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We present results for single pseudoscalar meson pole contributions and pion box contributions to 
the hadronic light-by-light (LBL) correction of the muon’s anomalous magnetic moment. We follow the 
recently developed dispersive approach to LBL, where these contributions are evaluated with intermediate 
mesons on-shell. However, the space-like electromagnetic and transition form factors are not determined 
from analytic continuation of time-like data, but directly calculated within the functional approach 
to QCD using Dyson-Schwinger and Bethe-Salpeter equations. This strategy allows for a systematic 
comparison with a strictly dispersive treatment and also with recent results from lattice QCD. Within 
error bars, we obtain excellent agreement for the pion electromagnetic and transition form factor and 
the resulting contributions to LBL. In addition, we present results for the η and η′ pole contributions 
and discuss the dynamical effects in the η − η′ mixing due to the strange quarks. Our result for the 
total pseudoscalar pole contributions is aPS-pole

μ = 91.6 (1.9) × 10−11 and for the pion-box contribution 
we obtain aπ−box

μ = −16.3 (2)(4) × 10−11.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The anomalous magnetic moment aμ = 1
2 (g − 2)μ of the muon 

is currently under intense scrutiny from both theory and exper-
iment. With a persistent discrepancy of about 3–4 standard de-
viations between the theoretical Standard Model (SM) predictions 
and experimental determinations [1], aμ is considered a potential 
candidate for the observation of physics beyond the SM. In order 
to identify such contributions, both theory and experiment need 
to improve their precision beyond the 0.54 parts per million level 
that has been achieved by E821 at Brookhaven [2,3]. Two new ex-
periments at Fermilab [4] and J-PARC [5] are under way, aiming to 
reduce the experimental error by a factor of four.

However, the error budget of the theoretical SM prediction is 
dominated by hadronic contributions that probe non-perturbative 
QCD and at present mask any potential signals of new physics. 
The most relevant of these are hadronic vacuum polarisation (HVP) 
and light-by-light (LBL) scattering effects; the latter of which are 
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the focus of this work and are shown diagrammatically in Fig. 1. 
While the currently accepted estimate on hadronic LBL stems from 
a combination of calculations based on low-energy effective mod-
els [6], see [7] for a recent overview, there are great efforts both 
from lattice QCD [8–18] as well as dispersion theory [19–28] to 
improve this estimate.

Within the functional approach via Dyson-Schwinger and Bethe-
Salpeter equations (DSEs and BSEs), meson exchange contribu-
tions to LBL as well as an (incomplete) determination of quark-
loop effects (see Fig. 2) have been presented and discussed in 
Refs. [29–31]. In the same framework, the dispersive results for 
hadronic vacuum polarisation have been reproduced on the level 
of 2-3 percent [32].

A principal challenge for the functional approach is to provide 
a reliable error estimate. In all practical calculations the tower of 
DSEs must be truncated, and it is extremely hard to quantify the 
systematic error of neglected contributions. Within the class of 
rainbow-ladder truncations employed thus far for aμ , insight can 
be gained only through comparison with both experimental results 
and other approaches whose error estimates are well-defined.

Subsequently, when a given truncation scheme is known to 
perform well for certain observables, it can be expected to per-
form equally well for related ones. Fortunately, the rainbow-ladder 
scheme used in the context of aμ passes this test. As summarised 
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Fig. 1. The light-by-light scattering contribution to aμ . The main ingredient is the 
hadronic photon four-point function �μναβ .

e.g. in [33], it does extremely well in the pseudoscalar meson 
sector and very reasonably in the vector meson channels. This in-
cludes observables such as masses, form factors, charge radii and 
transition form factors which are all highly relevant for the cal-
culation of aμ . Given this quality, it is plausible to make use of 
functional methods as a complementary tool to lattice QCD and 
dispersive approaches.

In this work we use previously obtained results for the pion 
electromagnetic form factor (EMFF) and the pion two-photon tran-
sition form factor (TFF) in the DSE/BSE framework to determine 
the dispersive pion box and pion pole contributions to hadronic 
LBL. Based on the excellent agreement with recent data driven 
dispersive results, we then derive predictions for the η and η′ me-
son pole contributions and discuss the impact of the strange quark 
dynamics. In the following we briefly summarise the technical el-
ements of our calculation followed by a discussion of the results. 
We use a Euclidean notation throughout this work; see e.g. Ap-
pendix A of Ref. [33] for conventions.

2. Anomalous magnetic moment

To obtain the LBL contribution to the muon anomalous mag-
netic moment aLBL

μ , one must consider its contribution to the 
muon-photon vertex shown in Fig. 1. On the muon mass-shell this 
vertex can be decomposed as

= ū(p′)
[

F1(Q 2)γ α − F2(Q 2)
σαβ Q β

2mμ

]
u(p), (1)

where p and p′ are the muon momenta, Q is the photon momen-
tum and σαβ = − i

2 [γ α, γ β ]. The anomalous magnetic moment is 
defined as

aμ = g − 2

2
= F2(0), (2)

which is obtained from Eq. (1) in the limit of vanishing photon 
momentum Q 2.

