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We simulate the space-time dynamics of high-energy collisions based on a microscopic kinetic
description in the conformal relaxation time approximation, in order to determine the range of applicability
of an effective description in relativistic viscous hydrodynamics. We find that hydrodynamics provides a
quantitatively accurate description of collective flow when the average inverse Reynolds number Re−1 is
sufficiently small and the early preequilibrium stage is properly accounted for. We further discuss the
implications of our findings for the (in)applicability of hydrodynamics in proton-proton, proton-nucleus,
and light nucleus collisions.
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Introduction.—Relativistic heavy ion collisions probe the
behavior of strong interaction matter under extreme con-
ditions. One of the central goals of these experiments is to
determine the properties of the quark-gluon-plasma (QGP),
a new phase of deconfined strongly interacting matter. The
emergence of collective phenomena in such collisions has
been successfully described using relativistic viscous hydro-
dynamics [1–6], which in modern simulation frameworks
forms the central part of multistage evolution models [7–9].
Despite tremendous phenomenological success, it is

important to remember that viscous relativistic hydrody-
namics is by construction an effective macroscopic descrip-
tion of the underlying microscopic theory of quantum
chromodynamics (QCD), which aims to describe the long-
time and long-wavelength behavior of QCD close to
equilibrium. Consequently, the applicability of hydrody-
namics requires a separation of the timescale and length
scale of the dynamics of the microscopic constituents and
those of the macroscopic dynamics of the system as a whole
as well as some degree of equilibration of the QGP, both of
which are not necessarily fulfilled in heavy ion collisions.
While for sufficiently high multiplicity events one can
expect the system to quickly evolve toward equilibrium,
establishing the timescale of this process for practical
purposes has so far been mostly guesswork [4]. In recent
years, the observation of collective flow phenomena even in
small collision systems, that were traditionally considered to

be too dilute to allow for QGP formation, has challenged the
hydrodynamic paradigm [10–15]. While remarkable
progress has been made in understanding the emergence
and applicability of hydrodynamic behavior in the simplistic
0þ 1D Bjorken flow [16–31], despite some notable
attempts [32–34] the crucial question under what circum-
stances viscous hydrodynamics provides a reliable and accu-
rate description of the more complex space-time dynamics
of real-world collisions remains largely unanswered.
In this Letter, we employ a microscopic description

in relativistic kinetic theory to determine the range of
applicability of viscous hydrodynamics in high-energy
collisions. Starting from a nonequilibrium initial state
immediately after the collision, we find that—even in
the limit of very large interaction strength—the early time
preequilibrium dynamics can never be described by ordi-
nary viscous hydrodynamics which can affect collective
flow observables at the few-percent level. Subsequently, for
sufficiently large systems, the fluid approaches equilibrium
before the onset of the transverse expansion and the
development of (anisotropic) transverse flow can never-
theless be described macroscopically using viscous rela-
tivistic hydrodynamics. By matching the nonequilibrium
kinetic description to relativistic viscous hydrodynamics,
we determine a critical inverse Reynolds number Re−1c
below which hydrodynamics can describe the space-time
dynamics of the QGP, including the development of
anisotropic transverse flow, with a few percent accuracy.
Conversely, for small systems or large viscosity, the

system remains out of equilibrium over the course of
the evolution and we evaluate when the conditions for the
applicability of viscous hydrodynamics aremet as a function
of shear viscosity to entropy density ratio η=s, initial state
energy density, and system size, and thereby infer bounds on
the applicability of hydrodynamics in small systems.
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Since the reasons for the failure of hydrodynamics at
early times can be understood and cured within effectively
0þ 1D Bjorken flow dynamics, we further propose an
alternative scheme that allows us to initialize hydrodynamic
simulations immediately after the collision τ → 0 by
compensating for the improper description at early times
through rescaling the initial conditions.
In this Letter, we focus on the phenomenologically

relevant findings and insights noting that our companion
paper [35] contains a variety of additional information and
details related to our study.
Kinetic theory setup.—In order to study the microscopic

evolution of the space-time dynamics, we employ the Boltz-
mann equation in the relaxation time approximation (RTA),

pμ
∂μfðx; pÞ ¼ −

uμðxÞpμ

τRðxÞ
½fðx; pÞ − feqðx; pÞ�; ð1Þ

with a conformal relaxation time τRðxÞ ¼ ½ðη=sÞ=5TðxÞ�.
The equilibrium distribution feq is determined by the
temperature TðxÞ and flow velocity uμðxÞ, which are
obtained via Landau matching uμTμν ¼ ϵuν, where ϵ ¼
aT4 denotes the energy density, a ¼ νeffπ

