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The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and 
protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the 
functional renormalization group. The equation of state for pure neutron matter is studied and compared 
to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as 
a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration 
transition for pure neutron matter is shifted to high densities, much beyond three times the density of 
normal nuclear matter.
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1. Introduction

In recent years our understanding of neutron matter has 
been sharpened significantly. Empirical data as well as theoreti-
cal progress set increasingly strong constraints for the equation of 
state (EoS) at high baryon densities. The observation of two-solar 
mass neutron stars [1,2] implies that the EoS must be sufficiently 
stiff in order to support such dense systems against gravitational 
collapse.

At the same time different realistic calculations of neutron mat-
ter based on purely hadronic degrees of freedom are seen to be 
converging to a consistent picture of the energy per particle as a 
function of neutron density. Approaches such as chiral Fermi liquid 
theory [3], chiral effective field theory (ChEFT, [4–6]), or quantum 
Monte Carlo (QMC) calculations [7,8] all agree with each other 
within their ranges of applicability. Whereas compact stars with 
a considerable “exotic” composition, such as a substantial quark 
core, seem to provide not enough pressure to support a two-solar 
mass neutron star unless additional strongly repulsive forces are 
invoked, conventional hadronic matter is consistent with all avail-
able mass-radius constraints [9].

In recent publications [10,11], a successful chiral nucleon-
meson model for symmetric nuclear matter, previously introduced 
in [12], was studied beyond mean-field approximation. Fluctua-
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tions were treated within the framework of the functional renor-
malization group (FRG). The importance of a proper handling of 
fluctuations around the nuclear liquid-gas phase transition was 
demonstrated. Moreover, no sign of chiral restoration was found 
for temperatures below about 100 MeV and densities up to about 
three times nuclear saturation density, n0 = 0.16 fm−3.

In the present letter we extend this model to asymmetric nu-
clear matter. The equation of state for pure neutron matter is com-
puted and compared with state-of-the-art many-body calculations. 
As in symmetric nuclear matter, fluctuations tend to stabilize the 
hadronic phase characterized by spontaneously broken chiral sym-
metry and shift the chiral restoration transition to densities much 
larger than those anticipated in mean-field approximation. This re-
sult is of relevance for chiral approaches to strongly interacting, 
highly compressed baryonic matter, indicating that nucleon and 
meson (rather than quark) degrees of freedom are still active at 
densities several times that of normal nuclear matter.

2. Chiral nucleon-meson model and fluctuations

The chiral nucleon-meson model is designed to describe nu-
clear matter and its thermodynamics around the liquid-gas phase 
transition. The relevant degrees of freedom are protons and neu-
trons forming an isospin doublet nucleon field ψ = (ψp, ψn)T . 
The nucleons are coupled to boson fields: a chiral four-component 
field (σ , π) transforming under the chiral group SO(4) ∼= SU(2)L ×
SU(2)R , an isoscalar–vector field ωμ and an isovector–vector field 
ρμ . Note that these ω and ρ fields are not to be identified 
with the known omega and rho mesons. They are introduced 
here to act as background mean fields representing the effects of 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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short-distance interactions between nucleons, averaged over the 
baryonic medium. The ρ field appears as an additional degree of 
freedom in isospin-asymmetric matter, as compared to symmetric 
nuclear matter where its expectation value vanishes due to isospin 
symmetry. The Lagrangian of the extended nucleon-meson model 
reads

L = ψ̄ iγμ∂μψ + 1

2
∂μσ∂μσ + 1

2
∂μπ · ∂μπ

− ψ̄
[

g(σ + iγ5τ · π) + γμ

(
gωωμ + gρτ · ρμ

)]
ψ

− 1

4
F (ω)
μν F (ω)μν − 1

4
F (ρ)

μν · F (ρ)μν

+ 1

2
m2

ωωμωμ + 1

2
m2

ρρμ · ρμ − U(σ ,π). (1)

Here τ are the isospin Pauli-matrices, and F (ω)
μν = ∂μων − ∂νωμ , 

F (ρ)
μν = ∂μρν − ∂νρμ − gρ ρμ × ρν (only the three-component in 

isospin space of the time component of ρμ will be involved in the 
further discussions, so the non-abelian part of F (ρ)

μν is actually not 
relevant). The potential U(σ , π) has a piece, U0(χ), that depends 
only on the chirally invariant square χ = 1

2 (σ 2 + π2), as well as 
an explicit symmetry breaking term:

U(σ ,π ) = U0(χ) − m2
π fπ (σ − fπ ), (2)

with the pion mass mπ = 135 MeV and the pion decay constant 
fπ = 93 MeV.

