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We investigate how fields transform under the Poincaré group in nonrelativistic effective field theories of
QCD. In constructing these transformations, we rely only on symmetries and field redefinitions to limit the
number of allowed terms. By requiring invariance of the action under these transformations, nontrivial
relations between Wilson coefficients for both nonrelativistic QCD and potential nonrelativistic QCD are
derived. We show explicitly how the Poincaré algebra is satisfied, and how this gives complementary
information on the Wilson coefficients. We also briefly discuss the implications of our results, as well as the
possibility of applying this method to other types of effective field theories.
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I. INTRODUCTION AND OUTLINE

Effective field theories (EFTs) are a standard tool for
particle and nuclear physics and have been for at least forty
years [1]. Low energy EFTs have been constructed for
different sectors of the Standard Model to describe specific
low energy systems: for example, EFTs of quantum
electrodynamics (QED) to describe atomic physics, or
EFTs of quantum chromodynamics (QCD) to describe
hadronic and nuclear physics. High energy EFTs, on the
other hand, provide a systematic framework for investigat-
ing physics beyond the Standard Model. In this case,
however, there is not yet an experimentally confirmed
underlying renormalizable theory from which to derive the
EFT. Hence, high energy EFTs are built relying only on
symmetry arguments. In all cases, the construction of an
EFT, not being bound by renormalizability, requires an
increasing number of operators when going to higher
orders in the expansion, which may limit its predic-
tive power.
In this paper, we focus on nonrelativistic EFTs.

Nonrelativistic EFTs describe systems where the mass M
of the heavy particle(s) is much larger than any other

relevant energy scale of the system, including the scale
ΛQCD of confinement in QCD. The fact that the mass M is
much larger than the momentum and energy of the heavy
particle implies that its velocity is much smaller than the
velocity of light, qualifying the particle as nonrelativistic.
There exists a wide variety of such EFTs. Among them we
will concentrate on the heavy quark effective theory
(HQET), nonrelativistic QCD (NRQCD), and potential
NRQCD (pNRQCD), which are nonrelativistic EFTs of
QCD. The HQET [2–5] is a low energy EFT for heavy-light
mesons, NRQCD [6,7] provides a nonrelativistic effective
description for the dynamics of heavy quarks and anti-
quarks, and pNRQCD [8–10] is an effective theory for
heavy quark-antiquark bound states (heavy quarkonia).
The Lagrangian of an EFT is organized as an expansion

in the inverse of the high energy scale that has been
integrated out; in the case of nonrelativistic EFTs, this is the
quark mass M. It contains all terms allowed by the
symmetries of the EFT and can be schematically written as

LEFT ¼
X
n

cn
On

Mdn−4
; ð1Þ

where the operators On, made up of the fields that describe
the effective degrees of freedom (d.o.f.), are of mass
dimension dn, and the cn are the matching or Wilson
coefficients of the EFT. These coefficients contain all the
information from the high energy scale. They are deter-
mined by matching to the underlying theory.
In the case of pNRQCD, one proceeds further by

integrating out all energy scales larger than the binding
energy of the bound state. The originating Wilson
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coefficients are called potentials, because they are the
potentials appearing in the Schrödinger equation. How
precisely pNRQCD is constructed depends on the relation
among the three different energy scales: p ∼Mv;E ∼Mv2,
and ΛQCD, where v ≪ 1 is the heavy (anti)quark relative
velocity, p is the heavy (anti)quark relative momentum, and
E is the binding energy. For systems satisfying the
hierarchy ΛQCD ≲Mv2 (these are top-antitop states near
threshold and possibly the lowest lying bottomonium and
charmonium states), the integration of the relative momen-
tum can be done in perturbation theory. The case ΛQCD ≲
Mv2 is called the weak-coupling case. If the binding energy
is smaller than the typical hadronic scale, ΛQCD ≫ Mv2,
which is called the strong-coupling case, then ΛQCD is
integrated out as well. Although the matching is in this case
nonperturbative, the resulting effective Lagrangian is some-
what simpler than in the weakly coupled case. The reason is
the absence of colored d.o.f. (quark-antiquark color octet
states and gluons).
The Wilson coefficients of these EFTs have to be

determined by matching to the underlying theory, i.e.,
QCD. Beyond leading order in the coupling or in the
expansion parameter, this can easily become technically
involved, and even more so for a theory with more than one
expansion parameter like pNRQCD. For this reason, one
would like to exploit as much prior knowledge on the
Wilson coefficients as possible before commencing the
matching calculation.
Due to the nonrelativistic expansions, Poincaré invari-

ance is no longer manifest in a nonrelativistic EFT.
A physical system is symmetric under Poincaré trans-
formations when its action is invariant under spacetime
translations, rotations, and boost transformations. Dirac
showed that the potentials of a quantum mechanical
Hamiltonian satisfy nontrivial relations if one imposes
the Poincaré algebra [11]. His analysis was extended to
interacting relativistic composite systems [12–16], where
relations between the relativistic corrections were derived
using the Poincaré algebra. As these quantum mechanical
systems can be generalized into EFTs, it is natural to expect
that also some nontrivial relations between the Wilson
coefficients of nonrelativistic EFTs can be deduced in a
systematic way from Poincaré invariance. It is well justified
to assume this invariance, as the EFT is by construction
equivalent at each order of the expansion to the original
quantum field theory, which is invariant under Poincaré
transformations.
In [17] (see also [18,19]), Poincaré invariance has been

imposed on NRQCD and pNRQCD by constructing all
generators of the symmetry group in these EFTs. The
generators corresponding to spacetime translations and
rotations have been obtained in the usual closed form
from the associated conserved Noether currents. The
generators of boosts, on the other hand, have been derived
from a general ansatz that includes all operators allowed by

the other symmetries (such as parity, P, charge conjugation,
C, and time reversal, T) up to a certain order in the
expansion; in other words, the general principles for the
construction of the EFT Lagrangian have been applied also
to the boost generators. Demanding that all generators
satisfy the commutation relations of the Poincaré algebra
provides some exact constraints on the Wilson coefficients
of the EFTs.
Reparametrization invariance is a symmetry found in low

energy EFTs of QCD, like the HQET or soft collinear
effective theory (SCET) [20–23]. In these EFTs, the
momentum of the high energy particles is separated into
a large and a small component. This separation is arbitrary
by a small shift of the momenta that preserves the hierarchy
of the energy scales. Requiring the Lagrangian to be
invariant with respect to this shift leads to a number of
nontrivial relations between the Wilson coefficients
[24,25]. In the HQET case, these relations have been
shown to be equivalent to the ones obtained from
Poincaré invariance [17]. This is not surprising, since both
approaches are closely related: a shift in the parametrization
of the high energy momentum may be interpreted as a
change of the reference frame. Whereas the implementation
of reparametrization invariance might have some advan-
tages, its applications are limited. Poincaré invariance, on
the other hand, is a general principle that all quantum field
theories have to obey.
Recently, another approach has been suggested for

deriving constraints in EFTs through Poincaré invariance
that employs Wigner’s induced representation [26] (see
also [27] for a textbook presentation). It has been proposed
in [28] that a free nonrelativistic field ϕ, which has a well-
defined transformation behavior under rotations R as
ϕðxÞ → D½R�ϕðR−1xÞ, should transform under a generic
Lorentz transformation Λ as

ϕðxÞ → D½WðΛ; i∂Þ�ϕðΛ−1xÞ: ð2Þ

The transformation W is a particular rotation depending on
the Lorentz transformation Λ and also the momentum of
the field ϕ. The resulting expression is then expanded in
powers of derivatives (momenta) according to the non-
relativistic power counting.
While this seems to work well for noninteracting fields,

some issues arise in an interacting gauge theory. First, the
boost transformation (2) does not have the right behavior
under gauge transformations. One would like to have the
boosted field to transform in the same way as the original
field would at the new coordinates, but this is not possible
because of the derivatives in the induced representation.
Promoting the derivatives to gauge covariant derivatives
fixes the problem, but it introduces an ambiguity in how the
covariant derivatives are ordered. It is also necessary to
add additional gauge field dependent terms to the boost in
order to cancel some terms that would prevent the EFT
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Lagrangian from being invariant. Ultimately, the con-
straints obtained in this way agree with previous results
in NRQCD and nonrelativistic QED (NRQED) [29]; new
results in NRQED were derived in [30].
In this paper, we address some of the questions left open

by this method. First, the appearance of additional terms in
the boost transformation, whose coefficients turn out to be
linear combinations of the Wilson coefficients from the
Lagrangian, is very reminiscent of the construction of EFT
Lagrangians, where one includes all terms allowed by the
symmetries of the theory. However, terms with derivatives
originating from the induced representation were assumed
to be free of radiative corrections. We address the question
if the specific choice of coefficients made in [28] for the
terms appearing in the boost transformation can be justi-
fied, fully or partially, through constraint enforced by
Poincaré invariance.
A second question is the following. In [28], the addition

of new gauge field dependent terms to the boost trans-
formation, which do not arise from just promoting deriv-
atives in the induced representation to covariant derivatives,
seems to be born out of necessity: without them the
nonrelativistic Lagrangian could not be made invariant
under the boost transformation. It is conceivable, however,
that other terms could be added to the boost, which are
allowed by the symmetries, but are not strictly necessary for
an invariant Lagrangian. They may have the effect to relax
some of the constraints on the Wilson coefficients, since
each extra term introduces a new parameter.
Thus, we take from [28] that the boost transformation of

the nonrelativistic field is realized in a nonlinear way and
that requiring the invariance of the Lagrangian under this
boost leads to constraints on the Wilson coefficients, but
apart from that we will not refer to the induced represen-
tation. Instead, we follow the EFT logic of [17] by
including all possible terms in the boost transformation
that are allowed by the other symmetries of the theory (such
as P, C, T) and by assigning a Wilson coefficient to each of
them. Even though we start with a general expression, we
will exploit the possibility to redefine the effective fields in
order to remove terms from the general ansatz.
Lastly, since the boost generator for the field trans-

formation has to satisfy the Poincaré algebra, we show how
the commutation relations have to be implemented in the
case of a nonlinear boost generator. Requiring all commu-
tators of the Poincaré algebra to be satisfied leads to
additional constraints on the boost parameters as well as
on the Wilson coefficients of the Lagrangian. It is important
to note here that, like in [17], this approach is defined for
bare fields and couplings. However, our results hold also in
the renormalized EFTs if Poincaré invariance is not broken
by quantum effects (anomalies) [10].
In summary, we provide a tool for the construction

of EFTs in which not all of the fundamental symmetries

are manifest. Since these latent symmetries nevertheless
emerge in the form of constraints on the Wilson
coefficients, thereby limiting the number of independent
parameters, the computational or experimental effort
required to determine the EFT at a given order is reduced
considerably if these constraints are taken into account.
Apart from answering the fundamental question of how
such latent symmetries are realized in the EFTs in terms
of nonlinear field transformations, this is expected to be
of relevance whenever new EFTs need to be developed,
such as in beyond the Standard Model physics, or already
established EFTs need to be extended to higher orders.
We explicitly demonstrate the method for the two
examples of NRQCD and pNRQCD, where the latent
symmetry corresponds to boost transformations. Since,
however, the method relies only on the single assumption
that a nonlinear realization of the latent symmetries
exists, it should be possible to extend it to other theories
and symmetries as well.
The paper is organized as follows. In Sec. II, we study

NRQCD, first discussing the boost generators of the
Poincaré group in the EFT approach in Sec. II A and
how they satisfy the Poincaré algebra. Generators for
spacetime translations as well as rotations are found in
Appendix A, as the derivation is well-known and not
directly related to the main discussion. We then derive the
constraints for the Wilson coefficients of the Lagrangian up
to order M−3 in the two-fermion sector in Sec. II B, up to
orderM−4 in the four-fermion sector in Sec. II D, and up to
order M−5 in the four-fermion sector in Appendix B. We
also write the Noether charges obtained from the Poincaré
transformations in Sec. II C and show that they correspond
to the quantum field generators constructed in [17]. We
then study the pNRQCD case in Sec. III. First, we
derive how quarkonium fields transform under boosts in
Sec. III A, then we use field redefinitions to remove terms
from the most general boost generators in Sec. III B, and,
finally, we obtain constraints on the Wilson coefficients of
the pNRQCD Lagrangian in Sec. III C. We conclude the
paper in Sec. IV with a summary and a short outlook on
possible applications to other effective field theories.

II. CONSTRAINTS IN NRQCD

Nonrelativistic QCD (NRQCD) is the EFTobtained from
QCD after integrating out modes associated with the scale
of the heavy quark mass M [6,7]. The effective d.o.f. are
nonrelativistic Pauli spinor fields ψ and χ, where ψ
annihilates a heavy quark and χ creates a heavy antiquark,
as well as gluon fields Aμ and light quark fields ql (which
will be assumed massless) with four-momenta constrained
to take values much smaller than M. Its Lagrangian up to
OðM−2Þ is given by
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LNRQCD ¼ ψ†
�
iD0 þ

c2
2M

D2 þ cF
2M

gB · σ þ cD
8M2

½D·; gE� þ icS
8M2

½D×; gE� · σ
�
ψ

þ χ†
�
iD0 −

c2
2M

D2 −
cF
2M

gB · σ þ cD
8M2

½D·; gE� þ icS
8M2

½D×; gE� · σ
�
χ

þ Lð2Þj4f þ Tr½E2 − B2� − d2
M2

½Ea · ðD2EÞa − Ba · ðD2BÞa�

−
d3
M2

gfabc½3ðEa × EbÞ · Bc − ðBa × BbÞ · Bc� þ Lð2Þ
light þOð1=M3Þ: ð3Þ

Lð2Þj4f contains terms made of four quark fields up to
order M−2. These may consist of heavy (anti)quark fields
and/or light quark fields. We explicitly write the four
fermion terms made of two heavy quark and two heavy
antiquark fields in the following Eq. (61). In the rest of
the paper, we will neglect other four fermion terms (see
[31,32]), because we are not interested in the Poincaré

invariance constraints from those sectors. Lð2Þ
light is the

light quark sector of the Lagrangian, which contains all
terms with two light quark fields (and gluons) up to order
M−2, whose leading term is

P
lq̄liDql. Note that terms

made exclusively of light fields have to be constructed in
a manifestly Poincaré invariant way, so they do not give
rise to constraints. We denote the Wilson coefficients in
the heavy quark sector by c and the ones in the gluon
sector by d [33–35].
We use the convention D0 ¼ ∂0 þ igA0 and D ¼

∇ − igA for the sign of the coupling constant g in the
covariant derivatives, from which one obtains the chromo-
electric and chromomagnetic fields as E ¼ 1

ig ½D0;D� and
B ¼ i

2g fD×;Dg, while σ denotes the vector made of the

three Pauli matrices; in addition, we define D2 ¼ D2
0 − D2.

The commutator or anticommutator with a cross product is
defined as1

½X×;Y� ¼ X × Y − Y × X and

fX×;Yg ¼ X × Y þ Y × X; ð4Þ

and equivalently for the dot product. We have made use
of the equations of motion2 to remove all higher time
derivatives; we have also removed the constant term
−Mψ†ψ þMχ†χ through the field redefinitions ψ →
e−iMtψ and χ → eiMtχ.

A. Poincaré algebra for boost transformations

Before we go into details, we should clarify our notion of
transformation. In general, performing a field transforma-
tion means to replace any field ϕ, as well as its derivatives,
in the Lagrangian or in other field-dependent quantities by
a new field ϕ0, called the transformed field, and its
derivatives. In the quantized theory, this corresponds to a
change of variable ϕ → ϕ0 in the path integral. The trans-
formation constitutes a symmetry if the action remains
invariant under this change of variable (in the quantized
theory also the path integral measure needs to be
considered).
In the case of coordinate transformations, we write

ϕiðxÞ⟶Λ ϕ0
iðxÞ≡ ΛðRÞ

ij ϕjðΛ−1xÞ; ð5Þ

where Λ denotes a generic spacetime transformation and
the representation R depends on the spin of the field ϕ.
Note that the arrow in Eq. (5) represents the change of the
function ϕ to ϕ0 and the relation between the two fields is
written on the right-hand side of Eq. (5): the value of the
transformed field at position x is given by the value of the
original field at the same point, which in the old coordinates
corresponds to Λ−1x, while its orientation is also adapted to
the new axes by ΛðRÞ. Also note that the notion of active or
passive transformations3 does not affect the form of Eq. (5),
it just changes the sign of the generators of Λ. For the
record, we will assume passive transformations.
The spacetime transformations contained in the Poincaré

group are translations, rotations, and boosts, which will
be the main subject of this paper. Translations and rotations
act on all fields of NRQCD in the usual way (see
Appendix A 1), so we do not need to discuss them here
further. However, boost transformations are a priori not
defined in an obvious manner for the heavy (anti)quark
fields. We will show how such transformations can be
constructed for the heavy (anti)quark fields, but they will

1Because of the antisymmetry of the cross product, the roles of
commutator and anticommutator are in fact reversed: fX×;Ygi ¼
ϵijk½Xj; Yk� and ½X×;Y�i ¼ ϵijkfXj; Ykg.

2This is equivalent to performing certain field redefinitions, as
shown in [36]. The field redefinitions we will discuss in detail in
this work, however, are of a different kind not related to the
equations of motion.