2=30 with νeff
being the effective number of (bosonic) degrees of freedom
and TμνðxÞ ¼ R

p p
μpνfðx; pÞ is the energy-momentum

tensor (see Ref. [35] for details). Because of the particular
simplicity of this microscopic theory, differences in the
space-time dynamics of the collision for a fixed initial
energy density profile ðϵτÞ0ðx⊥Þ only depend on a single
dimensionless opacity parameter [33,36]

γ̂ ¼ 1

5η=s

�
R
πa

dE0⊥
dη

�
1=4

; ð2Þ

which accounts for variations of the shear viscosity to
entropy density ratio η=s, as well as of the initial energy
per unit rapidity dE0⊥=dη ¼

R
x⊥ðϵτÞ0ðx⊥Þ and the system

size R2 ¼ ðdE0⊥=dηÞ−1
R
x⊥ x

2⊥ðϵτÞ0ðx⊥Þ. In order to have a
well-defined collision geometry, we focus on Pbþ Pb
collision at LHC energies and employ an average initial-
state energy density profile ðϵτÞ0ðx⊥Þ obtained from a
saturation model [37] and vary η=s as well as the centrality
of the collision to assess the opacity dependence.
We will quantify the development of anisotropic trans-

verse flow in terms of the elliptic energy flow,

εp ¼
R
x⊥ Txxðx⊥Þ − Tyyðx⊥Þ þ 2iTxyðx⊥ÞR

x⊥ Txxðx⊥Þ þ Tyyðx⊥Þ
; ð3Þ

which can be inferred directly from the energy-momentum
tensor Tμν, and thus eliminates uncertainties related to the
hadronization process [38–40]. Microscopic simulations in
kinetic theory will be contrasted with the macroscopic
description in relativistic hydrodynamics by employing the
vHLLE hydro code [41], which provides the evolution in
Mueller-Israel-Stewart type second-order viscous hydro-
dynamics [42,43] with conformal equation of state and
transport coefficients matched to the RTA Boltzmann
equation (see Ref. [35] for details).
Collective flow and applicability of hydrodynamics.—

In order to assess the range of applicability of the

FIG. 1. Variations of the elliptic flow (left) as a function of the shear viscosity to entropy density ratio η=s for 30%–40% Pbþ Pb
collisions and (right) as a function of collision centrality for fixed η=s ¼ 2=4π. Simulations in kinetic theory (black squares) are
compared to ideal (gray dashed) and viscous hydrodynamics (purple circles) as well as hybrid simulations (red pluses, crosses, and
diamonds) matching kinetic theory to hydrodynamics at different values of the average inverse Reynolds number Re−1. Bands also show
the results for naive hydrodynamics simulations with varying initialization times τ0 ¼ 0.4–1.0 fm=c. Semianalytic results from a
leading order opacity expansion are shown as a blue curve in the left panel.
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hydrodynamic description, we compare the results to
microscopic simulations in kinetic theory. In Fig. 1 we
present the final results [44] (at τ ¼ 4R) for the elliptic
energy flow εp in 5.02 TeV Pbþ Pb collisions as a function
of η=s in midcentral collisions (30%–40%) in the left panel
and for a realistic value of η=s ¼ 2=4π as a function of
centrality in the right panel. Starting with the results in
kinetic theory, one immediately observes a significant
opacity dependence of the final state momentum response
to the initial state geometry. In the limit of low opacity
(η=s ≫ 1), the anisotropic flow is generated by rare final
state interactions and can be well described by the leading
order opacity expansion [45–51] up to γ̂ ≲ 1, as indicated
by the blue line. Subsequently, for smaller values of η=s the
anisotropic flow response increases monotonically as a
function of opacity and eventually saturates at large
opacities (η=s ≪ 1); it is further interesting to observe that
the anticipated values for QCD 4πη=s ≃ 1–3 [8,9,52] fall
into a regime where the final state response exhibits a
significant opacity dependence, where changes of the
viscosity η=s by fifty percent result in changes of the
anisotropic flow of about 15%.
Now that we have established the baseline from kinetic

