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Casilla 110-V, Valaparaíso, Chile

6Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile
7Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza Aérea de Chile,
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We study the effect of a partially thermalized scenario for chiral symmetry restoration at finite
temperature and quark chemical potential, and in particular for the position of the critical end point in an
effective description of the QCD phase diagram. We show that these effects cause the critical end point to
be displaced towards larger values of temperature and lower values of the quark chemical potential as
compared to the case when the system can be regarded as completely thermalized. We conclude that these
effects may be important for relativistic heavy-ion collisions where the number of subsystems making up
the whole interaction volume can be linked to the finite number of participants in the reaction.
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I. INTRODUCTION

The usual thermal description of a relativistic heavy-ion
collision relies on the assumption that the produced matter
reaches equilibrium after some time from the beginning of
the reaction. This equilibrium is characterized by values of
temperature T and baryon chemical potential μ which are
taken as common within the whole interaction volume. The
system’s evolution is subsequently described by the time
evolution of the temperature down to kinetic freeze-out,
where particle spectra are established. This picture rests on
two ingredients: the validity of Gibbs-Boltzmann statistics
and a system’s adiabatic evolution.
Although, for expansion rates not too large compared to

the interaction rate, the adiabatic evolution can perhaps be
safely assumed, it is well known that the Gibbs-Boltzmann
statistics can be applied only to systems in the thermody-
namical limit, namely, long after the relaxation time has
elapsed and randomization has been achieved within the
system’s volume. In the case of a relativistic heavy-ion

collision, the reaction starts off from nucleon-nucleon
interactions. This means that the entire reaction volume
is made, at the beginning, of a superposition of interacting
nucleon pairs. If thermalization is achieved, it seems natural
to assume that this starts off in each of the interacting
nucleon pair subsystems, and later spreads to the entire
volume. In this scenario, the temperature and chemical
potential within each subsystem may not be the same for
other subsystems and thus a superposition of statistics, one
in the usual Gibbs-Boltzmann sense for particles in each
subsystem, and another one, for the probability to find
particular values for T and μ for a different subsystem,
seems appropriate. This is described by the so-called
superstatistics scenario.
An important characteristic of superstatistics is that a

nonextensive behavior naturally arises due to fluctuations
in T or μ over the system’s volume. This feature could be of
particular relevance when studying the position of the
critical end point (CEP) in the QCD phase diagram, where
one resorts to measuring ratios of fluctuations in conserved
charges, with the expectation that the volume factor cancels
out in the ratio. If thermalization is not complete, this
expectation cannot hold and a more sophisticated treatment
is called for.
From the theoretical side, efforts to locate the CEP

employing several techniques such as finite energy sum
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rules [1], Schwinger-Dyson equations, functional renorm-
alization methods, holography, and effective models [2–20]
were recently carried out. In all of these cases, a full
thermalization over the whole reaction volume has been
assumed. From the experimental side, the STAR BES-I
program has recently studied heavy-ion collisions in the
energy range 200 GeV >

ffiffiffiffiffiffiffiffi
sNN

p
> 7.7 GeV [21]. Future

experiments [22–24] will continue to thoroughly explore
the QCD phase diagram, using different system sizes and
varying the temperature and baryon density using different
collision energies down to about

