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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger We construct topological soliton solutions describing baryonic tubes and layers with modulation 
in the 𝑆𝑈 (2) non-linear sigma model coupled with 𝜔-mesons in 3 + 1 dimensions. Using 
appropriate Ansäntze for the pionic matter field and the 𝜔-mesons vector potential, the complete 
set of seven coupled partial differential equations can be solved analytically. These solutions 
represent modulated tubes and layers at finite volume with arbitrary baryon number, where the 
modulation of the solitons in one direction is determined by one of the three degrees of freedom 
of the pionic field, satisfying the equation of a two-dimensional free massless chiral scalar field. 
As expected, the inclusion of the 𝜔-mesons to the non-linear sigma model allows to reduce the 
repulsion energy between baryons, which leads to a flattening of the tubes and layers in one 
direction, forming a kind of “nuclear linguine phase”. Also, we show that this construction can be 
carried out even when higher order terms in the large 𝑁𝑐 expansion are included -in particular 
the Skyrme term- without spoiling the integrability of the field equations.

1. Introduction

Quantum Chromodynamics (QCD) constitutes one of the pillars of the standard model of particle physics. Featuring three colors 
and several flavors, QCD dynamics becomes strongly coupled at low energies while weak at high energies. It is in the strong sector 
where the non-perturbative nature of QCD remains inaccessible to standard analytical techniques, being the numerical methods the 
most used [1], [2]. In this context, the development of innovative analytical techniques is of crucial importance, allowing a controlled 
study of the strong dynamics. One of the most important models to address the strong sector of QCD is known as the non-linear sigma 
model (NLSM), which manifests spontaneous chiral symmetry breaking and provides an accurate description of pions at low energies 
[3].

Additionally, the NLSM admits the existence of topological soliton solutions, which are interpreted as baryons [4], [5], [6], [7], 
with the topological charge equal to the baryonic number. In this context, baryons emerge from the non-linear interactions between 
mesons. However, these configurations are not energetically stable due to Derrick’s theorem [8]. This problem can be solved including 
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higher derivative corrections in the Lagrangian that come from the large 𝑁𝑐 expansion, being the Skyrme term the simplest one [9]

(see also [3], [10]). Nevertheless, it is important to highlight that stable topological solitons describing baryons can be constructed 
even without including the Skyrme term in the NLSM. In fact, this can be carried out by circumventing Derrick’s theorem in different 
ways. For example, by working in a finite space or coupling the theory to spin-1 matter fields.1

On the other hand, although the NLSM and Skyrme models provide a good description of hadrons at low energies, both in their 
static properties and as interacting states [7], [11], [12], [13], some predictions differ significantly from the experimental data. One 
of these discrepancies is the nuclear binding energy. The predictions from the Skyrme model point to a repulsion energy between 
baryons greater than what has been measured in experiments.

Now, is it possible to stabilize the solitons and, at the same time, reduce the expected value of the binding energy coming from 
the NLSM by introducing vector mesons to the theory. In fact, in Refs. [14], [15], [16] (see also [17], [18], [19], [20], [21] and 
references therein) has been shown that the inclusion of 𝜔-mesons accomplishes this task. In this paper, we construct analytical 
solutions in the NLSM coupled to 𝜔-mesons with non-trivial topological charge. These solutions represent ordered arrays of baryonic 
tubes and layers at finite volume. Then, we generalize our results to the case where the Skyrme term is included, and even when 
higher order corrections in the t’ Hooft expansion are considered [22], that is, the generalized Skyrme model [23], [24], [25], [26]

(see also [27], [28], [29]).

It is well known that, when baryonic matter is under extreme conditions, ordered arrays are expected to appear as a result of 
the non-linear interactions between the constituents. This has been explored using numerical methods in the Skyrme model in Refs. 
[30], [31], [32], [33], [34], [35], [36]. Recently, in Refs. [37], [38], [39], [40], [41], [42], [43] (see also [44], [45], [46], [47]), the 
first analytical solutions describing crystals of topological solitons at finite volume in the NLSM and Skyrme models were constructed 
(see [48] for a review). One of the main achievements of such construction is that the configurations obtained are very similar to 
the nuclear pasta phases [49] (see also [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60] and references therein), in 
particular, nuclear lasagna (in the form of layers) and nuclear spaghetti (in the form of tubes). This is of particular interest as nuclear 
pasta states are expected to emerge by subjecting baryonic matter to extreme conditions, for example, in supernovae cores and in 
the crust of neutron stars, where densities exceed the normal nuclear density [61], [62].2

Although the study of the formation of nuclear pasta phases has been approached using simulations such as molecular dynamics 
[61] and numerical methods (see, for instance, [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77]), until now there 
has been no analytical approach to this problem, which would open an important window in the understanding of baryonic matter 
at extreme conditions. In this work, we aim in that direction. We generalize the solutions constructed in Ref. [66], showing that 
baryonic tubes and layers made of 𝜋 and 𝜔 mesons can be promoted to solutions of the generalized Skyrme model. The inclusion 
of an arbitrary light-like degree of freedom in the matter field allows for modulation of the solitons in one direction, and the time 
evolution of these configurations can be shown explicitly.