theory, we can compare the microscopic results to the ones
obtained using a hydrodynamic description. Clearly, the
first thing to note is that in the limit of infinite opacities
(η=s → 0), the kinetic theory results converge toward ideal
hydrodynamics as indicated by the horizontal line.
However, this seemingly obvious agreement is in fact rather
nontrivial as we shall explain now. Because of the rapid
longitudinal expansion, the system is initially unable to
sustain a significant longitudinal pressure, which is only
built up over the course of the thermalization process on a
timescale τeq ∼ γ̂−4=3 [36]. Based on the conformal behavior
of the system, this isotropization of the pressure proceeds
more rapidly in the hotter regions than in the colder regions
of the plasma. Since the system performs work against the
longitudinal expansion [23,53], the preequilibrium evolu-
tion of the longitudinal pressure affects the evolution of the
energy density, resulting in the phenomenon of inhomo-
geneous longitudinal cooling [36], where hotter regions of
the plasma begin to cool faster than colder regions of the
plasma, thus leading to a small but non-negligible change of
the geometry of the energy density profile even prior to the
onset of the (anisotropic) transverse expansion. In contrast,
in ideal hydrodynamics the system is always assumed to be
in an isotropic local thermal equilibrium state, and the effect
of inhomogeneous longitudinal cooling is absent. Hence, in
order to restore agreement with ideal hydrodynamics in the
limit of infinite opacities (η=s → 0), it is in fact necessary to
initialize the ideal hydrodynamic simulation with the
equilibrated energy density profile (as opposed to the
original profile in the limit τ → 0) as is done in Fig. 1.
While inhomogeneous longitudinal cooling is absent in

ideal hydrodynamics, viscous hydrodynamics describes this

effect incorrectly as it generically features a negative
longitudinal pressure at very early times [24]. Similar to
the case of ideal hydrodynamics, this effect can be com-
pensated by a local rescaling of the initial energy density
profile. Specifically, we demand that under the 0þ 1-D
Bjorken flow evolution, the late-time behavior of the energy
density agrees between hydrodynamics and kinetic theory.
Mathematically, we make use of the attractor solution for
the nonequilibrium evolution of the energy density [23,54]

τ4=3ϵ ¼ τ4=30 ϵ0
Eðw̃0Þ

Eðw̃Þ; ð4Þ

where E is a universal function that depends only on the
conformal scaling variable w̃ ¼ τT=ð4πη=sÞ, with its
asymptotic behavior at early and late times given by

Eðw̃ ≪ 1Þ ¼ C−1
∞ w̃γ; Eðw̃ ≫ 1Þ ¼ 1 −

1

4πw̃
: ð5Þ

Crucially, the coefficients C∞ and γ that describe the
longitudinal cooling at early times take different values
in kinetic theory ðγ ¼ 4=9; CRTA

∞ ≃ 0.88Þ and viscous hy-
drodynamics ½γ ¼ ð ffiffiffiffiffiffiffiffi

505
p

− 13Þ=18≃ 0.526;Chydro
∞ ≃ 0.82�,

whereas in ideal hydrodynamics they are trivially determined
asEðw̃Þ ¼ 1,C∞ ¼ 1, and γ ¼ 0. By taking advantage of the
fact that in kinetic theory ðϵτÞ0ðx⊥Þ is constant at early times,
we then initialize the energy density in hydrodynamics as

ϵhydro0 ðx⊥Þ ¼
��

4πη=s
τ0

a
1
4

�1
2
−9γ

8

�
CRTA
∞

Chydro
∞

�
9=8 ðϵτÞ0ðx⊥Þ

τ0

� 8=9
1−γ=4

:

ð6Þ

such that upon substituting Eq. (6) into Eq. (4), hydro-
dynamics and kinetic theory agree at the level of τ4=3ϵ when
w̃ ≫ 1 and w̃0 ≪ 1, by virtue of Eq. (5).
By performing such a local rescaling, viscous hydro-

dynamics can be initialized at arbitrarily early times
(τ0 → 0) and provides an accurate description of the
anisotropic flow down to opacities of γ̂ ≳ 3, as can be
seen from the purple curve in Fig. 1. We finally note that, if
the preequilibrium regime is completely ignored and
hydrodynamic simulations are naively initialized with
the original energy density profile at a fixed proper time
τ0 ¼ 0.4–1 fm=c, the above effects and the absence of
preflow lead to sizable deviations even in the limit of very
large opacities. In all cases, similar conclusions can also be
reached for the development of radial flow and the cooling
of the plasma, as demonstrated explicitly in Supplemental
Material [55].
Critical inverse Reynolds number.—Because of the

aforementioned subtleties associated with the preequili-
brium stage, another viable alternative is to employ a
kinetic description at early times when the system is far
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from equilibrium and switch to a macroscopic description
only once the system is sufficiently close to local thermal
equilibrium for hydrodynamics to be applicable. While in
phenomenological studies the timescale for initializing hy-
drodynamic simulations is typically chosen as ∼1 fm=c
[4], a more physical choice can be achieved by monitoring
the magnitude of nonequilibrium corrections, as charac-
terized by the (average) inverse Reynolds number [59,62]

Re−1 ¼
�
6πμνπμν

ϵ2

�
1=2

; ð7Þ

where the shear-stress tensor πμν is the nonequilibrium part
of Tμν. By switching from kinetic theory to hydrodynamics
at different values of Re−1, we can then infer what degree of
equilibration is required for hydrodynamics to provide an
accurate description of the space-time dynamics.
Simulation results for hybrid simulations using kinetic

theoryþ hydrodynamics are also presented in Fig. 1 and
are in excellent agreement with the microscopic calcula-
tions from kinetic theory at large opacities γ̂ ≫ 1.
Strikingly, when comparing the results obtained by switch-
ing at different Re−1 ¼ 0.8, 0.6, 0.4 one observes that the
agreement between kinetic theory and hybrid simulations
improves significantly with decreasing the inverse
Reynolds number at the point of switching. Specifically,
when switching at Re−1 ≲ 0.75, the discrepancy between
kinetic theory and hybrid simulations remains below 5%
irrespective of the viscosity or centrality of the collision.
We note, however, that for large viscosities (4πη=s≳ 4)
as well as for more peripheral collisions (≳60%), a

sufficiently small inverse Reynolds number is only
achieved after a long period of evolution in kinetic theory;
in order to distinguish this behavior, curves for which the
switching time τ=R exceeds the value 0.5 are shown with
dashed lines in Fig. 1. Eventually, for very large viscosities
4πη=s≳ 10 or very peripheral collisions≳80%, the desired
value of Re−1 may never be reached throughout the
evolution of the system.
Range of applicability of hydrodynamics.—Based on the

observation that a critical inverse Reynolds number Re−1c ≈
0.75 is required for the applicability of viscous hydro-
dynamics, we can immediately rule out the viability of a
hydrodynamic description at small opacities γ̂ ≲ 1, where
the system remains significantly out of equilibrium
throughout its entire evolution and this threshold is never
reached. However, at smaller viscosities, the aforemen-
tioned threshold may be reached very early or at a
comparatively late time and the question whether or not
hydrodynamics is applicable becomes a more delicate
issue. Hence, in order to quantify whether or not hydro-
dynamics provides a meaningful and accurate description
of the space-time dynamics of high-energy collisions, we
will compare the timescale τhydro for the equilibration of the
system, determined by requiring Re−1 < Re−1c , with the
onset of the transverse expansion τexp, determined by
requiring that the average transverse flow velocity hu⊥iϵ
becomes 0.1 times the speed of light, as depicted in Fig. 2.
Irrespective of the opacity, the transverse expansion sets

in on time scales τexp=R ≈ 0.2 albeit with a slight depend-
ence on the initial energy density profile, as can be seen
from the centrality dependence of the curve in the right

FIG. 2. Characteristic timescales for the onset of the transverse expansion τexp and the onset of hydrodynamic behavior τhydro (left) as a
function of η=s for 30%–40% Pbþ Pb collisions and (right) as a function of collision centrality for fixed 4πη=s ¼ 2. Dashed lines
indicate the γ̂−4=3 estimate for the transition between nonequilibrium and hydrodynamic behavior in Eq. (8). Below opacities γ̂ ≃ 3–4,
the transverse expansion sets in while the system is significantly out of equilibrium and hydrodynamics is unable to accurately describe
the transverse expansion of the system.
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panel. Conversely, the timescale for the applicability of
hydrodynamics shows a strong opacity dependence [36],
which can be quantified semiempirically as [63]