ffiffiffiffiffiffiffiffi
sNN

p ≃ 5 GeV.
The superstatistics scenario has been explored in the

context of relativistic heavy-ion collisions in a wide range
of papers, e.g., Refs. [25–41] and references therein, with a
particular focus on the study of the imprints of super-
statistics on particle production, using a particular version,
the so-called Tsallis statistics [42]. Its use in the context of
the computation of the rapidity distribution profile for
stopping in heavy-ion collisions has been recently ques-
tioned in Ref. [43]. It has also been implemented to study
generalized entropies and a generalized Newton’s law in
Refs. [44–46]. In this work we explore the implications of
superstatistics for the location of the CEP in the QCD phase
diagram. The work is organized as follows. In Sec. II we
briefly review the superstatistics scenario for the case when
the fluctuating parameter is the inverse temperature. In
Sec. III we apply a superstatistics analysis to the theory of a
self-interacting boson with spontaneously broken Z2 sym-
metry and show how the critical temperature for symmetry
restoration decreases as the number of subsystems making
up the whole system also decreases. In Sec. IV we analyze
the superstatistics scenario within the linear sigma model
with quarks (LSMq). We compute the corrections to the
effective potential at finite temperature and baryon chemi-
cal potential and show how these produce a displacement of
the CEP towards larger values of the critical temperature
and lower values of the quark chemical potential, as
compared to the case where a full-volume thermalization
is assumed. Finally we summarize and give an outlook of
the analysis in Sec. V.

II. SUPERSTATISTICS

The superstatistics concept was nicely described in
Refs. [47,48]. For completeness, we reproduce here the
main ideas.
For a system that has not yet reached a full equilibrium

and contains space-time fluctuations of an intensive param-
eter β, such as the inverse temperature or the chemical
potential, one can still think of dividing the full volume into
spatial subsystems, where β is approximately constant.
Within each subsystem, one can apply the ordinary Gibbs-
Boltzmann statistics, namely, one can use the ordinary
matrix density giving rise to the Boltzmann factor e−βĤ,
where Ĥ corresponds to the Hamiltonian for the states in

each subsystem. The whole system can thus be described in
terms of a space-time average over the different values that
β could take for the different subsystems. In this way, one
obtains a superposition of two statistics—one referring to
the Boltzmann factor e−βĤ and the other to β—hence the
name superstatistics.
To implement the scenario, one defines an averaged

Boltzmann factor

BðĤÞ ¼
Z

∞

0

fðβÞe−βĤdβ; ð1Þ

where fðβÞ is the probability distribution of β. The partition
function then becomes

Z ¼ Tr½BðĤÞ�

¼
Z

∞

0

BðEÞdE; ð2Þ

where the last equality holds for a suitably chosen set of
eigenstates of the Hamiltonian.
When the subsystems can all be described with the same

probability distribution [44], a possible choice to distribute
the random variable β is the χ2 distribution

fðβÞ ¼ 1

ΓðN=2Þ
�

N
2β0

�
N=2

βN=2−1e−Nβ=2β0 ; ð3Þ

where Γ is the gamma function, N represents the number of
subsystems that make up the whole system and

β0 ≡
Z

∞

0

βfðβÞdβ ¼ hβi; ð4Þ

is the average of the distribution. The χ2 is the distribution
that emerges for a random variable that is made up of the
sum of the squares of random variables Xi, each of which
is distributed with a Gaussian probability distribution with
vanishing average and unit variance. This means that if
we take

β ¼
XN
i¼1

X2
i ; ð5Þ

then β is distributed according to Eq. (3). Moreover, its
variance is given by

hβ2i − β20 ¼
2

N
β20: ð6Þ

Given that β is a positive-definite quantity, thinking of it as
being the sum of positive-definite random variables is an
adequate model. Notice however that these variables do
not necessarily correspond to the inverse temperature in
each of the subsystems. However, since the use of the χ2

distribution allows for an analytical treatment, we hereby
take this as the distribution to model the possible values
of β.
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To add superstatistics effects to the dynamics of a given
system, we first find the effective Boltzmann factor. This is
achieved by taking Eq. (3) and substituting it into Eq. (1).
Integration over β, leads to

BðĤÞ ¼
�
1þ 2

N
β0Ĥ

�
−N

2

: ð7Þ

Notice that in the limit when N → ∞, Eq. (7) becomes the
ordinary Boltzmann factor. For large but finite N, Eq. (7)
can be expanded as