In order to extract aμ we use the technique advocated in 
Ref. [34], see also Ref. [30] for details. We then obtain

aμ = imμ

12
lim

Q →0
Tr

{[γ ρ,γ σ ]�ρσ
}

(3)

with the muon-photon vertex

�ρσ =
∫
q1

∫
q3

�+(p′)γ μ S(k1)γ
ν S(k2)γ

λ �+(p)

× Dμμ′
(q1) Dνν ′

(q2) Dλλ′
(q3)

× ∂

ρ
�μ′ν ′λ′σ (q1,q2,q3, Q ) ,

(4)
∂ Q
Fig. 2. Left: The quark loop contribution to aμ (without permutations of the photon 
legs). The quark propagators and quark-photon vertices are fully dressed. Right: The 
meson-exchange part of the LBL contribution to aμ (without permutations of the 
photon legs).

Fig. 3. Representation of the photon four-point function in terms of the quark Comp-
ton vertex (see App. B in Ref. [31] for a derivation). The quark-photon four-point 
function in the figure is defined as �̃ − 1

2 �B , where �̃ is the full quark Comp-
ton vertex defined in Ref. [35] and �B are the Born terms. Terms beyond the 
rainbow-ladder truncation used in this work are already omitted, see [35] for the 
full expansion.

including a derivative with respect to the momentum Q of the 
external photon. Here, mμ denotes the muon’s mass, S its prop-
agator and �+ its positive-energy projector, Dλλ′

is the photon 
propagator and �μ′ν ′λ′σ the photon four-point function. We ab-
breviated the momentum integration in four dimensions by 

∫
q :=∫

d4q/(2π)4.

2.1. Single meson pole contributions

The photon four-point function in Eq. (4) can be approximated 
by expanding it in terms of various hadronic contributions. Work-
ing directly in the space-like momentum domain that is character-
istic for the LBL integral, an expansion in terms of quark and gluon 
degrees of freedom and a subsequent resummation into hadronic 
degrees of freedom has been discussed in detail in Ref. [30]. It 
agrees with standard treatments within effective models, see the 
review [36] and references therein. The leading terms in this ex-
pansion are the quark-loop and meson exchange diagrams shown 
in Fig. 2. In such a framework the exchanged mesons have to be 
considered off-shell, which requires a non-unique (but IR or UV-
constrained) prescription for the off-shell meson propagators and 
form factors. While in principle the expansion in terms of quark 
and gluon degrees of freedom can be treated in a unique and 
well-defined manner using the representation of Fig. 3 and treat-
ing the quark-Compton vertex along the lines of Refs. [35,37], in 
practice this is currently not feasible due to unsolved problems 
with transversality and analyticity in the gauge dependent basis 
elements of the photon four-point function, see [38] for details.

In contrast, the dispersive approach offers a unique expan-
sion in terms of diagrams involving one or more intermediate 
mesons [19–22]. The corresponding diagrams for the (leading) 
pseudoscalar meson pole contributions and the pion box diagram 
are shown in Fig. 4. This expansion is genuinely different than the 
one of Fig. 2. Although superficially the meson pole diagram looks 
very similar to the corresponding diagram in Fig. 2, they are not 



G. Eichmann et al. / Physics Letters B 797 (2019) 134855 3
Fig. 4. Dispersive pseudoscalar meson-pole (left) and pion-loop (right) contributions to the photon four-point function.
the same. In the dispersive approach the exchanged meson and 
the two TFFs are evaluated as on-shell quantities, in contrast to 
the off-shell nature of the ‘resummed mesons’ considered above. 
For pseudoscalar mesons the meson pole diagram is given by the 
permuted sum of two meson TFFs coupled with an appropriate 
propagator,

�μναβ(q1,q2,q3,q4) = (5)∑
M

Fμν
M (q1,q2)D M(q1 + q2)Fαβ

M (q3,q4) + (perms).

Here, Fμν
M (q1, q2) is the two-photon TFF for meson M with 

D M(q1 + q2) its free propagator. Together with Eqs. (3), (4) this 
general expression can be drastically simplified using projection 
and integration techniques in terms of Gegenbauer polynomials. 
As has been shown in [21], the special case of the pion pole con-
tribution eventually reduces to a simple well-known formula that 
has been developed earlier [39] already in the context of effective 
models.

