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We investigate how fields transform under the Poincaré group in nonrelativistic effective field theories of

QCD. In constructing these transformations, we rely only on symmetries and field redefinitions to limit the

number of allowed terms. By requiring invariance of the action under these transformations, nontrivial

relations between Wilson coefficients for both nonrelativistic QCD and potential nonrelativistic QCD are

derived. We show explicitly how the Poincaré algebra is satisfied, and how this gives complementary

information on the Wilson coefficients. We also briefly discuss the implications of our results, as well as the
possibility of applying this method to other types of effective field theories.
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I. INTRODUCTION AND OUTLINE

Effective field theories (EFTs) are a standard tool for
particle and nuclear physics and have been for at least forty
years [1]. Low energy EFTs have been constructed for
different sectors of the Standard Model to describe specific
low energy systems: for example, EFTs of quantum
electrodynamics (QED) to describe atomic physics, or
EFTs of quantum chromodynamics (QCD) to describe
hadronic and nuclear physics. High energy EFTs, on the
other hand, provide a systematic framework for investigat-
ing physics beyond the Standard Model. In this case,
however, there is not yet an experimentally confirmed
underlying renormalizable theory from which to derive the
EFT. Hence, high energy EFTs are built relying only on
symmetry arguments. In all cases, the construction of an
EFT, not being bound by renormalizability, requires an
increasing number of operators when going to higher
orders in the expansion, which may limit its predic-
tive power.

In this paper, we focus on nonrelativistic EFTs.
Nonrelativistic EFTs describe systems where the mass M
of the heavy particle(s) is much larger than any other
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relevant energy scale of the system, including the scale
Aqcp of confinement in QCD. The fact that the mass M is
much larger than the momentum and energy of the heavy
particle implies that its velocity is much smaller than the
velocity of light, qualifying the particle as nonrelativistic.
There exists a wide variety of such EFTs. Among them we
will concentrate on the heavy quark effective theory
(HQET), nonrelativistic QCD (NRQCD), and potential
NRQCD (pNRQCD), which are nonrelativistic EFTs of
QCD. The HQET [2-5] is a low energy EFT for heavy-light
mesons, NRQCD [6,7] provides a nonrelativistic effective
description for the dynamics of heavy quarks and anti-
quarks, and pNRQCD [8-10] is an effective theory for
heavy quark-antiquark bound states (heavy quarkonia).
The Lagrangian of an EFT is organized as an expansion
in the inverse of the high energy scale that has been
integrated out; in the case of nonrelativistic EFTs, this is the
quark mass M. It contains all terms allowed by the
symmetries of the EFT and can be schematically written as

O,
Lypr = ZC"W’ (1)

where the operators O,,, made up of the fields that describe
the effective degrees of freedom (d.o.f.), are of mass
dimension d,,, and the c, are the matching or Wilson
coefficients of the EFT. These coefficients contain all the
information from the high energy scale. They are deter-
mined by matching to the underlying theory.

In the case of pNRQCD, one proceeds further by
integrating out all energy scales larger than the binding
energy of the bound state. The originating Wilson
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coefficients are called potentials, because they are the
potentials appearing in the Schrodinger equation. How
precisely pNRQCD is constructed depends on the relation
among the three different energy scales: p ~ Mv, E ~ Mv?,
and Agcp, where v < 1 is the heavy (anti)quark relative
velocity, p is the heavy (anti)quark relative momentum, and
E is the binding energy. For systems satisfying the
hierarchy Agcp S M v? (these are top-antitop states near
threshold and possibly the lowest lying bottomonium and
charmonium states), the integration of the relative momen-
tum can be done in perturbation theory. The case Agcp <
M? is called the weak-coupling case. If the binding energy
is smaller than the typical hadronic scale, Agcp > M 2,
which is called the strong-coupling case, then Agcp is
integrated out as well. Although the matching is in this case
nonperturbative, the resulting effective Lagrangian is some-
what simpler than in the weakly coupled case. The reason is
the absence of colored d.o.f. (quark-antiquark color octet
states and gluons).

The Wilson coefficients of these EFTs have to be
determined by matching to the underlying theory, i.e.,
QCD. Beyond leading order in the coupling or in the
expansion parameter, this can easily become technically
involved, and even more so for a theory with more than one
expansion parameter like pNRQCD. For this reason, one
would like to exploit as much prior knowledge on the
Wilson coefficients as possible before commencing the
matching calculation.

Due to the nonrelativistic expansions, Poincaré invari-
ance is no longer manifest in a nonrelativistic EFT.
A physical system is symmetric under Poincaré trans-
formations when its action is invariant under spacetime
translations, rotations, and boost transformations. Dirac
showed that the potentials of a quantum mechanical
Hamiltonian satisfy nontrivial relations if one imposes
the Poincaré algebra [11]. His analysis was extended to
interacting relativistic composite systems [12—16], where
relations between the relativistic corrections were derived
using the Poincaré algebra. As these quantum mechanical
systems can be generalized into EFTs, it is natural to expect
that also some nontrivial relations between the Wilson
coefficients of nonrelativistic EFTs can be deduced in a
systematic way from Poincaré invariance. It is well justified
to assume this invariance, as the EFT is by construction
equivalent at each order of the expansion to the original
quantum field theory, which is invariant under Poincaré
transformations.

In [17] (see also [18,19]), Poincaré invariance has been
imposed on NRQCD and pNRQCD by constructing all
generators of the symmetry group in these EFTs. The
generators corresponding to spacetime translations and
rotations have been obtained in the usual closed form
from the associated conserved Noether currents. The
generators of boosts, on the other hand, have been derived
from a general ansatz that includes all operators allowed by

the other symmetries (such as parity, P, charge conjugation,
C, and time reversal, 7) up to a certain order in the
expansion; in other words, the general principles for the
construction of the EFT Lagrangian have been applied also
to the boost generators. Demanding that all generators
satisfy the commutation relations of the Poincaré algebra
provides some exact constraints on the Wilson coefficients
of the EFTs.

Reparametrization invariance is a symmetry found in low
energy EFTs of QCD, like the HQET or soft collinear
effective theory (SCET) [20-23]. In these EFTs, the
momentum of the high energy particles is separated into
a large and a small component. This separation is arbitrary
by a small shift of the momenta that preserves the hierarchy
of the energy scales. Requiring the Lagrangian to be
invariant with respect to this shift leads to a number of
nontrivial relations between the Wilson coefficients
[24,25]. In the HQET case, these relations have been
shown to be equivalent to the ones obtained from
Poincaré invariance [17]. This is not surprising, since both
approaches are closely related: a shift in the parametrization
of the high energy momentum may be interpreted as a
change of the reference frame. Whereas the implementation
of reparametrization invariance might have some advan-
tages, its applications are limited. Poincaré invariance, on
the other hand, is a general principle that all quantum field
theories have to obey.

Recently, another approach has been suggested for
deriving constraints in EFTs through Poincaré invariance
that employs Wigner’s induced representation [26] (see
also [27] for a textbook presentation). It has been proposed
in [28] that a free nonrelativistic field ¢», which has a well-
defined transformation behavior under rotations R as
¢(x) = D[R]$(R'x), should transform under a generic
Lorentz transformation A as

¢ (x) = D[W(A, i0)]p(A'x). (2)

The transformation W is a particular rotation depending on
the Lorentz transformation A and also the momentum of
the field ¢. The resulting expression is then expanded in
powers of derivatives (momenta) according to the non-
relativistic power counting.

While this seems to work well for noninteracting fields,
some issues arise in an interacting gauge theory. First, the
boost transformation (2) does not have the right behavior
under gauge transformations. One would like to have the
boosted field to transform in the same way as the original
field would at the new coordinates, but this is not possible
because of the derivatives in the induced representation.
Promoting the derivatives to gauge covariant derivatives
fixes the problem, but it introduces an ambiguity in how the
covariant derivatives are ordered. It is also necessary to
add additional gauge field dependent terms to the boost in
order to cancel some terms that would prevent the EFT
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Lagrangian from being invariant. Ultimately, the con-
straints obtained in this way agree with previous results
in NRQCD and nonrelativistic QED (NRQED) [29]; new
results in NRQED were derived in [30].

In this paper, we address some of the questions left open
by this method. First, the appearance of additional terms in
the boost transformation, whose coefficients turn out to be
linear combinations of the Wilson coefficients from the
Lagrangian, is very reminiscent of the construction of EFT
Lagrangians, where one includes all terms allowed by the
symmetries of the theory. However, terms with derivatives
originating from the induced representation were assumed
to be free of radiative corrections. We address the question
if the specific choice of coefficients made in [28] for the
terms appearing in the boost transformation can be justi-
fied, fully or partially, through constraint enforced by
Poincaré invariance.

A second question is the following. In [28], the addition
of new gauge field dependent terms to the boost trans-
formation, which do not arise from just promoting deriv-
atives in the induced representation to covariant derivatives,
seems to be born out of necessity: without them the
nonrelativistic Lagrangian could not be made invariant
under the boost transformation. It is conceivable, however,
that other terms could be added to the boost, which are
allowed by the symmetries, but are not strictly necessary for
an invariant Lagrangian. They may have the effect to relax
some of the constraints on the Wilson coefficients, since
each extra term introduces a new parameter.

Thus, we take from [28] that the boost transformation of
the nonrelativistic field is realized in a nonlinear way and
that requiring the invariance of the Lagrangian under this
boost leads to constraints on the Wilson coefficients, but
apart from that we will not refer to the induced represen-
tation. Instead, we follow the EFT logic of [17] by
including all possible terms in the boost transformation
that are allowed by the other symmetries of the theory (such
as P, C, T) and by assigning a Wilson coefficient to each of
them. Even though we start with a general expression, we
will exploit the possibility to redefine the effective fields in
order to remove terms from the general ansatz.

Lastly, since the boost generator for the field trans-
formation has to satisfy the Poincaré algebra, we show how
the commutation relations have to be implemented in the
case of a nonlinear boost generator. Requiring all commu-
tators of the Poincaré algebra to be satisfied leads to
additional constraints on the boost parameters as well as
on the Wilson coefficients of the Lagrangian. It is important
to note here that, like in [17], this approach is defined for
bare fields and couplings. However, our results hold also in
the renormalized EFTs if Poincaré invariance is not broken
by quantum effects (anomalies) [10].

In summary, we provide a tool for the construction
of EFTs in which not all of the fundamental symmetries

are manifest. Since these latent symmetries nevertheless
emerge in the form of constraints on the Wilson
coefficients, thereby limiting the number of independent
parameters, the computational or experimental effort
required to determine the EFT at a given order is reduced
considerably if these constraints are taken into account.
Apart from answering the fundamental question of how
such latent symmetries are realized in the EFTs in terms
of nonlinear field transformations, this is expected to be
of relevance whenever new EFTs need to be developed,
such as in beyond the Standard Model physics, or already
established EFTs need to be extended to higher orders.
We explicitly demonstrate the method for the two
examples of NRQCD and pNRQCD, where the latent
symmetry corresponds to boost transformations. Since,
however, the method relies only on the single assumption
that a nonlinear realization of the latent symmetries
exists, it should be possible to extend it to other theories
and symmetries as well.

The paper is organized as follows. In Sec. II, we study
NRQCD, first discussing the boost generators of the
Poincaré group in the EFT approach in Sec. II A and
how they satisfy the Poincaré algebra. Generators for
spacetime translations as well as rotations are found in
Appendix A, as the derivation is well-known and not
directly related to the main discussion. We then derive the
constraints for the Wilson coefficients of the Lagrangian up
to order M3 in the two-fermion sector in Sec. II B, up to
order M~ in the four-fermion sector in Sec. II D, and up to
order M~ in the four-fermion sector in Appendix B. We
also write the Noether charges obtained from the Poincaré
transformations in Sec. II C and show that they correspond
to the quantum field generators constructed in [17]. We
then study the pNRQCD case in Sec. III. First, we
derive how quarkonium fields transform under boosts in
Sec. III A, then we use field redefinitions to remove terms
from the most general boost generators in Sec. III B, and,
finally, we obtain constraints on the Wilson coefficients of
the pNRQCD Lagrangian in Sec. III C. We conclude the
paper in Sec. IV with a summary and a short outlook on
possible applications to other effective field theories.

II. CONSTRAINTS IN NRQCD

Nonrelativistic QCD (NRQCD) is the EFT obtained from
QCD after integrating out modes associated with the scale
of the heavy quark mass M [6,7]. The effective d.o.f. are
nonrelativistic Pauli spinor fields w and y, where y
annihilates a heavy quark and y creates a heavy antiquark,
as well as gluon fields A, and light quark fields g; (which
will be assumed massless) with four-momenta constrained
to take values much smaller than M. Its Lagrangian up to
O(M™?) is given by
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Lxroep = W {lDo + 5

2 pry Fop.s+ 2D gE] +

C
SSQWX¢ﬂk6}w

2M 2M 8M?
1 iDy— 2p?— °F 4B .5+ P _ID. gE] + 5. [Dx, gE] -
tx {’ oM T om? +8M2[ ]+8M2[ |-o
@),/ + Tr[E? — B?] - ]“f; E° - (D%E)* — B* - (D*B)"]
d _ , ,
o Of 3BT X E?) - B — (B x B) - BY| 4 Ligy, + O(1/M). (3)

£(2>|4f contains terms made of four quark fields up to
order M~2. These may consist of heavy (anti)quark fields
and/or light quark fields. We explicitly write the four
fermion terms made of two heavy quark and two heavy
antiquark fields in the following Eq. (61). In the rest of
the paper, we will neglect other four fermion terms (see
[31,32]), because we are not interested in the Poincaré

Jight is the
light quark sector of the Lagrangian, which contains all
terms with two light quark fields (and gluons) up to order
M2, whose leading term is >_,g,iDq;. Note that terms
made exclusively of light fields have to be constructed in
a manifestly Poincaré invariant way, so they do not give
rise to constraints. We denote the Wilson coefficients in
the heavy quark sector by ¢ and the ones in the gluon
sector by d [33-35].