τhydro=R ≈ 1.53γ̂−4=3½ðRe−1c Þ−3=2 − 1.21ðRe−1c Þ0.7�; ð8Þ

as indicated by the dashed lines in Fig. 2. By comparing the
different curves in Fig. 2, one then concludes that for
opacities

γ̂ ≳ 3–4; ð9Þ

which in Pbþ Pb collisions corresponds to η=s≲ 3=4π for
30%–40% centrality or ≲60% centrality for η=s ¼ 2=4π,
the system undergoes equilibration (well) before the onset
of the transverse expansion (τhydro < τexp), such that
viscous hydrodynamics provides a meaningful and accurate
description of the development of (anisotropic) transverse
flow. Conversely, for γ̂ ≲ 3–4 hydrodynamics is not appli-
cable as the system remains out of equilibrium during the
transverse expansion (τhydro > τexp) and a genuine non-
equilibrium description is required instead.
Conclusions.—Based on a detailed comparison with the

microscopic evolution in kinetic theory, we find that
viscous hydrodynamics provides an accurate description
of the space time dynamics of high-energy heavy-ion
collisions, if and only if the system is sufficiently close
to equilibrium, as quantified by an inverse Reynolds
number [cf. Eq. (7)] Re−1 ≲ 0.75. Clearly, this is not the
case during the very early stages of the collision, where
irrespective of the shear viscosity to entropy density ratio
(η=s) the system is highly anisotropic and the inhomo-
geneous longitudinal cooling cannot be properly described
within ordinary viscous hydrodynamics. Disregarding this
effect leads to percent-level deviations in the development
of anisotropic transverse flow even in the limit of very
small viscosities. However, for sufficiently small viscos-
ities, this effect can be compensated by an inhomogeneous
local rescaling of the initial energy density profile
[cf. Eq. (6)], or by employing a hybrid description where
the energy momentum tensor after the early kinetic
evolution provides the initial conditions for the subsequent
hydrodynamic stage. It is also conceivable that improved
hydrodynamic theories, such as anisotropic hydrodynamics
[64–68], or hybrid schemes based on the core-corona
picture [69,70] can further push the limits of applicability
by improving the description far from equilibrium, and it
will be interesting to investigate this further in the future.
Similarly, in very peripheral collisions or if the shear

viscosity of the QGP was significantly larger (η=s≳ 3=4π),
the system remains out of equilibrium for a significant part
or even all of its space-time evolution, such that, if at all,
hydrodynamics only becomes applicable at very late times,
when the transverse expansion is already very significant.
Based on our analysis, we argued that a meaningful and

accurate hydrodynamic description of collective flow can
be achieved if the opacity γ̂ [cf. Eq. (2)] exceeds values
of ≈3–4.
Since within our simplified kinetic description, the non-

equilibrium evolution is governed by the single dimension-
less opacity parameter γ̂, it is tempting to speculate about the
consequences of our findings for the theoretical description
of small collision systems. Based on experimental mea-
surements of the transverse energy per unit rapidity dE⊥=dη
and theoretical estimates of the system size, both of which
are detailed in Supplemental Material [55], we can deduce
that for a typical value of η=s ¼ 2=4π hydrodynamics is not
applicable in minimum bias pþ p collisions at LHC
energies where opacities typically take values of γ̂ ≈ 0.7.
Interestingly, the situation is more subtle in pþ Pb colli-
sions where opacities range from γ̂ ≈ 1.5 in minimum bias
events toward the limits of applicability of hydrodynamics
in high-multiplicity events where γ̂ ≈ 2.7 can be reached.
Unfortunately though, the initial state geometry of pþ Pb
collisions is at present also poorly constrained [71–73], such
that it becomes difficult to disentangle the effects of the
geometry from the effects of the flow response. However,
the onset of hydrodynamic behavior will also be explored in
Oþ O collisions where at LHC energies the estimated
opacities reach from 1.4 in peripheral events and 2.2 in
midcentral events all the way to 3.1 in central events. Since,
as advertised in [74], the collision geometry in Oþ O
collisions is much better constrained, we therefore expect
that such collisions will not only provide a crucial test of the
applicability of hydrodynamics in heavy-ion collisions but
also penetrate into the exciting regime of nonequilibrium
QCD in midcentral and peripheral events.
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