BðĤÞ ¼
�
1þ 1

2

�
2

N

�
β20Ĥ

2 −
1

3

�
2

N

�
2

β30Ĥ
3 þ � � �

�

× e−β0Ĥ: ð8Þ
Working up to first order in 1=N, Eq. (8), can be written
as [47]

BðĤÞ ¼
�
1þ β20

N

� ∂
∂β0

�
2
�
e−β0Ĥ: ð9Þ

Therefore, the partition function to first order in 1=N is
given by

Z ¼
�
1þ β20

N

� ∂
∂β0

�
2
�
Z0 ð10Þ

with

Z0 ¼ e−Vβ0V
eff
; ð11Þ

where V and Veff are the system’s volume and effective
potential, respectively. After a bit of straightforward alge-
bra we write the expression for the partition function in
terms of T0 ¼ 1=β0 as

Z ¼
�
1þ β20

N

� ∂
∂β0

�
2
�
Z0

¼ Z0

�
1þ 2T0

NZ0

�∂Z0

∂T0

þ T0

2

∂2Z0

∂T2
0

��
; ð12Þ

and therefore

ln½Z� ¼ ln½Z0� þ ln

�
1þ 2T0

NZ0

�∂Z0

∂T0

þ T0

2

∂2Z0

∂T2
0

��
: ð13Þ

The question we set out to answer is how the CEP position
changes when considering corrections coming from the
second term in Eq. (13). In the realm of effective QCD
models, the answer should be provided within a theory that
involves meson as well as quarks degrees of freedom
(d.o.f.). However, before we delve into this problem, it is
convenient to make a first exploratory study within a
simpler theory involving only one boson d.o.f., for which
the Z2 symmetry is spontaneously broken at T0 ¼ 0 but
restored at high temperature. As we proceed to show, the

correction term coming from superstatistics produces a
modification of the temperature for symmetry restoration.

III. SUPERSTATISTICS IN THE ϕ4 THEORY

To study the effects of superstatistics on the symmetry
restoration temperature, we first consider a theory of a
self-interacting scalar field that undergoes spontaneous
symmetry breaking. This model is described by the
Lagrangian

L ¼ 1

2
ð∂μϕÞð∂μϕÞ þ

a2

2
ϕ2 −

λ

4!
ϕ4; ð14Þ

where a2 > 0 is the squared mass parameter and ϕ is a real,
self-interacting scalar field, with an interaction strength
λ > 0. To allow for a spontaneous breaking of symmetry,
we let the ϕ field develop a vacuum expectation value v

ϕ → σ þ v; ð15Þ

which can later be taken as the order parameter of the theory.
After this shift, the Lagrangian can be rewritten as

L ¼ 1

2
ð∂μσÞð∂μσÞ −

1

2
ðλv2 − 2a2Þσ2 − λ

4!
σ4

þ a2

2
v2 −

λ

4!
v4: ð16Þ

From Eq. (16) we see that the mass of the σ field is given by

m2
σ ¼ λv2 − 2a2: ð17Þ

In this work we consider the effective potential beyond the
mean-field approximation. We include radiative corrections
up to the ring diagrams contribution. All matter terms are
computed in the high-temperature approximation. The
effective potential is given by [49]

Veffðv; T0Þ ¼ −
ða2 þ δa2Þ

2
v2 þ ðλþ δλÞ

4!
v4

−
m4

σ

64π2

�
ln
�

a2

4πT2
0

�
− γE þ 1

2

�

−
π2T4

0

90
þm2

σT2
0

24

−
½m2

σ þ ΠðT0Þ�3=2T0

12π
; ð18Þ

where we have chosen the renormalization scale μ ¼ ae−1=2,
γE is the Euler-Mascheroni constant and we have introduced
the leading temperature plasma screening effects for the
boson’s mass squared, encoded in the boson’s self-energy

Π ¼ λ
T2
0

24
: ð19Þ
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Equation (18) contains the counterterms δa2 and δλ,
given by