We use the convention Dy = dy+ igAy; and D =
V —igA for the sign of the coupling constant g in the
covariant derivatives, from which one obtains the chromo-
electric and chromomagnetic fields as E = é [Dy, D] and

B = 2%] {Dx,D}, while ¢ denotes the vector made of the

three Pauli matrices; in addition, we define D> = D3 — D*.
The commutator or anticommutator with a cross product is
defined as'

invariance constraints from those sectors. ﬁ

Xx,Y]=XxY-YxX and
{(Xx, Y} =X xY +YxX, (4)

and equivalently for the dot product. We have made use
of the equations of motion” to remove all higher time
derivatives; we have also removed the constant term

—~My"y + My y through the field redefinitions y —

lMtl// and)( N elMt)(-

'Because of the antisymmetry of the cross product, the roles of
commutator and anticommutator are in fact reversed: {Xx, Y}, =
eijk[va Yk} and [XX, YL = €ijk{Xj’ yk}

This is equivalent to performing certain field redefinitions, as
shown in [36]. The field redefinitions we will discuss in detail in
this work, however, are of a different kind not related to the
equations of motion.

A. Poincaré algebra for boost transformations

Before we go into details, we should clarify our notion of
transformation. In general, performing a field transforma-
tion means to replace any field ¢, as well as its derivatives,
in the Lagrangian or in other field-dependent quantities by
a new field ¢’, called the transformed field, and its
derivatives. In the quantized theory, this corresponds to a
change of variable ¢p - ¢’ in the path integral. The trans-
formation constitutes a symmetry if the action remains
invariant under this change of variable (in the quantized
theory also the path integral measure needs to be
considered).

In the case of coordinate transformations, we write

D) == () = AP (A1), (5)
where A denotes a generic spacetime transformation and
the representation R depends on the spin of the field ¢.
Note that the arrow in Eq. (5) represents the change of the
function ¢ to ¢’ and the relation between the two fields is
written on the right-hand side of Eq. (5): the value of the
transformed field at position x is given by the value of the
original field at the same point, which in the old coordinates
corresponds to A~'x, while its orientation is also adapted to
the new axes by A®). Also note that the notion of active or
passive transformations® does not affect the form of Eq. (5),
it just changes the sign of the generators of A. For the
record, we will assume passive transformations.

The spacetime transformations contained in the Poincaré
group are translations, rotations, and boosts, which will
be the main subject of this paper. Translations and rotations
act on all fields of NRQCD in the usual way (see
Appendix A 1), so we do not need to discuss them here
further. However, boost transformations are a priori not
defined in an obvious manner for the heavy (anti)quark
fields. We will show how such transformations can be
constructed for the heavy (anti)quark fields, but they will

3An active transformation changes the position or orientation
of a physical object with respect to a fixed coordinate system,
while a passive transformation keeps the object fixed and changes
the coordinates.

094008-4



POINCARE INVARIANCE IN NRQCD AND POTENTIAL NRQCD ...

PHYS. REV. D 99, 094008 (2019)

no longer be linear in the fields. Gluons and light quarks are
still relativistic fields and transform in the usual way under
boosts. We will not discuss the light quark fields here, as
they do not appear in any operator of interest in this paper,
but we will consider the transformations of the gluon fields,
distinguishing between their space and time components,
as the NRQCD Lagrangian is written in an explicitly
nonrelativistic fashion.

The coordinates (z,r) in a reference frame moving with
the infinitesimal velocity 5 correspond to (1 +n - r,r + nt)
in a resting frame, where we will always neglect terms of
O(n?) or higher. The gluons are described by vector fields,
whose transformations are identical to those of the coor-
dinates, so Eq. (5) implies that

Ay(t.r) =Ag(t+n-r.r+nt)—n-A(t.r), (6)
A'(t,r) =A(t+n-r,r+nt) —nAy(t,r). (7)

It is convenient to perform a Taylor expansion to first order
in 77 on all fields with transformed coordinates, in order to
consistently work only with at most linear terms of the
infinitesimal parameter. Since the gluon fields never appear
individually in the Lagrangian but always inside covariant
derivatives, we also write explicitly the boost transforma-
tions for those,

Dy = 9o + igAy = Do + [ 1V +1-10y, D] +1- D,
(8)
D =V—igA' =D+ -tV +n-rdy,D] +3Dy. (9)

Notice that the sign of the last terms has changed compared
to Eqgs. (6) and (7), which is a consequence of the fact that
the gauge fields in Dy and D have opposite signs. The
commutator in the middle terms serves two purposes: first,
the commutator with the gauge field ensures that the
derivatives (from the Taylor expansion) act exclusively
on the gauge field and not on any other field that may be
present in the Lagrangian. Second, the commutator with the
derivative cancels the derivative in the last term, ensuring
that overall the derivatives on both sides of Egs. (8) and (9)
match.* Finally, the transformations for the chromoelectric
and chromomagnetic fields follow directly from their
expressions in terms of the covariant derivatives,

E =E+[n-tV+n-rdy,E|+nxB, (10)

“As stated above, we replace derivatives of fields in the
Lagrangian by derivatives of the transformed fields: 0,.¢(x) >
0,¢'(x). The typical transformation of derivatives as vectors
arises when the transformed fields are replaced by the right-hand
side of Eq. (5).

B =B+[n-tV+n-rdy,B]—n xE. (11)

In the following, we will use K to denote the generators
of boosts as an operator that may act on any kind of field,
and k, to denote the explicit expression of K when acting
on the field ¢,

P(x) = ¢'(x) = (1 — in - K)p(x)
— (1—in-ky)p(x). (12)

Since each field has the same coordinate transformations,
the term itV + ird, appears in any k,, so we can write

(13)

Now IAc(/, denotes the part of the boost transformation acting
only on the components of ¢ and not the coordinates. The
previously introduced notation of writing the coordinate
transformations as commutators is particularly convenient
when considering transformations of products of fields, as
by the product rule of commutators we can write

iy = prp2 + -tV + 110y, §1 by
+ itV +15-1d, ]
+ (=in-kypy )y + by (—in - kaghs)
= ¢1¢y + -1V + -1, $14,)]
+ (=in ki) + by (—in - kapy).

In this way, the coordinate transformations can be
decoupled from the component transformations, also when
performing several consecutive transformations.

For relativistic fields, k, is some constant matrix, but for
the heavy (anti)quark fields, which are nonrelativistic, it
takes the form of a function depending on all fields or their
derivatives. Apart from the coordinate transformations, all
derivatives have to be covariant, S0 we can write

(14)

w(x) ==y (x) = (1 = in -k, (Do, D, E. B,y 1, )y (),
(15)

2(¥) =7/ (x) = (1 — i -k, (Do, D, E, B,y 3, x) ().
(16)

In principle, IAcd, depends on the coordinates only implicitly
through the fields; however, the field redefinitions we have
performed in order to remove the heavy mass terms from
the Lagrangian also affect the boost transformations. So
instead of the usual coordinate transformations generated
by itV + ird,, we have

MtV + irdg)e¥ M = itV + irdy = Mr,  (17)
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and we will include the terms Mr and —Mr in the
definitions of I:Tl,, and IACI, respectively.

Besides the mass terms =+Mr, there is no obvious
expression for the remaining terms of ]:Tl,, and l:'%. We have
no choice but to make a general ansatz for them and
determine the exact parameters through further calcula-

BB BS -B. BL —B (29

We expect the boosted fields to transform in exactly the
same way under these discrete symmetries, i.e.,

!/ — in. — — 7 — .
tions. Fortunately, the number of possible operators in the P¢' = P(1—in-K)¢ = (1 -i(-n)- (PK))P¢, (25)
boost generators at a given order in 1/M is limited, in . .
particular, by the discrete transformations P, C, and T C¢'=C(1—in-K)p=(1-in-(CK))Cp, (26)
(parity, charge conjugation, and time reversal). Under them,
the coordinates and fields transform as T¢ =T(1—in-K)p = (1+i(—-n) - (TK))Te, (27)
(t,r) LN (t,—r), (t,r) N (t,r), (t,r) LN (=t,r), where we have also reversed the direction of the infini-
13 tesimal velocity 5 for P and T.> We take from this that the
(18) boost generators for the heavy (anti)quark fields need to
p c T satisfy
y—vy, y— —ioy’, w—ioy, (19)
» c - Pky/ = _kV/’ Cklll = —szjﬁz, Tklll = O'zkwﬁz, (28)
X— —x.  x—ioy',  y—ioy, (20)
» c ’ ka = —k){, Ck}( = —Uzk;;dz, Tk}( = UZk;(GZ’ (29)
DO_)DO’ DO_)DO’ DO_) —Do, (21)
where the expressions on the left-hand sides mean that the
P C . T transformed fields and coordinates according to Eqgs. (18)—
D— -D, D—D, b—Db. (22) (24) are to be inserted into the expressions for k,, and k,.
General expressions for k, and k, satisfying these
P C . T v 4
E— —E, E— —F, E—E, (23)  conditions up to O(M3) are®
|
; . kp ikps kg ikpo ikgs szo
kW:ltV+Zr80+Mr mD—mD 6+8M29E+8M2{D0,D}+WQEXG {Do,DXO'}
kps ikpss kBSl
——21D, (D? D D? D D, (gB -
DD, (D)) = P55 (D % ), (D7)} + 1 P (D, gB] + < % (D, B} + - P D (9B )]
k
kps2 kpss kpsa kgss D00
D, (¢B - D o), B D-,gB Dy, {Dy,D
+16M3{ (g G)}+16M% [( 6) ] 16M3{( ) g }+16M3{ g }6+16M3{ 0 { 0 }}
ikgor ko2 DSOO kesor kgsoz
— ,gE Dy, Dy, {Dy,D Dy, gE Dy, gE ,
(30)
. . kp ikps kg ikpo ikgs szo
k)(:ltv—‘-lrao Mr+mD+mD 0'+8M29E+8M2{D0,D}+ Mng {Do,DXO'}
kp3 ikpss ikp kBSl
D, (D? D xo6),(D*)}———=[D D.(¢B -
(D (D)) + (D x0), (D7) — 2 (D, gB] ~ 2 (D gB) ~ LD, (gB o)
kpsa kps3 kpsa kpss kpoo
- D, (¢B - Do), D-,gB}c — Dy,{Dy,D
2D, (9B -0)} 1 (D 0), gB] 1 B (D 0). gB) — 2% (D~ 9B} — 1 2% (Do, {Dy, D)}
ikgor lkEoz _ tkpsoo kEso kgso2
— CEOL , D,,{D,,D ——— Dy, gE ————={Dy,gE . (31

>Also remember that T takes the complex conjugate of numerical coefficients.

*Note that, in particular, lAc,/, Iy

= *io are not allowed, even though they would satisfy all commutators of the Poincaré algebra, just

because they do not reproduce the right P or T transformation behavior. They would be appropriate for Weyl spinors, but here we deal

with Pauli spinors.
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Note that we are no longer able to remove terms with
temporal derivatives through the equations of motion,
because the corresponding field redefinitions have already
been used to eliminate such terms in the Lagrangian;
performing further redefinitions to remove temporal deriv-
atives from the boost would reintroduce them in the
Lagrangian. Terms that do not transform as a vector under
rotations have already been removed, as they would violate
one of the relations of the Poincaré algebra. However, non-
Hermitian terms are in general allowed in the boost
generator for a field, although they will eventually cancel
in the associated Noether charge, which is always Hermi-
tian (see Sec. I C). In the following, it will be sufficient to
discuss only the heavy quark sector, since the antiquark
sector follows directly from charge conjugation.

The nonlinear boost transformations constructed in this
way have to satisfy the Poincaré algebra

{Pi,Pj]:O, [Pi"]j}:ieijkpki [PI’K]]:_lél]PO?
ViJj|=ieipr, [Ki,J;]=ieijuKp, [Ki K| =—iejjty,

Y] Yy
(32)

where P is the generator of time translations, P is the
generator of space translations, and J is the generator for
rotations.’

The commutation relations of the Poincaré algebra not
involving a boost generator are trivially satisfied for the
generators specified in Appendix A 1, but the remaining
relations involving a boost provide nontrivial information.
It is straightforward to check that the commutators of a

|

[1—i&-K,1—in-Kly(x) =y (x) —w(x)

boost generator with the generators of spacetime trans-
lations or rotations are satisfied since k,, and k, depend
explicitly on the coordinates only through the terms
generated by the coordinate transformation and they have
been written in terms of vectors under rotations. The
commutator of two boosts, however, gives new constraints
on the parameters of the boost generator.