3An active transformation changes the position or orientation
of a physical object with respect to a fixed coordinate system,
while a passive transformation keeps the object fixed and changes
the coordinates.
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no longer be linear in the fields. Gluons and light quarks are
still relativistic fields and transform in the usual way under
boosts. We will not discuss the light quark fields here, as
they do not appear in any operator of interest in this paper,
but we will consider the transformations of the gluon fields,
distinguishing between their space and time components,
as the NRQCD Lagrangian is written in an explicitly
nonrelativistic fashion.
The coordinates ðt; rÞ in a reference frame moving with

the infinitesimal velocity η correspond to ðtþ η · r; rþ ηtÞ
in a resting frame, where we will always neglect terms of
Oðη2Þ or higher. The gluons are described by vector fields,
whose transformations are identical to those of the coor-
dinates, so Eq. (5) implies that

A0
0ðt; rÞ ¼ A0ðtþ η · r; rþ ηtÞ − η · Aðt; rÞ; ð6Þ

A0ðt; rÞ ¼ Aðtþ η · r; rþ ηtÞ − ηA0ðt; rÞ: ð7Þ

It is convenient to perform a Taylor expansion to first order
in η on all fields with transformed coordinates, in order to
consistently work only with at most linear terms of the
infinitesimal parameter. Since the gluon fields never appear
individually in the Lagrangian but always inside covariant
derivatives, we also write explicitly the boost transforma-
tions for those,

D0
0 ¼ ∂0 þ igA0

0 ¼ D0 þ ½η · t∇þ η · r∂0; D0� þ η · D;

ð8Þ

D0 ¼ ∇ − igA0 ¼ Dþ ½η · t∇þ η · r∂0;D� þ ηD0: ð9Þ

Notice that the sign of the last terms has changed compared
to Eqs. (6) and (7), which is a consequence of the fact that
the gauge fields in D0 and D have opposite signs. The
commutator in the middle terms serves two purposes: first,
the commutator with the gauge field ensures that the
derivatives (from the Taylor expansion) act exclusively
on the gauge field and not on any other field that may be
present in the Lagrangian. Second, the commutator with the
derivative cancels the derivative in the last term, ensuring
that overall the derivatives on both sides of Eqs. (8) and (9)
match.4 Finally, the transformations for the chromoelectric
and chromomagnetic fields follow directly from their
expressions in terms of the covariant derivatives,

E0 ¼ Eþ ½η · t∇þ η · r∂0;E� þ η × B; ð10Þ

B0 ¼ Bþ ½η · t∇þ η · r∂0;B� − η × E: ð11Þ

In the following, we will use K to denote the generators
of boosts as an operator that may act on any kind of field,
and kϕ to denote the explicit expression of K when acting
on the field ϕ,

ϕðxÞ⟶K ϕ0ðxÞ≡ ð1 − iη · KÞϕðxÞ
¼ ð1 − iη · kϕÞϕðxÞ: ð12Þ

Since each field has the same coordinate transformations,
the term it∇þ ir∂0 appears in any kϕ, so we can write

kϕ ¼ it∇þ ir∂0 þ k̂ϕ: ð13Þ

Now k̂ϕ denotes the part of the boost transformation acting
only on the components of ϕ and not the coordinates. The
previously introduced notation of writing the coordinate
transformations as commutators is particularly convenient
when considering transformations of products of fields, as
by the product rule of commutators we can write

ϕ0
1ϕ

0
2 ¼ ϕ1ϕ2 þ ½η · t∇þ η · r∂0;ϕ1�ϕ2

þ ϕ1½η · t∇þ η · r∂0;ϕ2�
þ ð−iη · k̂1ϕ1Þϕ2 þ ϕ1ð−iη · k̂2ϕ2Þ

¼ ϕ1ϕ2 þ ½η · t∇þ η · r∂0;ϕ1ϕ2�
þ ð−iη · k̂1ϕ1Þϕ2 þ ϕ1ð−iη · k̂2ϕ2Þ: ð14Þ

In this way, the coordinate transformations can be
decoupled from the component transformations, also when
performing several consecutive transformations.
For relativistic fields, k̂ϕ is some constant matrix, but for

the heavy (anti)quark fields, which are nonrelativistic, it
takes the form of a function depending on all fields or their
derivatives. Apart from the coordinate transformations, all
derivatives have to be covariant, so we can write

ψðxÞ⟶K ψ 0ðxÞ ¼ ð1 − iη · kψðD0;D;E;B;ψ ; χ; xÞÞψðxÞ;
ð15Þ

χðxÞ⟶K χ0ðxÞ ¼ ð1 − iη · kχðD0;D;E;B;ψ ; χ; xÞÞχðxÞ:
ð16Þ

In principle, k̂ϕ depends on the coordinates only implicitly
through the fields; however, the field redefinitions we have
performed in order to remove the heavy mass terms from
the Lagrangian also affect the boost transformations. So
instead of the usual coordinate transformations generated
by it∇þ ir∂0, we have

e�iMtðit∇þ ir∂0Þe∓iMt ¼ it∇þ ir∂0 �Mr; ð17Þ

4As stated above, we replace derivatives of fields in the
Lagrangian by derivatives of the transformed fields: ∂xϕðxÞ⟶Λ∂xϕ

0ðxÞ. The typical transformation of derivatives as vectors
arises when the transformed fields are replaced by the right-hand
side of Eq. (5).
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and we will include the terms Mr and −Mr in the
definitions of k̂ψ and k̂χ , respectively.
Besides the mass terms �Mr, there is no obvious

expression for the remaining terms of k̂ψ and k̂χ . We have
no choice but to make a general ansatz for them and
determine the exact parameters through further calcula-
tions. Fortunately, the number of possible operators in the
boost generators at a given order in 1=M is limited, in
particular, by the discrete transformations P, C, and T
(parity, charge conjugation, and time reversal). Under them,
the coordinates and fields transform as

ðt; rÞ⟶P ðt;−rÞ; ðt; rÞ⟶C ðt; rÞ; ðt; rÞ⟶T ð−t; rÞ;
ð18Þ

ψ ⟶
P

ψ ; ψ ⟶
C

− iσ2χ�; ψ ⟶
T

iσ2ψ ; ð19Þ

χ⟶
P

− χ; χ⟶
C

iσ2ψ�; χ⟶
T

iσ2χ; ð20Þ

D0⟶
P

D0; D0 ⟶
C

D�
0; D0⟶

T −D0; ð21Þ

D⟶
P

− D; D⟶
C

D�; D⟶
T

D; ð22Þ

E⟶
P

− E; E⟶
C

− E�; E⟶
T

E; ð23Þ

B⟶
P

B; B⟶
C

− B�; B⟶
T

− B: ð24Þ

We expect the boosted fields to transform in exactly the
same way under these discrete symmetries, i.e.,

Pϕ0 ¼ Pð1 − iη · KÞϕ ¼ ð1 − ið−ηÞ · ðPKÞÞPϕ; ð25Þ

Cϕ0 ¼ Cð1 − iη · KÞϕ ¼ ð1 − iη · ðCKÞÞCϕ; ð26Þ

Tϕ0 ¼ Tð1 − iη · KÞϕ ¼ ð1þ ið−ηÞ · ðTKÞÞTϕ; ð27Þ

where we have also reversed the direction of the infini-
tesimal velocity η for P and T.5 We take from this that the
boost generators for the heavy (anti)quark fields need to
satisfy

Pkψ ¼ −kψ ; Ckψ ¼ −σ2k�χσ2; Tkψ ¼ σ2kψσ2; ð28Þ

Pkχ ¼ −kχ ; Ckχ ¼ −σ2k�ψσ2; Tkχ ¼ σ2kχσ2; ð29Þ

where the expressions on the left-hand sides mean that the
transformed fields and coordinates according to Eqs. (18)–
(24) are to be inserted into the expressions for kψ and kχ .
General expressions for kψ and kχ satisfying these

conditions up to OðM−3Þ are6

kψ ¼ it∇þ ir∂0 þMr −
kD
2M

D −
ikDS

4M
D × σ þ kE

8M2
gEþ ikD0

8M2
fD0;Dg þ

ikES
8M2

gE × σ −
kDS0

8M2
fD0;D × σg

−
kD3

8M3
fD; ðD2Þg − ikD3S

32M3
fðD × σÞ; ðD2Þg þ ikB1

16M3
½D×; gB� þ ikB2

16M3
fD×; gBg þ kBS1

16M3
½D; ðgB · σÞ�

þ kBS2
16M3

fD; ðgB · σÞg þ kBS3
16M3

½ðD · σÞ; gB� þ kBS4
16M3

fðD · σÞ; gBg þ kBS5
16M3

fD·; gBgσ þ kD00

16M3
fD0; fD0;Dgg

þ ikE01
16M3

½D0; gE� þ
ikE02
16M3

fD0; gEg þ
ikDS00

16M3
fD0; fD0;D × σgg þ kES01

16M3
½D0; gE × σ� þ kES02

16M3
fD0; gE × σg;

ð30Þ

kχ ¼ it∇þ ir∂0 −Mrþ kD
2M

Dþ ikDS

4M
D × σ þ kE

8M2
gEþ ikD0

8M2
fD0;Dg þ

ikES
8M2

gE × σ −
kDS0

8M2
fD0;D × σg

þ kD3

8M3
fD; ðD2Þg þ ikD3S

32M3
fðD × σÞ; ðD2Þg − ikB1

16M3
½D×; gB� − ikB2

16M3
fD×; gBg − kBS1

16M3
½D; ðgB · σÞ�

−
kBS2
16M3

fD; ðgB · σÞg − kBS3
16M3

½ðD · σÞ; gB� − kBS4
16M3

fðD · σÞ; gBg − kBS5
16M3

fD·; gBgσ −
kD00

16M3
fD0; fD0;Dgg

−
ikE01
16M3

½D0; gE� −
ikE02
16M3

fD0; gEg −
ikDS00

16M3
fD0; fD0;D × σgg − kES01

16M3
½D0; gE × σ� − kES02

16M3
fD0; gE × σg: ð31Þ

5Also remember that T takes the complex conjugate of numerical coefficients.
6Note that, in particular, k̂ψ=χ ¼ �iσ are not allowed, even though they would satisfy all commutators of the Poincaré algebra, just

because they do not reproduce the right P or T transformation behavior. They would be appropriate for Weyl spinors, but here we deal
with Pauli spinors.
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Note that we are no longer able to remove terms with
temporal derivatives through the equations of motion,
because the corresponding field redefinitions have already
been used to eliminate such terms in the Lagrangian;
performing further redefinitions to remove temporal deriv-
atives from the boost would reintroduce them in the
Lagrangian. Terms that do not transform as a vector under
rotations have already been removed, as they would violate
one of the relations of the Poincaré algebra. However, non-
Hermitian terms are in general allowed in the boost
generator for a field, although they will eventually cancel
in the associated Noether charge, which is always Hermi-
tian (see Sec. II C). In the following, it will be sufficient to
discuss only the heavy quark sector, since the antiquark
sector follows directly from charge conjugation.
The nonlinear boost transformations constructed in this

way have to satisfy the Poincaré algebra

½P0;Pi� ¼ 0; ½P0;Ji� ¼ 0; ½P0;Ki� ¼−iPi;

½Pi;Pj� ¼ 0; ½Pi;Jj� ¼ iϵijkPk; ½Pi;Kj� ¼−iδijP0;

½Ji;Jj� ¼ iϵijkJk; ½Ki;Jj� ¼ iϵijkKk; ½Ki;Kj� ¼−iϵijkJk;

ð32Þ

where P0 is the generator of time translations, P is the
generator of space translations, and J is the generator for
rotations.7

The commutation relations of the Poincaré algebra not
involving a boost generator are trivially satisfied for the
generators specified in Appendix A 1, but the remaining
relations involving a boost provide nontrivial information.
It is straightforward to check that the commutators of a

boost generator with the generators of spacetime trans-
lations or rotations are satisfied since kψ and kχ depend
explicitly on the coordinates only through the terms
generated by the coordinate transformation and they have
been written in terms of vectors under rotations. The
commutator of two boosts, however, gives new constraints
on the parameters of the boost generator.
The commutator between any two transformations is

defined as the difference in performing them in reverse
orders. In the case of linear transformations, this can be
written simply as the commutator of two matrices, but for
the nonlinear transformations corresponding to the boost of
a heavy (anti)quark field, one has to be careful to express
the second transformation in terms of fields that have
already undergone the first transformation. Consider the
commutator of two infinitesimal boost transformations,

½1 − iξ · K; 1 − iη · K� ¼ iðξ × ηÞ · J: ð33Þ

Applying the left-hand side to the heavy quark field
requires computing the two successive boosts

ψðxÞ⟶Kη
ψ 0
ηðxÞ ¼ ð1 − iη · kψ ðD0;D;E;B;ψ ; χ; xÞÞψðxÞ;

ð34Þ

ψ 0
ηðxÞ⟶

Kξ
ψ 00
ξηðxÞ

¼ ð1 − iξ · kψðD0
0η;D

0
η;E0

η;B0
η;ψ 0

η; χ0η; xÞÞψ 0
ηðxÞ: ð35Þ

Expanding the commutator to linear order in ξ and η gives

½1 − iξ · K; 1 − iη · K�ψðxÞ ¼ ψ 00
ξηðxÞ − ψ 00

ηξðxÞ
¼ ð1 − iξ · kψðD0

0η;D
0
η;E0

η;B0
η;ψ 0

η; χ0η; xÞÞψ 0
ηðxÞ

− ð1 − iη · kψðD0
0ξ;D

0
ξ;E

0
ξ;B

0
ξ;ψ

0
ξ; χ

0
ξ; xÞÞψ 0

ξðxÞ
¼ ðξ × ηÞ · ðr × ∇ÞψðxÞ
− ½ξ · k̂ψ ðD0;D;E;B;ψ ; χ; xÞ; η · k̂ψ ðD0;D;E;B;ψ ; χ; xÞ�ψðxÞ
− iðξ · k̂ψ jηðD0;D;E;B;ψ ; χ; xÞ − η · k̂ψ jξðD0;D;E;B;ψ ; χ; xÞÞψðxÞ; ð36Þ

where in the last line

k̂ψ jηðD0;D;E;B;ψ ; χ; xÞ ¼ ηi½∇η̃ik̂ψðD0 þ η̃ · D;Dþ η̃D0;Eþ η̃ × B;B − η̃ × E;

ð1 − iη̃ · k̂ψ Þψ ; ð1 − iη̃ · k̂χÞχ; xÞ�η̃¼0; ð37Þ

and analogously for k̂ψ jξ, such that only linear orders of ξ and η have been kept in (36). This last line contains new terms
(compared to the naive application of the commutator in the previous line) arising from the nonlinear nature of the boost
transformation.

7We reserve covariant notation for Greek indices, writing purely spatial vector indices i; j; k;… always as lower indices.
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Inserting the explicit expression of Eq. (30) into Eq. (36), we obtain the following expression at OðM−2Þ:

ψ 00
ξηðxÞ − ψ 00

ηξðxÞ ¼ iðξ × ηÞ ·
�
r × ð−i∇Þ þ kDS

2
σ þ i

2M
ðkDS − kDS0ÞD0σ

þ 1

4M2
ðkD3S þ kDS0ÞðD2Þσ þ 1

16M2
ðk2DS − kD3S − 2kDS0ÞfD;D · σg

þ 1

2M2
ðkDS0 − kDS00ÞD2

0σ −
1

16M2
ð4kE − 4k2D þ k2DS þ 4kB1ÞgB

−
i

8M2
ðkES − kDkDS − kBS4 þ kBS5ÞðgB × σÞ

�
ψðxÞ: ð38Þ

This expression has to satisfy the commutation relation of
Eq. (33), i.e.,

ψ 00
ξηðxÞ − ψ 00

ηξðxÞ ¼! iðξ × ηÞ ·
�
r × ð−i∇Þ þ 1

2
σ

�
ψðxÞ:

ð39Þ
This gives the following relations:

kDS ¼ 1; kDS0 ¼ 1; kD3S ¼ −1; kDS00 ¼ 1; ð40Þ

kB1 ¼ k2D − kE −
1

4
; kBS5 ¼ kBS4 þ kD − kES: ð41Þ

With this result, already four of the boost parameters are
completely fixed. Also note that the system at OðM−2Þ is
overcomplete: there are four equations depending only on
the three paramters kDS, kDS0, and kD3S, so the fact that all
can be satisfied simultaneously is a nontrivial result.