In previous calculations in the functional DSE framework 
[29–31], the expansion of Fig. 2 has been employed and conse-
quently the exchanged mesons were considered off-shell. In this 
work we take a different perspective and adopt the viewpoint of 
the dispersive approach: that individual resonant contributions can 
be exactly evaluated for form factors taken on-shell, at the cost of 
needing to include all resonances also beyond single particle ex-
changes. Note that since this is a different expansion, any numbers 
that we present below do not supersede those presented in the 
past [29–31], but represent new results. They will be compared to 
corresponding numbers from the fully data-driven dispersive ap-
proach. The difference of our approach to the fully dispersive one 
is in the evaluation of the various (space-like) EMFFs and TFFs 
needed to evaluate the different contributions: whereas in the dis-
persive approach these form factors are extracted from (mostly 
time-like) experimental data using analytic continuation, we cal-
culate them directly from the underlying quark-gluon interaction 
at space-like momenta. Thus the two approaches nicely comple-
ment each other.

2.2. Pion box contributions

It has been demonstrated in Ref. [21] that the pion-box topol-
ogy of the dispersive approach associated with pion-loop contribu-
tions coincides with the one-loop amplitude of scalar QED when 
coupled with pion form factors (FsQED). The basic observation is 
that the pion EMFFs Fπ (q2

i ) only depend on the momenta q1, 
q2 and q3 of the three internal photons and therefore do not af-
fect the integration of the pion loop, which then reduces to the 
corresponding one of scalar QED. Such one-loop contributions to 
scalar QED, both with and without pion EMFFs, have similarly been 
considered in Ref. [40]. We follow the procedure detailed therein, 
which requires the evaluation of the six classes of diagrams shown 
in Fig. 5.
Fig. 5. Pion box contributions to the muon g-2 in the framework of scalar QED.

3. Electromagnetic and transition form factors

In the following we briefly outline the various steps needed to 
calculate the pseudoscalar-meson EMFFs and TFFs in the functional 
DSE approach. Details can be found in [30,31,41–45] and the re-
view articles [33,46,47]. Diagrammatically, these form factors are 
calculated as shown in Fig. 6.

The pseudoscalar TFF F Mγ γ (Q 2, Q ′2) can be extracted from the 
transition matrix element via

Fμν
M (Q , Q ′) = e2 F Mγ γ (Q 2, Q ′2) εμναβ Q ′α Q β

= 2e2 Tr
∫
k

Sq(k+)�M(k,�) Sq(k−)

× �μ(r−,−Q ) Sq(k + �)�ν(r+, Q ′) ,

(6)

where Q and Q ′ are the photon momenta and e2 = 4παem is the 
squared electromagnetic charge. The triangle diagram contains the 
dressed quark propagator Sq, the Bethe-Salpeter amplitude �M of 
the pseudoscalar meson M and the dressed quark-photon vertex 
�μ as shown in the left panel of Fig. 6. F Mγ γ (Q 2, Q ′2) is di-
mensionful; in the chiral limit Fπγ γ (0, 0) = 1/(4π2 f 0

π ) due to the 
Abelian anomaly, where f 0

π is the pion’s electroweak decay con-
stant in the chiral limit.
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Fig. 6. Left: Meson transition form factor in rainbow-ladder truncation. The non-
perturbative ingredients are the meson Bethe-Salpeter amplitude �M (grey circle), 
the dressed quark propagators (straight lines) and the dressed quark-photon vertices 
�ν (blue circles). The internal momenta are k± = k ±�/2, where � is the total mo-
mentum and � = (Q + Q ′)/2 the average momentum of the photons. The average 
momenta entering the vertices are r± = k + �/2 ± �/4. Right: Analogous diagram 
for the pion form factor with internal momentum routing k′± = k + P/2 ± �/2 and 
average momenta r′± = k ± �/4 in the Bethe-Salpeter amplitudes.

Similarly, the pion EMFF Fπ (�2) is extracted from the on-shell 
γππ current in the right panel of Fig. 6 via

Jμ(P ,�) = 2PμFπ (�2)

= Tr
∫
k

Sq(k
′+)�μ(k,�) Sq(k

′−)

× �π(r′−, P−) Sq(k − P/2)�π (r′+,−P+) ,

(7)

where � is the photon momentum, P the average pion momen-
tum and P± = P ± �/2.

The necessary input to both Eqs. (6) and (7) is determined from 
a combination of DSEs and BSEs. The Bethe-Salpeter amplitude of 
a pseudoscalar meson and the quark-photon vertex satisfy (in-)ho-
mogeneous BSEs

[�M(p, P )]αβ =
∫
q

[K(p,q, P )]αγ ;δβ

× [Sq(q+)�M(q, P ) Sq(q−)]γ δ , (8)

[�μ(p, P )]αβ = Z2 iγ μ
αβ +

∫
q

[K(p,q, P )]αγ ;δβ

× [Sq(q+)�μ(q, P ) Sq(q−)]γ δ , (9)

where K is the Bethe-Salpeter kernel, Z2 the quark renormalization 
constant, and in both equations q± = q ± P/2. The quark propaga-
tor Sq is given by its DSE,

S−1
q (p) = Z2 (i/p + Zmmq)

− Z1 f g2 C F

∫
q

iγ μ Sq(q)�ν
qg(q, p) Dμν(k) ,

(10)

where mq is the current-quark mass, k = q − p, C F = 4/3, Dμν

is the dressed gluon propagator, �ν
qg the dressed quark-gluon ver-

tex and Z2, Zm and Z1 f are renormalization constants. The gluon 
propagator and quark-gluon vertex satisfy their own DSEs which 
include further n-point functions, so that in all practical applica-
tions the tower of DSEs needs to be truncated.