The commutator between any two transformations is
defined as the difference in performing them in reverse
orders. In the case of linear transformations, this can be
written simply as the commutator of two matrices, but for
the nonlinear transformations corresponding to the boost of
a heavy (anti)quark field, one has to be careful to express
the second transformation in terms of fields that have
already undergone the first transformation. Consider the
commutator of two infinitesimal boost transformations,

[1—i& K, 1—in-K|=iExn)-J. (33)

Applying the left-hand side to the heavy quark field
requires computing the two successive boosts

Y(x) —5 ) (x) = (1= in -k, (Do. D.E. B.yr. . )y (x).
(34)

K:
) )
= (1= ik, (Dl Dy By Byt £ )W (). (39)

Expanding the commutator to linear order in & and 7 gives

= (1= i& ke, (D} D} By By oy X))/ (1)
— (1= iy (Dl Dl Bl Bl X))

— (Exn) - (rx Vp(x)

— €k, (Dy.D.E.B,y,x, %), k,(Dy.D.E.B,y,x,x)ly(x)
—i(€-k,|,(Do.D.E.B,y.y.x) —n-k,|:(Do.D.E.B,y. x.x))y(x), (36)

where in the last line

I}W‘”(Do,D,E,B,l[/,)(,X) = ni[vﬁi’}y/(DO +ﬁ'D,D+ﬁD0,E+ﬁXB,B—ﬁXE,
(1 =iy - ke, Jyr. (1= iff - ke, ). %) ] (37)

and analogously for IAc,,,| & such that only linear orders of & and 7 have been kept in (36). This last line contains new terms
(compared to the naive application of the commutator in the previous line) arising from the nonlinear nature of the boost

transformation.

We reserve covariant notation for Greek indices, writing purely spatial vector indices i, j, k, ...

always as lower indices.
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Inserting the explicit expression of Eq. (30) into Eq. (36),

Vi) =) = (€ xn) - {rx (%) + 2

4M2
1

2M?
i

- 8M?

+ 55 (kpso —

(kes — kpkps — kpsa
This expression has to satisfy the commutation relation of
Eq. (33), i.e.,

Vi) =) 2 ) {rx (%) + 3o fu ),

(39)
This gives the following relations:
kDS =1, kpgp=1, kD3S =-1, kDSOO =1, (40)
) 1
kg = kp — kg — r kpss = kgsa + kp — kgs. (41)

With this result, already four of the boost parameters are
completely fixed. Also note that the system at O(M~2) is
overcomplete: there are four equations depending only on
the three paramters kpg, kpgg, and kpsg, so the fact that all
can be satisfied simultaneously is a nontrivial result.

B. Invariance of the Lagrangian

Now that we have constructed a nonlinear boost trans-
formation for the heavy (anti)quark field that satisfies the
Poincaré algebra, we can proceed to check which con-
ditions need to be satisfied in order for the Lagrangian to be
invariant under this transformation. We start with the
bilinear terms in the heavy quark sector. The Lagrangian
|

8,01 L = [Z(D{),D’,E’,B’,y/’ ;/ x)

- (rdy+1v)L + 80’1 Vy Doy
45;;(2) don x V -y Dooy — —6071

lC2kD D

(kpss + kpso)(D*)o +

szoo)D(%G -

lCFkD

_2)'

we obtain the following expression at O(M

i
(kps

M - szo)Doo'

(ks — kpss — 2kpso){D.D - 6}

1
16M?

1

1 kyss)(9B x a>}w<x>. (38)

|
at O(M~?) was already given in Eq. (3), but in order to
study the transformed Lagrangian at this order, we also
need to include

C
o =v{ oy (07 + o (D, )
Cw2
———=D;(gB -06)D; D . D, gB
2Dy (gB 0D + L (D 6). (D gB})
lCM

- {Dx, gB}}}w, (42)

8M3

which consists of all O(M~3) terms that contain a
derivative.®

Strictly speaking, it is not the Lagrangian that needs to be
invariant under a transformation but the action. So when we
speak about an invariant Lagrangian, we mean that the
difference between transformed and original Lagrangian is
at most an overall derivative, which we denote as 9,AL.
Overall derivatives are often implicitly omitted, as all they
contribute to the action is a vanishing surface term. We will
include them here for the sake of completeness, and
because they play a role in the calculation of the conserved
Noether currents and charges.

The heavy quark Lagrangian defined in Eqs. (3) and (42)
transforms in the following way at O(M~2):

_‘C<DO7D E va ){,X)

ikpo .
——0011 v DDgy —25n - Yy Diy

4M 4M

kDSO

v (Dxe)Dow = p

nxV-y'Dioy

kp
+1- Vl//{ 0—

2M am? 7

(D?

4M?

crkps
8M?

ik
DS Dy

+yxV. 1;/{4M

$The term —iMr from the boost transformation adds a power of M to the O(M~

vanishes unless there is a derivative.

)o

gB - O'}l//

crkps
B
g2 Y

icrkps
+ e gB x o6

+

o

3) Lagrangian, but the commutator with this term
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1 1
+n- II/T{ i(1=c)D + M (co —kp){Dy.D} T (kDS —2cp +cg)gE x 6

18];\32 {Dy.{Dy.D}} + 81:/12 (cp + kg)[Do, gE] + # (cs + kgs — kpso){Dy. gE} x &
+ s (€akp = DD} + s (Gey = e + crkos) (DX, 6B)
+ ﬁ( s = ¢rkps = ¢y p{D-, gB}o +8+1./12 (crkps — c2kps — ¢y, ){(D - 6), gB}
+8;A-/12 (c2kps +2cpkp — cs = 2cyy + 2cy){D, (9B - G)}}l//' (43)

The first four lines of this result consist of overall derivatives, which (apart from the coordinate transformations) arise from
the boost transformation of y' through integration by parts, e.g., (Dy)" = Vy' —y'D.

All terms which are not overall derivatives have to vanish, otherwise the Lagrangian (or rather the action) would not be
invariant, from which the following constraints on the coefficients are obtained:

o =1, kp =1, kps =1, kpo =0, kg = —cp, kes = kpso — cs» (44)

C4:1, CS:2CF—1, 2CM:CD—CF, Cp/p:CF—l, CWZZCWI_I' (45)
These coincide with the constraints derived in HQET via reparametrization invariance [28,29].9 We also see that the
constraint kpg = 1 is consistent with the result obtained from the Poincaré algebra and the commutation of two boost
generators (but now it is obtained at a higher order in 1/M). By combining both results, Egs. (40), (41), (44), and (45), we
can simplify the remaining constraints to

3
kgs =2(1 = cp), kg = cp + 1 kpss = kpsa +2cp — 1. (46)
The boost parameter k3 has not been fixed yet. Its value can easily be derived from the contribution of the corresponding

boost term to §,A*L at O(M™3),

n-y' [8 o ( y o0 km) {{D0.D}. D} + s (ks + ) D AD- gE}] |- (47)
The second term will contribute to other constraints, but in the first we have included all possible terms consisting only of
covariant derivatives, where exactly one is temporal, so its coefficient has to vanish.

Similar observations can be made for terms with two or more temporal derivatives. For such terms, no knowledge of the
full O(M~3) Lagrangian or its derivative terms at O(M~*) is required, because we have defined it such that temporal
derivatives do not appear, and an infinitesimal boost can at most introduce one temporal derivative. Hence, the contributions
to 9,A"L at O(M —3) with two or three temporal derivatives are

0yt |20 D (D, {Do. DY+~ (kon + ko) (Do, [Do. gE]}

16M3 16M3
n kEesor [Dy. [Dy. E x o]] + b (kesor — kpsoo){Dos {Do, gE X 6} } |w. (48)
16M°3 16M°

With kpgo9 = 1 from Eq. (40), and kpy = 0 and ¢, = 1 from Egs. (44) and (45), the vanishing of the terms in Egs. (47)
and (48) require

kD3 =1 kDOO =0, kEOZ = _kE017 kESOl =0, kESOZ =1 (49)

°As noted in [30,37], the relation for ¢y, in [29,28] differs by a sign. Our relation, 2c¢y; = ¢p — ¢, agrees with [28]. It is also
compatible with the one loop expression of the coefficients in QED [30,32,37].
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In particular, we see that the inclusion of temporal
derivative terms in the boost generator is not ruled out,
even though the Lagrangian does not contain such terms at
any order beyond the leading one.

If we compare the expression for the boost that follows
from (40), (44) and (49) with the one in [28]," we see some
differences. The reason for that is that in the derivation of
the induced representation in [28] the equations of motion
were used in order to remove temporal derivatives. If we do
the same, i.e., insert

o 1Cy ) ICp ")
Doy = 2MD +2M B-6+OM*)|y (50)

into the heavy quark boost operator, we can replace

ikpo kpo ikpo
——{Dy, D}y = ———gE ——D(D
a2 (Lo DYy =~ 5 9By + 0 5 D(Dow)
kpo kpoca
=~ Y 1o 0Oy £
(51)
k
—ﬁ{DmD X oty
ik k
=~y G x o) =225 (D x 6)(Dy)
ikpso ikpsocs
(52)

where the dots contain O(M~?) terms with a magnetic field
and higher order terms. We need not study them further,
because they affect none of the terms given in [28]. For the

|

oc
S R

terms with two or more temporal derivatives in the boost
generator, also the equations of motion for gauge fields will
become necessary.

These replacements change the other boost parameters in
the following way:

kg = kg —kpo,  kgs = kgs — kpso.

kps = kps + —kDocz,
2

Changing (40), (44), and (49) accordingly, the obtained
boost parameters agree with the ones given in [28]." While
this may not be a general proof that coefficients obtained
from the induced representation (here kp, kpg, kps, and
kpss) can be assumed to be 1 also in the interacting theory
at all orders, it seems to show that at this order there is no
contradiction between the two approaches. The constraints
on the Wilson coefficients and also the boost Noether
charge (see below) are the same, as the equations of motion
also enter in the derivation of the conserved Noether
current. Note, however, that a boost generator without
temporal derivatives, as used in [28], does not satisfy the
Poincaré algebra for the commutator of two boosts, unless
the equations of motion are used again. This would suggest
that the Poincaré algebra is only satisfied for on shell heavy
(anti)quark fields, a restriction that does not apply to our
approach. Finally, we remark that most of the constraints on
the boost coefficients at O(M~?) presented in Egs. (46) and
(49) are new.

kpss = kpas + 2kpsoca.  (53)

C. Noether charges

Now that the boost transformations of the heavy quark
and antiquark fields have been determined, we can write the
corresponding Noether charge IC,

= / &r [11 : (675 (tV + 1y i + w'hhk,w + xtk y — TIPAG — r£> - AOE}

9(9oeh:)

=-m-P+ / Frin-rh+w'n-kyy + yn -k — AL],

IC:—tP+§/d3r{r,h+Ml//’l//—M)('x}—/d3ry/' [LDanr—cD QE}W

4M 8M?

4aM 8M?

—F/cﬁr;(T [LDXG—C—DQE:|)(+O(M_3), (54)

where ¢, stands for all three types of field, y, y, and A, while /7 is the canonical momentum field conjugated

to A,

The context of [28] is NRQED, not NRQCD, but both calculations are analogous at low orders in 1/M.
""We have chosen to write the terms with three derivatives in the form of an anticommutator in order to work with explicitly (anti-)
Hermitian terms, while [28] does not. The difference between both ways of writing are terms with magnetic fields not listed in [28].
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oL
¢ = = —E¢+O(M™2). 55
We have also defined A°Z in analogy to lAcl,, / as the part of

A°L that does not originate from the coordinate trans-
formations,

+O(M73). (56)

We can ignore here terms with an overall spatial derivative
in Eq. (43), because they vanish in the integral of the
Noether charge.

In addition, P is the Noether charge associated with
spatial translations

P [ [3(3047 W’]

_ / &Er(y! (=iD)y + 1| (=iD)y - Tr[lIx, B]), (57

where the equations of motion, [D-, 1] = —(y"gT%y +

9T )T, have been used in order to make the expression
explicitly gauge invariant.'> The Hamiltonian density 4 is
given through the Hamiltonian

e [
9(9o;)
= /d3r(l//*hl,,l// + 4 hyy + Tr[I? + B?))

_ / &rh, (58)

where hy,
density,

5o¢i - ﬁ}

and h, are defined through the Lagrangian

L =y'(iD, h,)x + Tr[E* — B?],

(59)

— Iy )y + 5" (iDg —

and we have made use of Gauss’s law again.

The initial expression [0L/0(0y;)|0op; — L and the
Hamiltonian density, as defined in the final expression,
differ by a derivative term, —V - (IT*A§), which vanishes in
‘H, but gives a contribution to /C that exactly cancels the
II“A§ term in Eq. (54). In the last expression for /C, we have
replaced rh by {r,h}/2 —[h,r]/2 in order to obtain an
explicitly Hermitian expression. The anti-Hermitian terms
from 'k, y and y 'k, as well as the terms with a temporal
derivative cancel against [h,r]/2 and A°L. At O(M™2),
there is exactly one kind of term,

In fact, the equations of motion are Gauss’s law.

i
W@(l —cp) +es=1)y'gE x oy + x"gE x 6y] = 0.
(60)

The coefficients add up to zero according to the constraints
(45), where the first comes from the kgg term in the boost
generator, the second from [A, 7] /2, and in the third A°£ has
been combined with the kpgy boost term, turning the anti-
commutator into a commutator that gives the electric field.

The Noether charge /C corresponds exactly to the boost
operator of the quantized theory obtained in [17] and
extends it up to O(M~2). Note that the field redefinitions
that remove the O(M) terms from the Lagrangian have not
been performed in [17]; hence the definition of % in [17]
differs from ours by My 'y — My'y. This term appears
explicitly in our expression for IC. Accordingly, the gen-
erators for time translations are given by idy == M after the
redefinition of y and y, so that the proper Noether charge of
time translations is given by the above Hamiltonian H plus
M [ &Br(y'w — x7x), which coincides with the expression
in [17]. Another way of obtaining /C at tree level [in
Eq. (54) this corresponds to setting ¢p = 1] is to perform
Foldy-Wouthuysen transformations on the QCD Noether
charge [19].

