ρ)
cosh(ρ)+1

)
− π

2 and α5 is given by (3.9). It is remarkable that

the (4.13) determines not only the integration constants of the metric but also the location

of bulk boundary Q. That is because we only need one equation to fix the codimension one

surface Q, however there are many extra equations in the BC (4.13). The extra equations

help to fix the bulk metric in addition to the location of Q.

Next let us consider the boundary condition (2.4). One can solve for λ4 by substituting

the embedding function (4.12) into (2.4). It turns out that λ4 is unchanged and is given by

exactly the same expression (4.14) with α5 given by (3.9). Note that unlike the BC (2.2),

the BC (2.4) does not fix the integration constants (λ1, λ2, λ3) of the bulk metric (4.7).

It is remarkable that, as we will show below, the Maxwell field strength part of the Weyl

anomaly is independent of these parameters (λ1, λ2, λ3).

Now we have worked out the bulk metric and the embedding function of Q up to

order O(F 2). Let us go on to calculate the holographic Weyl anomaly. We will keep the

parameters (λ1, λ2, λ3) free so that our following discussion apply to both the BCs (2.2)

and (2.4). By using the EOM (4.6) and NBC (2.4), we can rewrite the on-shell gravitational

action (3.1) as

I =

∫
N

√
G

[
−10− 1

8
FµνFµν

]
+ 2

∫
Q

√
γ tanh ρ. (4.15)

To get the holographic Weyl anomaly, we need to do the integration along x and z, and

then select the UV logarithmic divergent terms. We divide the integration region into two

parts: region I is defined by (z ≥ 0, x ≥ 0) and region II is defined by the complement of

region I. Let us first study the integration in region I, where only the bulk action in (4.15)

– 9 –
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contributes. Integrating along z and then expanding the result in small z = εz, we obtain

I1 =

∫
εx

dx

[
2α5

3x
FnaF

na − 13

32εz
FnaF

na − 2

ε5z
+O(1)

]
= log

(
1

εx

)
2α5

3
FnaF

na + · · · . (4.16)

Next let us consider the integration in region II. In this case, both the bulk action and

boundary action in (4.15) contribute. For the bulk action, we first do the integral along

x, which yields a boundary term on Q. Note that since only the UV logarithmic divergent

terms are related to Weyl anomaly, we keep only the lower limit of the integral of x. Adding

the boundary term from bulk integral to the boundary action in (4.15), we obtain

I2 =

∫
εz

dz

[
−α5

6z
FnaF

na +
2 sinh(ρ)

z5
+O(1)

]
= log

(
1

εz

)
−α5

6
FnaF

na + · · · . (4.17)

Note that the results (4.16) and (4.17) are independent of λ1, λ2, λ3. Note also that log( 1
εx

)

and log( 1
εz

) are counted as the same divergence since they differ only by a finite term log l

for εz = lεx. Therefore, combining together (4.16) and (4.17), we finally obtain the Weyl

anomaly (4.18)

A =

∫
∂M

√
h
α5

2
FnaF

nad4x. (4.18)

Hence we obtain the universal relation (4.2).

We remark that we have Fab = 0 for the solution (4.3). To get the information of

central charge b4 in (4.1), we need to consider solutions with ya dependence. We leave this

problem to future study.

5 Conclusions and discussions

In this paper, we have studied the anomalous current transport in holographic BCFTs. We

have verified that the holographic current is determined universally by the central charge of

the Weyl anomaly. To leading order of nearness to the boundary, the current independent

of boundary conditions in four dimensions while it depends on boundary conditions in

higher dimensions. The holographic results obtained here support the results obtained

recently in [21]. We have also studied the back reaction of bulk Maxwell’s fields to AdS

spacetime and obtain the holographic Weyl anomaly for 5d BCFTs. It will be interesting

to study Schwinger effect [46] near the boundary. With the help of the boundary, the

magnetic field can separate the virtual particle pairs and turn them into real particles.

Thus, it is expected that constant magnetic field can produce non-trivial Schwinger effect

in the vicinity of the boundary. We leave this problem for future study.

– 10 –
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