The paper is organized as follows: In Section 2, we introduce the NLSM coupled to 𝜔-mesons. In Section 3, we construct analytical 
solutions describing baryonic tubes and layers at finite volume, and discuss their main physical properties. In Section 4, we show 
how the inclusion of the 𝜔-mesons allows for a reduction in the binding energy between baryons. Also, we discuss the differences 
and similarities between our solutions and the crystals of gauged skyrmions. In Section 5, we show that the inclusion of higher-order 
corrections to the theory does not spoil the integrability of the equations. Section 6 is devoted to the conclusions.

2. The model

The NLSM coupled to vector 𝜔-mesons is described by the action

𝐼[𝑈,𝜔] = ∫ 𝑑4𝑥
√
−𝑔

(
𝐾

4
Tr

[
𝐿𝜇𝐿𝜇

]
− 1

4
𝑆𝜇𝜈𝑆

𝜇𝜈 − 1
2
𝑀2

𝜔𝜔𝜇𝜔
𝜇 − 𝛾𝜌𝜇𝜔

𝜇
)

, (1)

𝐿𝜇 =𝑈−1∇𝜇𝑈 =𝐿𝑗
𝜇𝑡𝑗 , 𝑆𝜇𝜈 =∇𝜇𝜔𝜈 −∇𝜈𝜔𝜇 , 𝑡𝑗 = 𝑖𝜎𝑗 ,

where 𝑈 (𝑥) ∈ 𝑆𝑈 (2) is the pionic field, 𝜎𝑖 are the Pauli matrices, 𝜔𝜇 is the 4th-vector potential describing the 𝜔-mesons, ∇𝜇 is the 
covariant derivative, 𝐾 and 𝛾 are positive coupling constants fixed experimentally, and 𝑀𝜔 corresponds to the 𝜔-mesons mass. In 
our convention 𝑐 = ℏ = 1, Greek indices run over the four dimensional space-time with a mostly plus signature, and Latin indices are 
reserved for those of the internal space.

The field equations of the system are a set of seven coupled partial differential equations given as follows: First, the three equations 
obtained varying the actions with respect to the pionic matter field 𝑈 are

∇𝜇𝐿
𝜇 − 6𝛾

𝐾
∇𝜈(𝜖𝜇𝜈𝜆𝜌𝜔𝜇𝐿𝜆𝐿𝜌) = 0 . (2)

Second, the field equations that come from the coupling with the 𝜔-mesons, obtained through the variation with respect to the field 
𝜔𝜇 , are

1 Here we consider two ways to avoid Derrick’s theorem. First, we consider a system without spherical symmetry. In particular, we construct solitons confined to a 
finite volume in regular patterns. Second, the matter field depends on a light-like degree of freedom, which constitutes one of the main ingredients in the construction 
of analytical solutions.

2 In addition to the Skyrme model, in the study of compact stars, the Walecka model is a very useful theory [63], [64], [65], which also describes nucleons and 
2

mesons. A discussion about the relation between these models can be found in Ref. [66].
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∇𝜇𝑆
𝜇𝜈 −𝑀2

𝜔𝜔
𝜈 = 𝛾𝜌𝜈 . (3)

The 𝜔-mesons interact with the 𝜋-mesons through the topological current, 𝜌𝜇 , present in Eq. (1), which is defined as

𝜌𝜇 = 𝜖𝜇𝜈𝜆𝜌 Tr
[(
𝑈−1𝜕𝜈𝑈

)(
𝑈−1𝜕𝜆𝑈

)(
𝑈−1𝜕𝜌𝑈

)
] , (4)

where 𝜖𝜇𝜈𝜆𝜌 is the Levi-Civita tensor. The integral over a space-like hypersurface Σ of the 𝜌0 component of the topological current 
leads to the topological charge

𝐵 = 1
24𝜋2 ∫

Σ

𝜌0𝑑𝑉 , (5)

which determines the baryonic number of a given matter configuration.