D. The four-fermion Lagrangian

We now turn to the four-fermion part of the NRQCD
Lagrangian, or more specifically the part consisting of two
heavy quark and two heavy antiquark fields. The lowest
order terms of the Lagrangian are given by

1
LA, = e {A10Sow v + F1CS )y ey - xloy
+ fs("So)w Ty Ty

+ fsCS)w'eT - x'oTy}. (61)
The Wilson coefficients f are related by Poincaré invari-
ance to the coefficients of the next order four-fermion
Lagrangian, which is O(M~*) [38]. It is straightforward to
see that the O(M) terms of k,, and k, cancel each other in
the boost transformation of the leading order part of this

Lagrangian, so the first constraints can be obtained
at O(M=3).
At O(M~3), the O(M~*) Lagrangian contributes only

with the O(M) terms of k,, and k,, which are given by
+Mr. Since the boost of operators with two left-right

derivatives, like w'Dy - "Dy [see Egs. (63) and (64) for
the definition of left-right derivatives], or with a chromo-
magnetic field B, cancels at O(M), only operators with at
least one “center-of-mass” (cm) derivative (i.e., a derivative
acting on two heavy fields like VyTy) give nonvanishing
contributions. Including only such terms, the four-fermion
part of the Lagrangian at O(M~*) is given by
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lf cm g 3
Ly = =7 WD x o)y Vyy + (Vr'y) 2 1(D x 6)y)
_ ifScm
2M*

. !

1 em <> <>
+ =29 (' Dy - (V x yTow) + (V x yloy) - x'Dy)

(y/T(Dxa)T“ Dy Ty + (Dy Tly) - ){T(DXG)T“ )

2m*
+ 12% (W'DTY - (D x 4'6Ty) + (D x y'aT’;) - 1 DTy)
+ 00 (Vo) (Vi o) + B (D o, ) (D3 o w)
+ gjl‘l;cm (V-wley)(V-yloy) + gj(/}ﬂ (DY -y 6T y) (D - ¥ 6T y)
+ DR (V') - (V') + B Doy T0) - (D Ty, (62)

where covariant derivatives with color indices are understood in the adjoint representation. The relevant left-right
derivatives are defined as follows (see [38]):

w'DTy = —(Dy) Ty +w'TDy, (63)
WTD:‘D;T)( = (DiDjl//)TT)( - (DiW)TTDj)( - (Djl//)TTDi)( + WTTD,'D;)(, (64)

where T stands for either the unit or a color matrix. Thus, we obtain the following expression at O(M~3) after the boost
transformation:

O, ALy = 2M3 (f1("So) + 4g1cem) (@ - VY y ¥y + Hee ]

- W (fs("So) + 4gscem) (- iDPy TPy )y T + H.c ]

(F1(S0) = Frem) Wi - (D x 6)yzTy + Hee]

<>

(fs("So) = fsem)wm - (D x 6)T2x Ty + H.c]

4M3

4M3
1

YYE
1

B 2M*

(f1C81) + 4g10em) [0 - iV o)y o + Hec]
(fs(3S1) + 4gsaem) [ - iDw 6, Ty )y 6, T% + H.c]

4M’% (fl( Sl) lcm)[WT(nXB))(')(-;-GW—FH'C']

4M% (FsCS1) = Fyem)lwr' (1 x D)T % - 46Ty + H.c)

2 . .
+ Wﬁhhcm[‘l/' (n-06)y(iV - y'oy) + H.c]

2 a ab T b
+Wg8bcm[ wi(n-6)T%(iD* - y'6T y) + H.c.], (65)

where we have neglected the terms from the coordinate transformations. As none of the terms in (65) has the form of an
overall derivative, all coefficients have to vanish, which implies

1 1 1 1
Jaem = _Zfl(3sl)’ Jeem = __fl(ISO)’ 98acm = _Zf8(3S1)’ 98cem = _ZfS(ISO)’ (66)

1 1 1
Siem =7 f(SO) lcm_ fl(SS) Sfgem = f(SO) fécm:ZfSGSl)’ (67)
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J1bem = 98bem = 0. (68)

These relations were first derived in [38] and later con-
firmed in [30] for NRQED, which at this order is equivalent
to the singlet sector of NRQCD.

At O(M~*), the boost generators contain terms involving
the heavy (anti)quark fields themselves. This is a novel
feature if one follows the line of argument in [30], where the
appearance of gauge field operators has been explained with
the ambiguities related to the ordering of derivatives when
promoted to covariant derivatives. Of course, an argument
could be made based on the fact that gauge fields and heavy
(anti)quark fields are related through the equations of
motion; in the EFT approach used in this paper, however,
the appearance of heavy (anti)quark fields in the boost
generators is natural and requires no further justification. We
discuss the effect of these terms in Appendix B.

III. CONSTRAINTS IN PNRQCD

Potential nonrelativistic QCD (pNRQCD) is a low energy
EFT obtained from NRQCD after integrating out the scale
M of the relative momentum between a heavy quark and an
antiquark [8-10]."* In weakly coupled pNRQCD, we also
assume Agcp S M 2, which implies that the matching can
be carried out perturbatively. Since the relative momentum
scale is of the same order as the inverse of the quark-
antiquark distance r, integrating out this scale corresponds to
multipole expanding. The effective d.o.f. are heavy quarko-
nium fields instead of separate heavy quark and antiquark
fields, as the other d.o.f. (ultrasoft gluons and light quarks)
can no longer resolve the individual heavy particles after
integrating out the scale 1/r.

In SU(3) the heavy quark and antiquark may form either
a color singlet or octet state; hence they appear in pPNRQCD
either as a singlet field S or an octet field O. These fields are
the only ones that depend on the relative distance r as well
as the center-of-mass coordinate R, while all other fields
depend on R only. The Lagrangian of weakly coupled
pPNRQCD can be written schematically as

‘Cgl\elﬁ(QCD = /d3rTr[S*(i80 — hg)S + 0'iDyO

—(0"hpO +c.c.) = (SThgoO + Hec.)] + -+,
(69)
where the heavy quark-antiquark fields are matrices in

color space,

1
S =—=951,
V3
The trace is understood both in spin and in color spaces,
and the coefficients for the matrices have been chosen in

0 = V201" (70)

PIn this paper, we only consider a heavy quark and an
antiquark with the same flavor.

such a way that the traces over two fields are properly
normalized. The ellipsis stands for the gluon and light quark
sectors, which can be read from the NRQCD Lagrangian (3)
and following discussion. The covariant derivatives are
understood as commutators with all terms to their right.
Furthermore, H.c. in Eq. (69) stands for the Hermitian
conjugate, and c.c. for the charge conjugate of the preceding
term within the parentheses. The explicit expressions of Ay,
ho, and hg, are not immediately required for the following
discussions, so we postpone them until they become
relevant: hg and h, are found in Egs. (105), (108),
respectively, and hgq is given by Eqgs. (111) and (112).
As usual, they contain all terms allowed by the symmetries.

On the other hand, when the hierarchy of scales is given
by Aqcp > M2, the theory enters the strong-coupling
regime. In this case, the pNRQCD Lagrangian is obtained
after integrating out the hadronic scale Agcp, which means
that all colored d.o.f. are absent [10,39-41],

o / BrTHS (10 — hg)S] + -+, (71)

where the ellipsis denotes now terms that, in the simplest
setting, depend on the light-quark fields only in the form
of light mesons, and /g has the same form as in weakly
coupled pNRQCD but with all gluonic operators removed.
The reason is that, once the effective d.o.f. have been
established, the allowed terms in the effective Lagrangian
depend only on the symmetries, which are the same
for weakly and strongly coupled pNRQCD. Therefore,
although the Wilson coefficients of strongly coupled
pNRQCD are different from those of weakly coupled
pNRQCD and need to be determined in a nonperturbative
matching, nevertheless any weak-coupling result can be
immediately extended to the strong-coupling case by
setting to zero all coefficients from hgy, hgp, and from
gluonic operators in hg. In case the hadronic scale also
factorizes from the soft scale (i.e., for the hierarchy
1/r~Mv > Agep > M v?), the Wilson coefficients can
be expanded in rAgcp, so that the constraints have to be
satisfied order by order in this expansion. Thus, it suffices
to study only the weakly coupled case and any superscript
on the Lagrangian will be omitted from now on.

The matching between NRQCD and weakly coupled
PNRQCD is performed through interpolating fields [9]

2(R=r/2)W(R—-r/2,R+1/2)y(R+71/2)
- Z0 (NS, R) + Z5) (r)rr- gE*(R) 0% (r,R) + O(r),
(72)
2'(R=r/2)W(R—-r/2,R)T*W(R,R+r/2)y(R +r/2)
= Z80()0(r.R) + Z{) (r)rr- gE*(R)S(r.R) + O(r),
(73)
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where the Wilson line W acts as a gauge link from the
position of the heavy quark to that of the heavy antiquark.
Correlators of those interpolating fields in both theories
give the same result, which determines the coefficients Z as
well as the matching coefficients.

A. Coordinate transformations for
quarkonium fields

The interpolating fields determine how the heavy quark-
antiquark fields behave under spacetime symmetries. In
fact, in the limit ¢ — 0 one can neglect the Wilson lines and
just determine the transformation of singlet and octet from
different color projections of Q = w;(T.M The coordinate
transformations do not depend on the color representation,
so we use Q for both singlet and octet.

First, we give here the transformations under the discrete
symmetries [10],15
|

O(t.r.R) — — Q(t.—r.—R). (74)
0(t.r.R) - 6,07 (1, —r.R) o, (75)
0(t.r.R) — 6,0(~1.r.R)o. (76)

where the transpose on the charge conjugated field refers
both to color and spin space. Also note that charge
conjugation exchanges the positions of the quark and the
antiquark fields, so that r goes into —r. For the behavior
under spacetime translations and rotations, we refer to
Appendix A 2.

Under boosts, the coordinate transformations are com-
posed of the individual boosts of the heavy quark and
antiquark fields [see Eqgs. (30) and (31)] located at x; =
R +r/2 and x, = R — r/2 respectively,

w(t.x) )y (1,x,) Lw(r,xl)ﬂ(l,xz) — iMn - (xy +22)y (1,x0)x " (£,25) + [+ (1Vy 4+ x,0,), y(1,x1) ¢ (1. x,)

+y(tx)) - (1, +x200), 1" (1.22)] + ...

= (1 =2iMn - R)y(1.x,)y"(1.%5) + [n- (tVg + Ry, (1.1 )1 (1.x,)]

2

+l(’1"')([8071//(17’51)])(*(&3‘2) —y(1,20)[00. 1 (1.32)]) + ..., (77)

where the ellipsis stands for all terms of the boost transformation that are not related to the coordinate transformations [these are
shown in Eq. (79)]. The first two terms on the right-hand side of the equality sign correspond to the usual coordinate
transformations under boosts of a scalar field with mass 2M, where only the center-of-mass coordinate participates in the boost
and the relative distance remains unaffected (note that this behavior agrees with the coordinate transformations found elsewhere,
e.g., in [42], if we restrict ourselves to the center-of-mass frame). In the third term on the right-hand side, the time derivatives
acting on the quark and antiquark fields cannot be written as one derivative acting on the whole quarkonium field because of the
opposite signs. However, these time derivatives can be replaced by spatial derivatives through the equations of motion,

%(n~r)([80,1//(t,x1)];ﬂ(t,x2) —w(t.x))[00. X" (t.%)]) = (m - 1) {ﬁ (V- V%),W(Exl)f(f’xz)} +O(M™3)

= 1) |53y Ve Vel )| +00). (9

Thus, these terms give corrections of order 1/M and higher.
The other terms in the boost transformation of the quark and antiquark fields in the g — O limit can also be rewritten in
terms of the center-of-mass and relative coordinates, R and r,

DA SEEE NS AN ES)

X V) ou () ()] + (1 X Vo) y (1.2, (1. 22)6] + O(M2)

aM - aM
— ﬁ - Veow(t,x))y (1.x,)] - SLM (6D +6@) - [(nx V), y(t.x))y (t.x,)]
(6 =) [ ¥, ) wlr. 2 ) (1. 2)] + OM), (79)

"In this limit there is no longer any interaction between the heavy quark and antiquark, and they cannot form a bound state. Although
we thus lose in this way the justification for the assumed hierarchy of scales, nevertheless this is not relevant as long as we are interested
only in coordinate transformations.

“Note that C would not be a symmetry if we allowed different flavors for the heavy quark and antiquark.
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Here the ellipsis denotes the terms shown in Eq. (77) due to
the coordinate transformations. We have also introduced
the convenient notation
60 =60 and 6?0 = —Qo. (80)
This is to say that 6(!) acts on the spin of the heavy quark
and 6 acts on the spin of the heavy antiquark (they
correspond to the respective generators of rotations, see
Appendix A 2). Since 6,66, = —6! and 67 QT = (Qo)7,
charge conjugation effectively exchanges 6(!) <> 6(%.
From these expressions, we expect the boost generator in
the g — O limit to behave like

g—0, . 1 1
=itV R 2MR — —Vp —— Vip-V
ko= itVg + iR, + YL 4M{r’( -V}
i
_S_MVR x (6 +6®3)
LV, x (61 —6@)) + O(M). (81)

T 4M

This limit is interesting for the ansatz we are going to make
for the singlet and octet boost generators, since it deter-
mines which coefficients we expect to be of order
1 4+ O(ay). In the last two terms of the first line, we have
used

1
=Vp, (82)

PV ¥,) =3 {r (Ve ¥,)} - 3

in order to obtain terms that are explicitly Hermitian or anti-
Hermitian.