In the following we work in Landau gauge and use the rainbow-
ladder truncation, which together with more advanced schemes 
has been reviewed recently in Ref. [33]. To this end one defines 
an effective running coupling α(k2) that incorporates dressing ef-
fects of the gluon propagator and the quark-gluon vertex. In the 
quark DSE this entails

Z1 f g2 �ν
qg(q, p) Dμν(k) → Z 2

2
4πα(k2)

k2
T μν

k iγ ν (11)

with transverse projector T μν
k = δμν − kμkν/k2. The kernel K in 

the BSEs (8–9) is uniquely related to the quark-self energy by an 
axialvector Ward-Takahashi identity. In rainbow-ladder truncation 
it is given by

[K(p,q, P )]αγ ;δβ → Z 2
2

4πα(k2)

k2
iγ μ

αγ T μν
k iγ ν

δβ . (12)

This construction satisfies chiral constraints such as the Gell-Mann-
Oakes-Renner relation and ensures the (pseudo-)Goldstone boson 
nature of the pion. Once we have specified the explicit shape of 
the effective interaction α(k2), all elements of the calculation of 
the form factors follow and there is no room for any additional 
adjustments.

Similarly to our previous work on the pion TFF [45] we use 
the Maris-Tandy model for the effective coupling α(k2), Eq. (10) of 
Ref. [48], with parameters � = 0.74 GeV and η = 1.85 ± 0.2 (the 
parameters ω and D therein are related to the above via ωD = �3

and ω = �/η). The scale � is fixed via experimental input; we 
use the pion decay constant for this purpose. The variation of η
then changes the shape of the quark-gluon interaction at small 
momenta, cf. Fig. 3.13 in Ref. [33], and we use it in the follow-
ing as a rough estimate of the truncation error. We work in the 
isospin symmetric limit of equal up/down quark masses. With a 
current light quark mass of mq = 3.57 MeV at a renormalization 
point μ = 19 GeV we obtain a pion mass and pion decay con-
stant of mπ0 = 135.0(2) MeV and fπ0 = 92.4(2) MeV. With the 
strange-quark mass fixed at ms = 85 MeV we obtain a kaon mass 
mK = 495.0(5) MeV.

The resulting dynamical mass function M(p2) for the dressed 
quark propagator has been discussed around Fig. 11 in Ref. [30]. 
The different dynamics due to the larger strange-quark mass has 
potential consequences for the TFFs of the pseudoscalar η and η′
mesons, which will be discussed in the results section below.

To address the TFFs also for mesons with strangeness content, 
we need to consider the effects of η − η′ mixing. To this end we 
start from the ideally mixed states with flavor content π0 ∼ (uū −
dd̄)/

√
2, ηn ∼ (uū + dd̄)/

√
2 and ηs ∼ ss̄. We denote their TFFs by 

Fπγ γ , Fnγ γ and Fsγ γ and their decay constants by fπ , fn and 
f s , respectively. To account for the different flavor traces in the 
triangle diagram of Fig. 6, we define{

Fπγ γ , Fnγ γ , Fsγ γ

} = 1

4π2 fπ

{
Fπ , c̃n Fn, c̃s Fs

}
(13)

with c̃n = cn fπ/ fn , c̃s = cs fπ/ f s and

cn = q2
u + q2

d

q2
u − q2

d

= 5

3
, cs =

√
2 q2

s

q2
u − q2

d

=
√

2

3
, (14)

so that the dimensionless TFFs Fπ,n,s(Q 2, Q ′2) mainly differ by 
the dynamics of the valence quarks. In the DSE rainbow-ladder 
calculation they are continuously connected by changing the 
current-quark mass, which yields F(0, 0) = 1 in the chiral limit, 
Fπ,n(0, 0) = 0.996 at the physical u/d mass and Fs(0, 0) = 0.890
at the strange-quark mass.