As demonstrated in [11], fluctuations beyond the mean-field 
approximation can be included using the functional renormaliza-
tion group approach. A proper treatment of fluctuations turned out 
to be crucial in order to make contact with results from in-medium 
chiral perturbation theory calculations of symmetric nuclear mat-
ter [5], emphasizing in particular the role of two-pion exchange 
dynamics and three-body forces in the nuclear medium. One there-
fore expects that a full treatment of fluctuations with FRG methods 
is also important for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating pion field 
through multiple pion exchange processes.

The effective action Γk based on the Lagrangian (1) depends on 
a renormalization scale k and interpolates between a microscopic 
action, Γk=Λ , defined at an ultraviolet renormalization scale Λ, and 
the full quantum effective action, Γeff = Γk=0. As the scale k is 
lowered, the renormalization group flow of Γk is determined by 
Wetterich’s equation [13],

k
∂Γk

∂k
= = 1

2
Tr

k ∂ Rk
∂k

Γ
(2)

k + Rk

, (3)

where Rk = (k2 − p2)θ(k2 − p2) is a regulator function and Γ (2)

k =
δ2Γk
δφ2 is the full inverse propagator. In leading order of the deriva-

tive expansion, Γk = ∫
d4x ( 1

2 ∂μφ†∂μφ + Uk), where φ symbolizes 
all appearing fields and Uk is the scale-dependent effective poten-
tial. The flow equation reduces now to an equation for Uk . In the 
spirit of Ref. [14] the flow of the difference

Ūk(T ,μn,μp) = Uk(T ,μn,μp) − Uk(0,μc,μc) (4)

is computed, with the effective potential Uk(T , μn, μp) taken at 
given values of temperature T and of neutron/proton chemical po-
tentials, μn and μp , subtracting Uk(0, μc, μc) at the liquid-gas 
transition for symmetric matter at zero temperature. The critical 
chemical potential μc = 923 MeV at vanishing temperature is the 
difference between nucleon mass and binding energy. The subtrac-
tion at μ = μc is motivated by the fact that at this point, nuclear 
physics information can be optimally used to constrain the ef-
fective potential. The regime 0 ≤ μ < μc corresponds to a single 
physical state, the vacuum, with constants mπ and fπ unchanged 
by the FRG evolution [11]. A more detailed discussion will be pre-
sented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified flow equa-
tion

V

T

k∂ Ūk

∂k
(T ,μn,μp)

=
∣∣∣∣

T ,μn,μp

−
∣∣∣∣ T =0
μn=μp=μc

. (5)

The loops symbolize the full propagators of both fermions (nucle-
ons) and bosons (pions and sigma) with inclusion of the regulator. 
The heavy vector bosons ωμ and ρμ are treated as non-fluctuating 
mean fields. Their Compton wavelengths are supposed to be small 
compared to the distance scales characteristic of the Fermi mo-
menta under consideration. Rotational invariance implies that the 
spatial components of the vector mean fields vanish. The only 
components that can acquire non-zero expectation values are ω0
and ρ3

0 . Their effect is a shift of neutron and proton chemical po-
tentials according to:

μeff
n,p = μn,p − gωω0 ± gρρ3

0 . (6)

The scalar boson σ and the pions π are light compared to the 
energy scales we are interested in and so they are allowed to fluc-
tuate. Similarly, the nucleons are kept in the flow equations, thus 
incorporating soft nucleon-hole excitations around the Fermi sur-
face. Under these conditions, the flow equations for the present 
model become:

∂ Ūk(T ,μn,μp)

∂k
= fk(T ,μn,μp) − fk(0,μc,μc), (7)

with

fk(T ,μn,μp) = k4

12π2

{
3 · 1 + 2nB(Eπ )

Eπ
+ 1 + 2nB(Eσ )

Eσ

− 4
∑

i=n,p

1 − ∑
r=±1 nF(EN − rμeff

i (k))

EN

}
. (8)

Here,

E2
π = k2 + U ′

k(χ), E2
σ = k2 + U ′

k(χ) + 2χU ′′
k (χ),

U ′
k(χ) = ∂Uk(χ)

∂χ
, E2

N = k2 + 2g2χ,

μeff
n,p(k) = μn,p − gωω0(k) ± gρρ3

0 (k),

nB(E) = 1

eE/T − 1
, and nF(E) = 1

eE/T + 1
. (9)