On the other hand, the energy-momentum tensor of the theory is given by

𝑇𝜇𝜈 = −𝐾

2
Tr

[
𝐿𝜇𝐿𝜈 −

1
2
𝑔𝜇𝜈𝐿

𝛼𝐿𝛼

]
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𝛼 − 1
4
𝑆𝛼𝛽𝑆
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+𝑀2
𝜔

(
𝜔𝜇𝜔𝜈 −

1
2
𝑔𝜇𝜈𝜔

𝛼𝜔𝛼

)
+ 𝛾

(
𝜌𝜇𝜔𝜈 + 𝜌𝜈𝜔𝜇 − 𝑔𝜇𝜈𝜌𝛼𝜔

𝛼
)

.

(6)

3. The solutions

In this section, we construct two types of analytical solutions of the NLSM coupled to 𝜔-mesons using two different Ansätze for 
the pionic field 𝑈 (𝑥) ∈ 𝑆𝑈 (2). The first one, which describes baryonic layers (the so-called “lasagna phase”), is built via the Euler 
angles representation, while the second one, which describes baryonic tubes (the so-called “spaghetti phase”), is constructed via the 
exponential representation. Both configurations possess a non-vanishing topological charge.3 For the 𝜔-mesons potential, we will use 
a convenient choice that allows decoupling the degrees of freedom corresponding to each type of meson. This desirable characteristic 
is achieved by Ansätze that satisfy the following relation:

∇𝜈(𝜖𝜇𝜈𝜆𝜌𝜔𝜇𝐿𝜆𝐿𝜌) = 0 , (7)

which is clear from Eq. (2). We will see that, although this condition may at first seem restrictive, the solutions that emerge from it 
exhibit particular characteristics that come from the coupling of the 𝜋-mesons and 𝜔-mesons.

As we are interested in the construction of analytical solutions at finite volume, we will consider the metric of a box

𝑑𝑠2 = −𝑑𝑡2 +𝐿2
𝑥𝑑𝑥

2 +𝐿2
𝑦𝑑𝑦

2 +𝐿2
𝑧𝑑𝑧

2 , (8)

where the adimensional spatial coordinates {𝑥, 𝑦, 𝑧} have the ranges

0 ≤ 𝑥 ≤ 2𝜋 , 0 ≤ 𝑦 ≤ 𝜋 , 0 ≤ 𝑧 ≤ 2𝜋 , (9)

and the coefficients 𝐿𝑖 fix the size of the box in which the solitons are confined.

3.1. Modulated baryonic layers in a cloud of 𝜋 and 𝜔 mesons

For the construction of analytical solutions describing baryonic layers at finite volume in the NLSM coupled to 𝜔-mesons, we will 
use an Ansatz inspired in the case of Yang-Mills theory and the Skyrme model introduced in Refs. [42], [43], [45], [46] (see also 
[78], [79], [80], [81], [82], [83]). In those references, it has been shown that the parameterization in Euler angles is convenient to 
describe finite volume configurations homogeneous in two spatial dimensions.

An element of 𝑆𝑈 (2) can be written in the Euler angles representation as follows

𝑈 = 𝑒𝐹 (𝑥𝜇 )𝑡3𝑒𝐻(𝑥𝜇 )𝑡2𝑒𝐺(𝑥𝜇 )𝑡3 , (10)

where 𝐹 (𝑥𝜇), 𝐺(𝑥𝜇), 𝐻(𝑥𝜇) are the three degrees of freedom of the pionic field, and they are, in principle, arbitrary functions of the 
coordinates. A choice for the degrees of freedom that allows to reduce the NLSM equations to a decoupled system at finite volume is 
the following (see [43] for details)

𝐹 (𝑥𝜇) = 𝑞𝑦 , 𝐻(𝑥𝜇) =𝐻(𝑥) , 𝐺(𝑥𝜇) =𝐺(𝑡, 𝑧) . (11)

In fact, the above Ansatz, in absence of the 𝜔-mesons field, reduces the NLSM equations to the following solvable system

𝜕2𝑥𝐻 = 0 , (12)

3 As we will see below, the inclusion of the 𝜔-mesons induces a change in the geometry of the nuclear pasta states; in particular, the baryonic tubes flatten in one 
3

direction. This is the reason for calling these novel solutions “nuclear linguine phase”.
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□𝐺 = 𝜕2𝑡 𝐺 − 1
𝐿2

𝑧

𝜕2𝑧𝐺 = 0 . (13)

Here below we point out some important comments about these equations. First, being Eq. (12) a simple ordinary differential 
equation (ODE) and Eq. (13) the wave equation, the solutions of these equations are, respectively