δa2 ¼ −a2λ
�
7þ 2 lnð2Þ

64π2

�
; ð20Þ

and

δλ ¼ −3λ2
�
3þ 2 lnð2Þ

64π2

�
; ð21Þ

which ensure that the vacuum piece of the one-loop
radiative corrections does not shift the minimum or the
σ mass from their tree-level values [50]. To implement
superstatistics in the analysis, we substitute Eq. (18) into
Eq. (11). In particular with

Z0 ¼ e−
V
T0
Veff ðv;T0Þ; ð22Þ

we define an effective potential which takes into account
effects due to superstatistics through,

Z ¼ e−
V
T0
Veff
supðv;T0;NÞ; ð23Þ

which yields

Veff
supðv; T0; NÞ ¼ −

T0

V
ln½Z�

¼ Veffðv; T0Þ

−
T0

V
ln

�
1þ 2T0

NZ0

�∂Z0

∂T0

þ T0

2

∂2Z0

∂T2
0

��
;

ð24Þ
with Z0 given by Eq. (22). Depending on the chosen
values for the parameters a and λ, the effective potential
Veff
sup in Eq. (24) exhibits both first- and second-order

phase transitions. For a first-order phase transition, Veff
sup

has two degenerate minima at the critical temperature Tc:
one located at v ¼ 0 and the other one at a finite value of
v. In contrast, for a second-order transition, Veff

sup has a
single minimum and vanishing curvature at v ¼ 0, at the
critical temperature Tc. This is illustrated in Fig. 1.
Figure 2 shows the change of Tc, referred to as the

critical temperature for a completely thermalized system
T0
c, as a function of the number of subsystems N making

up the whole system. The dots correspond to the case of a
first-order phase transition, computed with λ ¼ 5 and
a ¼ 50 MeV. The squares correspond to a second-
order phase transition, computed with λ ¼ 0.01 and
a ¼ 50 MeV. Notice that in both cases Tc=T0

c < 1, with
the ratio decreasing with decreasing N. For increasing N,
Tc=T0

c approaches unity, both in the case of first- and
second-order phase transitions. The limit Tc=T0

c ¼ 1
requires considerably larger values of N for the latter.
This behavior is to be expected since for second-order

phase transitions, in the thermodynamical limit, large
spatial correlations appear at the critical temperature.
One may therefore anticipate that the critical temperature
attains the value corresponding to a fully thermalized
system only when N becomes infinity.

IV. SUPERSTATISTICS AND THE LINEAR
SIGMA MODEL WITH QUARKS

To explore the QCD phase diagram from the point of
view of chiral symmetry restoration, we use an effective
model that accounts for the physics of spontaneous
symmetry breaking at finite temperature and density: the
linear sigma model. In order to account for the fermion
d.o.f. around the phase transition, we also include quarks in
this model and work with the LSMq. The Lagrangian for

FIG. 1. Effective potential as a function of the vacuum expect-
ation value v for N ¼ 100 and a ¼ 50 MeV. The solid line
corresponds to a first-order transition and the dashed line to a
second-order transition, at their corresponding critical temper-
atures.

FIG. 2. Critical temperature Tc for symmetry restoration,
divided by the critical temperature for a completely thermalized
system, T0

c, as a function of the number of subsystems N that
make up the whole volume. The full circles correspond to the case
of a first-order phase transition and are computed with λ ¼ 5 and
a ¼ 50 MeV. The squares correspond to a second-order phase
transition, computed with λ ¼ 0.01 and a ¼ 50 MeV.
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the case when only the two lightest quark flavors are
included is given by