Finally, we list here how the boost generators are

required to behave under the discrete symmetries parity,
charge conjugation, and time reversal,
PkQ = —kQ, CkQ = szgdz, TkQ = O'2kQ(72. (83)
Note that P changes the sign of both r and R, C changes the
sign of r only, T changes the sign of ¢ and takes the complex
conjugate. While for the singlet field the transpose oper-
ation required by the C transformation is trivially realized
in color space, for the octet field the boost transformation is
consistent with charge conjugation if it is of the form (in
matrix notation),

050 =0-in- (KO +0k), (84

where the two parts kg” and kg}) are exchanged under C

as k(OA) (£>O'2(k(03))rﬁz.

B. Redundancies and field redefinitions

In order to find the boost generators in pNRQCD, we
will use the EFT approach and write down the most general

form allowed by the symmetries of the theory. However, it
turns out that several terms in this ansatz are redundant, in
the sense that one can make a field redefinition that
removes them from the boost generators without changing
the form of the Lagrangian. Thus, there is no loss in
generality if one chooses to work with boost generators
where these redundant terms are absent. We will identify
appropriate field redefinitions in this section. Since we
calculate the transformation of the Lagrangian up to orders
M°r" and M~'r° in the next section, it is necessary to
include all terms of order M°r? and M~'r° in the boosts.
We will use the notation ¢("") for the Wilson coefficients of
operators that are of order M~ r".

1. Singlet field

Even though we work with a general ansatz, some terms
may be omitted from the start, which is similar to the
construction of the pNRQCD Lagrangian. A term like
r- 'V, for example, is neutral with respect to any symmetry
and also the power counting. In principle one could add an
infinite number of these terms to any operator in the
Lagrangian, which would mean that at each order in the
power counting, one would have to match an infinite
number of terms, making the construction of the EFT
impossible. By comparison with NRQCD, however, one
sees that each derivative appears with at least one power of
1/M, so also in pNRQCD one can neglect any term where
there are more derivatives than powers of 1/M. The same
argument applies to spin-dependent terms, where each
Pauli matrix has to be suppressed by a power of 1/M.
The only exception to this are the kinetic energy terms that
have one derivative more than powers of 1/M.

By extension, these rules also apply to the construction
of the boost generators in the following way. Operators
leading to terms in the transformation of the Lagrangian
that would have to be canceled by derivative or spin terms
with an insufficient 1/M suppression are immediately ruled
out. For instance, since the center-of-mass kinetic energy is
of the form V4 /M [and not (r - Vg)?/(Mr?)] at order 1/ M,
we can exclude from the start a term like r(r - Vg)/(M7r?)
from the boost, which has no counterpart in the Lagrangian.
These arguments apply to Hermitian and anti-Hermitian
terms differently, as Hermitian terms lead to commuta-
tors in the boosted Lagrangian, which often reduce the
number of derivatives, while anti-Hermitian terms lead to
anticommutators.

Keeping this in mind and writing everything in terms of
explicitly Hermitian or anti-Hermitian operators (where we
stay close to the nomenclature in [17]), a rather general
ansatz for the boost generator of the singlet is given by16

The subscripts on the boost coefficients, @', a”, a”, b, ¢, etc.,

are labels used to distinguish between different operators with the
same suppression in 1/M and r. Primes distinguish operators that
differ only in the contraction of their vector indices.
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£ (L0)
kg = itVg + iRD, + 2MR — j}l‘} V- {kg;%, (Vg -V,)}
{ksa” (r’VR)’Vr}_ {k ”/r Vr}VR
(10) . (1,0)
1 (k ik
_m{ Srhz r(r-Vg)r;, (vr)i} - 8:;\6/[ Vi X (0'(1) +0'(2))
ik kL0
— a2 (1 VR x (61 +60))) = 3 (< Vi) - (6 +6C)r
p
. 1,-1
LG Y (6 —6™®)) 4 Ky ><, () —6@))rx, V
gM S T 8M |
i (kLD
—SM{ S r x (V) - 62)) (v,)l} +OM20, M~ !, M) (85)
p

Note that we cannot write any color singlet operator at
O(M°r?); also time derivatives do not yet appear at this
order, apart from the coordinate transformations. Since the
Wilson coefficients here depend on r, they have to be
included inside the anticommutators with the derivative V,..
We have used the identity

0ij€kim = Oik€jim + 0it€xjm + Oim€rij>» (86)

in order to eliminate several terms. A term like

il )(rx V) (r- (6D +63))/(8Mr?), for instance, can

sd'
be expressed in terms of the operators of k(slc’o) s kgld‘,(,) ), and
k(S d,”) through this identity; this can be shown by multi-
plying Eq. (86) with r,r;(Vg), (¢! +6?),. A similar

relation can be found between the operators of the
|

coefficients, ksla’_l , k(Slb', D , and ka,, , and an omitted

{(ikgy" /8Mr)rlr x (6 =6 )], (V,),} term.

Not all the terms in the boost generator, Eq. (85), are
necessary if one exploits the freedom to perform field
redefinitions; in other words, one can always redefine the
fields as long as the symmetry properties of the fields are
not altered. In order to keep the form of the Lagrangian
intact after the field redefinitions, we will only consider
unitary transformations Ug = explus] (ug is anti-
Hermitian), for which the new singlet field S is related
to the old S via S = 1S [17].

In order to find a suitable unitary transformation, we
need to look for terms which are anti-Hermitian and P, C,
and T invariant. Such terms can be easily found by
multiplying the Hermitian terms in kg with Vx/M, which
explains the nomenclature we use for U,

uS - eXp |: 4M2 {qs n' e VR, Vr . VR} 4M2 {q " I‘ Vr}V%

1 fas” iqgin
2 ua
— 4M2 { r2 (r . VR) r, Vr} - 8M2r2 (r

8M2

8M?

i G
g8V (Y, x Vi) - (61 — 6) _W{ 0

. (L~1)
g { S (V) 0 =¥, .

“VR)((rx Vi) - (6 +6))

(1,-1)

(re (o =)< V)5, |

(87)

(m.n)

where the ellipsis stands for higher order terms, which do not affect the calculations of this paper. The coefficients g4~ are

free parameters.

We can work out the transformation of the new singlet field S under boosts in the following way:

S=uis =ul(l -
= (1 - li] 'i(_g)s,

in - ks)UsS = [1 = Ul (in - ks)Us + (SUE)U]S

(88)
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SU(Vg.E,B) = - (1Vg +RD,),U(Vg, E, B)]
+ UV + 300, E +1xB,B—5xE)—U(Vg,E,B), (89)

with the second line expanded to linear order in 77. The transformed boost generator kg has to be expanded to the same order
as the original kg,

kg =kg+ [’A‘& us) — us(Vg +000.E +1xB,B—nx E) + ug(Vg.E, B)
1
+§[[kSv us] —us(Vg + 000, E +1xB,B -5 xE) + ug(Vg,E,B), ug] + ...
=kg + 2MR, ug) + O(M~2). (90)

Inserting the explicit field redefinition from Eq. (87), we obtain

ks = ks +—{CIS Ir, (V-V,)} + {qS " (" Vi), V,}

(10)

1

a9Vt Bt v 9,
r

g0 g0
Sd ( VR)(I‘ X ( ) +6< ))) + Sd ((r X VR) . (O-(l) +6(2)))r

CAMP? 4AMr?
(1.-1) i dg
R 1) — @)y — L0 () — 6@
+4M 45, V., x (o ¢\9)} 4M[ 2 (r-(e 6\?)))rx, v,
P s g
o " 1) _ 2 . ) -2
] B x (0 =0 (V) + 007, o1)

These extra terms can be absorbed in the operators already present in Eq. (85) by changing the coefficients in the
following way:

7(1,0 (1,0) (1,0) 7(1,0) _ ;(10) (1,0) (1,0)
kS — k T 2 Sa’ ksa// — kSa” - 2 Sa’ kSa/// ksa/// - Sa'"
7(1.0) _ ,(1.0) (1.0) 7(1.0) _ 4 (1.0) (1.0) 7(1.0) _ (1.0 (1.0)
kS _— ka - 4qsh k) ksd// - deII + 2 Sdll/ ) de/// - Sd/// - 2qsd/// k)
#(1,-1 (1,-1 1,-1 1,-1 1,-1 1,-1 1,-1) 1,-1 1,-1
k(s ' = k ) zq(Su g ké‘b’ = k(sz;’ - zqéb’ . ké‘b” = k.(Sb” ) - 2‘1<Sb” . (92)
[
The seven free parameters qgm’m in the unitary trans- iy which only four coefficients kfgl[’)o), k<slf>’ kglc-o), and
formation can be chosen in any convenient way. (10 d i
Comparing this to the expected result in the g — 0 limit sa » Temain undetermine
from Eq. (81), we choose to set ké ,,), kgla‘,?,), ];glb.o)’ ,;gzg)’ 2. Octet field
- (1 — . Octet fie
kélb, D and kL S D equal to zero, as well as to fix k(sla b1,

In a similar fashion, one can proceed to determine the
most general form of the boost transformation for the
octet field. The main difference from the singlet is that
all center-of-mass derivatives (except for the coordinate

Then, after dropping the tilde notation for the new field, the
boost transformation becomes

(1,0)

ks = itVg +iRO, + 2MR — %VR transformations) have to be replaced by covariant deriva-
(1 0) tives in the adjoint representation, D = §*V — ¢ gA©,
_L { k(l’,())r, (Ve V,)} - k VR x (o M 4 6(2)) due to the color charge of the octet field. There are no
S operators at order M°r? for the singlet field, but for the
ik d,,) W @ case of the octet, one can write two operators involving
T’M2 (r-Vg)(rx(¢'V +6'%)) the chromoelectric field. There are no new terms at

; order M~1/°.
——V,x (6 —6®) + OM2°, M~'r', MOP?), We write now the color components of the octet field

explicitly instead of using the matrix notation, for which the

(93) boost transformation reads
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0125 0 = (5 — in - k&) OP. (94)
The parity transformation of the boost generator in com-
ponent notation is the same as in matrix notation. For the
charge conjugation and time reversal transformations, we
introduce a sign factor ¢ through (74)" = (T%)* = {47
(the double appearance of the color index « in any instance
of {* does not imply its summation). With this the fields in
the adjoint representation transform as

0ai>dzca0a0'2, Ea_c) _é’aEa’ Ba_c) _é’aBa’
(95)
Oa_T>02é'a0a02’ Ea_T)CaEa’ Ba_T) _é'aBa'
(96)
J
£ (10)

kb = 5% (itV RO 2MR
0 (itVg + iRO, + ) — 4M

1 1.0 u
~ a7 ko r (DR -V,)} =

1 (k50
—m{—zr(r-l)%”)ru(vr),}
. (1,0)
_ Kot (. par)r x (61 + 6)))
8Mr? R
i5ab

oD Dab 4- fabck (

ik

The boost generator in component notation has to trans-
form like

ket S cathoy (ke oy, kS s (0 orkebe,.  (97)
For the sign factors, one can use the following identities:

é‘aé’béab = 5 , CaCbgcdabc — abe ,

(98)

é‘aCbé'cfabc — _fabc’

which follow from the commutation relations of the color
matrices.

A general ansatz for the boost generator of the octets
is then

-gE)r + < f"bck ob rgEC

{koa// (r Dab) V } - —{ko mk Vr}D%h

D%h X (o—(” + 0.(2))

ik0
~ G2 (rx D) (o
.

+62))r

% __(r. (6

k(l,—l)
[ -6@)rx,v,

8M r
15‘117 k(l.//l)
_ — { 0};2 rx (o_(l) _ 0.(2)),% (vr)l} + O(M—2FO7M—1rl,M0r3)‘ (99)
r

We can again perform a redefinition of the octet field through a unitary transformation O“

= U 0P withU, = explup], in

order to reduce the number of coefficients in k. For this transformation matrix, the same arguments apply as in the singlet

case, so that we write the anti-Hermitian operator u,, as

0.2) 0.2)

ab _ _ 40a . . ab dop 2 ) ab
M2 {qu” (r'DR)’ (Vr 'DR)} ——{q w" Vr}(Dzze)ab
1 q“‘o) lq<1 9,,
‘m{ o <<r-DR>2>abr-,vr} 0L {(r-Dg). ((r x D) - (o) +62))}*

x D) (6" —6))}

(100)
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where {A, B} = A®'BY'P B AP’ and it is understood that E®> = —ifeE¢,
Just like in the singlet case, the new boost generator (for the new octet field) after this transformation is given by

k& = k% + 2MR, u®] + O(M™?)
— k?)b _ _fabcqoa (I‘ gEC) fabc }" gEc
{q Jr (D)} + {qOuu (r-D).V,}

(10)
1 [q
+— {q mr V,}D%”+M{ %’ r(r-D)r; (V,),}

(1,0) (1,0
o (v x (6 + 6)) (- DY) + 290" (¢ x DY) - (6) + s®))r

4M 2 4Mr 2
(1-1)
8 " i [4o) 1) _ 6
aag ou Vex (@ =0} - |H (- (@ — o, ¥,
5uh q( . D)
+ 2 { 00 (1 (1) — 6@))r,, <Vr),} +O(M™). (10D
.