To proceed, we employ the two-angle mixing scheme in the 
quark flavour basis [49–52]. In this scheme the physical η and η′
states are expressed in terms of the ideally mixed states above via(

η
η′

)
= U (φ)

(
ηn

ηs

)
, (15)

where

U (φ) =
(

cosφ − sinφ

sinφ cosφ

)
. (16)

The corresponding decay constants of the n and s components 
of the physical states follow this pattern,
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Table 1
Parameters for the fit function Eq. (24) for the pion and the strange-quark transition form factor.

mv a0 a1 a2 a3 b1 b2 b3 c1 c2 d1 d2 e1 e2

Fπ 0.77 GeV 0.996 0.735 1.214 1.547 0.089 0.133 0.0002 0.384 0.430 2.010 0.024 1.540 0.00005
Fs 1.02 GeV 0.890 1.016 1.181 1.493 1.140 0.043 0.00002 0.418 0.489 2.220 0.101 1.540 0.00005
(
f n
η f s

η

f n
η′ f s

η′

)
= U (φ)

(
fn 0
0 f s

)
. (17)

In terms of flavour singlet and octet contributions to the decay 
constants of the physical mesons the mixing pattern results in(

f 8
η f 1

η

f 8
η′ f 1

η′

)
=

(
cos θ8 − sin θ1

sin θ8 cos θ1

)(
f8 0
0 f1

)
(18)

with two different angles θ1 and θ8. The different quantities are 
related to each other via [50]

f8 =
√

( f 2
n + 2 f 2

s )/3 , θ8 = φ − arctan

√
2 f s

fn
,

f1 =
√

(2 f 2
n + f 2

s )/3 , θ1 = φ − arctan

√
2 fn

fs
.

(19)

The explicit values for fn , f s and the angle φ have been deter-
mined in a number of works, see e.g. [53] for an overview. For our 
calculations below we will use [51]

fn

fπ
= 1.07(2) ,

f s

fπ
= 1.34(6) , φ = 39.3◦(1.0◦) . (20)

Using the chiral anomaly predictions with Fn(0, 0) = Fs(0, 0) = 1
and assuming that the mixing in Eq. (15) is momentum indepen-
dent one finds relations for the mixing of the TFFs in the chiral 
limit (see e.g. [54]). These are then generalised to physical quark 
masses and lead to(

Fηγ γ (Q 2, Q ′2)
Fη′γ γ (Q 2, Q ′2)

)
= U (φ)

(
Fnγ γ (Q 2, Q ′2)
Fsγ γ (Q 2, Q ′2)

)
, (21)

which we will use below to determine our results for the η and η′
TFFs. Under the approximation Fπ = Fn = Fs Eq. (21) simplifies 
to(

Fηγ γ (Q 2, Q ′2)
Fη′γ γ (Q 2, Q ′2)

)
= Fπγ γ (Q 2, Q ′2) U (φ)

(
c̃n

c̃s

)
(22)

which was used in [55] (see also [56] for a recent update) to de-
termine the η and η′ TFFs from Fπγ γ . In the results section below 
we will compare the TFFs from (21) and (22) in order to assess the 
relevance of the different dynamics of the strange quark.

4. Results

4.1. Pseudoscalar transition form factors

With all ingredients described in the previous section put to-
gether, numerical results for TFFs in the functional approach have 
been discussed in a number of works, see [30,31,41–45] and refer-
ences therein. It has been reported in [45] that the numerical data 
for the pion TFF at space-like photon momenta Q 2 and Q ′ 2 can 
be accurately represented by a suitable fit function. It turns out 
that the corresponding results for Fsγ γ (Q , Q ′) can be reproduced 
with the same fit function but adapted parameters. Abbreviating 
w = (Q 2 + Q ′ 2)/(2m2

v) and z = (Q 2 − Q ′ 2)/(Q 2 + Q ′ 2), the mo-
mentum dependence of both TFFs is accurately described by
Fπ,s(Q 2, Q ′2) = A(w) + w(1 − z2)B1(w) (1 + B2(w)z2)

(1 + w)2 − w2z2
(23)

with Fn = Fπ . The denominator represents the lowest-lying 
vector-meson pole corresponding to Q 2 = −m2

v and Q ′2 = −m2
v . 

The functions in the numerator ensure that the TFF asymptoti-
cally approaches a monopole behaviour both in the symmetric 
(doubly-virtual) limit z = 0 and the asymmetric (singly-virtual) 
limit z = ±1. They are given by

A(w) = a0 + ξ (a1 b1 w + a2 b2 w2 + a3 b3 w3)

1 + b1 w + b2 w2 + b3 w3
,

Bi(w) = ci ei w2

1 + di w + ei w2 .

(24)

The parameter sets for the pion and ss̄ TFFs are collected in Ta-
ble 1.

This fit provides the input for our calculation of the pion pole 
contribution to aμ . The value ξ = 1.0 ± 0.1 reflects our combined 
theoretical uncertainty for both fits from varying the parameter 
η = 1.85 ± 0.2 in the effective interaction as well as the uncer-
tainty in the determination of the TFF away from the symmetric 
limit.