The k-dependent mean fields ω0(k) and ρ3
0 (k) are defined at the 

minima of Uk for each scale k. These fields are thus eliminated as 
external parameters, simplifying the numerical effort. Their values 
at k are given by the solutions of the following equations which 
supplement the FRG equation (7):

gωω0(k) =
∑

r=±1

g2
ω

3π2m2
ω

Λ∫
k

dp
p4

EN

× ∂ [
nF

(
EN − rμeff

p (k)
) + nF

(
EN − rμeff

n (k)
)]

,

∂μ
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gρρ3
0 (k) =

∑
r=±1

g2
ρ

3π2m2
ρ

Λ∫
k

dp
p4

EN

× ∂

∂μ

[
nF

(
EN − rμeff

p (k)
) − nF

(
EN − rμeff

n (k)
)]

. (10)

The ultraviolet potential at k = Λ is fixed in such a way as to 
reproduce the mean field potential from Ref. [11] at T = 0 and 
μn = μp = μc . This guarantees a good description of well-known 
properties of symmetric nuclear matter around the liquid-gas tran-
sition. In fact all parameters apart from gρ and mρ are determined 
in this way. The explicit values can be found in Ref. [11]. With 
ρ3

0 entering as a mean field, only the ratio g2
ρ/m2

ρ appears in 
the (Hartree type) self-consistent equations. Therefore only a sin-
gle additional parameter, representing the strength Gρ ≡ g2

ρ/m2
ρ

of an equivalent short-distance contact term, Gρ(ψ†τψ)2, is intro-
duced when turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-range isospin-
dependent dynamics is governed entirely by pion degrees of free-
dom with no additional input required. This renders the model 
extremely rigid.

We note that a potential source of isospin breaking is neglected 
in the present approach. Introducing an isospin chemical potential, 
μI = μp − μn , the pions are no longer degenerate and SO(4) is 
broken to SO(2) × SO(2). As a consequence, the pion field com-
ponents π+ and π− experience the chemical potential μI . The 
complexity of the RG equations increases substantially and the 
equations for the vector bosons can no longer be integrated since 
they depend on the potential Uk . However the influence of these 
isospin-breaking terms on the equation of state is expected to be 
small as pointed out in perturbative calculations based on chiral 
effective field theory [16]. All isospin-breaking effects are there-
fore considered to be absorbed by adjusting the coupling strength 
Gρ of the isovector–vector boson.

The full set of equations (7) and (10) is solved using the grid 
method proposed in Ref. [17]. The grand-canonical potential Ugc is 
then the effective potential evaluated at its minimum as a function 
of σ . From Ugc all thermodynamic properties can be derived. This 
framework is now prepared to deal with the thermodynamics of 
isospin-asymmetric nuclear matter. In the present paper we focus 
on the extreme case of pure neutron matter at zero temperature, 
characterized by vanishing proton density: np = −∂Ugc/∂μp = 0. 
The general case of non-zero temperatures and varying proton-
to-neutron fractions will be investigated in a forthcoming more 
extended work.

3. Results

The single remaining parameter Gρ = g2
ρ/m2

ρ is fixed by re-
producing Esym = S(n0), with the symmetry energy S(n) defined 
as the difference between the energy per particle of pure neu-
tron matter and symmetric nuclear matter at a given density n. 
Using Esym = 32 MeV, the value deduced from a large variety 
of empirical nuclear physics and astrophysics data [18], we find 
Gρ = 1.12 fm2 (as compared to Gω ≡ g2

ω/m2
ω = 4.04 fm2 in the 

isoscalar sector).
A second observable of interest is related to the slope of 

the symmetry energy, L = 3n0(dS/dn)n0 . We find a value L =
66.3 MeV, reasonably close to the range L = 40.5–61.6 MeV de-
duced from empirical data and theoretical analysis, see Ref. [18].

Consider now the energy per particle, E/N , of neutron mat-
ter. At the mean-field level one encounters the typical problem 
familiar from relativistic mean field models: E/N comes out too 
small at low densities, while the EoS is too stiff at large densi-
ties compared to realistic many-body calculations. However, the 
Fig. 1. Equation of state for small densities for the full FRG calculation (black line) 
compared with mean field results (dashed line), and chiral Fermi liquid theory [3]
(gray band).

Fig. 2. Equation of state for the full FRG calculation (black line) compared with mean 
field results (dashed line), and QMC calculations [7,8] (gray band, with 32.0 MeV ≤
Esym ≤ 33.7 MeV).