This gives formally the same relations for the transformed boost coefficients as in the singlet case, with the addition of two
new relations for the coefficients of the terms with the chromoelectric field,

FOD _ 00 _p 00 g02) _02) 5 (02

0a _kOa ~ 4904 > ob = dop >
(0920 HD 2l E2 =0 s
RO = L0 _gg (L0 g0y U0y 9g00) L0 U0 _pg010)
R N R (TR UV UV vl (102)

We choose the parameters q(o ") to set ki) ,/), k(o1 (/)//), kgbo), kg(’})u), 12(01;/—1)’ 12(01;];1) and /~c<00;')2) equal to zero, as well as to fix

k(Ou) =1 and INcg(’l_]) = 1." Then, after dropping the tilde notation, the boost transformation simplifies to

(10
k 1
k&) = 5% (itVg + iROy + 2MR) — ~22-Db + - f“”‘( GE)r — Ak r.(V, - D))

4M
lkg 0 5 2 ikl d,, b ) 2
—-D¥ x (o c D) (r x c

2DiY x (61) +6) — 200 (- D) x (o) + 62)

5ab

TR (61 —6?)) + O(M~2r°, M~'r', MOP3), (103)

|
in which only four undetermined coefficients k(oli? ), k(olt;(?), its Lorentz boost contains the chromoelectric field exactly
k(olco), and kE) d,,) remain, just like in the case of the singlet. in the form if*"*(r - gE)r/8, see Eq. (103). As we will see
These coefficients, as well as the ones from the singlet, will in the next section, this form of the boost is convenient, for
be constrained in the next section. it leads to stricter constraints on the Wilson coefficients of
Finally, we observe that with respect to [17] the unitary ~ the Lagrangian in the octet sector than in [17].

transformation u4’ contains two more terms: the first two
terms in the right-hand side of Eq. (100), which are C. Invariance of the Lagrangian
proportional to the chromoelectric field. These two new
terms allow us to choose the octet field in such a way that 1. Singlet sector

The boost generators have to satisfy the commutation

"The choice I;g)f) =1 is dictated by the tree level matching relation Eq. (33), which for the singlet at leading order in
result of [17]. 1/M corresponds to
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(&xm) - (RxVg)—

= (Exm) - (Rx Vg) +

ik 10)

;W<5xm (rx

:'(EX’T) (RXVR +rXV,+%(g(1) +6<2)>>

This fixes three further coefficients: k(Sla’,O ) = kglc’o) = 1 and |

(- kg, 2Mn - R] + [ - kg, 2ME - R]

1.0)
Sd// -

+0OM™)
., (1.0)
B (gx ) (60 + o)

x (rx (6" +61))) + O(M™)

(104)

= 0. Note that the term r x V,, which generates rotations

of the relative distance coordinate, is obtained from terms that we have included in I}S, as opposed to R x Vp, which comes

from the coordinate transformations.1 o
The last remaining coefficient kéb

is fixed when we apply the boost transformation to the singlet sector of the

Lagrangian up to O(M~2) (we follow the notation from Ref. [17]),

N t 1 cs 0 Vs Vs
EPNRQCD B /d3rTr [S} (180 * _{C VZ} + 4M V%? -Vy' = M M?
szsa 2 L Sa 2 VLZSb 2
+ e Vit — M2 {VI, s> Vit + Ly 2(r><VR) +—M2r2 (rxVv,)
4 v
_jﬁiﬁﬁﬁmxrd%_ﬂ@m.ﬁw)4;5(%&2

+”HMUXvM.@m_Gmy+%%¥@xvg«&U+A%>ﬂ,

am?

(105)

where the subscripts a and b (later also ¢, d, and ¢) on the potentials are labels used to distinguish different operators of the

same type. The difference between the transformed Lagrangian and the original ﬁ;*;)RQCD needs to be a derivative. We obtain

0, A" L) = /d3rTr {n - ST <i(1 - cgl’())

Y Vp2Sa + VLzSa + 5 VS

where we have neglected the terms from the coordinate
transformations. The prime on a potential V denotes
derivative with respect to r.

None of these terms has the form of an overall derivative,
so all coefficients have to vanish, which gives the following
constraints:

L0 010

sp — ts VpZSu:_

roo I o
Viese = _EV(S Y, Vissa = _ZV(S N (107)

These coincide with the results obtained in [17]. The
constraints for the singlet spin dependent potential Vg,
and for the singlet spin independent potentials V g, and

V25, were first obtained in [43,44] respectively by boost-
ing the potentials expressed in terms of Wilson loops; a

Wy — 1@@ 00

= Vil

>w+ <n%+2%ﬁ>@vg

1

(106)

more recent derivation can be found in [18]. Note that with

the last remaining boost coefficient kglbm fixed to unity, the

boost generator for the singlet field up to this order is
exactly the same as in the g — 0 limit; in other words, there
are no loop corrections to any of the coefficients. It is
important to remember, however, that this form of the boost
generator has been a particular choice obtained through
certain field redefinitions. Other choices are equally valid
and may change the constraints derived above. Our choice
corresponds to the one made in [17].

2. Octet sector

The calculation of the commutator of two boosts for the
octet fields is analogous to that for the singlet fields, so we

have k(OI(;(I)) = k(oléo) =1 and k(OI;i(/)/> =0 for the octet. The
(1.0)

only remaining boost coefficient is then k)’ .
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The octet sector of the pPNRQCD Lagrangian up to O(M~

| (10
L% %kocp = / d3rTr{oT <iD0 +—{c

V1204
PO DR (Vo V) + 0
Vs, (1) @) — 2(6) . 6@
—Mz'r2(3(r c)(r-6?) —r’(ec'V-6?)) -
Vv

— 52
c\?)) + e

(TS Y
+ |0 (Y92 Y90 e D). - )

%) can be written as [17],

1
o ﬁ Vi
o M M2
VLZOb
Dy + 5% (rx V)2
Vo
ITE 1) .6

iVisob (rxV,)- (e + 6(2)))0

V(O,Z[Z
+ %rz[DR" gE]

(1.0)

lV(oo) FV(ooz); 5(1) — L 0®0b &2
4V .- B gB - gB -
+ { r ’r X g } + 2M 2M
(1 0) (1,0) (1.0)
2 00c¢ (.. .6l _M . .6?) _00d,
(L ) (20) (2,0)
Voo icsV50a V0804
Yy (r x Dg)-, gB} + 372 [Dpx,gE] -6V — e [Dgx, gE] - 6@
iy 0})7/ 20
109 {(r x D), g} - 6) = {090 {((r x D) - o1), (- gE)}
lV(O z)b, ZV(OZO)OM
16;’2 2 {(rx D) gE}(r-0) + 5 55 {((r x D) - 0%). (- gE)}
(2.0
=+ 16M2 {Vooc ( : gE>’ (Vr DR)} =+ W{VoozﬁrigE" (vr)j(DR)i}
(2.0)
1 Vood
+ 16M2{V00‘Wr 9E;,(V,);(Dg);} + 16M2{ 2 rirj(r- gE), (vr)i(DR)j}
iv2o)
- SMZ; (r XDR)-,gB}>O + c.c} }

(108)

where c.c. refers to the charge conjugate of every term inside the square brackets. In the terms of order M~!r! and M~2r°
we include only those that contain a covariant derivative acting on the octet field, because otherwise they do not contribute

to the boost transformation at the order we are interested in.'®

Applying the boost transformation to this Lagrangian, we obtain the following difference with respect to the original

Lagrangian:
9, AL
i
Y (V 20a T V1204 T 2"00 )(’1 Dy

i r_ (o
+W (VLZOa +2V<0)'> (m-r)(r-Dg)—

1
0) —/d3rTr{OT<i(l— (1, ))('7 DR)_m(k(Olg))_c(Ol,O))n

1
2M

' {D()?DR}

)

1
(VL50a+2 v )>('1X")'>O

"8Note that in Ref. [17] the identity (%63 was not used so the operators considered there were not all linearly independent. In

particular, there are two more potentials V'

n and V Ob,,, there, which we do not have here as the corresponding operators are linear

combinations of those in (108). Ultimately, these potentlals were found to be zero in [17], showing that the results are unaffected by the

choice.
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L, 0, 1 2.0 o) 1 on 1
+ [OT (5 (V(oo) - V(ool))(ﬂ xr)-gB + Y] (cSV(OOZI - 2CFV(001>7 + §V(00) + §> (n x gE) - ')

1 2,0 10 1 o1y 1
(V5sba=2Visatn +5V58) =3 ) o) -0

aM 2 2
1 20 10

a2 Voow = 2Vop) (0 xr) - gE)(r - o)
1 o)

T Vogor = 2V8é§2)c)((’1 xr) - gE)(r-¢?)

4AMr?

1 r
+ o (vggg +3 Vﬁ%‘)’) ((nxr)-6W)(r- gE)

1 2.0 r(0,1
“anr (V<o®3w +5 V%J’) ((nx7) - 6@)(r - gE)

i 2.0 1.0
(VY V0D 1) (- gE), (n-V,)}

~su
i 2.0 1.0
— a1 (Voo = Voo + Dn-r).(V, - gE))

. (2.0)
_ by e vy L [ Vood (e B
i Voo @+ gE)r-,V, T { 2 (n-r)(r-gE)r ,Vr}

1 2.0 1.0
T30 (Vg)og - V(ooé)(ﬂ xr) - QB)O + C-C-] } (109)

where we have neglected the terms from the coordinate transformations. Because this difference is not a derivative, all
coefficients need to vanish, from which the following constraints are derived:

Vi20a = ‘%V(oo)” Visoa = —%Vg))/,
eV = 2eVi —SveN -1 VG, —avil, Lyl L
Voow =2Vooe Ve —avid
Vooe = Voor vaD = v,
Voor = 1= Voou VD, —vim -1,
Voo =0. Voou = 0. (110)

They are in agreement with [17]. Moreover, because of the particular choice of octet fields made in this work, whose boosts
are of the form (103), four of the constraints of [17] have simplified significantly. These are the last four of (1 10).19

3. Singlet-octet sector

Finally, moving on to the singlet-octet sector, several terms that appear in the octet sector are absent because of
charge conjugation invariance. In accordance with [17], the pPNRQCD Lagrangian in the singlet-octet sector up to O(M~2)
is given by

"If we had tuned q(oof) such that 7((00‘.12) = 0, the third and fourth last constraints of (110) would change into V(Ozgz,, = —Vggg and
Ve, = via 2.
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(1.0)
14
SO.h 0,1 F
‘C;ENRQ)CD_/CPI’TI‘[ST(Vgo >r~gE+ﬁOb B () —6?)
(10) (1.0)

SOc Sod

—Lv( DL (r x Dg)- gBY + —2 V2D, gE] - (6 — 6?)

4M 16M?
(2.0

Vo D aEVr - (6 — g2

gL (X Do) gEY(r- (6 = o))

lV(SOZH

T 16M2r s{((rxDg) - (6V) = 6))), (r- gE)}

V2o
—ﬁ (rxDR)-,gB}>O+H.c}, (111)

where agaln at orders M~'r! and M~2r°, we only include terms with covariant derivatives acting on the quarkonium
fields.”® As all operators between the large round brackets are Hermitian, we have labeled the Lagrangian with /4. Such
operators are the only ones that are allowed in the pure singlet or octet sectors.

In the singlet-octet sector, on the other hand, one may in principle also add anti-Hermitian operators. Instead of canceling,
they give terms of the form STaO — O'aS, where a indicates the anti-Hermitian operator. We are not aware of any argument

that would exclude such terms a priori, so we give here also the singlet-octet Lagrangian for anti-Hermitian operators in the
large round brackets,

. (1.0)
iV
$0,a sof
EE’NRQ)CD:/dngI[ (—{eroev r-9E} + Mr (rx gE) - (V) +61)
i
Mz{ Vo 9B~ (V, xDe)} + 175 (- gB). (D - () +6))}
(2.0)
509" ¢(r. (s) 1 52
D B
+ Teagzy (7 D) (9B - (07 + 07))}
V(z,o/)
S0g"
+ 16M2r(r’ (6<1) —|—0'(2))){DR-,QB}>O + HC} (112)

Such terms were not included in the analysis of [17].