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 þ

a2

2
ðσ2 þ π⃗2Þ − λ

4
ðσ2 þ π⃗2Þ2

þ iψ̄γμ∂μψ − gψ̄ðσ þ iγ5τ⃗ · π⃗Þψ ; ð25Þ

where ψ is an SU(2) isospin doublet, π⃗ ¼ ðπ1; π2; π3Þ is an
isospin triplet and σ is an isospin singlet. λ is the boson’s
self-coupling and g is the fermion-boson coupling. a2 > 0
is the squared mass parameter.
To allow for a spontaneous symmetry breaking, we let

the σ field develop a vacuum expectation value v

σ → σ þ v; ð26Þ

that serves as the order parameter to identify the phase
transitions. After this shift, the Lagrangian can be
rewritten as

L ¼ 1

2
ð∂μσÞ2 −

1

2
ð3λv2 − a2Þσ2

þ 1

2
ð∂μπ⃗Þ2 −

1

2
ðλv2 − a2Þπ⃗2 þ a2

2
v2

−
λ

4
v4 þ iψ̄γμ∂μψ − gvψ̄ψ þ Lb

I þ Lf
I ; ð27Þ

where the sigma, the three pions and the quarks have
masses given by

m2
σ ¼ 3λv2 − a2;

m2
π ¼ λv2 − a2;

mf ¼ gv; ð28Þ

respectively, and Lb
I and Lf

I are given by

Lb
I ¼ −

λ

4
ðσ2 þ π⃗2Þ2

Lf
I ¼ −gψ̄ðσ þ iγ5τ⃗ · π⃗Þψ : ð29Þ

Equation (29) describes the interactions among the σ, π⃗ and
ψ fields after symmetry breaking.
In order to analyze chiral symmetry restoration, we

compute the finite temperature and density effective poten-
tial. In order to account for plasma screening effects, we
also work up to the ring diagrams contribution. All matter
terms are computed in the high-temperature approximation.
The effective potential is given by [20]

Veffðv; T0; μqÞ ¼ −
ða2 þ δa2Þ

2
v2 þ ðλþ δλÞ

4
v4 þ

X
b¼σ;π̄

�
−

m4
b

64π2

�
ln

�
a2

4πT2
0

�
− γE þ 1

2

�

−
π2T4

0

90
þm2

bT
2
0

24
−
ðm2

b þ ΠðT0; μqÞÞ3=2T0

12π

�
þ

X
f¼u;d

�
m4

f

16π2

�
ln

�
a2

4πT2
0

�
− γE þ 1

2
− ψ0

�
1

2
þ iμq
2πT0

�

− ψ0

�
1

2
−

iμq
2πT0

��
− 8m2

fT
2
0½Li2ð−eμq=T0Þ þ Li2ð−e−μq=T0Þ� þ 32T4

0½Li4ð−eμq=T0Þ þ Li4ð−e−μq=T0Þ�
�
;

ð30Þ

where μq is the quark chemical potential. As discussed in
Sec. III, δa2 and δλ represent the counterterms that ensure
that the one-loop vacuum corrections do not shift the
position of the minimum or the vacuum mass of the sigma.
These counterterms are given by

δa2 ¼ −a2
ð8g4 − 12λ2 − 3λ2 ln½2�Þ

32πλ
;

δλ ¼ ð16þ 8 ln½g2=λ�Þg4 − ð18þ 9 ln½2�Þλ2
64π2

: ð31Þ

The self-energy at finite temperature and quark chemical
potential, ΠðT0; μqÞ, includes the contributions from both

bosons and fermions. In the high-temperature approxima-
tion, it is given by [20]

ΠðT0; μqÞ ¼ −NfNcg2
T2
0

π2
½Li2ð−eμq=T0Þ

þ Li2ð−e−μq=T0Þ� þ λT2
0

2
: ð32Þ

To implement superstatistics corrections, we proceed along
the lines described in Sec. III. First, we substitute Eq. (30)
into Eq. (11). The partition function is obtained from
Eq. (12) and the effective potential, including superstatis-
tics effects is obtained from the logarithm of this partition
function,
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Veff
sup ¼ −