It is instructive to compare the pion TFF from the functional ap-
proach with the ones extracted from dispersion theory [27,28] and 
from lattice QCD [57]. This is shown for singly virtual asymmetric 
kinematics (i.e. Q ′ 2 = 0) and doubly virtual symmetric kinemat-
ics in the two plots of Fig. 7. In the momentum range displayed, 
which is most relevant for aμ , all three approaches agree with each 
other and with the experimental data from the CELLO [58] and 
CLEO [59] collaborations within error bands. The result from the 
functional DSE framework [42,45] moreover nicely agrees with the 
dispersive result [27,28] both in the zero momentum limit and at 
larger momenta. Consequently, also the resulting slope parameter

bM = m2
M

∂

∂ Q 2

F Mγ γ (0, Q 2)

F Mγ γ (0,0)

∣∣∣∣∣
Q 2=0

(25)

for M = π0 from the DSE approach,

bπ = 31.10 (10) × 10−3 , (26)

agrees well within error bars with the dispersive result bπ =
31.50(90) × 10−3 [27,28].

We wish to emphasize again that this agreement is not forced 
by any tuning of parameters. The DSE results summarised here 
have been published already some time ago [30,42,45]. Thus they 
were predictions, now confirmed by dispersive and lattice results. 
They also have been cross-checked by determining rare decays of 
the π0 [61]. As already discussed above, the challenging part of 
the DSE calculation is a reliable determination of the total error 
budget. The error quoted above and shown in the plot is a rough 
guess based on the variation of the one model parameter η in the 
effective interaction in the previously mentioned range. It is not a 
measure for the total truncation error, which remains unaccounted 
for. Nevertheless it is satisfactory to see that the error bands agree 
with the ones given by the dispersive approach for the singly vir-
tual case. For the doubly virtual case the estimated error of the 
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Fig. 7. The transition form factor Fπ0γ γ in the singly-virtual limit (Q ′ 2 = 0) and the doubly virtual and symmetric limit (Q ′ 2 = Q 2). Compared are the results from the DSE 
approach [45], lattice gauge theory [57] and dispersion theory [27,28] together with the experimental results from CELLO [58] and CLEO [59].

Fig. 8. The transition form factors Fηγ γ and Fη′γ γ in the singly-virtual limit (Q ′ 2 = 0) compared to experimental results from CELLO [58] and CLEO [59] (results from 
different reactions averaged and error added in quadrature) and the results from a data based analysis using Canterbury approximants [60].
DSE results is well within the error band of the dispersive results 
and it will be interesting to see whether this remains so with fur-
ther increasing precision of experimental data input for dispersion 
theory.

Our results for the η and η′ TFFs in the singly virtual case are 
shown in Fig. 8. We compare results from the approximate mixing 
scheme (22) with the full scheme (21) and experimental data from 
the CELLO [58] and CLEO [59] collaborations. In addition, we show 
results from a data based analysis using Canterbury approximants 
[60]. The error bands of the DSE results are combined errors due 
to the variation of the parameter in the interaction and the errors 
in the mixing parameters φ, fn and f s . The effects of the dynamics 
of the strange quark are small in the low momentum regime and 
only become noticeable for momenta larger than Q 2 > 0.5 GeV2. 
At the largest momenta shown in the plot the discrepancy between 
the approximated and full results is slightly larger than ten per-
cent. The overall agreement of our results with the experimental 
data and the results from the framework using Canterbury approx-
imants is again excellent and we therefore feel confident to feed 
the TFFs in the corresponding meson exchange diagrams of LBL.

The slope parameters of our η and η′ transition form factors 
are given by

bη = 0.51 (2) , bη′ = 1.57 (3) . (27)

These are within the ballpark of other approaches including ex-
tractions from experiment, see [53,54,60] and references therein.
4.2. Pion electromagnetic form factor

The EMFF of the pion Fπ (Q 2) in the rainbow-ladder trunca-
tion described above has already been determined in Refs. [41,47,
71]. For the purpose of the present work we have repeated this 
calculation including the variation of parameters in the effective 
interaction similar as for the TFFs. In Fig. 9 we show the corre-
sponding results compared with experimental data [62–69]. There 
is excellent agreement with the data in the spacelike region, which 
extends to the first ρ pole in the timelike domain. In the domain 
Q 2 ∼ −0.3 . . . 4 GeV2, the numerical results are well described by 
a monopole ansatz

Fπ (Q 2) = 1

1 + Q 2/L2
(28)

with L = 0.735(5) GeV. In the range Q 2 ∼ 0 . . . 0.3 GeV2, our re-
sults furthermore agree very well with recent results from disper-
sion theory [70,72] with discrepancies smaller than the experimen-
tal error bars in this momentum region.