B. Invariance of the Lagrangian

Now that we have constructed a nonlinear boost trans-
formation for the heavy (anti)quark field that satisfies the
Poincaré algebra, we can proceed to check which con-
ditions need to be satisfied in order for the Lagrangian to be
invariant under this transformation. We start with the
bilinear terms in the heavy quark sector. The Lagrangian

at OðM−2Þ was already given in Eq. (3), but in order to
study the transformed Lagrangian at this order, we also
need to include

Lð3ÞjD ¼ ψ†
�

c4
8M3

ðD2Þ2 þ cW1

8M3
fD2; gB · σg

−
cW2

4M3
DiðgB · σÞDi þ

cp0p

16M3
fðD · σÞ; fD·; gBgg

þ icM
8M3

fD·; fD×; gBgg
�
ψ ; ð42Þ

which consists of all OðM−3Þ terms that contain a
derivative.8

Strictly speaking, it is not the Lagrangian that needs to be
invariant under a transformation but the action. So when we
speak about an invariant Lagrangian, we mean that the
difference between transformed and original Lagrangian is
at most an overall derivative, which we denote as ∂μΔμL.
Overall derivatives are often implicitly omitted, as all they
contribute to the action is a vanishing surface term. We will
include them here for the sake of completeness, and
because they play a role in the calculation of the conserved
Noether currents and charges.
The heavy quark Lagrangian defined in Eqs. (3) and (42)

transforms in the following way at OðM−2Þ:

∂μΔμL ¼ LðD0
0;D

0;E0;B0;ψ 0; χ0; xÞ − LðD0;D;E;B;ψ ; χ; xÞ

¼ η · ðr∂0 þ t∇ÞLþ ikD0

4M2
∂0η · ∇ψ†D0ψ −

ikD0

4M2
∂0η · ψ†DD0ψ −

ikD0

4M2
η · ∇ψ†D2

0ψ

þ kDS0

4M2
∂0η × ∇ · ψ†D0σψ −

kDS0

4M2
∂0η · ψ†ðD × σÞD0ψ −

kDS0

4M2
η × ∇ · ψ†D2

0σψ

þ η · ∇ψ†
�
kD
2M

D0 −
ic2kD
4M2

D2 −
icFkD
4M2

gB · σ

�
ψ

þ η × ∇ · ψ†
�
ikDS

4M
D0σ þ c2kDS

8M2
ðD2Þσ þ cFkDS

8M2
gBþ icFkDS

8M2
gB × σ

�
ψ

8The term −iMr from the boost transformation adds a power of M to the OðM−3Þ Lagrangian, but the commutator with this term
vanishes unless there is a derivative.
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þ η · ψ†
�
ið1 − c2ÞDþ 1

2M
ðc2 − kDÞfD0;Dg þ

1

4M
ðkDS − 2cF þ cSÞgE × σ

þ ikD0

8M2
fD0; fD0;Dgg þ

1

8M2
ðcD þ kEÞ½D0; gE� þ

i
8M2

ðcS þ kES − kDS0ÞfD0; gEg × σ

þ i
4M2

ðc2kD − c4ÞfD;D2g þ 1

8M2
ð2cM − cD þ cFkDSÞfD×; gBg

þ i
8M2

ðcS − cFkDS − cp0pÞfD·; gBgσ þ i
8M2

ðcFkDS − c2kDS − cp0pÞfðD · σÞ; gBg

þ i
8M2

ðc2kDS þ 2cFkD − cS − 2cW1 þ 2cW2ÞfD; ðgB · σÞg
�
ψ : ð43Þ

The first four lines of this result consist of overall derivatives, which (apart from the coordinate transformations) arise from
the boost transformation of ψ† through integration by parts, e.g., ðDψÞ† ¼ ∇ψ† − ψ†D.
All terms which are not overall derivatives have to vanish, otherwise the Lagrangian (or rather the action) would not be

invariant, from which the following constraints on the coefficients are obtained:

c2 ¼ 1; kD ¼ 1; kDS ¼ 1; kD0 ¼ 0; kE ¼ −cD; kES ¼ kDS0 − cS; ð44Þ

c4 ¼ 1; cS ¼ 2cF − 1; 2cM ¼ cD − cF; cp0p ¼ cF − 1; cW2 ¼ cW1 − 1: ð45Þ

These coincide with the constraints derived in HQET via reparametrization invariance [28,29].9 We also see that the
constraint kDS ¼ 1 is consistent with the result obtained from the Poincaré algebra and the commutation of two boost
generators (but now it is obtained at a higher order in 1=M). By combining both results, Eqs. (40), (41), (44), and (45), we
can simplify the remaining constraints to

kES ¼ 2ð1 − cFÞ; kB1 ¼ cD þ 3

4
; kBS5 ¼ kBS4 þ 2cF − 1: ð46Þ

The boost parameter kD3 has not been fixed yet. Its value can easily be derived from the contribution of the corresponding
boost term to ∂μΔμL at OðM−3Þ,

η · ψ†
�

1

8M3

�
c4 þ

c2kD0

4
− kD3

�
ffD0;Dg;D2g þ i

8M3
ðkD3 þ � � �Þ½D; fD·; gEg�

�
ψ : ð47Þ

The second term will contribute to other constraints, but in the first we have included all possible terms consisting only of
covariant derivatives, where exactly one is temporal, so its coefficient has to vanish.
Similar observations can be made for terms with two or more temporal derivatives. For such terms, no knowledge of the

full OðM−3Þ Lagrangian or its derivative terms at OðM−4Þ is required, because we have defined it such that temporal
derivatives do not appear, and an infinitesimal boost can at most introduce one temporal derivative. Hence, the contributions
to ∂μΔμL at OðM−3Þ with two or three temporal derivatives are

η · ψ†
�
kD00

16M3
fD0; fD0; fD0;Dggg þ

i
16M3

ðkE01 þ kE02ÞfD0; ½D0; gE�g

þ kES01
16M3

½D0; ½D0; gE × σ�� þ 1

16M3
ðkES02 − kDS00ÞfD0; fD0; gE × σgg

�
ψ : ð48Þ

With kDS00 ¼ 1 from Eq. (40), and kD0 ¼ 0 and c4 ¼ 1 from Eqs. (44) and (45), the vanishing of the terms in Eqs. (47)
and (48) require

kD3 ¼ 1; kD00 ¼ 0; kE02 ¼ −kE01; kES01 ¼ 0; kES02 ¼ 1: ð49Þ

9As noted in [30,37], the relation for cM in [29,28] differs by a sign. Our relation, 2cM ¼ cD − cF, agrees with [28]. It is also
compatible with the one loop expression of the coefficients in QED [30,32,37].
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In particular, we see that the inclusion of temporal
derivative terms in the boost generator is not ruled out,
even though the Lagrangian does not contain such terms at
any order beyond the leading one.
If we compare the expression for the boost that follows

from (40), (44) and (49) with the one in [28],10 we see some
differences. The reason for that is that in the derivation of
the induced representation in [28] the equations of motion
were used in order to remove temporal derivatives. If we do
the same, i.e., insert

D0ψ ¼
�
ic2
2M

D2 þ icF
2M

gB · σ þOðM−2Þ
�
ψ ð50Þ

into the heavy quark boost operator, we can replace

ikD0

8M2
fD0;Dgψ ¼ −

kD0

8M2
gEψ þ ikD0

4M2
DðD0ψÞ

¼ −
kD0

8M2
gEψ −

kD0c2
16M3

fD; ðD2Þgψ þ � � � ;
ð51Þ

−
kDS0

8M2
fD0;D × σgψ

¼ −
ikDS0

8M2
ðgE × σÞψ −

kDS0

4M2
ðD × σÞðD0ψÞ

¼ −
ikDS0

8M2
ðgE × σÞψ −

ikDS0c2
16M3

fðD × σÞ; ðD2Þgψ þ � � � ;
ð52Þ

where the dots containOðM−3Þ terms with a magnetic field
and higher order terms. We need not study them further,
because they affect none of the terms given in [28]. For the

terms with two or more temporal derivatives in the boost
generator, also the equations of motion for gauge fields will
become necessary.
These replacements change the other boost parameters in

the following way:

kE → kE − kD0; kES → kES − kDS0;

kD3 → kD3 þ
kD0c2
2

; kD3S → kD3S þ 2kDS0c2: ð53Þ

Changing (40), (44), and (49) accordingly, the obtained
boost parameters agree with the ones given in [28].11 While
this may not be a general proof that coefficients obtained
from the induced representation (here kD, kDS, kD3, and
kD3S) can be assumed to be 1 also in the interacting theory
at all orders, it seems to show that at this order there is no
contradiction between the two approaches. The constraints
on the Wilson coefficients and also the boost Noether
charge (see below) are the same, as the equations of motion
also enter in the derivation of the conserved Noether
current. Note, however, that a boost generator without
temporal derivatives, as used in [28], does not satisfy the
Poincaré algebra for the commutator of two boosts, unless
the equations of motion are used again. This would suggest
that the Poincaré algebra is only satisfied for on shell heavy
(anti)quark fields, a restriction that does not apply to our
approach. Finally, we remark that most of the constraints on
the boost coefficients atOðM−3Þ presented in Eqs. (46) and
(49) are new.

C. Noether charges

Now that the boost transformations of the heavy quark
and antiquark fields have been determined, we can write the
corresponding Noether charge K,

η ·K ¼
Z

d3r

� ∂L
∂ð∂0ϕiÞ

ð−iη · kϕϕiÞ − Δ0L
�

¼
Z

d3r
�
η ·

� ∂L
∂ð∂0ϕiÞ

ðt∇þ r∂0Þϕi þ ψ†k̂ψψ þ χ†k̂χχ −ΠaAa
0 − rL

�
− Δ̂0L

�

¼ −tη ·P þ
Z

d3r½η · rhþ ψ†η · k̂ψψ þ χ†η · k̂χχ − Δ̂0L�;

K ¼ −tP þ 1

2

Z
d3rfr; hþMψ†ψ −Mχ†χg −

Z
d3rψ†

�
i

4M
D × σ þ cD

8M2
gE

�
ψ

þ
Z

d3rχ†
�

i
4M

D × σ −
cD
8M2

gE

�
χ þOðM−3Þ; ð54Þ

where ϕi stands for all three types of field, ψ , χ, and A, while Π is the canonical momentum field conjugated
to A,

10The context of [28] is NRQED, not NRQCD, but both calculations are analogous at low orders in 1=M.
11We have chosen to write the terms with three derivatives in the form of an anticommutator in order to work with explicitly (anti-)

Hermitian terms, while [28] does not. The difference between both ways of writing are terms with magnetic fields not listed in [28].
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Πa
i ¼

∂L
∂ð∂0Aa

i Þ
¼ −Ea

i þOðM−2Þ: ð55Þ

We have also defined Δ̂0L in analogy to k̂ψ=χ as the part of
Δ0L that does not originate from the coordinate trans-
formations,

Δ̂0L ¼ −
1

4M2
ψ†ðD × σÞD0ψ −

1

4M2
χ†ðD × σÞD0χ

þOðM−3Þ: ð56Þ

We can ignore here terms with an overall spatial derivative
in Eq. (43), because they vanish in the integral of the
Noether charge.
In addition, P is the Noether charge associated with

spatial translations

P ¼
Z

d3r
� ∂L
∂ð∂0ϕiÞ

ð−∇Þϕi

�

¼
Z

d3rðψ†ð−iDÞψ þ χ†ð−iDÞχ − Tr½Π×;B�Þ; ð57Þ

where the equations of motion, ½D·;Π� ¼ −ðψ†gTaψ þ
χ†gTaχÞTa, have been used in order to make the expression
explicitly gauge invariant.12 The Hamiltonian density h is
given through the Hamiltonian

H ¼
Z

d3r

� ∂L
∂ð∂0ϕiÞ

∂0ϕi − L
�

¼
Z

d3rðψ†hψψ þ χ†hχχ þ Tr½Π2 þ B2�Þ

≡
Z

d3rh; ð58Þ

where hψ and hχ are defined through the Lagrangian
density,

L ¼ ψ†ðiD0 − hψ Þψ þ χ†ðiD0 − hχÞχ þ Tr½E2 − B2�;
ð59Þ

and we have made use of Gauss’s law again.
The initial expression ½∂L=∂ð∂0ϕiÞ�∂0ϕi − L and the

Hamiltonian density, as defined in the final expression,
differ by a derivative term, −∇ · ðΠaAa

0Þ, which vanishes in
H, but gives a contribution to K that exactly cancels the
ΠaAa

0 term in Eq. (54). In the last expression forK, we have
replaced rh by fr; hg=2 − ½h; r�=2 in order to obtain an
explicitly Hermitian expression. The anti-Hermitian terms
from ψ†k̂ψψ and χ†k̂χχ as well as the terms with a temporal
derivative cancel against ½h; r�=2 and Δ̂0L. At OðM−2Þ,
there is exactly one kind of term,

i
8M2

ð2ð1 − cFÞ þ cS − 1Þ½ψ†gE × σψ þ χ†gE × σχ� ¼ 0:

ð60Þ

The coefficients add up to zero according to the constraints
(45), where the first comes from the kES term in the boost
generator, the second from ½h; r�=2, and in the third Δ̂0L has
been combined with the kDS0 boost term, turning the anti-
commutator into a commutator that gives the electric field.
The Noether charge K corresponds exactly to the boost

operator of the quantized theory obtained in [17] and
extends it up to OðM−2Þ. Note that the field redefinitions
that remove the OðMÞ terms from the Lagrangian have not
been performed in [17]; hence the definition of h in [17]
differs from ours by Mψ†ψ −Mχ†χ. This term appears
explicitly in our expression for K. Accordingly, the gen-
erators for time translations are given by i∂0 �M after the
redefinition of ψ and χ, so that the proper Noether charge of
time translations is given by the above HamiltonianH plus
M

R
d3rðψ†ψ − χ†χÞ, which coincides with the expression

in [17]. Another way of obtaining K at tree level [in
Eq. (54) this corresponds to setting cD ¼ 1] is to perform
Foldy-Wouthuysen transformations on the QCD Noether
charge [19].

D. The four-fermion Lagrangian

We now turn to the four-fermion part of the NRQCD
Lagrangian, or more specifically the part consisting of two
heavy quark and two heavy antiquark fields. The lowest
order terms of the Lagrangian are given by

Lð2Þj4f ¼
1

M2
ff1ð1S0Þψ†χχ†ψ þ f1ð3S1Þψ†σχ · χ†σψ

þ f8ð1S0Þψ†Taχχ†Taψ

þ f8ð3S1Þψ†σTaχ · χ†σTaψg: ð61Þ

The Wilson coefficients f are related by Poincaré invari-
ance to the coefficients of the next order four-fermion
Lagrangian, which is OðM−4Þ [38]. It is straightforward to
see that the OðMÞ terms of kψ and kχ cancel each other in
the boost transformation of the leading order part of this
Lagrangian, so the first constraints can be obtained
at OðM−3Þ.
At OðM−3Þ, the OðM−4Þ Lagrangian contributes only

with the OðMÞ terms of kψ and kχ , which are given by
�Mr. Since the boost of operators with two left-right

derivatives, like ψ†D
↔
χ · χ†D

↔
ψ [see Eqs. (63) and (64) for

the definition of left-right derivatives], or with a chromo-
magnetic field B, cancels at OðMÞ, only operators with at
least one “center-of-mass” (cm) derivative (i.e., a derivative
acting on two heavy fields like ∇χ†ψ) give nonvanishing
contributions. Including only such terms, the four-fermion
part of the Lagrangian at OðM−4Þ is given by12In fact, the equations of motion are Gauss’s law.
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Lð4Þj4f;cm ¼ −
if1 cm
2M4

ðψ†ðD↔ × σÞχ · ∇χ†ψ þ ð∇ψ†χÞ · χ†ðD↔ × σÞψÞ

−
if8 cm
2M4

ðψ†ðD
↔
× σÞTaχ · Dabχ†Tbψ þ ðDabψ†TbχÞ · χ†ðD

↔
× σÞTaψÞ

þ if01 cm
2M4

ðψ†D
↔
χ · ð∇ × χ†σψÞ þ ð∇ × ψ†σχÞ · χ†D↔ψÞ

þ if08 cm
2M4

ðψ†D
↔
Taχ · ðDab × χ†σTbψÞ þ ðDab × ψ†σTbχÞ · χ†D↔TaψÞ

þ g1a cm
M4

ð∇iψ
†σjχÞð∇iχ

†σjψÞ þ
g8a cm
M4

ðDab
i ψ†σjTbχÞðDac

i χ†σjTcψÞ

þ g1b cm
M4

ð∇ · ψ†σχÞð∇ · χ†σψÞ þ g8b cm
M4

ðDab · ψ†σTbχÞðDac · χ†σTcψÞ

þ g1c cm
M4

ð∇ψ†χÞ · ð∇χ†ψÞ þ g8c cm
M4

ðDabψ†TbχÞ · ðDacχ†TcψÞ; ð62Þ

where covariant derivatives with color indices are understood in the adjoint representation. The relevant left-right
derivatives are defined as follows (see [38]):

ψ†D
↔

iTχ ¼ −ðDiψÞ†Tχ þ ψ†TDiχ; ð63Þ

ψ†D
↔

iD
↔

jTχ ¼ ðDiDjψÞ†Tχ − ðDiψÞ†TDjχ − ðDjψÞ†TDiχ þ ψ†TDiDjχ; ð64Þ

where T stands for either the unit or a color matrix. Thus, we obtain the following expression at OðM−3Þ after the boost
transformation:

∂μΔ̂μLj4f ¼ −
1

2M3
ðf1ð1S0Þ þ 4g1c cmÞ½ðη · i∇ψ†χÞχ†ψ þ H:c:�

−
1

2M3
ðf8ð1S0Þ þ 4g8c cmÞ½ðη · iDabψ†TbχÞχ†Taψ þ H:c:�

þ 1

4M3
ðf1ð1S0Þ − f1 cmÞ½ψ†η · ðD↔ × σÞχχ†ψ þ H:c:�

þ 1

4M3
ðf8ð1S0Þ − f8 cmÞ½ψ†η · ðD↔ × σÞTaχχ†Taψ þ H:c:�

−
1

2M3
ðf1ð3S1Þ þ 4g1a cmÞ½ðη · i∇ψ†σiχÞχ†σiψ þ H:c:�

−
1

2M3
ðf8ð3S1Þ þ 4g8a cmÞ½ðη · iDabψ†σiTbχÞχ†σiTaψ þ H:c:�

þ 1

4M3
ðf1ð3S1Þ − f01 cmÞ½ψ†ðη × D

↔Þχ · χ†σψ þ H:c:�

þ 1

4M3
ðf8ð3S1Þ − f08 cmÞ½ψ†ðη × D

↔ÞTaχ · χ†σTaψ þ H:c:�

þ 2

M3
g1bcm½ψ†ðη · σÞχði∇ · χ†σψÞ þ H:c:�

þ 2

M3
g8bcm½ψ†ðη · σÞTaχðiDab · χ†σTbψÞ þ H:c:�; ð65Þ

where we have neglected the terms from the coordinate transformations. As none of the terms in (65) has the form of an
overall derivative, all coefficients have to vanish, which implies

g1a cm ¼ −
1

4
f1ð3S1Þ; g1c cm ¼ −

1

4
f1ð1S0Þ; g8a cm ¼ −

1

4
f8ð3S1Þ; g8c cm ¼ −

1

4
f8ð1S0Þ; ð66Þ

f1 cm ¼ 1

4
f1ð1S0Þ; f01 cm ¼ 1

4
f1ð3S1Þ; f8 cm ¼ 1

4
f8ð1S0Þ; f08 cm ¼ 1

4
f8ð3S1Þ; ð67Þ
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g1b cm ¼ g8b cm ¼ 0: ð68Þ
These relations were first derived in [38] and later con-
firmed in [30] for NRQED, which at this order is equivalent
to the singlet sector of NRQCD.
At OðM−4Þ, the boost generators contain terms involving

the heavy (anti)quark fields themselves. This is a novel
feature if one follows the line of argument in [30], where the
appearance of gauge field operators has been explained with
the ambiguities related to the ordering of derivatives when
promoted to covariant derivatives. Of course, an argument
could be made based on the fact that gauge fields and heavy
(anti)quark fields are related through the equations of
motion; in the EFT approach used in this paper, however,
the appearance of heavy (anti)quark fields in the boost
generators is natural and requires no further justification. We
discuss the effect of these terms in Appendix B.