𝐻(𝑥) = (1 + 2𝑛)
4

𝑥 , (14)

where 𝑛 is an integer number fixed by the boundary conditions, and

𝐺 =𝐺− +𝐺+ , (15)

where

𝐺+ = 𝑧+0 + 𝑣+

(
𝑡

𝐿𝑧

+ 𝑧

)
+
∑
𝑛≠0

(
𝑎+𝑛 sin

[
𝑛

(
𝑡

𝐿𝑧

+ 𝑧

)]
+ 𝑏+𝑛 cos

[
𝑛

(
𝑡

𝐿𝑧

+ 𝑧

)])
,

𝐺− = 𝑧−0 + 𝑣−

(
𝑡

𝐿𝑧

− 𝑧

)
+
∑
𝑛≠0

(
𝑎−𝑛 sin

[
𝑛

(
𝑡

𝐿𝑧

− 𝑧

)]
+ 𝑏−𝑛 cos

[
𝑛

(
𝑡

𝐿𝑧

− 𝑧

)])
.

Now, once the interaction with the 𝜔-field is taken into account, in order to decouple the contribution of the 𝜔-mesons from the 
pionic degrees of freedom, we must impose(

𝜕𝑡𝐺
)2 − 1

𝐿2
𝑧

(
𝜕𝑧𝐺

)2 =(
𝜕𝑡𝐺 + 1

𝐿𝑧

𝜕𝑧𝐺

)(
𝜕𝑡𝐺 − 1

𝐿𝑧

𝜕𝑧𝐺

)
= 0 . (16)

The above condition along with the following Ansatz for the 𝜔-mesons

𝜔𝜇 = − 𝑢

𝑝

(
𝜕𝑧𝐺,0,0,𝐿2

𝑧𝜕𝑡𝐺
)
, 𝑢 = 𝑢(𝑥) , (17)

(with 𝑝 an integer number) guarantees that the full system of equations remains integrable. In fact, the potential in Eq. (17) satisfies 
the constraint in Eq. (7). It must be highlighted that Eq. (16) is not inconsistent with the wave equation in Eq. (13). Instead of that, 
Eq. (16) is a particular case of Eq. (13); it projects one of the modes 𝐺− or 𝐺+ to zero. Therefore, the main difference with respect to 
Ref. [43] is that the degree of freedom 𝐺 now describes a two-dimensional free massless chiral scalar field. Note that this vector field 
is very similar to the Ansatz introduced in Refs. [38] and [39] for the Maxwell potential. However, there are relevant differences 
between these two cases. We will discuss this point in the next section.

From the above, the four equations related to the 𝜔-mesons are reduced to just one differential equation, namely

𝑢′′ −𝐿2
𝑥𝑀

2
𝜔𝑢 =

12𝛾𝑝𝑞𝐿𝑥

𝐿𝑦𝐿𝑧

sin(2𝐻)𝜕𝑥𝐻 . (18)

This equation can be easily solved due to the profile 𝐻 is a linear function. In fact, the 𝜔-mesons profile turns out to be

𝑢(𝑥) = −
12𝛾𝐿𝑥(2𝑛+ 1)𝑝𝑞

𝐿𝑦𝐿𝑧

(
4𝐿4

𝑥𝑀
2
𝜔 + (2𝑛+ 1)2

) sin((𝑛+ 1
2

)
𝑥
)

, (19)

where we have used periodic boundary conditions for the 𝑢 function; 𝑢(0) = 𝑢(2𝜋) = 0. The boundary conditions for the fields 𝐻 and 
𝐺 come from imposing the topological charge in Eq. (5) will be an integer number. In fact, using the previous parameterization in 
Eqs. (10) and (11), the topological charge density 𝜌0 becomes

𝜌0 = 12𝑞
𝐿𝑥𝐿𝑦𝐿𝑧

sin(2𝐻)𝜕𝑥𝐻𝜕𝑧𝐺 .

It follows that, choosing the following boundary conditions

𝐻(2𝜋) = (1 + 2𝑛)
2

𝜋 , 𝐻(0) = 0 , 𝐺(𝑡, 𝑧 = 2𝜋) −𝐺(𝑡, 𝑧 = 0) = (2𝜋)𝑝 , (20)

the topological charge turns out to be 𝐵 = 𝑝𝑞. Therefore, the baryon number for these kinds of solutions can be an arbitrary integer 
number. Although the integer parameter 𝑛 does not contribute to the topological charge, it determines the number of layers in the 
lattice along the 𝑥 direction.

Note that the boundary conditions in Eq. (20) implies that the coefficients 𝑣± in Eq. (15) satisfy 𝑝 = 𝑣+ −𝑣−, while the coefficients 
{𝑎±, 𝑏±} do not contribute to the topological charge.