One should emphasize that our result is the sum of two non-
trivially competing contributions originating from different parts 
of the quark-photon vertex in the triangle diagram (right panel 
of Fig. 6). One is the Ball-Chiu vertex [73], which satisfies elec-
tromagnetic gauge invariance and is thus responsible for charge 
conservation Fπ (0) = 1 as well as the asymptotic limit Q 2 → ∞
where it becomes a bare vertex. The other is the transverse part 
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Fig. 9. Left:The pion electromagnetic form factor as a function of the squared photon momentum. The experimental data have been extracted from Refs. [62–69]. Right: 
Comparison with the dispersive results of [70].
which carries the dynamical information encoded in the solution 
of the inhomogeneous BSE (9); it vanishes at the origin and con-
tains the dynamically generated vector-meson poles. Fig. 9 clearly 
shows that the effect of the transverse part is still sizeable in the 
mid-momentum region. For the TFFs discussed earlier the trans-
verse part is even more important as it is necessary to reproduce 
the chiral-limit result for Fπγ γ (0, 0) stemming from the Abelian 
anomaly [61].

We also note that the ρ mesons in rainbow-ladder are stable 
bound states without widths and thus produce poles on the real 
axis in the form factor. Whereas our result mρ = 0.744(1) GeV is 
in a similar range as the experimental ρ(770) mass, the first ra-
dial excitation ρ(1450) comes out far too light with m′

ρ = 0.99(2)

GeV. Because the poles are monopoles, Fπ proceeds from −∞ at 
the first pole to +∞ at the second, thus passing through zero in 
between; in the absolute value |Fπ | shown in Fig. 9 this creates a 
zero followed by a pole. Adding widths by means of more sophis-
ticated truncations would shift the poles into the complex plane 
[74–76], but hardly affect the form factor in the space-like momen-
tum region [76]. This is important for the stability of our results in 
the momentum range relevant for the evaluation of the pion box 
contribution to aμ .

The calculation of the EMFF beyond the Q 2 range displayed in 
Fig. 9 faces the same obstacles as other matrix elements, namely 
the singularities of the n-point functions in the integrand which 
eventually cross the integration path. Above and below a certain 
Q 2 value these must be taken into account to obtain the correct 
result. For the pion TFF at large Q 2 we have circumvented the 
problem through interpolation between off-shell kinematics and 
the first ρ pole [45], but the procedure is not directly applicable 
to the EMFF due to the different structure of the matrix element. 
A DSE-based determination of the pion EMFF at large Q 2 can be 
found in Ref. [77].

In the right diagram of Fig. 9 we also compare our results with 
the dispersive ones of Ref. [70], which are an update of the results 
discussed in [25]. For all Q 2 shown in the plot, the DSE results are 
slightly lower than the ones obtained from dispersion theory. The 
large momentum behaviour of our result is in excellent agreement 
with the JLab-data. For the calculation of the pion box contribution 
to aμ we have used the fit, Eq. (28), in the entire momentum range 
tested by the diagram.

4.3. Contributions to the anomalous magnetic moment of the muon

We finally proceed to discuss the pseudoscalar pole contribu-
tions and the pion box to the anomalous magnetic moment of the 
muon aμ . As discussed in sections 2.1 and 2.2, these can be deter-
mined uniquely once the corresponding TFFs and the pion EMFF 
are known. With the DSE results presented above we obtain

aπ0−pole
μ = 62.6 (0.1)(1.3) × 10−11 . (29)

The first error is due to the variation of the parameter η in the 
effective interaction. From our results for the TFF in Fig. 7 we find 
this variation to be very small for small momenta Q 2. Since aμ

is dominated by contributions from small Q 2 of the order of the 
muon momentum this variation has almost no effect. We have also 
added an additional second error of two percent for the numerical 
error accumulated from the calculation of the quark functions in 
the DSEs, the Bethe-Salpeter amplitudes, the quark-photon vertex 
and the TFF. The numerical error in the actual calculation of aμ

from the TFFs is well under control and negligible. Since our TFF 
is in very good agreement with the one determined by dispersion 
theory it is no surprise that our value for aπ0−pole

μ is as well: in 
[27] aπ0−pole

μ = 62.6+3.0
−2.5 ×10−11 has been obtained. The framework 

of Ref. [60] using Canterbury approximants resulted in aπ0−pole
μ =

63.5(1.2)(2.3) × 10−11. Further results from other groups can be 
found in [78] and references therein.

Using the simple estimate for the η and η′ TFFs discussed 
above, Eq. (22), and the full result including the dynamics of the 
strange quark, Eq. (21), we also determined the corresponding 
contributions to aμ using the experimental values for their pole 
masses in the meson propagators. We obtain

aη−pole
μ (approx.) = 16.5 (0.3)(0.3)(1.1) × 10−11 , (30)

aη′−pole
μ (approx.) = 12.6 (0.3)(0.3)(0.6) × 10−11 , (31)

and the full dynamical result

aη−pole
μ = 15.8 (0.2)(0.3)(1.0) × 10−11 , (32)

aη′−pole
μ = 13.3 (0.4)(0.3)(0.6) × 10−11 . (33)

Again, the first error stems from the variation of the model pa-
rameter and the second accounts for two percent numerical er-
ror. The third error reflects the uncertainties in the mixing pa-
rameters (20). Our results are again in good agreement with the 
treatment via Canterbury approximants of [60], where aη−pole