A boost transformation generates the following new terms in the singlet-octet Lagrangian (we neglect again the terms
from the coordinate transformations):

8, ArLs0n = / & rTr {s*((vglo'” ~ Vi) xr) - gB

1
+ aM (Csvg?(’)(;) - 2cFV(slo’(Z) + Vg%l))(’? X QE)(O'(I) - 0'(2))

1
= (Vi) =2V 1) - gE) r - (6 = 0))
2,0
+ = Vioy + Vi) (<) - (69 = o2) (- gE)
1
+E(V(szo’oe>—Vglo’gz))(’ixr)'gB)OJrH.c. , (113)

We also do not write the operator with a potential Vézo’ob),,, of [17], which is a linear combination of the ones in (111).
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A 1
9, A" L1500) = /d3rTr [S' <m r(ngo’(}) - Vg}(’)z)), (nxV,)gB}

i 20 1,0
2 (Vo =2Vio)) - (6 +6)(r - gB)
J 20 1.0
a7 (Vsor + 25 - r)(B - (1) +62))
iv2o
—ﬁoj(n - gB)(r- (6 +a<2>))>o + H.c} , (114)
which leads to the constraints
0.1 (11 2,0) 1.0 0.1 2.0 (1.0
V.<S‘O) =Vso0 )7 CSV(SOa = 2CFV(SOb) - V(So ), Véoz;)' = 2Vs0c)7
2,0 0.1 2,0 2,0 1.0
V<SOb)” =-r V(so )/’ V(SOe) = V.(SOd’ st*o,f) = V<50e>»
2,0 1,0 2.0 1,0 2,0
Vi =2Viol. Vi ==2Vigl Vi), =0 (115)

Again, these are in agreement with [17], except for the

. . (1,0) ,(1.0) ,(2.0) {,(2.0)
relations between the potentials V., VSOf’ VSOf’ Vso iz
Véz(’)(;),, and V(Z’O) which are the Wilson coefficients from

SO gm 5
Lﬁl()f\%g)CD that are new. As already noticed in [17], the above

constraints require the chromoelectric field to enter the
Lagrangian in the combination r-(gE—i{Dgx,gB}/(4M)),
1.e., as in the Lorentz force.

IV. CONCLUSIONS

A. Summary and implications

In the paper, we have investigated boost transformations
of nonrelativistic fields in low energy EFTs for heavy (anti)
quarks, by starting from the general form allowed by charge
conjugation, parity, and time reversal, while exploiting the
freedom to remove redundant terms through field redefi-
nitions. Relations among the Wilson coefficients have been
derived by applying those transformations to the corre-
sponding Lagrangian up to a certain order in the expansion
and requiring that they leave the action invariant as well as
that they satisfy the Poincaré algebra. The results confirm
known relations from the literature [17,28,29,38], in both
NRQCD and pNRQCD (in the equal-flavor case), and add
new ones. They can be found in Egs. (44), (45), (66), (67),
(68), (B13) for NRQCD and (107), (110), (115) for
pNRQCD. Note that restricting to the singlet sector of
pPNRQCD provides also the relations for the strongly
coupled case. Finally, the obtained relations may be
translated into relations among Wilson coefficients of
NRQED [6,45] and potential NRQED (pNRQED) [8,46].

The present approach is complementary to previous
methods and provides new insights into them. The deri-
vation of the boost transformation via the induced repre-
sentation in [28] gives some intuitive understanding of the
form of several but not all terms appearing in the boost. In

particular, it leaves open the question of how to system-
atically generate terms that are not present in the free case,
include quantum corrections in the form of Wilson coef-
ficients for these terms,21 or reduce nonminimal sets of
operators. The method presented here solves these issues
by adopting for the boost the same approach as used in
constructing the effective field theory. It consists in
allowing in the boost all terms consistent with the sym-
metries, and in factorizing for each term possible high
energy contributions into suitable Wilson coefficients. We
have shown that the symmetries of the action and the
Poincaré algebra are sufficient to fix the form of the boost
generators in pPNRQCD and NRQCD (at the order we have
worked) and to constrain the Wilson coefficients of the EFT
Lagrangians. In pPNRQCD we have seen an example where
several equivalent boost generators are available, and we
have resolved the ambiguity by removing redundant terms
via a redefinition of the heavy (anti)quark fields. This
amounts to having chosen to work with fields that trans-
form in a specific way under boosts. Different choices lead
to different constraints on the Wilson coefficients in the
Lagrangian; hence the constraints depend on how the fields
transform under Lorentz transformations (see footnote 19
for a concrete example). Similar ambiguities are also
expected to become relevant in NRQCD at higher orders.

The method of [17,38], although similar to the one
presented here, is based on the computation of the Noether
charges. Constraints on the Wilson coefficients follow from
requiring that the Noether charges fulfill the Poincaré
algebra assuming canonical (anti)commutation relations
for the fields. With respect to that method, the one

*'Examples of both issues are the terms —cpgE/(8M?) —
icggE X 6/(8M?) and the 1/M?3 terms proportional to the
chromomagnetic field in the boost transformations of the heavy
(anti)quark fields in NRQCD.
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presented in this paper provides an alternative approach
where one computes boosts for each field individually
and requires the Poincaré algebra for these boost generators
(rather than the Noether charges) as well as the invariance
of the action. Computing the boosts of the nonrelativistic
fields has a value in itself as it may prove useful in dif-
ferent applications. In this way, we could extend the set
of constraints derived in [17,38] both in NRQCD and in
pNRQCD. The present method is well suited for automa-
tization in programs capable of symbolic manipulation.
Most of the results presented in this work have been
checked in this way.

In summary, the method presented here provides a
straightforward way to obtain the constraints on the
Wilson coefficients of a nonrelativistic EFT (where
Poincaré invariance is not manifestly realized) induced
by the underlying relativistic theory (where Poincaré
invariance is manifestly realized). Moreover, the examples
worked out in the paper lead us to conjecture that all the
Wilson coefficients of the boost can be fixed, through the
Poincaré algebra and the invariance of the action, in
terms of either constants or linear combinations of
Wilson coefficients appearing in the Lagrangian up to field
redefinitions.

B. Outlook

The suggested method is general enough to allow for
several possible extensions. First, it may be used to
constrain the nonrelativistic EFTs to orders even higher
than the ones considered here. As an example, the present
work has all the necessary ingredients to constrain the
NRQCD Lagrangian at O(M~*) in the two-fermion sector,
which has been derived in [47,48]. This would also allow
comparisons to the results for NRQED presented in [30].

Second, our results can easily be extended to the case of
pNRQCD with heavy quark and antiquark of different
flavors. Although charge conjugation can no longer be used
to constrain the form of the Lagrangian or the boost
transformation and so one has to add C-odd terms to both,
as long as one restricts the analysis purely to QCD
contributions, which are insensitive to flavor, one may
still use C symmetry combined with a flavor exchange to
eliminate terms. In addition, one has to pay attention to the
fact that there are now two mass scales, M| and M,, which
will typically appear in the combinations of the total mass,
M, + M,, or the reduced mass, M\M,/(M, + M,), and
the 1/M terms of this paper need to be adapted accordingly.
Constraints for the potentials up to order 1/M? , have been
known for a long time [18,43,44]; constraints beyond that
have not been investigated so far.

Recently, reparametrization invariance has been used to
organize the resummation of certain classes of higher-order
operators in the HQET [49]. It is conceivable that such a
resummation may be extended to include operators related
by Poincaré invariance in NRQCD and pNRQCD.

Furthermore, we expect that our method can be
applied to theories of weakly interacting massive par-
ticles (or WIMPs). There have been various suggestions
about the properties of dark matter (DM) using WIMPs
during the last few decades, such as supersymmetric
dark matter (SUSY-DM), axions, sterile neutrinos, etc.
[50-52]. As the mass of the DM candidates is assumed
to be greater than currently accessible energy scales, the
study of DM production and annihilation is largely
based on nonrelativistic EFTs. The direct detection via
nucleon-DM scattering processes was investigated in
[53], where the operators were constructed based on
Galilean invariance and the EFT formalism.? Instead of
Galilean invariance, one can construct the Lagrangian
from Poincaré invariance, such as it has been done in
[55,56], and ask whether Poincaré invariance can give
different and/or additional constraints on the operators
with respect to Galilean invariance. This is justified by
the fact that the underlying theory (whose explicit
formulation is yet to be found) is supposed to be
Poincaré invariant. Similarly, the method may be used
to constrain operators showing up in nonrelativistic
EFTs for heavy Majorana neutrinos that may be relevant
in the framework of leptogenesis [57].

The constraints derived from exploiting the spacetime
symmetries of nonrelativistic EFTs can be utilized for
another (conjectured) EFT of QCD, which is valid in the
nonperturbative regime, the effective string theory (EST)
[58-63]. The EST provides an analytic description of the
gluodynamics of a static quark-antiquark system at long
distances rAgcp >> 1 with the transverse vibrations of the
string between the heavy quark and antiquark as the
d.o.f. Assuming that the expectation value of a rectangular
Wilson loop in the large time limit can be expressed in
terms of the string partition function, one can establish a
one-to-one mapping between the heavy quark potentials
and correlators of the string vibrational modes. These last
ones depend on some parameters describing the unknown
short distance behavior of the EST [60,62,63]. The
potentials in the long distance regime are then translated
into EST correlators, which are computed analytically.
Relations among the potentials due to the Poincaré
invariance of QCD can be used to constrain the short
distance parameters of the EST. Analyses along these lines
have been carried out in [62-65].

Finally, we would like to argue that it should be
possible to extend the method presented in this work
also to different theories and to different (nonmanifestly
realized) symmetries. Principally, this would require adapt-
ing the symmetry argument used to restrict the allowed
operators in the nonlinear field transformations to the new
symmetries.

“This nonrelativistic approach has also been used to study the
X(3872) unconventional hadron in [54].
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APPENDIX A: SPACETIME TRANSLATIONS
AND ROTATIONS

1. Transformations in NRQCD

Spacetime translations act only on the coordinates,
shifting the origin by a constant vector a*. The transformed
field in the new coordinate system corresponds to the
original field at the coordinates before the transformation.
The form of the translation generator P, for a generic field
¢(x) can then be obtained from a Taylor expansion to first
order,

Ao(x) =5 AY(x) = Ag(x) + [a- (rx V), Ag(x)] = (1 + ia-js, ) Ap(x),

J

W) Loy (0) = (14 50 o) + o (0 x D)oy ] = (1 -+ -Gy o),

20— () = (1 tlal 6>}((X) T (X Vg ()] = (1 + i, (),

2

J

Alx)—A'(x) =A(x) —axA(x) + |- (rx V),A(x)] = (1 + ia-js)A(x),

where again we have written the universal term r X (—iV)
for the coordinate transformations in the form of a
commutator. We use a capital J to denote the generators
of rotations in general and a lowercase j for the particular
representation.

As we have done for the boost, we can convert the
transformation of the gauge field A, under rotations into a
transformation of the covariant derivatives,

Dy = 9y +igAy = Dy + [a- (rx V),Dgl, (A7)

D =V-igA'=D—-axD+a-(rxV),D]. (AS8)
From these, it also follows that the chromoelectric and
chromomagnetic fields E and B transform as vectors under
rotations, i.e., jr =jp =J4. Expressions for the Noether

Px) 5 ¢/ (x) = Plx +a) = [1 + a0, + O(a®)]¢p(x)
= [l —ia"P, + O(a*)|p(x). (A1)

From this we take P, = i@,,, or in nonrelativistic notation
Py = i0y and P = —iV. This is already the final form of the
translation generator for the light quark and gluon fields,
but for the heavy (anti)quark fields we need to include the
effect of the field redefinitions performed to remove the
mass term in the Lagrangian. This modifies the generator to

P, = e M(i9,)eTM = [0, + §,0M,

u (A2)

s0 Pow = (i0y + M)y and Py = (i0g — M)y.

Rotations act both on the coordinates and on the field
components. The coordinates are transformed under
infinitesimal rotations such that r in the new coordinate
system corresponds to r+a xr in the old, where the
direction of e gives the rotation axis and its absolute value
gives the infinitesimal rotation angle. The components
of the Pauli spinor fields are rotated with the Pauli matrix
6/2, while the gauge fields transform as vectors, whose
behavior follows directly from the coordinate transforma-
tions and Eq. (5),

(A3)
(A4)
(AS)

(A6)

charges of spacetime translations and rotations in NRQCD
can be found in [17,19].

2. Transformations in pNRQCD

It is useful to look also here at the transformation
properties of Q =y, which includes both singlet and
octet fields as different color projections. Time translations
are straightforward in pNRQCD; y and ' are evaluated at
the same time, so the time argument of the quarkonium
fields is shifted in the same way. The additional mass terms
introduced through the field redefinitions of y and y add
up, which gives the following transformation:

0(t.r.R) 2% 0/(1.r.R) = (1 — 2iMag) Q(1.r.R)

+ [agdy, O(t,r,R)]. (A9)
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We have assumed that the quark and the antiquark fields
have the same mass M, so that the generator of time
translations is Py = idy + 2M.

Space translations act only on the center-of-mass coor-
dinate R: both the heavy quark and antiquark are shifted by
the same amount, so the relative coordinate remains
unaffected. This means

O(t.r.R) =5 Q'(t.r.R) = Q(t.r.R) + [a- V¢, Q(1.7. R)],

(A10)

with the generator for space translations P = —iVp.
Under rotations, both the center-of-mass and the relative
coordinates transform in the same way. The component

transformations of y and y lead to a commutator with the
quark-antiquark field and the Pauli matrices,

o(t.r.R) -5 Q'(1.r.R)
=Q(t,r,R) + [a. (R X Vg +rxV, +%o->,Q(t,r,R)}
(A11)

With the convention for the Pauli matrices of Eq. (80), this
gives the generator of rotations as j, = R x (—iVg) +

x (=iV,) + (6! 4+ 6¥))/2. From this, it is straightfor-
ward to see that
0= —=Tr(0] and Q= —=Tro0]  (AL2)
=—Tr an = rle
1 \/§ 3

|

A as; <.,

kylry = M4D)()(T —l—M4)(V)(T + M TD +— e DT

Ta @a ab ., T Tb 83(1
T+M4T;(D x'T +MT

transform as a singlet (scalar) and triplet (vector) respec-
tively under rotations (the trace is understood only in spin
space). We can then decompose the matrix valued quark-
antiquark field into

1 1
Q—ﬁQl +EQ3'0’ (A13)
The bilinears in the Lagrangian then give
Tr[0'0] = 0101 + 05 Qs (A14)
O] @
/ool —glxor
n - 6@
Tr [Q* T Q] =0l +0i0:. (A1)

Expressions for the Noether charges of spacetime trans-
lations and rotations in pNRQCD can be found in [17,19].