The energy density, 𝜀 = 𝑇00, for the solutions presented above is given by

𝜀 = 𝐾

2

(
𝐻 ′ 2

𝐿2
𝑥

+ 𝑞2

𝐿2
𝑦

+Δ𝐺

)
+

𝐿2
𝑧

2𝐿2
𝑥𝑝

2 𝑢
′ 2Δ𝐺 + 1

2𝑝2
𝑀2

𝜔𝑢
2𝐿2

𝑧Δ𝐺 +
12𝐿𝑧𝛾𝑞

𝐿𝑥𝐿𝑦𝑝
𝑢𝐻 ′ sin(2𝐻)Δ𝐺 , (21)

where Δ𝐺 = 𝜕𝑡𝐺
2 + 1

𝐿2
𝑧

𝜕𝑧𝐺
2, is the energy density of a free massless scalar field, and the prime denotes 𝜕𝑥. Fig. 1 shows the energy 
4

density of these configurations. One can see that the solution describes an array of baryonic layers at finite volume; the number of 
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Fig. 1. Energy density of baryonic layers with 𝑞 = 𝑛 = 1 and 𝑝 = 2 In the upper row we have chosen the modulation coefficients as 𝑏1 = 0.1, 𝑏2 = 0.5, while the 
lower row is set to 𝑎1 = 0.1, 𝑎2 = 0.5. The left column corresponds to a snapshot at 𝑡 = 0 while the right column is set at time 𝑡 = 3𝜋

2
. We have assumed 𝐾 = 1 and 

𝐿𝑥 =𝐿𝑦 =𝐿𝑧 = 1.

layers is determined by the number 𝑛 in the boundary conditions, while the number of baryons is fixed by 𝑝 and 𝑞. The modulation 
of the tubes is controlled by the modes associated with the 𝐺 function in Eq. (15), as well as the evolution in time.

3.2. Modulated baryonic tubes in a cloud of 𝜋 and 𝜔 mesons

Crystals of baryonic tubes as solutions of the NLSM and Skyrme model can be constructed using the exponential representation, 
as have been shown in Refs. [37], [38], [39] and [40] (see also [43], [45], [46]).

An element of 𝑆𝑈 (2) in the exponential representation is written as

𝑈±1(𝑥𝜇) = cos (𝛼)𝟏2 ± sin (𝛼)𝑛𝑖𝑡𝑖 , 𝑛𝑖𝑛𝑖 = 1 , (22)

𝑛1 = sinΘcosΦ , 𝑛2 = sinΘsinΦ , 𝑛3 = cosΘ ,

where 𝛼, Θ and Φ are the three degrees of freedom of 𝑆𝑈 (2). Following Refs. [38] and [43], we will choose these functions as

𝛼 = 𝛼(𝑥) , Θ=𝑄𝑦 , Φ=𝐺(𝑡, 𝑧) . (23)

As in the case of the baryonic layers presented above, one can check that there is an Ansatz that satisfies the constraint in Eq. (7)

and, therefore, allows to decouple the NLSM equations from the 𝜔-mesons equations; that is,

𝑣 ( )

5

𝜔𝜇 = −
𝑝

𝜕𝑧𝐺,0,0,𝐿2
𝑧𝜕𝑡𝐺 , 𝑣 = 𝑣(𝑥, 𝑦) , (24)
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with 𝑝 a constant. This potential is very similar to Eq. (17), but in this case the function 𝑣 must depends on two spatial coordinates 
instead of just one.

Replacing Eqs. (8), (23) and (24) into the NLSM equations, we obtain the following decoupled system

𝛼′′ −𝑄2𝐿
2
𝑥

𝐿2
𝑦

sin(𝛼) cos(𝛼) = 0 , (25)

□𝐺 = 𝜕2𝑡 𝐺 − 1
𝐿2

𝑧

𝜕2𝑧𝐺 = 0 , (26)

(𝜕𝑡𝐺)2 − 1
𝐿2

𝑧

(𝜕𝑧𝐺)2 =
(
𝜕𝑡𝐺 + 1

𝐿𝑧

𝜕𝑧𝐺

)(
𝜕𝑡𝐺 − 1

𝐿𝑧

𝜕𝑧𝐺

)
= 0 . (27)

Again, Eqs. (26) and (27) are solved by one of the modes expansion in Eq. (15), defining a free massless chiral field theory in 1 + 1
dimensions for the 𝐺 field. The simplest solution of this system is a linear function 𝐺 = 𝑡

𝐿𝑧
− 𝑧, which has been explored in Ref. [66]; 

those are tubes without modulation. On the other hand, Eq. (25) can be solved analytically in terms of elliptic functions. Even more, 
the explicit solution of this equation is not necessary since all the relevant quantities that characterize the solution (such as the 
energy density and the topological charge density) only depend on 𝛼 and its derivatives, not on the 𝑥 coordinate explicitly. Indeed, 
Eq. (25) can be reduced to the following quadrature:

𝛼′ 2 +
𝐿2

𝑥𝑄
2

2𝐿2
𝑦

cos(2𝛼) =𝐸0 , (28)

where one can read 𝛼′ in terms of 𝛼 (here 𝐸0 is an integration constant fixed by the boundary conditions). On the other hand, the 
𝜔-mesons equations are reduced to the following partial differential equation

(−Δ+𝑀2
𝜔)𝑣 = 𝑓 (𝑥, 𝑦) , (29)

𝑓 (𝑥, 𝑦) = 12𝛾𝑄𝑝

𝐿𝑥𝐿𝑦𝐿𝑧

sin2(𝛼) sin(𝑄𝑦)𝛼′ , Δ= 1
𝐿2

𝑥

𝜕2𝑥 +
1
𝐿2

𝑦

𝜕2𝑦 .

Although this equation is not as simple as that of the nuclear lasagna phase, Eq. (29) is a Poisson equation, and its general solution 
can be written as

𝑣(𝑟) = ∫ 𝑑𝑟′G
(
𝑟, 𝑟′

)
𝑓
(
𝑟′
)

,
(
−∇2

𝑟
+𝑀2

𝜔

)
G
(
𝑟, 𝑟′

)
= 𝛿

(
𝑟− 𝑟′

)
, (30)

where 𝑟 = (𝑥, 𝑦) and G 
(
𝑟, 𝑟′

)
is the corresponding Green function. The topological charge density of this configuration is given by

𝜌0 = − 12𝑄
𝐿𝑥𝐿𝑦𝐿𝑧

sin(𝑄𝑦) sin2(𝛼)𝛼′𝜕𝑧𝐺 .

In order to have an integer value for the baryon number, we must impose the following boundary conditions:

𝛼(2𝜋) − 𝛼(0) = 𝑛𝜋, 𝐺(𝑡, 𝑧 = 0) −𝐺(𝑡, 𝑧 = 2𝜋) = (2𝜋)𝑝 , (31)

so that, the baryon number for these configurations turns out to be 𝐵 = 𝑛𝑝. Note that the parameter 𝑄 in Eq. (23) must be an odd 
number to ensure that the baryon number does not vanish.

The respective energy density reads

𝜀 =𝐾

2

⎛⎜⎜⎜⎝
sin2(𝛼)

(
Δ𝐺𝐿2

𝑦 sin
2(𝑄𝑦) +𝑄2

)
𝐿2

𝑦

+ 2𝛼′ 2

𝐿2
𝑥

⎞⎟⎟⎟⎠+
Δ𝐺𝐿2

𝑧

(
𝐿2

𝑦(𝜕𝑥𝑣)
2 +𝐿2

𝑥(𝜕𝑦𝑣)
2
)

2𝐿2
𝑦𝐿

2
𝑥𝑝

2

+
Δ𝐺𝐿2

𝑧𝑀
2
𝜔𝑣

2

2𝑝2
−

12𝐿𝑧𝛾𝑄 sin(𝑄𝑦)𝛼′ sin2(𝛼)𝑣Δ𝐺

𝐿𝑥𝐿𝑦𝑝
,

(32)

where Δ𝐺 has been defined below Eq. (21). Fig. 2 shows the energy density of these configurations. One can see that the system 
describes a lattice of baryonic tubes, where the numbers 𝑛 and 𝑝 define the baryon number, that is, the number of tubes in the 𝑥
direction. On the other hand, the parameter 𝑄 repeats the pattern in the 𝑦 direction.

An interesting issue arises from the coupling with the 𝜔-mesons. It is expected that nuclear spaghetti-like solutions are tubes 
extended in the 𝑧 direction (with or without modulation) whose cross sections are concentric circles [49], [61]. In fact, this is what 
is expected from nuclear spaghetti phases, as can be seen from the simulations obtained in Refs. [50], [51], [52], [53], [54], [55], 
[56], [57], [58], [59], [60]. Here, however, as the configurations extend in the 𝑧 direction, the cross sections no longer remain 
spherical but take on oval shapes. This phenomenon appears precisely because the coupling of the 𝜔-mesons reduces the repulsion 
6

energy between the baryons. Indeed, in Fig. 2 we can see that, for a fixed baryon number (the number of tubes in the 𝑥 direction) the 
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Fig. 2. Energy density of baryonic tubes with 𝑛 = 4, 𝑄 = 3 and 𝑝 = 6. In the upper row we have chosen the modulation coefficients as 𝑏1 = 0.1, 𝑏2 = 0.5, while the 
lower row is set to 𝑎1 = 0.1, 𝑎2 = 0.5. The left column corresponds to a snapshot at 𝑡 = 0 while the right column is set at time 𝑡 = 3𝜋

2
. We have assumed 𝐾 = 1 and 

𝐿𝑥 =𝐿𝑦 =𝐿𝑧 = 1.

tubes in the 𝑦 direction move closer together due to the lower repulsion which generates the 𝜔-mesons in addition to the 𝜋-mesons, 
and transforming the nuclear spaghetti phase in a kind of nuclear linguine phase.