μ =
16.2 (0.9)(0.9) × 10−11 and aη′−pole

μ = 14.5 (0.7)(1.7) × 10−11 have 
been obtained (these are the averaged values of the last two en-
tries in their table II with error bars determined according to their 
prescription in the text).
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It is very interesting to note that the sum of our η and η′ pole 
contributions is identical for the simple mixing scheme and the 
one including the full strange quark dynamics. This is reasonable 
and well explained by comparing Eqs. (21), (22) and the struc-
ture of the mixing matrix U (φ): With cosφ and sin φ of a similar 
magnitude and c̃n 	 c̃s , the strange-quark effects are already sup-
pressed in the individual η and η′ TFFs, whereas in the sum they 
almost cancel due to the opposite signs in U (φ). The different η
and η′ masses in the propagators which enter in aPS-pole

μ do not 
change this behaviour appreciably.

This induces a degree of stability into the total number for the 
pseudoscalar pole contributions to aμ . We obtain

aPS-pole
μ = 91.6 (1.9) × 10−11 , (34)

where errors from different error sources are added in quadra-
ture. This result agrees within error bars with the one obtained 
via Canterbury approximants in Ref. [60], which quotes aPS-pole

μ =
94.3(5.3) × 10−11. Again, further results from other groups can be 
found in [78] and references therein.

Naively comparing the pseudoscalar meson pole result (34)
with our earlier result for the pseudoscalar meson exchange con-
tributions aPS-exchange

μ = 80.7 × 10−11 [30] we find a difference of 
more than ten percent. However, we wish to emphasise again that 
these contributions stem from different expansion schemes and 
should not be compared on a one-to-one basis.

Finally, for the contribution of the pion box we obtain

aπ−box
μ = −16.3 (2)(4) × 10−11 , (35)

where again the first error is due to the variation of the model 
parameter and the second accounts for our numerical error. Again, 
we obtain good agreement with the corresponding result from the 
dispersive approach within error bars: the result given in Ref. [25]
is aπ−box

μ = −15.9 (2) × 10−11.
When comparing the errors of the two results one has to keep 

in mind that we solved the pion box using the procedure of 
Ref. [40] as outlined above in section 2.2. This involves the eval-
uation of a nine dimensional integral using Monte-Carlo methods 
(we use the vegas routine from the Cuba library [79]). On the other 
hand, the result in [25] has been obtained after an elaborate an-
alytical reformulation of the problem which allows to drastically 
reduce the numerical error. In order to compare the two results it 
is thus useful to compare a control calculation: in [25] the authors 
give the result aπ−box,VMD

μ = −16.4 × 10−11 for a vector-meson 
dominance type form factor. For the same VMD form factor we ob-
tain aπ−box,VMD

μ = −17.1(4) × 10−11, i.e. we (almost) agree within 
error bars, however our central value is somewhat too large. Since 
we are using the same SOBOL quasirandom sequence in all calcu-
lations this indicates that also the central value of our result (35)
will become smaller when more accurate methods are used. This 
then is in agreement with the observation that our form factor 
is slightly lower than the dispersive one which should lead to a 
smaller value for aπ−box

μ .
Since our calculation involves a systematic truncation error 

which is hard to quantify we see no merit in going through the 
same procedure as the authors of [25] to beat down the numerical 
error. On the contrary, since a smaller numerical error (i.e. higher 
precision) might mislead readers into believing that the accuracy 
of our result is better than the one of the dispersive result (which 
due to the truncation error is not the case) we refrain from doing 
so.
5. Summary

In this work we have presented a calculation of the pseu-
doscalar pole and pion box contributions to hadronic light-by-
light scattering based on a functional approach to QCD via Dyson-
Schwinger and Bethe-Salpeter equations. We employed a rainbow-
ladder truncation for the quark-gluon interaction that has emerged 
over the years as an excellent practical tool to obtain comprehen-
sive results in the pseudoscalar meson sector [33,46,47,80]. Our re-
sults for the pion transition form factor and, consequently, the pion 
pole contribution to aμ are in excellent agreement with the most 
recent dispersive result of Ref. [27,28]. Based on this agreement we 
consider our results for the η and η′ pole contributions as quan-
titatively meaningful predictions. This assessment is supported by 
the very good agreement with the results of a framework using 
Canterbury approximants [60]. Observing that dynamical effects 
due to the presence of the strange quark in the η and η′ mesons 
cancel out in the sum of the two contributions, our value for the 
total contribution aP S−pole

μ of pseudoscalar meson poles is even 
stronger, since it can be founded on the pion transition form factor 
alone.

The contribution (34) is accepted to be the leading part of the 
dispersive expansion of hadronic light-by-light scattering. Further 
contributions are expected from scalar and axialvector pole con-
tributions, see e.g. [22,81] and references therein. These are also 
accessible in the functional approach and work in this direction is 
well under way.
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