III. CONSTRAINTS IN PNRQCD

Potential nonrelativistic QCD (pNRQCD) is a low energy
EFT obtained from NRQCD after integrating out the scale
Mv of the relative momentum between a heavy quark and an
antiquark [8–10].13 In weakly coupled pNRQCD, we also
assume ΛQCD ≲Mv2, which implies that the matching can
be carried out perturbatively. Since the relative momentum
scale is of the same order as the inverse of the quark-
antiquark distance r, integrating out this scale corresponds to
multipole expanding. The effective d.o.f. are heavy quarko-
nium fields instead of separate heavy quark and antiquark
fields, as the other d.o.f. (ultrasoft gluons and light quarks)
can no longer resolve the individual heavy particles after
integrating out the scale 1=r.
In SU(3) the heavy quark and antiquark may form either

a color singlet or octet state; hence they appear in pNRQCD
either as a singlet field S or an octet field O. These fields are
the only ones that depend on the relative distance r as well
as the center-of-mass coordinate R, while all other fields
depend on R only. The Lagrangian of weakly coupled
pNRQCD can be written schematically as

Lweak
pNRQCD ¼

Z
d3rTr½S†ði∂0 − hSÞSþ O†iD0O

− ðO†hOOþ c:c:Þ − ðS†hSOOþ H:c:Þ� þ � � � ;
ð69Þ

where the heavy quark-antiquark fields are matrices in
color space,

S ¼ 1ffiffiffi
3

p S1; O ¼
ffiffiffi
2

p
OaTa: ð70Þ

The trace is understood both in spin and in color spaces,
and the coefficients for the matrices have been chosen in

such a way that the traces over two fields are properly
normalized. The ellipsis stands for the gluon and light quark
sectors, which can be read from the NRQCD Lagrangian (3)
and following discussion. The covariant derivatives are
understood as commutators with all terms to their right.
Furthermore, H.c. in Eq. (69) stands for the Hermitian
conjugate, and c.c. for the charge conjugate of the preceding
term within the parentheses. The explicit expressions of hS,
hO, and hSO are not immediately required for the following
discussions, so we postpone them until they become
relevant: hS and hO are found in Eqs. (105), (108),
respectively, and hSO is given by Eqs. (111) and (112).
As usual, they contain all terms allowed by the symmetries.
On the other hand, when the hierarchy of scales is given

by ΛQCD ≫ Mv2, the theory enters the strong-coupling
regime. In this case, the pNRQCD Lagrangian is obtained
after integrating out the hadronic scale ΛQCD, which means
that all colored d.o.f. are absent [10,39–41],

Lstrong
pNRQCD ¼

Z
d3rTr½S†ði∂0 − hSÞS� þ � � � ; ð71Þ

where the ellipsis denotes now terms that, in the simplest
setting, depend on the light-quark fields only in the form
of light mesons, and hS has the same form as in weakly
coupled pNRQCD but with all gluonic operators removed.
The reason is that, once the effective d.o.f. have been
established, the allowed terms in the effective Lagrangian
depend only on the symmetries, which are the same
for weakly and strongly coupled pNRQCD. Therefore,
although the Wilson coefficients of strongly coupled
pNRQCD are different from those of weakly coupled
pNRQCD and need to be determined in a nonperturbative
matching, nevertheless any weak-coupling result can be
immediately extended to the strong-coupling case by
setting to zero all coefficients from hO, hSO, and from
gluonic operators in hS. In case the hadronic scale also
factorizes from the soft scale (i.e., for the hierarchy
1=r ∼Mv ≫ ΛQCD ≫ Mv2), the Wilson coefficients can
be expanded in rΛQCD, so that the constraints have to be
satisfied order by order in this expansion. Thus, it suffices
to study only the weakly coupled case and any superscript
on the Lagrangian will be omitted from now on.
The matching between NRQCD and weakly coupled

pNRQCD is performed through interpolating fields [9]

χ†ðR− r=2ÞWðR− r=2;Rþ r=2ÞψðRþ r=2Þ
→ Zð0Þ

S ðrÞSðr;RÞ þZð2Þ
O ðrÞrr · gEaðRÞOaðr;RÞ þOðr3Þ;

ð72Þ

χ†ðR− r=2ÞWðR− r=2;RÞTaWðR;Rþ r=2ÞψðRþ r=2Þ
→ Zð0Þ

O ðrÞOaðr;RÞ þZð2Þ
S ðrÞrr · gEaðRÞSðr;RÞ þOðr3Þ;

ð73Þ
13In this paper, we only consider a heavy quark and an

antiquark with the same flavor.
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where the Wilson line W acts as a gauge link from the
position of the heavy quark to that of the heavy antiquark.
Correlators of those interpolating fields in both theories
give the same result, which determines the coefficients Z as
well as the matching coefficients.

A. Coordinate transformations for
quarkonium fields

The interpolating fields determine how the heavy quark-
antiquark fields behave under spacetime symmetries. In
fact, in the limit g → 0 one can neglect the Wilson lines and
just determine the transformation of singlet and octet from
different color projections of Q ¼ ψχ†.14 The coordinate
transformations do not depend on the color representation,
so we use Q for both singlet and octet.
First, we give here the transformations under the discrete

symmetries [10],15

Qðt; r;RÞ⟶P −Qðt;−r;−RÞ; ð74Þ

Qðt; r;RÞ⟶C σ2QTðt;−r;RÞσ2; ð75Þ

Qðt; r;RÞ⟶T σ2Qð−t; r;RÞσ2; ð76Þ

where the transpose on the charge conjugated field refers
both to color and spin space. Also note that charge
conjugation exchanges the positions of the quark and the
antiquark fields, so that r goes into −r. For the behavior
under spacetime translations and rotations, we refer to
Appendix A 2.
Under boosts, the coordinate transformations are com-

posed of the individual boosts of the heavy quark and
antiquark fields [see Eqs. (30) and (31)] located at x1 ¼
Rþ r=2 and x2 ¼ R − r=2 respectively,

ψðt; x1Þχ†ðt; x2Þ⟶K ψðt; x1Þχ†ðt; x2Þ − iMη · ðx1 þ x2Þψðt; x1Þχ†ðt; x2Þ þ ½η · ðt∇1 þ x1∂0Þ;ψðt; x1Þ�χ†ðt; x2Þ
þ ψðt; x1Þ½η · ðt∇2 þ x2∂0Þ; χ†ðt; x2Þ� þ…

¼ ð1 − 2iMη · RÞψðt; x1Þχ†ðt; x2Þ þ ½η · ðt∇R þ R∂0Þ;ψðt; x1Þχ†ðt; x2Þ�

þ 1

2
ðη · rÞð½∂0;ψðt; x1Þ�χ†ðt; x2Þ − ψðt; x1Þ½∂0; χ†ðt; x2Þ�Þ þ…; ð77Þ

where the ellipsis stands for all terms of the boost transformation that are not related to the coordinate transformations [these are
shown in Eq. (79)]. The first two terms on the right-hand side of the equality sign correspond to the usual coordinate
transformations under boosts of a scalar field withmass 2M, where only the center-of-mass coordinate participates in the boost
and the relative distance remains unaffected (note that this behavior agreeswith the coordinate transformations found elsewhere,
e.g., in [42], if we restrict ourselves to the center-of-mass frame). In the third term on the right-hand side, the time derivatives
acting on the quark and antiquark fields cannot bewritten as one derivative acting on thewhole quarkonium field because of the
opposite signs. However, these time derivatives can be replaced by spatial derivatives through the equations of motion,

1

2
ðη · rÞð½∂0;ψðt; x1Þ�χ†ðt; x2Þ − ψðt; x1Þ½∂0; χ†ðt; x2Þ�Þ ¼ ðη · rÞ

�
i

4M
ð∇2

1 − ∇2
2Þ;ψðt; x1Þχ†ðt; x2Þ

�
þOðM−3Þ

¼ ðη · rÞ
�

i
2M

∇R · ∇r;ψðt; x1Þχ†ðt; x2Þ
�
þOðM−3Þ: ð78Þ

Thus, these terms give corrections of order 1=M and higher.
The other terms in the boost transformation of the quark and antiquark fields in the g → 0 limit can also be rewritten in

terms of the center-of-mass and relative coordinates, R and r,

ψðt; x1Þχ†ðt; x2Þ⟶K …þ i
2M

½η · ð∇1 þ ∇2Þ;ψðt; x1Þχ†ðt; x2Þ�

−
1

4M
½ðη × ∇1Þ·; σψðt; x1Þχ†ðt; x2Þ� þ

1

4M
½ðη × ∇2Þ·;ψðt; x1Þχ†ðt; x2Þσ� þOðM−2Þ

¼ …þ i
2M

½η · ∇R;ψðt; x1Þχ†ðt; x2Þ� −
1

8M
ðσð1Þ þ σð2ÞÞ · ½ðη × ∇RÞ;ψðt; x1Þχ†ðt; x2Þ�

−
1

4M
ðσð1Þ − σð2ÞÞ · ½ðη × ∇rÞ;ψðt; x1Þχ†ðt; x2Þ� þOðM−3Þ: ð79Þ

14In this limit there is no longer any interaction between the heavy quark and antiquark, and they cannot form a bound state. Although
we thus lose in this way the justification for the assumed hierarchy of scales, nevertheless this is not relevant as long as we are interested
only in coordinate transformations.

15Note that C would not be a symmetry if we allowed different flavors for the heavy quark and antiquark.

BERWEIN, BRAMBILLA, HWANG, and VAIRO PHYS. REV. D 99, 094008 (2019)

094008-14



Here the ellipsis denotes the terms shown in Eq. (77) due to
the coordinate transformations. We have also introduced
the convenient notation

σð1ÞQ ¼ σQ and σð2ÞQ ¼ −Qσ: ð80Þ

This is to say that σð1Þ acts on the spin of the heavy quark
and σð2Þ acts on the spin of the heavy antiquark (they
correspond to the respective generators of rotations, see
Appendix A 2). Since σ2σσ2 ¼ −σT and σTQT ¼ ðQσÞT ,
charge conjugation effectively exchanges σð1Þ ↔ σð2Þ.
From these expressions, we expect the boost generator in

the g → 0 limit to behave like

kQ ¼g→0
it∇R þ iR∂0 þ 2MR −

1

4M
∇R −

1

4M
fr; ð∇R · ∇rÞg

−
i

8M
∇R × ðσð1Þ þ σð2ÞÞ

−
i

4M
∇r × ðσð1Þ − σð2ÞÞ þOðM−3Þ: ð81Þ

This limit is interesting for the ansatz we are going to make
for the singlet and octet boost generators, since it deter-
mines which coefficients we expect to be of order
1þOðαsÞ. In the last two terms of the first line, we have
used

rð∇R · ∇rÞ ¼
1

2
fr; ð∇R · ∇rÞg −

1

2
∇R; ð82Þ

in order to obtain terms that are explicitly Hermitian or anti-
Hermitian.
Finally, we list here how the boost generators are

required to behave under the discrete symmetries parity,
charge conjugation, and time reversal,

PkQ ¼ −kQ; CkQ ¼ σ2kTQσ2; TkQ ¼ σ2kQσ2: ð83Þ

Note that P changes the sign of both r and R, C changes the
sign of r only, T changes the sign of t and takes the complex
conjugate. While for the singlet field the transpose oper-
ation required by the C transformation is trivially realized
in color space, for the octet field the boost transformation is
consistent with charge conjugation if it is of the form (in
matrix notation),

O⟶
K

O0 ¼ O − iη · ðkðAÞO Oþ OkðBÞO Þ; ð84Þ

where the two parts kðAÞO and kðBÞO are exchanged under C

as kðAÞO ↔
C
σ2ðkðBÞO ÞTσ2.

B. Redundancies and field redefinitions

In order to find the boost generators in pNRQCD, we
will use the EFT approach and write down the most general

form allowed by the symmetries of the theory. However, it
turns out that several terms in this ansatz are redundant, in
the sense that one can make a field redefinition that
removes them from the boost generators without changing
the form of the Lagrangian. Thus, there is no loss in
generality if one chooses to work with boost generators
where these redundant terms are absent. We will identify
appropriate field redefinitions in this section. Since we
calculate the transformation of the Lagrangian up to orders
M0r1 and M−1r0 in the next section, it is necessary to
include all terms of order M0r2 and M−1r0 in the boosts.
Wewill use the notation cðm;nÞ for theWilson coefficients of
operators that are of order M−mrn.

1. Singlet field

Even though we work with a general ansatz, some terms
may be omitted from the start, which is similar to the
construction of the pNRQCD Lagrangian. A term like
r · ∇r, for example, is neutral with respect to any symmetry
and also the power counting. In principle one could add an
infinite number of these terms to any operator in the
Lagrangian, which would mean that at each order in the
power counting, one would have to match an infinite
number of terms, making the construction of the EFT
impossible. By comparison with NRQCD, however, one
sees that each derivative appears with at least one power of
1=M, so also in pNRQCD one can neglect any term where
there are more derivatives than powers of 1=M. The same
argument applies to spin-dependent terms, where each
Pauli matrix has to be suppressed by a power of 1=M.
The only exception to this are the kinetic energy terms that
have one derivative more than powers of 1=M.
By extension, these rules also apply to the construction

of the boost generators in the following way. Operators
leading to terms in the transformation of the Lagrangian
that would have to be canceled by derivative or spin terms
with an insufficient 1=M suppression are immediately ruled
out. For instance, since the center-of-mass kinetic energy is
of the form ∇2

R=M [and not ðr · ∇RÞ2=ðMr2Þ] at order 1=M,
we can exclude from the start a term like rðr · ∇RÞ=ðMr2Þ
from the boost, which has no counterpart in the Lagrangian.
These arguments apply to Hermitian and anti-Hermitian
terms differently, as Hermitian terms lead to commuta-
tors in the boosted Lagrangian, which often reduce the
number of derivatives, while anti-Hermitian terms lead to
anticommutators.
Keeping this in mind and writing everything in terms of

explicitly Hermitian or anti-Hermitian operators (where we
stay close to the nomenclature in [17]), a rather general
ansatz for the boost generator of the singlet is given by16

16The subscripts on the boost coefficients, a0, a00, a000, b, c, etc.,
are labels used to distinguish between different operators with the
same suppression in 1=M and r. Primes distinguish operators that
differ only in the contraction of their vector indices.
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kS ¼ it∇R þ iR∂0 þ 2MR −
kð1;0ÞSD

4M
∇R −

1

4M
fkð1;0ÞSa0 r; ð∇R · ∇rÞg

−
1

4M
fkð1;0ÞSa00 ðr · ∇RÞ;∇rg −

1

4M
fkð1;0ÞSa000 r·;∇rg∇R

−
1

4M

�
kð1;0ÞSb

r2
rðr · ∇RÞri; ð∇rÞi

�
−
ikð1;0ÞSc

8M
∇R × ðσð1Þ þ σð2ÞÞ

−
ikð1;0ÞSd00

8Mr2
ðr · ∇RÞðr × ðσð1Þ þ σð2ÞÞÞ − ikð1;0ÞSd000

8Mr2
ððr × ∇RÞ · ðσð1Þ þ σð2ÞÞÞr

−
i

8M
fkð1;−1ÞSa ;∇r × ðσð1Þ − σð2ÞÞg þ i

8M

�
kð1;−1ÞSb0

r2
ðr · ðσð1Þ − σð2ÞÞÞr×;∇r

�

−
i

8M

�
kð1;−1ÞSb00

r2
r × ðσð1Þ − σð2ÞÞri; ð∇rÞi

�
þOðM−2r0;M−1r1;M0r3Þ: ð85Þ

Note that we cannot write any color singlet operator at
OðM0r2Þ; also time derivatives do not yet appear at this
order, apart from the coordinate transformations. Since the
Wilson coefficients here depend on r, they have to be
included inside the anticommutators with the derivative ∇r.
We have used the identity