4. Comparing crystals

As was proposed in Refs. [14], [15], [16], the inclusion of vector mesons in the NLSM allows for a reduction in the predicted 
binding energy for nucleons, which makes it more compatible with the experimental data. Even more, this can be clearly seen from 
the analytical solutions presented in the previous section, where in the case of the baryonic tubes (see Fig. 2), a flattening emerges 
due to the presence of the 𝜔-mesons.

Another way to see it is by introducing the quantity Δ(𝐵), which measures the interaction energy between baryons [14]. This 
quantity is defined as

Δ(𝐵) =
𝐸(𝐵+1) − (𝐸(𝐵) +𝐸(1))

(𝐵 + 1)𝐸(1)
, (33)

where 𝐵, in our cases, is the baryon number for the baryonic tubes and layers and 𝐸(𝑖) is the total energy of the system containing (𝑖)
baryons. This quantity is an increasing function of 𝐵, due to the strong short-range repulsion between baryons. In fact, from Fig. 3

one can see that the inclusion of the 𝜔-mesons reduces the interaction energy since these curves associated with the solutions with 
𝜔-mesons are below the one that only contains 𝜋-mesons.

Another interesting fact comes from the comparison between the baryonic tubes and layers. From Fig. 3 (below), one can see 
7

that, when comparing the Δ(𝐵) function for both configurations for a fixed baryon number, the layer pattern is the one that most 
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Fig. 3. Δ(𝐵) for the tubes (upper left) and the layers (upper right) in both cases: The NLSM coupled with the 𝜔-mesons (ΔFull

)
and the NLSM without the 𝜔-mesons (

Δ𝜔=0
)
. The comparison between lasagna and spaghetti phases (below). Here, we have set 𝐾 = 2, 𝛾 = 0.1, 𝑝 = 𝑞 = 1, 𝐿𝑥 =𝐿𝑦 =𝐿𝑧 = 1 and 𝑀𝜔 = 0.

reduces the repulsion energy between the baryons that constitute the system. Tube-like configurations are more repulsive, at least in 
this sector.

At this point, it is important to highlight the difference between the baryonic crystals coupled to 𝜔-mesons presented here versus 
the gauged crystals shown in Refs. [38], [43], constructed using similar methods. First, let us remember that gauged skyrmions come 
from the minimal coupling of the pionic field with photons through the covariant derivative, which is defined as

𝐷𝜇𝑈 =∇𝜇𝑈 +𝐴𝜇𝑈�̂� , �̂� =𝑈−1 [𝑡3,𝑈]
.

An appropriate Ansatz for the Maxwell potential allows to decouple the Skyrme equations from the Maxwell equations (just as in the 
case of the 𝜔-mesons that we have shown here), allowing the construction of crystalline structures of baryonic tubes and layers (see 
[38], [39], [40], [78], [79]). However, the fact that the coupling with vector mesons comes from an interaction term in the action 
instead of the minimal coupling, implies the following relevant differences:

1. For crystals of gauged skyrmions, the Skyrme equations are affected by the electromagnetic coupling (even when the three 
equations reduce to a single equation for the skyrmion profile), while in the case of the crystals with 𝜔-mesons the equation 
for the profile is exactly the same with and without 𝜔-mesons. This can be seen in Refs. [45], [46], [78], [79] for the nuclear 
lasagna phase.

2. In the case of gauged skyrmions, the Maxwell’s equations reduce to a Schrödinger-like equation, while for the 𝜔-mesons, the 
equations are reduced to a Poisson equation. This can be seen in Refs. [38], [39], [40], [45], [46] for the nuclear spaghetti 
phase.

3. While the coupling with the 𝜔-mesons generates a flattering in the energy density of the baryonic tubes and layers, the coupling 
with the electromagnetic field changes the intensity of the energy inside the tubes or layers, but the geometry remains the same.