FRG method greatly improves the behavior of the equation of state 
which is bent towards the band of realistic many-body calculations 
as seen in Figs. 1 and 2. There is now much better agreement with 
results both from chiral Fermi liquid theory [3] at smaller densities 
and with QMC calculations [7,8] up to about three times nuclear 
saturation density.

Another interesting issue is the question of chiral symmetry 
restoration in dense neutron matter. An order parameter of spon-
taneously broken chiral symmetry is the chiral (quark) condensate, 
〈q̄q〉. To leading order in the density n,

〈q̄q〉n

〈q̄q〉0
= 1 − σπ N

f 2
πm2

π

n, (11)

where the slope is determined by the pion-nucleon sigma term, 
σπ N = 45 ± 5 MeV [19]. In the present model the expectation 
value of the σ field is directly related (proportional) to the chi-
ral condensate. A fit to the full FRG result at low densities gives 
σπ N = 44 MeV as shown in Fig. 3. Already at about 0.01 n0, corre-
sponding to a Fermi momentum slightly less than mπ /2, the onset 
of a deviation from the linear behavior is observed. The non-linear 
structure of the effective potential as a function of the chiral field 
χ = 1

2 (σ 2 + π2) generates many-body forces involving three and 
more nucleons. Their effects become increasingly important as the 
density rises, inducing a significant deviation from the linear drop-
ping of the in-medium chiral condensate as a function of n. This 
non-linear behavior appears already at mean-field level and is fur-
ther enhanced when fluctuations are incorporated in the full FRG 
result (see Fig. 4). As a consequence the chiral condensate is stabi-
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Fig. 3. Chiral order parameter in neutron matter at low densities in comparison with 
the leading order term using σπ N = 45 MeV.

Fig. 4. Chiral order parameter in neutron matter: linear approximation (dashed line), 
the ChEFT result [24] (gray band), the mean-field approximation of the present 
model (MF – dotted curve) and the full FRG result (solid curve).

lized and the system remains in the hadronic (Nambu–Goldstone) 
phase with spontaneously broken chiral symmetry up to densities 
much larger than three times n0.

Pushing the model to its limits, one observes a rapid crossover 
to chiral symmetry restoration at about seven to eight times nu-
clear saturation density once fluctuations are included. In the 
mean-field approximation, the transition is first order instead and 
appears at lower density. Similar conclusions have been drawn in 
studies using the linear sigma model. Once loop corrections are 
included, the parameters are re-adjusted in order to avoid unphys-
ically large corrections to three-body forces [20–22]. One finds that 
the phase-transition into the abnormal Lee–Wick phase [23] sets 
in only at very large densities. Although the models differ, as does 
the treatment of fluctuations (which is fully non-perturbative in 
our present approach), the results of both calculations underline 
the important stabilizing properties of fluctuations.

A perturbative calculation of the quark condensate in neutron 
matter using chiral effective field theory at next-to-next-to-next-
to leading order (N3LO) [24], applicable up to about n 	 n0, is 
shown for comparison in Fig. 4. This calculation also features a de-
lay in the tendency towards chiral restoration, but less prominently 
so than the present FRG calculation. The stability of 〈q̄q〉 even in 
highly compressed, cold matter suggests that a chiral approach 
based on baryon and meson (rather than quark and gluon) degrees 
of freedom can presumably be extended to quite high densities. 
In our FRG approach the crossover to chiral symmetry restora-
tion would set in at about six times nuclear saturation density. 
The resulting neutron matter equation of state, taken as an input 
for solving the Tolman–Oppenheimer–Volkoff equation, meets all 
mass-radius constraints from neutron star observations, as will be 
demonstrated in a forthcoming publication.

4. Summary and conclusions

A chiral nucleon-meson model extended to asymmetric nuclear 
matter has been studied for the first time with systematic inclu-
sion of fluctuations beyond mean-field approximation, using the 
framework of the functional renormalization group. Further to the 
previous treatment of symmetric nuclear matter and its thermo-
dynamics, a single additional parameter, representing the isospin-
dependent part of the short-distance nucleon–nucleon interaction, 
has been fitted to the symmetry energy. Isospin-dependent dy-
namics at intermediate and long distances is completely deter-
mined by multiple pion exchange mechanisms generated non-
perturbatively by the renormalization group equations. The result-
ing equation of state for neutron matter is in good agreement with 
advanced many-body calculations over a large density range. Chi-
ral symmetry restoration in cold neutron matter is found to be 
shifted to high densities, considerably beyond at least three times 
the density of normal nuclear matter.
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