δijϵklm ¼ δikϵjlm þ δilϵkjm þ δimϵklj; ð86Þ

in order to eliminate several terms. A term like

ikð1;0ÞSd0 ðr × ∇RÞðr · ðσð1Þ þ σð2ÞÞÞ=ð8Mr2Þ, for instance, can
be expressed in terms of the operators of kð1;0ÞSc , kð1;0ÞSd00 , and

kð1;0ÞSd000 through this identity; this can be shown by multi-
plying Eq. (86) with rirjð∇RÞkðσð1Þ þ σð2ÞÞl. A similar
relation can be found between the operators of the

coefficients, kð1;−1ÞSa , kð1;−1ÞSb0 , and kð1;−1ÞSb00 , and an omitted

fðikð1;−1ÞSb000 =8Mr2Þr½r × ðσð1Þ − σð2ÞÞ�i; ð∇rÞig term.
Not all the terms in the boost generator, Eq. (85), are

necessary if one exploits the freedom to perform field
redefinitions; in other words, one can always redefine the
fields as long as the symmetry properties of the fields are
not altered. In order to keep the form of the Lagrangian
intact after the field redefinitions, we will only consider
unitary transformations US ¼ exp½uS� (uS is anti-
Hermitian), for which the new singlet field S̃ is related
to the old S via S ¼ USS̃ [17].
In order to find a suitable unitary transformation, we

need to look for terms which are anti-Hermitian and P, C,
and T invariant. Such terms can be easily found by
multiplying the Hermitian terms in kS with ∇R=M, which
explains the nomenclature we use for US,

US ¼ exp

�
−

1

4M2
fqð1;0ÞSa00 r · ∇R;∇r · ∇Rg −

1

4M2
fqð1;0ÞSa000 r·;∇rg∇2

R

−
1

4M2

�
qð1;0ÞSb

r2
ðr · ∇RÞ2r·;∇r

�
−

iqð1;0ÞSd000

8M2r2
ðr · ∇RÞððr × ∇RÞ · ðσð1Þ þ σð2ÞÞÞ

þ i
8M2

fqð1;−1ÞSa ; ð∇r × ∇RÞ · ðσð1Þ − σð2ÞÞg − i
8M2

�
qð1;−1ÞSb0

r2
ðr · ðσð1Þ − σð2ÞÞÞðr × ∇RÞ·;∇r

�

þ i
8M2

�
qð1;−1ÞSb00

r2
ððr × ∇RÞ · ðσð1Þ − σð2ÞÞÞr·;∇r

�
þ…

�
; ð87Þ

where the ellipsis stands for higher order terms, which do not affect the calculations of this paper. The coefficients qðm;nÞ
S are

free parameters.
We can work out the transformation of the new singlet field S̃ under boosts in the following way:

S̃0 ¼ U 0†
SS

0 ¼ U 0†
Sð1 − iη · kSÞUSS̃ ¼ ½1 − U†

Sðiη · kSÞUS þ ðδU†
SÞUS�S̃

≡ ð1 − iη · k̃SÞS̃; ð88Þ
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δU†
Sð∇R;E;BÞ ¼ ½η · ðt∇R þ R∂0Þ;U†

Sð∇R;E;BÞ�
þ U†

Sð∇R þ η∂0;Eþ η × B;B − η × EÞ − U†
Sð∇R;E;BÞ; ð89Þ

with the second line expanded to linear order in η. The transformed boost generator k̃S has to be expanded to the same order
as the original kS,

k̃S ¼ kS þ ½k̂S; uS� − uSð∇R þ η∂0;Eþ η × B;B − η × EÞ þ uSð∇R;E;BÞ

þ 1

2
½½k̂S; uS� − uSð∇R þ η∂0;Eþ η × B;B − η × EÞ þ uSð∇R;E;BÞ; uS� þ…

¼ kS þ ½2MR; uS� þOðM−2Þ: ð90Þ
Inserting the explicit field redefinition from Eq. (87), we obtain

k̃S ¼ kS þ
1

2M
fqð1;0ÞSa00 r; ð∇R · ∇rÞg þ

1

2M
fqð1;0ÞSa00 ðr · ∇RÞ;∇rg

þ 1

M
fqð1;0ÞSa000 r·;∇rg∇R þ 1

M

�
qð1;0ÞSb

r2
rðr · ∇RÞri; ð∇rÞi

�

−
iqð1;0ÞSd000

4Mr2
ðr · ∇RÞðr × ðσð1Þ þ σð2ÞÞÞ þ iqð1;0ÞSd000

4Mr2
ððr × ∇RÞ · ðσð1Þ þ σð2ÞÞÞr

þ i
4M

fqð1;−1ÞSa ;∇r × ðσð1Þ − σð2ÞÞg − i
4M

�
qð1;−1ÞSb0

r2
ðr · ðσð1Þ − σð2ÞÞÞr×;∇r

�

þ i
4M

�
qð1;−1ÞSb00

r2
r × ðσð1Þ − σð2ÞÞri; ð∇rÞi

�
þOðM−2Þ: ð91Þ

These extra terms can be absorbed in the operators already present in Eq. (85) by changing the coefficients in the
following way:

k̃ð1;0ÞSa0 ¼ kð1;0ÞSa0 − 2qð1;0ÞSa00 ; k̃ð1;0ÞSa00 ¼ kð1;0ÞSa00 − 2qð1;0ÞSa00 ; k̃ð1;0ÞSa000 ¼ kð1;0ÞSa000 − 4qð1;0ÞSa000 ;

k̃ð1;0ÞSb ¼ kð1;0ÞSb − 4qð1;0ÞSb ; k̃ð1;0ÞSd00 ¼ kð1;0ÞSd00 þ 2qð1;0ÞSd000 ; k̃ð1;0ÞSd000 ¼ kð1;0ÞSd000 − 2qð1;0ÞSd000 ;

k̃ð1;−1ÞSa ¼ kð1;−1ÞSa − 2qð1;−1ÞSa ; k̃ð1;−1ÞSb0 ¼ kð1;−1ÞSb0 − 2qð1;−1ÞSb0 ; k̃ð1;−1ÞSb00 ¼ kð1;−1ÞSb00 − 2qð1;−1ÞSb00 : ð92Þ

The seven free parameters qðm;nÞ
S in the unitary trans-

formation can be chosen in any convenient way.
Comparing this to the expected result in the g → 0 limit

from Eq. (81), we choose to set k̃ð1;0ÞSa00 , k̃
ð1;0Þ
Sa000 , k̃

ð1;0Þ
Sb , k̃ð1;0ÞSd000 ,

k̃ð1;−1ÞSb0 and k̃ð1;−1ÞSb00 equal to zero, as well as to fix k̃ð1;−1ÞSa ¼ 1.
Then, after dropping the tilde notation for the new field, the
boost transformation becomes

kS ¼ it∇R þ iR∂0 þ 2MR −
kð1;0ÞSD

4M
∇R

−
1

4M
fkð1;0ÞSa0 r; ð∇R · ∇rÞg −

ikð1;0ÞSc

8M
∇R × ðσð1Þ þ σð2ÞÞ

−
ikð1;0ÞSd00

8Mr2
ðr · ∇RÞðr × ðσð1Þ þ σð2ÞÞÞ

−
i

4M
∇r × ðσð1Þ − σð2ÞÞ þOðM−2r0;M−1r1;M0r3Þ;

ð93Þ

in which only four coefficients, kð1;0ÞSD , kð1;0ÞSa0 , kð1;0ÞSc , and

kð1;0ÞSd00 , remain undetermined.

2. Octet field

In a similar fashion, one can proceed to determine the
most general form of the boost transformation for the
octet field. The main difference from the singlet is that
all center-of-mass derivatives (except for the coordinate
transformations) have to be replaced by covariant deriva-
tives in the adjoint representation, Dab¼δab∇R−fabcgAc,
due to the color charge of the octet field. There are no
operators at order M0r2 for the singlet field, but for the
case of the octet, one can write two operators involving
the chromoelectric field. There are no new terms at
order M−1r0.
We write now the color components of the octet field

explicitly instead of using the matrix notation, for which the
boost transformation reads
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Oa ⟶
K

Oa0 ¼ ðδab − iη · kabO ÞOb: ð94Þ

The parity transformation of the boost generator in com-
ponent notation is the same as in matrix notation. For the
charge conjugation and time reversal transformations, we
introduce a sign factor ζa through ðTaÞT ¼ ðTaÞ� ≡ ζaTa

(the double appearance of the color index a in any instance
of ζa does not imply its summation). With this the fields in
the adjoint representation transform as

Oa ⟶
C

σ2ζ
aOaσ2; Ea ⟶

C − ζaEa; Ba⟶
C − ζaBa;

ð95Þ

Oa ⟶
T

σ2ζ
aOaσ2; Ea ⟶

T
ζaEa; Ba ⟶

T
− ζaBa:

ð96Þ

The boost generator in component notation has to trans-
form like

kabO ⟶
C

ζaζbσ2ðkabO ÞTσ2; kabO ⟶
T

ζaζbσ2kabO σ2: ð97Þ

For the sign factors, one can use the following identities:

ζaζbδab ¼ δab; ζaζbζcfabc ¼ −fabc; ζaζbζcdabc ¼ dabc;

ð98Þ

which follow from the commutation relations of the color
matrices.
A general ansatz for the boost generator of the octets

is then

kabO ¼ δabðit∇R þ iR∂0 þ 2MRÞ − kð1;0ÞOD

4M
Dab

R þ i
8
fabckð0;2ÞOa ðr · gEcÞrþ i

8
fabckð0;2ÞOb r2gEc

−
1

4M
fkð1;0ÞOa0 r; ðDab

R · ∇rÞg −
1

4M
fkð1;0ÞOa00 ðr · Dab

R Þ;∇rg −
1

4M
fkð1;0ÞOa000 r·;∇rgDab

R

−
1

4M

�
kð1;0ÞOb

r2
rðr · Dab

R Þri; ð∇rÞi
�
−
ikð1;0ÞOc

8M
Dab

R × ðσð1Þ þ σð2ÞÞ

−
ikð1;0ÞOd00

8Mr2
ðr · Dab

R Þðr × ðσð1Þ þ σð2ÞÞÞ − ikð1;0ÞOd000

8Mr2
ððr × Dab

R Þ · ðσð1Þ þ σð2ÞÞÞr

−
iδab

8M
fkð1;−1ÞOa ;∇r × ðσð1Þ − σð2ÞÞg þ iδab

8M

�
kð1;−1ÞOb0

r2
ðr · ðσð1Þ − σð2ÞÞÞr×;∇r

�

−
iδab

8M

�
kð1;−1ÞOb00

r2
r × ðσð1Þ − σð2ÞÞri; ð∇rÞi

�
þOðM−2r0;M−1r1;M0r3Þ: ð99Þ

We can again perform a redefinition of the octet field through a unitary transformation Õa ¼ Uab
O Ob with UO ¼ exp½uO�, in

order to reduce the number of coefficients in kO. For this transformation matrix, the same arguments apply as in the singlet
case, so that we write the anti-Hermitian operator uO as

uabO ¼ −
qð0;2ÞOa

16M
fðr · DRÞ; ðr · gEÞgab þ

qð0;2ÞOb

16M
r2fDR·; gEgab

−
1

4M2
fqð1;0ÞOa00 ðr · DRÞ; ð∇r · DRÞgab −

1

4M2
fqð1;0ÞOa000 r·;∇rgðD2

RÞab

−
1

4M2

�
qð1;0ÞOb

r2
ððr · DRÞ2Þabr·;∇r

�
−

iqð1;0ÞOd000

16M2r2
fðr · DRÞ; ððr × DRÞ · ðσð1Þ þ σð2ÞÞÞgab

þ i
8M2

fqð1;−1ÞOa ; ð∇r × Dab
R Þ · ðσð1Þ − σð2ÞÞg

−
i

8M2

�
qð1;−1ÞOb0

r2
ðr · ðσð1Þ − σð2ÞÞÞðr × Dab

R Þ·;∇r

�

þ i
8M2

�
qð1;−1ÞOb00

r2
ððr × Dab

R Þ · ðσð1Þ − σð2ÞÞÞr·;∇r

�
þ…; ð100Þ
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where fA;Bgab ¼ Aab0Bb0b þ Bab0Ab0b, and it is understood that Eab ¼ −ifabcEc.
Just like in the singlet case, the new boost generator (for the new octet field) after this transformation is given by

k̃abO ¼ kabO þ ½2MR; uabO � þOðM−2Þ

¼ kabO −
i
8
fabcqð0;2ÞOa ðr · gEcÞr − i

8
fabcqð0;2ÞOb r2gEc

þ 1

2M
fqð1;0ÞOa00 r; ðDab

R · ∇rÞg þ
1

2M
fqð1;0ÞOa00 ðr · Dab

R Þ;∇rg

þ 1

M
fqð1;0ÞOa000 r·;∇rgDab

R þ 1

M

�
qð1;0ÞOb

r2
rðr · Dab

R Þri; ð∇rÞi
�

−
iqð1;0ÞOd000

4Mr2
ðr × ðσð1Þ þ σð2ÞÞÞðr · Dab

R Þ þ iqð1;0ÞOd000

4Mr2
ððr × Dab

R Þ · ðσð1Þ þ σð2ÞÞÞr

þ iδab

4M
fqð1;−1ÞOa ;∇r × ðσð1Þ − σð2ÞÞg − iδab

4M

�
qð1;−1ÞOb0

r2
ðr · ðσð1Þ − σð2ÞÞÞr×;∇r

�

þ iδab

4M

�
qð1;−1ÞOb00

r2
ðr × ðσð1Þ − σð2ÞÞÞri; ð∇rÞi

�
þOðM−2Þ: ð101Þ

This gives formally the same relations for the transformed boost coefficients as in the singlet case, with the addition of two
new relations for the coefficients of the terms with the chromoelectric field,

k̃ð0;2ÞOa ¼ kð0;2ÞOa − 2qð0;2ÞOa ; k̃ð0;2ÞOb ¼ kð0;2ÞOb − 2qð0;2ÞOb ;

k̃ð1;0ÞOa0 ¼ kð1;0ÞOa0 − 2qð1;0ÞOa00 ; k̃ð1;0ÞOa00 ¼ kð1;0ÞOa00 − 2qð1;0ÞOa00 ; k̃ð1;0ÞOa000 ¼ kð1;0ÞOa000 − 4qð1;0ÞOa000 ;

k̃ð1;0ÞOb ¼ kð1;0ÞOb − 4qð1;0ÞOb ; k̃ð1;0ÞOd00 ¼ kð1;0ÞOd00 þ 2qð1;0ÞOd000 ; k̃ð1;0ÞOd000 ¼ kð1;0ÞOd000 − 2qð1;0ÞOd000 ;

k̃ð1;−1ÞOa ¼ kð1;−1ÞOa − 2qð1;−1ÞOa ; k̃ð1;−1ÞOb0 ¼ kð1;−1ÞOb0 − 2qð1;−1ÞOb0 ; k̃ð1;−1ÞOb00 ¼ kð1;−1ÞOb00 − 2qð1;−1ÞOb00 : ð102Þ

We choose the parameters qðm;nÞ
O to set k̃ð1;0ÞOa00 , k̃

ð1;0Þ
Oa000 , k̃

ð1;0Þ
Ob , k̃ð1;0ÞOd000 , k̃

ð1;−1Þ
Ob0 , k̃ð1;−1ÞOb00 and k̃ð0;2ÞOb equal to zero, as well as to fix

k̃ð0;2ÞOa ¼ 1 and k̃ð1;−1ÞOa ¼ 1.17 Then, after dropping the tilde notation, the boost transformation simplifies to

kabO ¼ δabðit∇R þ iR∂0 þ 2MRÞ − kð1;0ÞOD

4M
Dab

R þ i
8
fabcðr · gEcÞr − 1

4M
fkð1;0ÞOa0 r; ð∇r · Dab

R Þg

−
ikð1;0ÞOc

8M
Dab

R × ðσð1Þ þ σð2ÞÞ − ikð1;0ÞOd00

8Mr2
ðr · Dab

R Þðr × ðσð1Þ þ σð2ÞÞÞ

−
iδab

4M
∇r × ðσð1Þ − σð2ÞÞ þOðM−2r0;M−1r1;M0r3Þ; ð103Þ

in which only four undetermined coefficients kð1;0ÞOD , kð1;0ÞOa0 ,

kð1;0ÞOc , and kð1;0ÞOd00 remain, just like in the case of the singlet.
These coefficients, as well as the ones from the singlet, will
be constrained in the next section.
Finally, we observe that with respect to [17] the unitary

transformation uabO contains two more terms: the first two
terms in the right-hand side of Eq. (100), which are
proportional to the chromoelectric field. These two new
terms allow us to choose the octet field in such a way that

its Lorentz boost contains the chromoelectric field exactly
in the form ifabcðr · gEcÞr=8, see Eq. (103). As we will see
in the next section, this form of the boost is convenient, for
it leads to stricter constraints on the Wilson coefficients of
the Lagrangian in the octet sector than in [17].