APPENDIX B: CONSTRAINTS IN THE
FOUR-FERMION SECTOR OF NRQCD

At O(M~*), one has to include also heavy (anti)quark
fields in k,, and k,. The terms affecting the four-fermion
Lagrangian given in Sec. IID can be parametrized as
follows:

TDT“

b ibis ibys iby, < ibys iblg .
+—D><o-;( —VG)(XV){ —VO')(X)(TD+WD)(X)(TG+W)(VX){TO'+—)()(DXO’

ib ibg>
+V§Dxﬂ%ﬂw o 26T x Dy T —

ib <
ng 6T x 4 DT*

+ I—SfDT“)( x y'eT? 4 lM—gf TD* x y'6T? + lM—846 Ty'D x 6T

Ci2 C13 <
+ W (D o)yyio+ Wai)(v,ﬂa +—0ox'D;c

C15 ; Fphig
4D oxx o; +W61vi)(r6i +W07(Z (Do)

M

+ 17D6,)()( o; —|— GJ(V)( o; —l— ag()(TDal
D Ty 6T
+5 Ve S(D-o)Tyy'e i o M
+ %BO'TQ)()(TG-T‘Z + ﬁ()'T“){D‘.”’)(*()-.Tb + €86

M4 t l M4 i i M4

Ccg7 7 - Csg
+ WDGZT“)()H o;T* + WG,T“;( a

TeyD% ToTb+
0 xD{"x Ya

. c g
byTo, TP + %aiT";ﬁ(‘DaiT“,

0 T ;(;(TD oT*

6Ty" (D -6)T"

(B1)
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I})(|2f :I}y/l2f<‘// <—>)()- (BZ)

Here we understand the left-right derivatives on the left-
hand side of yy' as

this integration are irrelevant for everything that will be
discussed in this paper, so we will ignore them. This
definition then also implies that the left-derivative part of

<>

D acts also on the terms outside the bilinear in which it
appears. The left-right derivatives on the right-hand side
of yy' are defined as above. As an example we give the
boost transformation proportional to a;; and a3 due to
the y field in y'iyy 'y,

DTyy'Ty = T(Dy)y ' Ty +D(Tyy ' Ty)  (B3)

and implicitly perform an integration by parts on the
second term. The overall spatial derivatives introduced by
|

(B o\t 413 e
v k) Wla e, = o (W Dy )y - W"’ vy x(Vx'y) + ﬁv/*w(w Dy)x'y + ... (B4)

M4

When we calculate the commutator of two boosts at O(M~2) and consider only the two-fermion part, we get some
constraints on the boost coefficients a,,,, b,,, and c,,,. At this order, only the terms with a center-of-mass derivative do not
cancel automatically, and none of the a,,, coefficients can appear, because they do not give terms antisymmetric in € and .

There are again two contributions to this commutator; at O(M~3), the first of them is
- [g.kll/|2f’M’1'r] =+ ["'kl//|2f’M§'r}

2i
= ——<b11 + b+ bi3)(Exn)-oxy ——(b14 +bis+big)yx (Exn) -0

21

20
(b81 + bgy + bg3) (Exn) - 6Ty 'T* — — (b84 + bgs + bge) T2y (Ex 1) - 6T

1
+—(cn+eptez—cu—cis—ci)Exn) - (ox xx'o)

M3

1
+ W(CSI + cgo + cg3 — €34 — Cg5 — Cs6) (E X 1) - (6T X y'6T).

The second contribution comes from the transformation of the y fields inside I}be’

Qo Mii
=1 55 (18l o (Do. D.E. B (1 + iM - 1))
)

+§ g[”? k |2j(DO’DEB ( +iMé'r))(’W)]E:0

2i 2
—(bn — b+ bi3)(Exn)-oxy +

2 20
M —= (bg1 — bgy + bg3)(E xn) - 6Ty T+ W(bm—

1
—W(Cn —cpntci3—cutcois—ci)Exn) - (ox x x'o)

1
—

5 (b1s = bys + bie)x' (Exn) -0
bgs + bge)Txx" (E x 1) - 6T*
& x x'6T?),

(cg1 — Csp + €33 — Cga + C35 — C36)(E x 1) - (6T (B6)

where we have kept only terms linear in &€ and .
The sum of these contributions has to vanish; thus we have

4 4
0= —Wblz(f xn)-oxyt - Wbsz(‘f x1n) - 6Ty T
4 . 4
—wa)()('(f xX1) -6 —EbssT“XZT(f xn)-6T*

+ 2 (e —ers)Exa) - oy x116) +

2
M? Y (cgo —cgs)(Exn) - (6T x x'6T?),
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which fixes the two-fermion boost parameters to be

b1y = bys = bgy = bgs = 0, Clp = C15,  Cgy = Cgs.

(B8)

At O(M~*) there is no relevant new information from
the boost commutator. As the boost generator for the
heavy (anti)quark field does not contain an O(M°) term,
the only contribution to the commutator at this order
comes from the boost of the derivatives in Eq. (B1). As
before, all terms with coefficients «,,, and the last row of
¢ coefficients in both singlet and octet sectors are
proportional to €-n and cancel in the commutator. For
each of the remaining terms there is a corresponding
contribution from the O(M~7) boost generator, which can

be obtained by inserting iD, or id, at the respective
position (left of y, right of y', or between them) into a
|

term from Eq. (Bl) with a b,,, b,s5, Cu, OF Cps
coefficient. The commutator with £iMn-r will then
cancel the spatial derivative and give a term of the same
form as the O(M~

terms at O(M™) with a left -right spatial derivative
instead of a center-of-mass derivative, or with a chromo-
electric field instead of the two derivatives, but in all
these cases the contributions from the +iMn -r terms to
the commutator cancel each other like they did in
Eq. (B7). So the only constraints we get from the boost
commutator at this order are ones that fix O(M™)
coefficients in terms of lower order boost coefficients.

In order to get constraints from the boost transformation
of £ at O(M™), we need all four-fermion operators of
oM ‘4), most of which can be found in [38] [the last two
operators multiplying ss_5('Sy,3S;) and sg_g(3S;,3S,)
are new|,

*) boost of k /|27~ There are other boost

g S o2 . <2 g 3S 2 2
lar = I8(M4)( D yx'v v 'Dy) ~ 13(1\4—41) (W' (D )oy oy +yToxy" (D Joy)
g S..3D 1 PES < 1 <2
-8 D) i V(L (Do) DY slow -2y D)oy sow + Hee
8M 2 3
1
g S 22 a a e a
- SS(Mf ) W'D T T +y'yx"'D Ty)
g S <2 . + . ” 2 ”
88(M41) (W' (D )eT - y 6T +w'eTy (D )T w)
9sC$1.°Dy) (1 4= L t
_I8 00 PVt (D - 6),DYT - 6T —~y' (D 6T - y'6T + He.
o \a¥ {(D-0).D}T -y 'oT Y=y (D )oT - y'oT"y + He
AP o [1CPy) s
e y'Dy -y Dy — LI TR0y (D - o)y (D - o)y
fl( )( TB-6~ TD~6' _ TD,G. TB,G. )
et W'Dy Diow —y'Diojy' Doy
f P 1 .« +<—> 1 .o +<—> 1 +<—> Lo
- Z(Mf) SW Diojr Dioyy + 5w Dioyx Do =yt (D - o)y (D - o)y
fS( 1) T n fg( 0) (D
DT% - y' DTy D-6)Ty (D - )T
W 12M4u/( o) %' (D -6)Ty
_fS( 1)( TDGT“ TB'G~T“ _ TD~6~T“ TBU~T‘1 )
W xx'Dio; Ty —w' Do Ty Do, T
f P 1 a a 1 g a 1“9 a 1 3 a n a
84(1\/12) 21//TD 6Ty Dio;T v+ v Dio Ty ' DijoiTw— Sy (D - 6) Ty (D - o) Ty
ific = D
- 2;4;“ (W'D xe)y-Vy'y + (Vwiy) (D x o))
lf cm e D
+ 211/[4 W'Dy - (Vx xloy) + (V xy'ey) - x'Dy)
_’ﬁ;;“( (D x 6)T - Dy Thy + (D Ty) - (D x &) Ty)
1 A(—)
+ gjﬁ (yi DTy - (D x 4'6TPy) + (D x y'6Ty) - ' DTay)
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+ Jlaem (g te ) (Vo) +g;j[—cf‘(D?bv/*d,-T”x)(D?CxTGjT”w)

M4

+glbcm (V W o‘)()(V-)(TO'l//)-l-g;blcm (Dah W O_Tb )( ac TGTCI//)

+ DR (V') - (V') + B Dy ) - (D Ty

M4

7“_8(2;}{ 1) (w'gB - oxrtw + vy gB - ow)
7“_8(23;114{ So) (v 9By - x'ow +vyloy - 't gBw)
_‘_%ddﬂ‘ gB® - (Wi eT yy Toy + wi Tl yy 6 Te)
+ 7“?8_8(23;[14; 3Sl)f abegBa . (wieTy x yieTy), (B9)
and all four-fermion operators with a center-of-mass derivative of O(M~), which are new,
LO)yf em = iszlj_‘;?“ (w'gE x oy - Vy'y — (Vy'y) - 1 gE x oy)
- % (w'gEx - (V x xTow) — (V x yToy) - "gEy)
+ ’;%afabcgl;a (yi6Tly x Dy Ty + (DY T) x yi6Ty)
+ lszg e LB o T (D yTeT ) + (D™ - yloT )y o Ty, (B10)
I
For dimensional reasons the O(M™) four-fermion  ife<gE? . (y'TPyDy Ty 4 (DPy Ty )y  Toy)
Lagrangian can either contain three derivatives or one — (D . gEd)ifabey Toyy Toy. (BI1)

derivative and one gluon field. Parity allows only the
combination of a chromoelectric field and a derivative.
As stated above, only operators with center-of-mass deriv-
atives are relevant for this order of the boost transformation.
In principle, one can write more operators with a center-of-
mass derivative, but, once integrated by parts and neglect-
ing overall derivatives, those operators reduce to ones with
a derivative acting on the chromoelectric field, e.g.,

1 1
ap = Zgl('So), app = _Zfl(lSO)’
I, 1 {
agy = ZQS( So)’ agy = —fo( So)’
1
by =bi5=0, b3= —Zf1(351
1
bgy = bgs =0, bg3 = _Zf8(351
1
e =< (91081.°Dy) = £1CSy)),
8
1
Ci4 :g

) + b,
) + bga,

C13 =

Such terms do not contribute to the boost transformation of
the Lagrangian at O(M~%).

After a somewhat lengthy calculation of the boost
transformation of the Lagrangian at O(M~*), which we
have checked with the help of a code for symbolic
calculations, we obtain the following constraints:

1
a;3 = Zfl(lpl),
1 1
ags :ng( P1)7
1
big = _Zfl(lso) + by,
1
bgs = —Zfs(lso) + by,

S (F1CP2) = 110PY))

(91081.°Dy) + f13S1)). C16—12(f1(P0) f1CP,)).
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|

C17 = 12
1

31 :§(98(3S173D1> - f3(81)).
1

Cs4 -3
1

€87 = 75

1

o

1
Ci5 = —Cr2, C18 = —Zf1(3S

1
S1-gcm —§S1—8(1507351) -

1

S1—gem — §S1—8(3Sh 1So) —
1

S3-8cm — Ess—s(lsov 3S1) -

1
558 cm +§S8—8(351,351) -

where we have also used the already obtained constraints
(45) and (66)—(68) in order to express everything in terms

of Wilson coefficients of the lowest order.

So far none of these constraints involves only Wilson
coefficients of the Lagrangian, they rather define the

boost parameters of IAc,,,|2f and IAcX|2f. There remain two
unconstrained boost parameters, cj, and one of either by,

b4, bgy, or bgs. But if we combine them

relations obtained from the commutator of two boosts,

we get

(391(S1) — 91(S1.°Dy)).  c19 = %(fl@Pl) + f1CP2)).

(fsCPy) = f3(P1)),

| —

g3 =

(98(3S173D1> +f8(3S1))7 Cg6 = %(fscpo) _f8(3P2))’

(3gs(®S1) — gs(3S1.°Dy)).  cg9 = %(fs@Pl) + f3(°P2)).

1
1>7 Cg5 = —Cgp, Cgg = _1f8(3S1)’

Cp—l
12

cp—1 1
S 11080) == 5= Fs(S1) = 2buy = 3 by = 0,

cp—1 cp—1 1
d f1C8y) - i fs('So) = 2byy — = bg; =0,
2 12 3
crp—1 cp—1
. fS(ISO)_ d f8(351)—b81—l784=0,
4 4
dep—3
F8 f3(S1) +cgo =0, (B12)
|
Clp = C15 = Cgp = cg5 = 0,
1 4ep -3
Sé—Scm +§S8—8(3SI73SI) - F8 fg(3S1) =0. (B13)

The last equation now gives a new constraint on the
Wilson coefficients without any parameters from the boost.
The other relations that we derived for by,, b5, bg, and
bgs in Eq. (B8) from the commutator of two boosts are
consistent with the ones obtained from the transformation
of the Lagrangian at O(M~*) and O(M73).
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