5. Higher order corrections

In this section, we will show that the previous set of solutions can be constructed even when higher-order derivative terms are 
included in the action. For this purpose, we consider the generalized Skyrme model [22], [23], [24], [25], [26] (this is, the NLSM 
model plus the Skyrme term and higher order corrections) coupled to 𝜔-mesons, described by the action

𝐼gen[𝑈,𝜔] = ∫ 𝑑4𝑥
√
−𝑔

[
𝐾 Tr

(
𝐿𝜇𝐿𝜇 + 𝜆

8
𝐹𝜇𝜈𝐹

𝜇𝜈
)
− 𝑆𝜇𝜈𝑆

𝜇𝜈 − 1
2
𝑀2

𝜔𝜔𝜇𝜔
𝜇 − 𝛾𝜌𝜇𝜔

𝜇 +corr

]
, (34)

where 𝐹𝜇𝜈 =
[
𝐿𝜇,𝐿𝜈

]
. The term corr represents the subleading corrections to the Skyrme model, which can be obtained via chiral 

perturbation theory (see [25] and references therein) or by the large 𝑁𝑐 expansion of QCD [22], [23]. To make the calculations 
8

clearer, we will consider only the first correction, which is
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corr =
𝑐6
96

Tr
[
𝐹𝜇

𝜈𝐹𝜈
𝜌𝐹𝜌

𝜇
]
, (35)

(with 𝑐6 a coupling constant) although our results are still valid even including the next higher order terms.

The field equations obtained by varying the action in Eq. (34) with respect to the 𝑈 field, are

∇𝜇𝐿𝜇 + 𝜆

4
∇𝜇

[
𝐿𝜈,𝐹𝜇𝜈

]
− 6𝛾

𝐾
∇𝜈

(
𝜖𝜇𝜈𝜆𝜌𝜔𝜇𝐿𝜆𝐿𝜌

)
+

6𝑐6
𝐾

[
𝐿𝜇, 𝜕𝜈

[
𝐹𝜌𝜈,𝐹𝜌

𝜇
]]
= 0 , (36)

while the 𝜔-mesons equations are the same as in Eq. (3).

First, using the same Ansatz for the baryonic layers defined in Eqs. (10) and (11), one can check that the coupled system in Eq. 
(36) reduces to the same relations in Eqs. (12), (13) and (16). The contribution that comes from the Skyrme term is encoded in a 
global factor, namely

𝐾
(
𝐿2

𝑦 − 𝜆𝑝2
)
𝜕2𝑥𝐻 = 0 . (37)

Note that the contribution in Eq. (35) does not appear at all in the field equations. This is because the correction in Eq. (35) is the 
topological charge density to the square, and it vanishes when (at least) one of the pionic degrees of freedom is light-like, as is indeed 
the case for our solutions.

Something similar happens with the baryonic tubes. Indeed, for the Ansatz in Eqs. (22) and (23), the system in Eq. (36) is reduced 
to the same relations in Eqs. (26) and (27) for the 𝐺 function, together with a single ODE for the profile 𝛼:

𝛼′′
(
𝜆𝑄2 sin2(𝛼) −𝐿2

𝑦

)
+ 𝜆𝑄2 sin(𝛼) cos(𝛼)𝛼′ 2 +𝐿2

𝑥𝑄
2 sin(𝛼) cos(𝛼) = 0 . (38)

This last equation can be solved in terms of generalized elliptic integrals, but again, it can lead to a first order ODE:

𝜕𝑥

(
𝑌 (𝛼)

(
𝛼′
)2 +𝑊 (𝛼) +𝐸0

)
= 0 , (39)

𝑌 (𝛼) = 2𝐿2
𝑦 − 𝜆𝑄2 + 𝜆𝑄2 cos(2𝛼), 𝑊 (𝛼) =𝐿2

𝑥𝑄
2 cos(2𝛼) ,

(where 𝐸0 is an integration constant fixed by the boundary conditions), allowing all the relevant quantities to be written only in 
terms of 𝛼, and not explicitly on the coordinates.

6. Conclusions

We have shown that exact solutions describing crystals of baryonic tubes and layers can be constructed in a NLSM that includes 
𝜋-mesons and 𝜔-mesons. These configurations have an arbitrary topological charge (written as the product of two integer numbers) 
and can be modulated through a light-like degree of freedom present in both mesonic fields. The inclusion of the 𝜔-mesons to the 
NLSM allows for a reduction in the binding energy between baryons, making the predictions of the model more compatible with 
the experimental data. Interestingly, with the solutions constructed here, this can be seen very clearly: the energy density plot of 
the tube-like solutions shows that the tubes flatten in one direction by reducing the repulsion between baryons and forming a sort 
of “linguine phase”. Also, by looking at the same plot, it could be possible to break the tubes into small pieces and form a “gnocchi 
phase” by choosing a fine-tuning of the mode’s coefficients. In this way, the inclusion of the 𝜔-mesons could be important for an 
analytical description of the gnocchi phase. Finally, we have shown that these exact solutions can be constructed in the generalized 
Skyrme model, where higher-order derivative terms are included in the action.
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