C. Invariance of the Lagrangian

1. Singlet sector

The boost generators have to satisfy the commutation
relation Eq. (33), which for the singlet at leading order in
1=M corresponds to

17The choice k̃ð0;2ÞOa ¼ 1 is dictated by the tree level matching
result of [17].
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ðξ × ηÞ · ðR × ∇RÞ − ½ξ · k̂S; 2Mη · R� þ ½η · k̂S; 2Mξ · R� þOðM−1Þ

¼ ðξ × ηÞ · ðR × ∇RÞ þ ðξ × ηÞ · ðkð1;0ÞSa0 r × ∇rÞ þ
ikð1;0ÞSc

2
ðξ × ηÞ · ðσð1Þ þ σð2ÞÞ

−
ikð1;0ÞSd00

2r2
ðξ × ηÞ · ðr × ðr × ðσð1Þ þ σð2ÞÞÞÞ þOðM−1Þ

¼! ðξ × ηÞ ·
�
R × ∇R þ r × ∇r þ

i
2
ðσð1Þ þ σð2ÞÞ

�
: ð104Þ

This fixes three further coefficients: kð1;0ÞSa0 ¼ kð1;0ÞSc ¼ 1 and kð1;0ÞSd00 ¼ 0. Note that the term r × ∇r, which generates rotations

of the relative distance coordinate, is obtained from terms that we have included in k̂S, as opposed to R × ∇R, which comes
from the coordinate transformations.
The last remaining coefficient kð1;0ÞSD is fixed when we apply the boost transformation to the singlet sector of the

Lagrangian up to OðM−2Þ (we follow the notation from Ref. [17]),

LðSÞ
pNRQCD ¼

Z
d3rTr

�
S†
�
i∂0 þ

1

2M
fcð1;−2ÞS ;∇2

rg þ
cð1;0ÞS

4M
∇2
R − Vð0Þ

S −
Vð1Þ
S

M
þ VrS

M2

þ Vp2Sa

4M2
∇2
R þ 1

2M2
fVp2Sb;∇2

rg þ
VL2Sa

4M2r2
ðr × ∇RÞ2 þ

VL2Sb

M2r2
ðr × ∇rÞ2

−
VS12S

M2r2
ð3ðr · σð1ÞÞðr · σð2ÞÞ − r2ðσð1Þ · σð2ÞÞÞ − VS2S

4M2
σð1Þ · σð2Þ

þ iVLSSa

4M2
ðr × ∇RÞ · ðσð1Þ − σð2ÞÞ þ iVLSSb

2M2
ðr × ∇rÞ · ðσð1Þ þ σð2ÞÞ

�
S

�
; ð105Þ

where the subscripts a and b (later also c, d, and e) on the potentials are labels used to distinguish different operators of the

same type. The difference between the transformed Lagrangian and the originalLðSÞ
pNRQCD needs to be a derivative.We obtain

∂μΔ̂μLðSÞ ¼
Z

d3rTr

�
η · S†

�
ið1 − cð1;0ÞS Þ∇R −

1

2M
ðkð1;0ÞSD − cð1;0ÞS Þ∇R∂0

−
i
M

�
Vp2Sa þ VL2Sa þ

1

2
Vð0Þ
S

�
∇R þ i

Mr2

�
VL2Sa þ

r
2
Vð0Þ0
S

�
rðr · ∇RÞ

þ 1

2M

�
VLSSa þ

1

2r
Vð0Þ0
S

�
ðσð1Þ − σð2ÞÞ × r

�
S

�
; ð106Þ

where we have neglected the terms from the coordinate
transformations. The prime on a potential V denotes
derivative with respect to r.
None of these terms has the form of an overall derivative,

so all coefficients have to vanish, which gives the following
constraints:

kð1;0ÞSD ¼ cð1;0ÞS ¼ 1; Vp2Sa ¼
r
2
Vð0Þ0
S −

1

2
Vð0Þ
S ;

VL2Sa ¼ −
r
2
Vð0Þ0
S ; VLSSa ¼ −

1

2r
Vð0Þ0
S : ð107Þ

These coincide with the results obtained in [17]. The
constraints for the singlet spin dependent potential VLSSa
and for the singlet spin independent potentials Vp2Sa and
VL2Sa were first obtained in [43,44] respectively by boost-
ing the potentials expressed in terms of Wilson loops; a

more recent derivation can be found in [18]. Note that with

the last remaining boost coefficient kð1;0ÞSD fixed to unity, the
boost generator for the singlet field up to this order is
exactly the same as in the g → 0 limit; in other words, there
are no loop corrections to any of the coefficients. It is
important to remember, however, that this form of the boost
generator has been a particular choice obtained through
certain field redefinitions. Other choices are equally valid
and may change the constraints derived above. Our choice
corresponds to the one made in [17].

2. Octet sector

The calculation of the commutator of two boosts for the
octet fields is analogous to that for the singlet fields, so we

have kð1;0ÞOa0 ¼ kð1;0ÞOc ¼ 1 and kð1;0ÞOd00 ¼ 0 for the octet. The

only remaining boost coefficient is then kð1;0ÞOD .
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The octet sector of the pNRQCD Lagrangian up to OðM−2Þ can be written as [17],

LðOÞ
pNRQCD ¼

Z
d3rTr

�
O†

�
iD0 þ

1

2M
fcð1;−2ÞO ;∇2

rg þ
cð1;0ÞO

4M
D2

R − Vð0Þ
O −

Vð1Þ
O

M
−
VrO

M2

þ Vp2Oa

4M2
D2

R þ 1

2M2
fVp2Ob;∇2

rg þ
VL2Oa

4M2r2
ðr × DRÞ2 þ

VL2Ob

M2r2
ðr × ∇rÞ2

−
VS12O

M2r2
ð3ðr · σð1ÞÞðr · σð2ÞÞ − r2ðσð1Þ · σð2ÞÞÞ − VS2O

4M2
σð1Þ · σð2Þ

þ iVLSOa

4M2
ðr × DRÞ · ðσð1Þ − σð2ÞÞ þ iVLSOb

2M2
ðr × ∇rÞ · ðσð1Þ þ σð2ÞÞ

�
O

þ
�
O†

�
Vð0;1Þ
OO

2
r · gEþ Vð0;2Þ

OOa

8
½ðr · DRÞ; ðr · gEÞ� þ

Vð0;2Þ
OOb

8
r2½DR·; gE�

þ iVð1;0Þ
OOa

8M
f∇r·; r × gBg þ cFV

ð1;0Þ
OOb

2M
gB · σð1Þ −

Vð1;0Þ
O⊗Ob

2M
gB · σð2Þ

þ Vð1;0Þ
OOc

2Mr2
ðr · gBÞðr · σð1ÞÞ − Vð1;0Þ

O⊗Oc

2Mr2
ðr · gBÞðr · σð2ÞÞ þ Vð1;0Þ

OOd

2Mr
r · gE

−
iVð1;1Þ

OO

8M
fðr × DRÞ·; gBg þ

icSV
ð2;0Þ
OOa

16M2
½DR×; gE� · σð1Þ −

iVð2;0Þ
O⊗Oa

16M2
½DR×; gE� · σð2Þ

þ iVð2;0Þ
OOb0

16M2r2
fðr × DRÞ·; gEgðr · σð1ÞÞ −

iVð2;0Þ
OOb00

16M2r2
fððr × DRÞ · σð1ÞÞ; ðr · gEÞg

−
iVð2;0Þ

O⊗Ob0

16M2r2
fðr × DRÞ·; gEgðr · σð2ÞÞ þ

iVð2;0Þ
O⊗Ob00

16M2r2
fððr × DRÞ · σð2ÞÞ; ðr · gEÞg

þ 1

16M2
fVð2;0Þ

OOc0 ðr · gEÞ; ð∇r · DRÞg þ
1

16M2
fVð2;0Þ

OOc00rigEj; ð∇rÞjðDRÞig

þ 1

16M2
fVð2;0Þ

OOc000rigEj; ð∇rÞiðDRÞjg þ
1

16M2

�
Vð2;0Þ
OOd

r2
rirjðr · gEÞ; ð∇rÞiðDRÞj

�

−
iVð2;0Þ

OOe

8M2r
fðr × DRÞ·; gBg

�
Oþ c:c:

��
; ð108Þ

where c:c: refers to the charge conjugate of every term inside the square brackets. In the terms of order M−1r1 and M−2r0,
we include only those that contain a covariant derivative acting on the octet field, because otherwise they do not contribute
to the boost transformation at the order we are interested in.18

Applying the boost transformation to this Lagrangian, we obtain the following difference with respect to the original
Lagrangian:

∂μΔ̂μLðOÞ ¼
Z

d3rTr
�
O†

�
ið1 − cð1;0ÞO Þðη · DRÞ −

1

4M
ðkð1;0ÞOD − cð1;0ÞO Þη · fD0;DRg

−
i
M

�
Vp2Oa þ VL2Oa þ

1

2
kð1;0ÞOD Vð0Þ

O

�
ðη · DRÞ

þ i
Mr2

�
VL2Oa þ

r
2
Vð0Þ0
O

�
ðη · rÞðr · DRÞ −

1

2M

�
VLSOa þ

1

2r
Vð0Þ0
O

�
ðη × rÞ·

�
O

18Note that in Ref. [17] the identity (86) was not used, so the operators considered there were not all linearly independent. In
particular, there are two more potentials Vð2;0Þ

OOb000 and V
ð2;0Þ
O⊗Ob000 there, which we do not have here as the corresponding operators are linear

combinations of those in (108). Ultimately, these potentials were found to be zero in [17], showing that the results are unaffected by the
choice.
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þ
�
O†

�
1

2
ðVð1;1Þ

OO − Vð0;1Þ
OO Þðη × rÞ · gBþ 1

4M

�
cSV

ð2;0Þ
OOa − 2cFV

ð1;0Þ
OOb þ

1

2
Vð0;1Þ
OO þ 1

2

�
ðη × gEÞ · σð1Þ

−
1

4M

�
Vð2;0Þ
O⊗Oa − 2Vð1;0Þ

O⊗Ob þ
1

2
Vð0;1Þ
OO −

1

2

�
ðη × gEÞ · σð2Þ

−
1

4Mr2
ðVð2;0Þ

OOb0 − 2Vð1;0Þ
OOcÞððη × rÞ · gEÞðr · σð1ÞÞ

þ 1

4Mr2
ðVð2;0Þ

O⊗Ob0 − 2Vð1;0Þ
O⊗OcÞððη × rÞ · gEÞðr · σð2ÞÞ

þ 1

4Mr2

�
Vð2;0Þ
OOb00 þ

r
2
Vð0;1Þ0
OO

�
ððη × rÞ · σð1ÞÞðr · gEÞ

−
1

4Mr2

�
Vð2;0Þ
O⊗Ob00 þ

r
2
Vð0;1Þ0
OO

�
ððη × rÞ · σð2ÞÞðr · gEÞ

−
i

8M
fðVð2;0Þ

OOc0 þ Vð1;0Þ
OOa − 1Þðr · gEÞ; ðη · ∇rÞg

−
i

8M
fðVð2;0Þ

OOc00 − Vð1;0Þ
OOa þ 1Þðη · rÞ; ð∇r · gEÞg

−
i

8M
fVð2;0Þ

OOc000 ðη · gEÞr·;∇rg −
i

8M

�
Vð2;0Þ
OOd

r2
ðη · rÞðr · gEÞr·;∇r

�

þ 1

2Mr
ðVð2;0Þ

OOe − Vð1;0Þ
OOdÞðη × rÞ · gB

�
Oþ c:c:

��
; ð109Þ

where we have neglected the terms from the coordinate transformations. Because this difference is not a derivative, all
coefficients need to vanish, from which the following constraints are derived:

kð1;0ÞOD ¼ cð1;0ÞO ¼ 1; Vp2Oa ¼
r
2
Vð0Þ0
O −

1

2
Vð0Þ
O ;

VL2Oa ¼ −
r
2
Vð0Þ0
O ; VLSOa ¼ −

1

2r
Vð0Þ0
O ;

cSV
ð2;0Þ
OOa ¼ 2cFV

ð1;0Þ
OOb −

1

2
Vð0;1Þ
OO −

1

2
; Vð2;0Þ

O⊗Oa ¼ 2Vð1;0Þ
O⊗Ob −

1

2
Vð0;1Þ
OO þ 1

2
;

Vð2;0Þ
OOb0 ¼ 2Vð1;0Þ

OOc; Vð2;0Þ
O⊗Ob0 ¼ 2Vð1;0Þ

O⊗Oc;

Vð2;0Þ
OOb00 ¼ −

r
2
Vð0;1Þ0
OO ; Vð2;0Þ

O⊗Ob00 ¼ −
r
2
Vð0;1Þ0
OO ;

Vð2;0Þ
OOe ¼ Vð1;0Þ

OOd; Vð1;1Þ
OO ¼ Vð0;1Þ

OO ;

Vð2;0Þ
OOc0 ¼ 1 − Vð1;0Þ

OOa; Vð2;0Þ
OOc00 ¼ Vð1;0Þ

OOa − 1;

Vð2;0Þ
OOc000 ¼ 0; Vð2;0Þ

OOd ¼ 0: ð110Þ

They are in agreement with [17]. Moreover, because of the particular choice of octet fields made in this work, whose boosts
are of the form (103), four of the constraints of [17] have simplified significantly. These are the last four of (110).19

3. Singlet-octet sector

Finally, moving on to the singlet-octet sector, several terms that appear in the octet sector are absent because of
charge conjugation invariance. In accordance with [17], the pNRQCD Lagrangian in the singlet-octet sector up to OðM−2Þ
is given by

19If we had tuned qð0;2ÞOa such that k̃ð0;2ÞOa ¼ 0, the third and fourth last constraints of (110) would change into Vð2;0Þ
OOc0 ¼ −Vð1;0Þ

OOa and
Vð2;0Þ
OOc00 ¼ Vð1;0Þ

OOa − 2.
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LðSO;hÞ
pNRQCD ¼

Z
d3rTr

�
S†
�
Vð0;1Þ
SO r · gEþ cFV

ð1;0Þ
SOb

2M
gB · ðσð1Þ − σð2ÞÞ

þ Vð1;0Þ
SOc

2Mr2
ðr · gBÞðr · ðσð1Þ − σð2ÞÞÞ þ Vð1;0Þ

SOd

Mr
r · gE

−
i

4M
Vð1;1Þ
SO fðr × DRÞ·; gBg þ

icS
16M2

Vð2;0Þ
SOa ½DR×; gE� · ðσð1Þ − σð2ÞÞ

þ iVð2;0Þ
SOb0

16M2r2
fðr × DRÞ·; gEgðr · ðσð1Þ − σð2ÞÞÞ

−
iVð2;0Þ

SOb00

16M2r2
fððr × DRÞ · ðσð1Þ − σð2ÞÞÞ; ðr · gEÞg

−
iVð2;0Þ

SOe

4M2r
fðr × DRÞ·; gBg

�
Oþ H:c:

�
; ð111Þ

where again, at orders M−1r1 and M−2r0, we only include terms with covariant derivatives acting on the quarkonium
fields.20 As all operators between the large round brackets are Hermitian, we have labeled the Lagrangian with h. Such
operators are the only ones that are allowed in the pure singlet or octet sectors.
In the singlet-octet sector, on the other hand, one may in principle also add anti-Hermitian operators. Instead of canceling,

they give terms of the form S†aO − O†aS, where a indicates the anti-Hermitian operator. We are not aware of any argument
that would exclude such terms a priori, so we give here also the singlet-octet Lagrangian for anti-Hermitian operators in the
large round brackets,

LðSO;aÞ
pNRQCD ¼

Z
d3rTr

�
S†
�

1

2M
frVð1;0Þ

SOe ;∇r · gEg þ
iVð1;0Þ

SOf

2Mr
ðr × gEÞ · ðσð1Þ þ σð2ÞÞ

−
i

4M2
frVð2;0Þ

SOf gB·; ð∇r × DRÞg þ
Vð2;0Þ
SOg0

16M2r
fðr · gBÞ; ðDR · ðσð1Þ þ σð2ÞÞÞg

þ Vð2;0Þ
SOg00

16M2r
fðr · DRÞ; ðgB · ðσð1Þ þ σð2ÞÞÞg

þ Vð2;0Þ
SOg000

16M2r
ðr · ðσð1Þ þ σð2ÞÞÞfDR·; gBg

�
Oþ H:c:

�
: ð112Þ

Such terms were not included in the analysis of [17].
A boost transformation generates the following new terms in the singlet-octet Lagrangian (we neglect again the terms

from the coordinate transformations):

∂μΔ̂μLðSO;hÞ ¼
Z

d3rTr

�
S†ððVð1;1Þ

SO − Vð0;1Þ
SO Þðη × rÞ · gB

þ 1

4M
ðcSVð2;0Þ

SOa − 2cFV
ð1;0Þ
SOb þ Vð0;1Þ

SO Þðη × gEÞðσð1Þ − σð2ÞÞ

−
1

4Mr2
ðVð2;0Þ

SOb0 − 2Vð1;0Þ
SOc Þððη × rÞ · gEÞðr · ðσð1Þ − σð2ÞÞÞ

þ 1

4Mr2
ðVð2;0Þ

SOb00 þ rVð0;1Þ0
SO Þððη × rÞ · ðσð1Þ − σð2ÞÞÞðr · gEÞ

þ 1

Mr
ðVð2;0Þ

SOe − Vð1;0Þ
SOd Þðη × rÞ · gBÞOþ H:c:

�
; ð113Þ

20We also do not write the operator with a potential Vð2;0Þ
SOb000 of [17], which is a linear combination of the ones in (111).
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∂μΔ̂μLðSO;aÞ ¼
Z

d3rTr

�
S†
�

1

2M
frðVð2;0Þ

SOf − Vð1;0Þ
SOe Þ; ðη × ∇rÞ · gBg

−
i

4Mr
ðVð2;0Þ

SOg0 − 2Vð1;0Þ
SOf Þðη · ðσð1Þ þ σð2ÞÞÞðr · gBÞ

−
i

4Mr
ðVð2;0Þ

SOg00 þ 2Vð1;0Þ
SOf Þðη · rÞðgB · ðσð1Þ þ σð2ÞÞÞ

−
iVð2;0Þ

SOg000

4Mr
ðη · gBÞðr · ðσð1Þ þ σð2ÞÞÞ

�
Oþ H:c:

�
; ð114Þ

which leads to the constraints

Vð0;1Þ
SO ¼ Vð1;1Þ

SO ; cSV
ð2;0Þ
SOa ¼ 2cFV

ð1;0Þ
SOb − Vð0;1Þ

SO ; Vð2;0Þ
SOb0 ¼ 2Vð1;0Þ

SOc ;

Vð2;0Þ
SOb00 ¼ −rVð0;1Þ0

SO ; Vð2;0Þ
SOe ¼ Vð1;0Þ

SOd ; Vð2;0Þ
SOf ¼ Vð1;0Þ

SOe ;

Vð2;0Þ
SOg0 ¼ 2Vð1;0Þ

SOf ; Vð2;0Þ
SOg00 ¼ −2Vð1;0Þ

SOf ; Vð2;0Þ
SOg000 ¼ 0: ð115Þ

Again, these are in agreement with [17], except for the

relations between the potentials Vð1;0Þ
SOe , V

ð1;0Þ
SOf , V

ð2;0Þ
SOf , V

ð2;0Þ
SOg0 ,

Vð2;0Þ
SOg00 , and Vð2;0Þ

SOg000 , which are the Wilson coefficients from

LðSO;aÞ
pNRQCD that are new. As already noticed in [17], the above

constraints require the chromoelectric field to enter the
Lagrangian in the combination r·ðgE−ifDR×;gBg=ð4MÞÞ,
i.e., as in the Lorentz force.