1

Vβ
ln½Z�; ð33Þ

where the expression for Z is now based on the effective
potential Eq. (30). As a consequence, the effective potential
of Eq. (33) has four free parameters. Three of them come
from the original model, namely, λ, g and a. The remaining
one corresponds to the superstatistics correction, N. In the
absence of superstatistics, the effective potential in Eq. (30)
allows for second- as well as for first-order phase tran-
sitions, depending on the values of λ, g and a as well as of
T0 and μq. For given values of λ, g and a, we now proceed
to analyze the phase structure that emerges when varying
N, paying particular attention to the displacement of the
CEP location in the T0, μq plane.
Figure 3 shows the effective QCD phase diagram

calculated with a ¼ 133 MeV, g ¼ 0.51 and λ ¼ 0.36
for different values of the number of subsystems making
up the whole system, N. For the different curves, the star

shows the position of the CEP. Notice that this position
moves to larger values of T and lower values of μq, with
respect to the CEP position for N ¼ ∞, that is, without
superstatistics effects, as N decreases.
Figure 4 shows another example of the effective QCD

phase diagram, this time calculated with a ¼ 133 MeV,
g ¼ 0.63 and λ ¼ 0.4. Notice that the systematics of the
CEP displacement for this case are the same as for the case
described in Fig. 3.

V. SUMMARY AND OUTLOOK

In this work, we have studied the effect of superstatistics
for chiral symmetry restoration and in particular for the
position of the CEP in an effective description of the QCD
phase diagram.
We have implemented the superstatistics scenario to

account for fluctuations in temperature in a system that
initially can be considered as not fully thermalized and
made up of a given number of subsystems N. We have not
considered fluctuations in the chemical potential, which
have been included to study the CEP position in the
Nambu–Jona-Lasinio model in Ref. [51]. We chose to
describe these fluctuations in terms of a χ2 distribution for
the inverse temperature.
The analysis is based on the superstatistics modification

to the system’s partition function to first order in 1=N. To
study these effects, we first resorted to finding the change in
the critical temperature for Z2 symmetry restoration in a
theory with a self-interacting real boson field. We found
that this critical temperature decreases as N decreases. We
then studied the LSMq at finite temperature and quark
chemical potential. We found that the pattern for chiral
symmetry restoration at high temperature and density
changes from the case where N ¼ ∞ (completely thermal-
ized volume) to the case where the system is made up of a
finite number of subsystems. In particular, the CEP position
moves toward larger values of T and lower values of μq as
N decreases. For the analyses, in both cases, the free energy
is computed beyond the mean-field approximation, includ-
ing the plasma screening effects. All matter corrections are
made in the high-temperature approximation.
Notice that one can wonder what is the proper way to

average over the possible different subsystems’ temper-
atures. In principle there are two alternatives: (a) computing
the partition function as the trace of a modified Boltzmann
factor coming from first averaging the possible temperature
values or (b) computing first the trace of the Boltzmann
factor for each subsystem and then averaging over the
different subsystems temperatures. These two options were
discussed for example in Ref. [47] and were called super-
statistics type-A and -B, respectively. In type-A super-
statistics one works with un-normalized Boltzmann factors
e−βE that are averaged over β with the distribution fðβÞ and
the normalization is carried out at the end by performing the

FIG. 3. Effective QCD phase diagram calculated with
a ¼ 133 MeV, g ¼ 0.51 and λ ¼ 0.36, for different values of N.
The star shows the position of the CEP which moves towards
larger values of T and lower values of μq, as N decreases.