IV. CONCLUSIONS

A. Summary and implications

In the paper, we have investigated boost transformations
of nonrelativistic fields in low energy EFTs for heavy (anti)
quarks, by starting from the general form allowed by charge
conjugation, parity, and time reversal, while exploiting the
freedom to remove redundant terms through field redefi-
nitions. Relations among the Wilson coefficients have been
derived by applying those transformations to the corre-
sponding Lagrangian up to a certain order in the expansion
and requiring that they leave the action invariant as well as
that they satisfy the Poincaré algebra. The results confirm
known relations from the literature [17,28,29,38], in both
NRQCD and pNRQCD (in the equal-flavor case), and add
new ones. They can be found in Eqs. (44), (45), (66), (67),
(68), (B13) for NRQCD and (107), (110), (115) for
pNRQCD. Note that restricting to the singlet sector of
pNRQCD provides also the relations for the strongly
coupled case. Finally, the obtained relations may be
translated into relations among Wilson coefficients of
NRQED [6,45] and potential NRQED (pNRQED) [8,46].
The present approach is complementary to previous

methods and provides new insights into them. The deri-
vation of the boost transformation via the induced repre-
sentation in [28] gives some intuitive understanding of the
form of several but not all terms appearing in the boost. In

particular, it leaves open the question of how to system-
atically generate terms that are not present in the free case,
include quantum corrections in the form of Wilson coef-
ficients for these terms,21 or reduce nonminimal sets of
operators. The method presented here solves these issues
by adopting for the boost the same approach as used in
constructing the effective field theory. It consists in
allowing in the boost all terms consistent with the sym-
metries, and in factorizing for each term possible high
energy contributions into suitable Wilson coefficients. We
have shown that the symmetries of the action and the
Poincaré algebra are sufficient to fix the form of the boost
generators in pNRQCD and NRQCD (at the order we have
worked) and to constrain the Wilson coefficients of the EFT
Lagrangians. In pNRQCD we have seen an example where
several equivalent boost generators are available, and we
have resolved the ambiguity by removing redundant terms
via a redefinition of the heavy (anti)quark fields. This
amounts to having chosen to work with fields that trans-
form in a specific way under boosts. Different choices lead
to different constraints on the Wilson coefficients in the
Lagrangian; hence the constraints depend on how the fields
transform under Lorentz transformations (see footnote 19
for a concrete example). Similar ambiguities are also
expected to become relevant in NRQCD at higher orders.
The method of [17,38], although similar to the one

presented here, is based on the computation of the Noether
charges. Constraints on the Wilson coefficients follow from
requiring that the Noether charges fulfill the Poincaré
algebra assuming canonical (anti)commutation relations
for the fields. With respect to that method, the one

21Examples of both issues are the terms −cDgE=ð8M2Þ −
icSgE × σ=ð8M2Þ and the 1=M3 terms proportional to the
chromomagnetic field in the boost transformations of the heavy
(anti)quark fields in NRQCD.
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presented in this paper provides an alternative approach
where one computes boosts for each field individually
and requires the Poincaré algebra for these boost generators
(rather than the Noether charges) as well as the invariance
of the action. Computing the boosts of the nonrelativistic
fields has a value in itself as it may prove useful in dif-
ferent applications. In this way, we could extend the set
of constraints derived in [17,38] both in NRQCD and in
pNRQCD. The present method is well suited for automa-
tization in programs capable of symbolic manipulation.
Most of the results presented in this work have been
checked in this way.
In summary, the method presented here provides a

straightforward way to obtain the constraints on the
Wilson coefficients of a nonrelativistic EFT (where
Poincaré invariance is not manifestly realized) induced
by the underlying relativistic theory (where Poincaré
invariance is manifestly realized). Moreover, the examples
worked out in the paper lead us to conjecture that all the
Wilson coefficients of the boost can be fixed, through the
Poincaré algebra and the invariance of the action, in
terms of either constants or linear combinations of
Wilson coefficients appearing in the Lagrangian up to field
redefinitions.

B. Outlook

The suggested method is general enough to allow for
several possible extensions. First, it may be used to
constrain the nonrelativistic EFTs to orders even higher
than the ones considered here. As an example, the present
work has all the necessary ingredients to constrain the
NRQCD Lagrangian at OðM−4Þ in the two-fermion sector,
which has been derived in [47,48]. This would also allow
comparisons to the results for NRQED presented in [30].
Second, our results can easily be extended to the case of

pNRQCD with heavy quark and antiquark of different
flavors. Although charge conjugation can no longer be used
to constrain the form of the Lagrangian or the boost
transformation and so one has to add C-odd terms to both,
as long as one restricts the analysis purely to QCD
contributions, which are insensitive to flavor, one may
still use C symmetry combined with a flavor exchange to
eliminate terms. In addition, one has to pay attention to the
fact that there are now two mass scales,M1 andM2, which
will typically appear in the combinations of the total mass,
M1 þM2, or the reduced mass, M1M2=ðM1 þM2Þ, and
the 1=M terms of this paper need to be adapted accordingly.
Constraints for the potentials up to order 1=M2

1;2 have been
known for a long time [18,43,44]; constraints beyond that
have not been investigated so far.
Recently, reparametrization invariance has been used to

organize the resummation of certain classes of higher-order
operators in the HQET [49]. It is conceivable that such a
resummation may be extended to include operators related
by Poincaré invariance in NRQCD and pNRQCD.

Furthermore, we expect that our method can be
applied to theories of weakly interacting massive par-
ticles (or WIMPs). There have been various suggestions
about the properties of dark matter (DM) using WIMPs
during the last few decades, such as supersymmetric
dark matter (SUSY-DM), axions, sterile neutrinos, etc.
[50–52]. As the mass of the DM candidates is assumed
to be greater than currently accessible energy scales, the
study of DM production and annihilation is largely
based on nonrelativistic EFTs. The direct detection via
nucleon-DM scattering processes was investigated in
[53], where the operators were constructed based on
Galilean invariance and the EFT formalism.22 Instead of
Galilean invariance, one can construct the Lagrangian
from Poincaré invariance, such as it has been done in
[55,56], and ask whether Poincaré invariance can give
different and/or additional constraints on the operators
with respect to Galilean invariance. This is justified by
the fact that the underlying theory (whose explicit
formulation is yet to be found) is supposed to be
Poincaré invariant. Similarly, the method may be used
to constrain operators showing up in nonrelativistic
EFTs for heavy Majorana neutrinos that may be relevant
in the framework of leptogenesis [57].
The constraints derived from exploiting the spacetime

symmetries of nonrelativistic EFTs can be utilized for
another (conjectured) EFT of QCD, which is valid in the
nonperturbative regime, the effective string theory (EST)
[58–63]. The EST provides an analytic description of the
gluodynamics of a static quark-antiquark system at long
distances rΛQCD ≫ 1 with the transverse vibrations of the
string between the heavy quark and antiquark as the
d.o.f. Assuming that the expectation value of a rectangular
Wilson loop in the large time limit can be expressed in
terms of the string partition function, one can establish a
one-to-one mapping between the heavy quark potentials
and correlators of the string vibrational modes. These last
ones depend on some parameters describing the unknown
short distance behavior of the EST [60,62,63]. The
potentials in the long distance regime are then translated
into EST correlators, which are computed analytically.
Relations among the potentials due to the Poincaré
invariance of QCD can be used to constrain the short
distance parameters of the EST. Analyses along these lines
have been carried out in [62–65].
Finally, we would like to argue that it should be

possible to extend the method presented in this work
also to different theories and to different (nonmanifestly
realized) symmetries. Principally, this would require adapt-
ing the symmetry argument used to restrict the allowed
operators in the nonlinear field transformations to the new
symmetries.

22This nonrelativistic approach has also been used to study the
Xð3872Þ unconventional hadron in [54].
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APPENDIX A: SPACETIME TRANSLATIONS
AND ROTATIONS

1. Transformations in NRQCD

Spacetime translations act only on the coordinates,
shifting the origin by a constant vector aμ. The transformed
field in the new coordinate system corresponds to the
original field at the coordinates before the transformation.
The form of the translation generator Pμ for a generic field
ϕðxÞ can then be obtained from a Taylor expansion to first
order,

ϕðxÞ⟶Pμ
ϕ0ðxÞ ¼ ϕðxþ aÞ ¼ ½1þ aμ∂μ þOða2Þ�ϕðxÞ

≡ ½1 − iaμPμ þOða2Þ�ϕðxÞ: ðA1Þ

From this we take Pμ ¼ i∂μ, or in nonrelativistic notation
P0 ¼ i∂0 and P ¼ −i∇. This is already the final form of the
translation generator for the light quark and gluon fields,
but for the heavy (anti)quark fields we need to include the
effect of the field redefinitions performed to remove the
mass term in the Lagrangian. This modifies the generator to

Pμ ¼ e�iMtði∂μÞe∓iMt ¼ i∂μ � δμ0M; ðA2Þ

so P0ψ ¼ ði∂0 þMÞψ and P0χ ¼ ði∂0 −MÞχ.
Rotations act both on the coordinates and on the field

components. The coordinates are transformed under
infinitesimal rotations such that r in the new coordinate
system corresponds to rþ α × r in the old, where the
direction of α gives the rotation axis and its absolute value
gives the infinitesimal rotation angle. The components
of the Pauli spinor fields are rotated with the Pauli matrix
σ=2, while the gauge fields transform as vectors, whose
behavior follows directly from the coordinate transforma-
tions and Eq. (5),

A0ðxÞ⟶J
A0
0ðxÞ ¼ A0ðxÞ þ ½α · ðr × ∇Þ; A0ðxÞ�≡ ð1þ iα · jA0

ÞA0ðxÞ; ðA3Þ

ψðxÞ⟶J
ψ 0ðxÞ ¼

�
1þ i

2
α · σ

�
ψðxÞ þ ½α · ðr × ∇Þ;ψðxÞ�≡ ð1þ iα · jψÞψðxÞ; ðA4Þ

χðxÞ⟶J
χ0ðxÞ ¼

�
1þ i

2
α · σ

�
χðxÞ þ ½α · ðr × ∇Þ; χðxÞ�≡ ð1þ iα · jχÞχðxÞ; ðA5Þ

AðxÞ⟶J
A0ðxÞ ¼ AðxÞ − α × AðxÞ þ ½α · ðr × ∇Þ;AðxÞ�≡ ð1þ iα · jAÞAðxÞ; ðA6Þ

where again we have written the universal term r × ð−i∇Þ
for the coordinate transformations in the form of a
commutator. We use a capital J to denote the generators
of rotations in general and a lowercase j for the particular
representation.
As we have done for the boost, we can convert the

transformation of the gauge field Aμ under rotations into a
transformation of the covariant derivatives,

D0
0 ¼ ∂0 þ igA0

0 ¼ D0 þ ½α · ðr × ∇Þ; D0�; ðA7Þ

D0 ¼ ∇ − igA0 ¼ D − α × Dþ ½α · ðr × ∇Þ;D�: ðA8Þ

From these, it also follows that the chromoelectric and
chromomagnetic fields E and B transform as vectors under
rotations, i.e., jE ¼ jB ¼ jA. Expressions for the Noether

charges of spacetime translations and rotations in NRQCD
can be found in [17,19].

2. Transformations in pNRQCD

It is useful to look also here at the transformation
properties of Q ¼ ψχ†, which includes both singlet and
octet fields as different color projections. Time translations
are straightforward in pNRQCD; ψ and χ† are evaluated at
the same time, so the time argument of the quarkonium
fields is shifted in the same way. The additional mass terms
introduced through the field redefinitions of ψ and χ add
up, which gives the following transformation:

Qðt; r;RÞ⟶P0 Q0ðt; r;RÞ ¼ ð1 − 2iMa0ÞQðt; r;RÞ
þ ½a0∂0; Qðt; r;RÞ�: ðA9Þ
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We have assumed that the quark and the antiquark fields
have the same mass M, so that the generator of time
translations is P0 ¼ i∂0 þ 2M.
Space translations act only on the center-of-mass coor-

dinate R: both the heavy quark and antiquark are shifted by
the same amount, so the relative coordinate remains
unaffected. This means

Qðt; r;RÞ⟶Pi Q0ðt; r;RÞ ¼ Qðt; r;RÞ þ ½a · ∇R;Qðt; r;RÞ�;
ðA10Þ

with the generator for space translations P ¼ −i∇R.
Under rotations, both the center-of-mass and the relative

coordinates transform in the same way. The component
transformations of ψ and χ lead to a commutator with the
quark-antiquark field and the Pauli matrices,

Qðt; r;RÞ⟶J
Q0ðt; r;RÞ

¼ Qðt; r;RÞ þ
�
α ·

�
R × ∇R þ r × ∇r þ

i
2
σ

�
; Qðt; r;RÞ

�
:

ðA11Þ

With the convention for the Pauli matrices of Eq. (80), this
gives the generator of rotations as jQ ¼ R × ð−i∇RÞ þ
r × ð−i∇rÞ þ ðσð1Þ þ σð2ÞÞ=2. From this, it is straightfor-
ward to see that

Q1 ¼
1ffiffiffi
2

p Tr½Q� and Q3 ¼
1ffiffiffi
2

p Tr½σQ� ðA12Þ

transform as a singlet (scalar) and triplet (vector) respec-
tively under rotations (the trace is understood only in spin
space). We can then decompose the matrix valued quark-
antiquark field into

Q ¼ 1ffiffiffi
2

p Q11þ 1ffiffiffi
2

p Q3 · σ: ðA13Þ

The bilinears in the Lagrangian then give

Tr½Q†Q� ¼ Q†
1Q1 þ Q†

3 · Q3; ðA14Þ

Tr

�
Q† iðσð1Þ þ σð2ÞÞ

2
Q

�
¼ Q†

3 × Q3 and

Tr

�
Q† σ

ð1Þ − σð2Þ

2
Q

�
¼ Q†

3Q1 þQ†
1Q3: ðA15Þ

Expressions for the Noether charges of spacetime trans-
lations and rotations in pNRQCD can be found in [17,19].

APPENDIX B: CONSTRAINTS IN THE
FOUR-FERMION SECTOR OF NRQCD

At OðM−4Þ, one has to include also heavy (anti)quark
fields in kψ and kχ . The terms affecting the four-fermion
Lagrangian given in Sec. II D can be parametrized as
follows:

k̂ψ j2f ¼ a11
M4

D
↔
χχ† þ a12

M4
χ∇χ† þ a13

M4
χχ†D

↔ þ a81
M4

D
↔
Taχχ†Ta þ a82

M4
TaχDabχ†Tb þ a83

M4
Taχχ†D

↔
Ta

þ ib11
M4

D
↔
× σχχ† −

ib12
M4

σχ × ∇χ† −
ib13
M4

σχ × χ†D
↔ þ ib14

M4
D
↔
χ × χ†σ þ ib15

M4
χ∇ × χ†σ þ ib16

M4
χχ†D

↔
× σ

þ ib81
M4

D
↔
× σTaχχ†Ta −

ib82
M4

σTaχ × Dabχ†Tb −
ib83
M4

σTaχ × χ†D
↔
Ta

þ ib84
M4

D
↔
Taχ × χ†σTa þ ib85

M4
TaχDab × χ†σTb þ ib86

M4
Taχχ†D

↔
× σTa

þ c11
M4

ðD↔ · σÞχχ†σ þ c12
M4

σiχ∇iχ
†σ þ c13

M4
σiχχ

†D
↔

iσ

þ c14
M4

D
↔

iσχχ†σi þ
c15
M4

σχ∇iχ
†σi þ

c16
M4

σχχ†ðD↔ · σÞ

þ c17
M4

D
↔
σiχχ

†σi þ
c18
M4

σiχ∇χ†σi þ
c19
M4

σiχχ
†D
↔
σi

þ c81
M4

ðD↔ · σÞTaχχ†σTa þ c82
M4

σiTaχDab
i χ†σTb þ c83

M4
σiTaχχ†D

↔

iσTa

þ c84
M4

D
↔

iσTaχχ†σiTa þ c85
M4

σTaχDab
i χ†σiTb þ c86

M4
σTaχχ†ðD

↔
· σÞTa

þ c87
M4

D
↔
σiTaχχ†σiTa þ c88

M4
σiTaχDabχ†σiTb þ c89

M4
σiTaχχ†D

↔
σiTa; ðB1Þ
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k̂χ j2f ¼ k̂ψ j2fðψ ↔ χÞ: ðB2Þ

Here we understand the left-right derivatives on the left-
hand side of χχ† as

D
↔
Tχχ†Tψ ¼ TðDχÞχ†Tψ þ DðTχχ†TψÞ ðB3Þ

and implicitly perform an integration by parts on the
second term. The overall spatial derivatives introduced by

this integration are irrelevant for everything that will be
discussed in this paper, so we will ignore them. This
definition then also implies that the left-derivative part of

D
↔

acts also on the terms outside the bilinear in which it
appears. The left-right derivatives on the right-hand side
of χχ† are defined as above. As an example we give the
boost transformation proportional to a11 and a13 due to
the χ field in ψ†χχ†ψ ,

ψ†ðk̂χχÞχ†ψ ja11;a13 ¼
a11
M4

ðψ†D
↔
ψÞψ†χχ†ψ −

a11
M4

ψ†ψψ†χð∇χ†ψÞ þ a13
M4

ψ†ψðψ†D
↔
χÞχ†ψ þ…: ðB4Þ

When we calculate the commutator of two boosts at OðM−3Þ and consider only the two-fermion part, we get some
constraints on the boost coefficients anm, bnm and cnm. At this order, only the terms with a center-of-mass derivative do not
cancel automatically, and none of the anm coefficients can appear, because they do not give terms antisymmetric in ξ and η.
There are again two contributions to this commutator; at OðM−3Þ, the first of them is

− ½ξ · k̂ψ j2f;Mη · r� þ ½η · k̂ψ j2f;Mξ · r�

¼ −
2i
M3

ðb11 þ b12 þ b13Þðξ × ηÞ · σχχ† − 2i
M3

ðb14 þ b15 þ b16Þχχ†ðξ × ηÞ · σ

−
2i
M3

ðb81 þ b82 þ b83Þðξ × ηÞ · σTaχχ†Ta −
2i
M3

ðb84 þ b85 þ b86ÞTaχχ†ðξ × ηÞ · σTa

þ 1

M3
ðc11 þ c12 þ c13 − c14 − c15 − c16Þðξ × ηÞ · ðσχ × χ†σÞ

þ 1

M3
ðc81 þ c82 þ c83 − c84 − c85 − c86Þðξ × ηÞ · ðσTaχ × χ†σTaÞ: ðB5Þ

The second contribution comes from the transformation of the χ fields inside k̂ψ j2f,

− η ·
∂
∂η̃ ½iξ · k̂ψ j2fðD0;D;E;B; ð1þ iMη̃ · rÞχ;ψÞ�

η̃¼0

þ ξ ·
∂
∂ξ̃ ½iη · k̂ψ j2fðD0;D;E;B; ð1þ iMξ̃ · rÞχ;ψÞ�

ξ̃¼0

¼ 2i
M3

ðb11 − b12 þ b13Þðξ × ηÞ · σχχ† þ 2i
M3

ðb14 − b15 þ b16Þχχ†ðξ × ηÞ · σ

þ 2i
M3

ðb81 − b82 þ b83Þðξ × ηÞ · σTaχχ†Ta þ 2i
M3

ðb84 − b85 þ b86ÞTaχχ†ðξ × ηÞ · σTa

−
1

M3
ðc11 − c12 þ c13 − c14 þ c15 − c16Þðξ × ηÞ · ðσχ × χ†σÞ

−
1

M3
ðc81 − c82 þ c83 − c84 þ c85 − c86Þðξ × ηÞ · ðσTaχ × χ†σTaÞ; ðB6Þ

where we have kept only terms linear in ξ and η.
The sum of these contributions has to vanish; thus we have

0 ¼ −
4i
M3

b12ðξ × ηÞ · σχχ† − 4i
M3

b82ðξ × ηÞ · σTaχχ†Ta

−
4i
M3

b15χχ†ðξ × ηÞ · σ −
4i
M3

b85Taχχ†ðξ × ηÞ · σTa

þ 2

M3
ðc12 − c15Þðξ × ηÞ · ðσχ × χ†σÞ þ 2

M3
ðc82 − c85Þðξ × ηÞ · ðσTaχ × χ†σTaÞ; ðB7Þ
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which fixes the two-fermion boost parameters to be

b12 ¼ b15 ¼ b82 ¼ b85 ¼ 0; c12 ¼ c15; c82 ¼ c85:

ðB8Þ
At OðM−4Þ there is no relevant new information from

the boost commutator. As the boost generator for the
heavy (anti)quark field does not contain an OðM0Þ term,
the only contribution to the commutator at this order
comes from the boost of the derivatives in Eq. (B1). As
before, all terms with coefficients amn and the last row of
cmn coefficients in both singlet and octet sectors are
proportional to ξ · η and cancel in the commutator. For
each of the remaining terms there is a corresponding
contribution from the OðM−5Þ boost generator, which can

be obtained by inserting iD
↔

0 or i∂0 at the respective
position (left of χ, right of χ†, or between them) into a

term from Eq. (B1) with a bm2, bm5, cm2, or cm5

coefficient. The commutator with �iMη · r will then
cancel the spatial derivative and give a term of the same
form as the OðM−4Þ boost of k̂ψ j2f. There are other boost
terms at OðM−5Þ with a left-right spatial derivative
instead of a center-of-mass derivative, or with a chromo-
electric field instead of the two derivatives, but in all
these cases the contributions from the �iMη · r terms to
the commutator cancel each other like they did in
Eq. (B7). So the only constraints we get from the boost
commutator at this order are ones that fix OðM−5Þ
coefficients in terms of lower order boost coefficients.
In order to get constraints from the boost transformation

of L at OðM−4Þ, we need all four-fermion operators of
OðM−4Þ, most of which can be found in [38] [the last two
operators multiplying s8−8ð1S0; 3S1Þ and s8−8ð3S1; 3S1Þ
are new],

Lð4Þj4f ¼ −
g1ð1S0Þ
8M4

ðψ†D
↔2

χχ†ψ þ ψ†χχ†D
↔2

ψÞ − g1ð3S1Þ
8M4

ðψ†ðD↔2Þσχ · χ†σψ þ ψ†σχχ†ðD↔2ÞσψÞ

−
g1ð3S1; 3D1Þ

8M4

�
1

2
ψ†fðD↔ · σÞ;D↔gχ · χ†σψ −

1

3
ψ†ðD↔2Þσχ · χ†σψ þ H:c:

�

−
g8ð1S0Þ
8M4

ðψ†D
↔2

Taχχ†Taψ þ ψ†χχ†D
↔2

TaψÞ

−
g8ð3S1Þ
8M4

ðψ†ðD
↔2ÞσTaχ · χ†σTaψ þ ψ†σTaχχ†ðD

↔2ÞTaσψÞ

−
g8ð3S1; 3D1Þ

8M4

�
1

2
ψ†fðD↔ · σÞ;D↔gTaχ · χ†σTaψ−

1

3
ψ†ðD↔2ÞσTaχ · χ†σTaψ þ H:c:

�

−
f1ð1P1Þ
4M4

ψ†D
↔
χ · χ†D

↔
ψ −

f1ð3P0Þ
12M4

ψ†ðD
↔
· σÞχχ†ðD

↔
· σÞψ

−
f1ð3P1Þ
8M4

ðψ†D
↔

iσjχχ
†D
↔

iσjψ − ψ†D
↔

iσjχχ
†D
↔

jσiψÞ

−
f1ð3P2Þ
4M4

�
1

2
ψ†D

↔

iσjχχ
†D
↔

iσjψ þ 1

2
ψ†D

↔

iσjχχ
†D
↔

jσiψ−
1

3
ψ†ðD↔ · σÞχχ†ðD↔ · σÞψ

�

−
f8ð1P1Þ
4M4

ψ†D
↔
Taχ · χ†D

↔
Taψ −

f8ð3P0Þ
12M4

ψ†ðD↔ · σÞTaχχ†ðD↔ · σÞTaψ

−
f8ð3P1Þ
8M4

ðψ†D
↔

iσjTaχχ†D
↔

iσjTaψ − ψ†D
↔

iσjTaχχ†D
↔

jσiTaψÞ

−
f8ð3P2Þ
4M4

�
1

2
ψ†D

↔

iσjTaχχ†D
↔

iσjTaψ þ 1

2
ψ†D

↔

iσjTaχχ†D
↔

jσiTaψ−
1

3
ψ†ðD↔ · σÞTaχχ†ðD↔ · σÞTaψ

�

−
if1 cm
2M4

ðψ†ðD↔ × σÞχ · ∇χ†ψ þ ð∇ψ†χÞ · χ†ðD↔ × σÞψÞ

þ if01 cm
2M4

ðψ†D
↔
χ · ð∇ × χ†σψÞ þ ð∇ × ψ†σχÞ · χ†D↔ψÞ

−
if8 cm
2M4

ðψ†ðD↔ × σÞTaχ · Dabχ†Tbψ þ ðDabψ†TbχÞ · χ†ðD↔ × σÞTaψÞ

þ if08 cm
2M4

ðψ†D
↔
Taχ · ðDab × χ†σTbψÞ þ ðDab × ψ†σTbχÞ · χ†D↔TaψÞ
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þ g1a cm
M4

ð∇iψ
†σjχÞð∇iχ

†σjψÞ þ
g8a cm
M4

ðDab
i ψ†σjTbχÞðDac

i χ†σjTcψÞ

þ g1b cm
M4

ð∇ · ψ†σχÞð∇ · χ†σψÞ þ g8b cm
M4

ðDab · ψ†σTbχÞðDac · χ†σTcψÞ

þ g1c cm
M4

ð∇ψ†χÞ · ð∇χ†ψÞ þ g8c cm
M4

ðDabψ†TbχÞ · ðDacχ†TcψÞ

þ s1−8ð1S0; 3S1Þ
2M4

ðψ†gB · σχχ†ψ þ ψ†χχ†gB · σψÞ

þ s1−8ð3S1; 1S0Þ
2M4

ðψ†gBχ · χ†σψ þ ψ†σχ · χ†gBψÞ

þ s8−8ð1S0; 3S1Þ
2M4

dabcgBa · ðψ†σTbχχ†Tcψ þ ψ†Tbχχ†σTcψÞ

þ s8−8ð3S1; 3S1Þ
2M4

fabcgBa · ðψ†σTbχ × χ†σTcψÞ; ðB9Þ

and all four-fermion operators with a center-of-mass derivative of OðM−5Þ, which are new,

Lð5Þj4f; cm ¼ is1−8 cm
2M5

ðψ†gE × σχ · ∇χ†ψ − ð∇ψ†χÞ · χ†gE × σψÞ

−
is01−8 cm
2M5

ðψ†gEχ · ð∇ × χ†σψÞ − ð∇ × ψ†σχÞ · χ†gEψÞ

þ is8−8 cm
2M5

dabcgEa · ðψ†σTbχ × Dcdχ†Tdψ þ ðDbdψ†TdχÞ × χ†σTcψÞ

þ is08−8 cm
2M5

fabcgEa
i ðψ†σiTbχðDcd · χ†σTdψÞ þ ðDbd · ψ†σTdχÞχ†σiTcψÞ: ðB10Þ

For dimensional reasons the OðM−5Þ four-fermion
Lagrangian can either contain three derivatives or one
derivative and one gluon field. Parity allows only the
combination of a chromoelectric field and a derivative.
As stated above, only operators with center-of-mass deriv-
atives are relevant for this order of the boost transformation.
In principle, one can write more operators with a center-of-
mass derivative, but, once integrated by parts and neglect-
ing overall derivatives, those operators reduce to ones with
a derivative acting on the chromoelectric field, e.g.,

ifabcgEa · ðψ†TbχDcdχ†Tdψ þ ðDbdψ†TdχÞχ†TcψÞ
¼ −ðDad · gEdÞifabcψ†Tbχχ†Tcψ : ðB11Þ

Such terms do not contribute to the boost transformation of
the Lagrangian at OðM−4Þ.
After a somewhat lengthy calculation of the boost

transformation of the Lagrangian at OðM−4Þ, which we
have checked with the help of a code for symbolic
calculations, we obtain the following constraints:

a11 ¼
1

4
g1ð1S0Þ; a12 ¼ −

1

4
f1ð1S0Þ; a13 ¼

1

4
f1ð1P1Þ;

a81 ¼
1

4
g8ð1S0Þ; a82 ¼ −

1

4
f8ð1S0Þ; a83 ¼

1

4
f8ð1P1Þ;

b12 ¼ b15 ¼ 0; b13 ¼ −
1

4
f1ð3S1Þ þ b14; b16 ¼ −

1

4
f1ð1S0Þ þ b11;

b82 ¼ b85 ¼ 0; b83 ¼ −
1

4
f8ð3S1Þ þ b84; b86 ¼ −

1

4
f8ð1S0Þ þ b81;

c11 ¼
1

8
ðg1ð3S1; 3D1Þ − f1ð3S1ÞÞ; c13 ¼

1

8
ðf1ð3P2Þ − f1ð3P1ÞÞ;

c14 ¼
1

8
ðg1ð3S1; 3D1Þ þ f1ð3S1ÞÞ; c16 ¼

1

12
ðf1ð3P0Þ − f1ð3P2ÞÞ;
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c17 ¼
1

12
ð3g1ð3S1Þ − g1ð3S1; 3D1ÞÞ; c19 ¼

1

8
ðf1ð3P1Þ þ f1ð3P2ÞÞ;

c81 ¼
1

8
ðg8ð3S1; 3D1Þ − f8ð3S1ÞÞ; c83 ¼

1

8
ðf8ð3P2Þ − f8ð3P1ÞÞ;

c84 ¼
1

8
ðg8ð3S1; 3D1Þ þ f8ð3S1ÞÞ; c86 ¼

1

12
ðf8ð3P0Þ − f8ð3P2ÞÞ;

c87 ¼
1

12
ð3g8ð3S1Þ − g8ð3S1; 3D1ÞÞ; c89 ¼

1

8
ðf8ð3P1Þ þ f8ð3P2ÞÞ;

c15 ¼ −c12; c18 ¼ −
1

4
f1ð3S1Þ; c85 ¼ −c82; c88 ¼ −

1

4
f8ð3S1Þ;

s1−8 cm −
1

2
s1−8ð1S0; 3S1Þ −

cF − 1

2
f1ð1S0Þ −

cF − 1

12
f8ð3S1Þ − 2b11 −

1

3
b84 ¼ 0;

s01−8 cm −
1

2
s1−8ð3S1; 1S0Þ −

cF − 1

2
f1ð3S1Þ −

cF − 1

12
f8ð1S0Þ − 2b14 −

1

3
b81 ¼ 0;

s8−8 cm −
1

2
s8−8ð1S0; 3S1Þ −

cF − 1

4
f8ð1S0Þ −

cF − 1

4
f8ð3S1Þ − b81 − b84 ¼ 0;

s08−8 cm þ 1

2
s8−8ð3S1; 3S1Þ −

4cF − 3

8
f8ð3S1Þ þ c82 ¼ 0; ðB12Þ

where we have also used the already obtained constraints
(45) and (66)–(68) in order to express everything in terms
of Wilson coefficients of the lowest order.
So far none of these constraints involves only Wilson

coefficients of the Lagrangian, they rather define the
boost parameters of k̂ψ j2f and k̂χ j2f. There remain two
unconstrained boost parameters, c12 and one of either b11,
b14, b81, or b84. But if we combine them with the
relations obtained from the commutator of two boosts,
we get

c12 ¼ c15 ¼ c82 ¼ c85 ¼ 0;

s08−8 cm þ 1

2
s8−8ð3S1; 3S1Þ −

4cF − 3

8
f8ð3S1Þ ¼ 0: ðB13Þ

The last equation now gives a new constraint on the
Wilson coefficients without any parameters from the boost.
The other relations that we derived for b12, b15, b82 and
b85 in Eq. (B8) from the commutator of two boosts are
consistent with the ones obtained from the transformation
of the Lagrangian at OðM−4Þ and OðM−3Þ.
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