FIG. 4. Effective QCD phase diagram calculated with
a ¼ 133 MeV, g ¼ 0.63 and λ ¼ 0.4, for different values of N.
The star shows the position of the CEP which moves towards
larger values of T and lower values of μq, as N decreases.
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integration over E. In type-B superstatistics one works with
locally normalized distributions pðEÞ ¼ 1=ðZðβÞÞe−βE to
finally average over all β with the distribution fðβÞ. Since
in general the normalization constant Z depends on β, the
results will differ. However, case B can be easily reduced to
case A by replacing the distribution fðβÞ by a new distri-
bution f̃ðβÞ ¼ CZ−1ðβÞfðβÞ, where C is a suitable normali-
zation constant. In other words, type-B superstatistics with f
is equivalent to type-A superstatistics with f̃. In case one is
not interested in the relation between the superstatistics
types, and since the normalization factor in the second case
depends on β, one can expect a different result when
working with the same fðEÞ. Nevertheless, as explicitly
worked out in Ref. [44], different fðEÞ’s lead to similar
entropic factors when expanded to first order in 1=N.
Also, notice that the first-order phase transitions start

appearing when fermions become more relevant than
bosons. This is bound to happen for a large enough baryon
chemical potential. Therefore, fluctuations imply that some
of the subsystems already reached a temperature above the
critical temperature for this phase transition with the order
parameter being zero while some others have a lower
temperature with a nonzero order parameter value, what-
ever this may be. However, these transitions stay sharp and
the question is how fluctuations influence the values of the
baryon chemical potential and the temperature for fermions
to become relevant. Our findings show that fermions
become more relevant for lower values of the baryon
chemical potential than they do for the case of the
homogeneous system. To picture this result, as above, let
ðμ0c; T0

cÞ and ðμc; TcÞ be the critical values for the baryon
chemical potential and temperature for the onset of first-
order phase transitions for the homogeneous and fluctuat-
ing system, respectively. The parameter that determines
when fermions become relevant is the combination μ0c=T0

c.
Since our calculation for a single boson d.o.f. shows
that the critical temperature decreases with a decreasing
number of subsystems, this means that for the boson-
fermion fluctuating system, fermions become relevant for
μc=Tc ≃ μ0c=T0

c, and thus for μc < μ0c.
To apply these considerations in the context of relativ-

istic heavy-ion collisions, we recall that temperature
fluctuations are related to the system’s heat capacity by

ð1 − ξÞ
Cv

¼ hðT − T0Þ2i
T2
0

; ð34Þ

where the factor (1 − ξ) accounts for deviations [52] from
the Gaussian [53] distribution for the random variable T.
The right-hand side of Eq. (34) can be written in terms of
fluctuations in β as

hðT−T0Þ2i
T2
0

¼ β20− hβ2i
hβ2i ¼

	
β2
0

hβ2i


2hβ2i−β20

β20
: ð35Þ

Notice that according to Eq. (6)
�

β20
hβ2i

�
2

¼
�

1

1þ 2=N

�
2

≃ 1 − 4=N: ð36Þ

Therefore, for N finite but large

hðT − T0Þ2i
T2
0

≃
hβ2i − β20

β20
; ð37Þ

and using Eqs. (6) and (37), we obtain

hðT − T0Þ2i
T2
0

¼ 2

N
: ð38Þ

This means that the heat capacity is related to the number of
subsystems by

ð1 − ξÞ
Cv

¼ 2

N
: ð39Þ

To introduce the specific heat cv for a relativistic heavy-
ion collision, it is natural to divide Cv by the number of
participants Np in the reaction. Therefore, Eq. (39) can be
written as

2

N
¼ ð1 − ξÞ

Npcv
: ð40Þ

In Ref. [52], ξ was estimated as ξ ¼ Np=A, where A is the
smallest mass number of the colliding nuclei. Equation (40)
provides the link between the number of subsystems in a
general superstatistics framework and a relativistic heavy-
ion collision. It has been shown [54] that, at least for
Gaussian fluctuations, cv is a function of the collision
energy. Therefore, in order to make a thorough exploration
of the phase diagram as the collision energy changes, we
need to account for this dependence as well as to work with
values of the model parameters λ, g and a, appropriate to
the description of the QCD phase transition. Work along
these lines is currently underway and will be reported
elsewhere.
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