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How can I convert this from a problem

of infinite number of degrees of freedom,

which you can’t deal with anyhow, to a

problem which is finite even if it was so

large that you would have to have an as-

tronomical size computer. I just wanted

to convert it from an infinite number of

degrees of freedom to a finite number.

K. Wilson

1 Introduction

In recent years there have appeared various Gromov-Witten type theories. In all these

theories we study their partition functions or free energy functions, expressed as formal

power series in infinitely many formal variables. It is not convenient to study functions in

infinitely many variables. The well-established methods in mathematics usually deal with

only finitely many variables, especially when analyticity or smoothness of the functions are

concerned. It is then very desirable to develop some methods to convert the problems that

involves infinitely many variables to problems with only finitely many variables. Amazingly,

such situations were faced by Wilson when he studied renormalization theory. He discovered

that in doing renormalzations step by step, it is necessary to work with Hamiltonians with

all possible coupling constants hence it is necessary to work with a problem of an infinite

degrees of freedom. By considering the fixed points of the renormalization flow, a miracle

happens: in the limit the theory becomes soluble with finitely many degrees of freedom.

We will report in this work similar miracles happen in the case of some Gromov-Witten

type theories. In this paper we will focus on three examples: 1D topological gravity,

Hermitian one-matrix models, and 2D topological gravity. In subsequent work, we will

make generalizations to other models.

To explain our results, let us begin with the case of two-dimensional topological gravity.

Witten [26] interpreted the 2D topological gravity as the intersection theory of ψ-classes on

the Deligne-Mumford moduli spacesMg,n. The free energy of this theory is the generating

function defined by:

F 2D(t) =
∞∑
g=0

F 2D
g :=

∞∑
g=0

∑
n0,n1,n2···

〈τn0
0 τn1

1 τn2
2 · · · 〉

2D
g

tn0
0

n0!

tn1
1

n1!

tn2
2

n2!
· · · , (1.1)

where {ti}i>0 are formal variables understood as the coupling constants, and they will

be understood as coordinates on the big phase space of the 2D topological gravity. The

partition function is defined by

Z2D := eF
2D
. (1.2)

Witten conjectured that Z2D is a tau-function of the KdV hierarchy, i.e., u = ∂2F 2D

∂t20
satisfies a system of nonlinear differential equations of the form:

∂u

∂tn
=

∂

∂t0
Rn+1(u, ut0 , . . . ), (1.3)
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and furthermore, the free energy satisfies the string equation

∂F 2D

∂t0
=
t20
2

+
∞∑
n=0

tn+1
∂F 2D

∂tn
. (1.4)

Conversely, together with the string equation, the KdV hierarchy completely determines the

free energy. This conjecture was proved by Kontsevich [20, 21] by computing the partition

function in a different way-the Kontsevich matrix model, so the partition function Z2D

is also known as the Witten-Kontsevich tau-function and denoted by τWK . For earlier

matrix model approach to two-dimensional gravity, see e.g. Brezin-Kazakov [5], Douglas-

Shenker [11] and Gross-Migdal [15].

There is another way to study the Witten-Kontsevich tau-function τWK . Douglas [10]

proposed the connection to generalized KdV hierarchy (Gelfand-Dickey hierarchy) with

the additional condition called the string equation. Dijkgraaf-Verlinde-Verlinde [8] de-

rived from the KdV equation and the string equation that τKW satisfies a system of

linear partial differential equations known as the Virasoro constraints, and furthermore

is uniquely determined by these constraints. See also the independent work by Fukuma-

Kawai-Nakayama [13]. For the derivation of the Virasoro constraints for the Hermitean

matrix model, see e.g. [4, 6, 16, 24]. For the derivation in the Kontsevich model, see

e.g. [14, 22, 27]. For further development for generalized Kontsevich matrix models, see

e.g. [18, 19].

One can use either the characterization by KdV hierarchy plus string equation or the

Virasoro constraints to compute the free energy functions F 2D
g . The results are of course

some formal power series in the coupling constants t0, t1, . . . which are too complicated to

expect any closed formulas directly. In [17], Itzykson and Zuber introduced another group

of variables I0, I1, · · · defined by:

u0(t) :=
∂2F 2D

0

∂t20
, (1.5)

In(t) :=
∑
k>0

tn+k
uk0
k!
, n > 0 (1.6)

and they proved that u0 = I0, i.e.

In(t) =
∑
k>0

tn+k
Ik0
k!
, n > 0. (1.7)

With these definitions, they made an ansatz on the shape of F 2D
g :

F 2D
g (t) =

∑
∑

26k63g−2(k−1)lk=3g−3

〈
τ l22 τ

l3
3 · · · τ

l3g−2

3g−2

〉2D
g

3g−2∏
j=2

1

lj !

(
Ij

(1− I1)
2j+1

3

)lj

(1.8)

for g > 2. This is a finite sum of monomials in
Ij

(1−I1)(2j+1)/3 . By inserting this ansatz

into KdV hierarchy, they got some concrete results of free energies of low genus and they

remarked that “There is no difficulty to pursue these computations as far as one wishes”.
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Such idea of introducing new variables so that the free energy depending on an in-

finite set of coupling constants can be rearranged into polynomials of finitely many new

variables is also developed and applied to the Hermitian matrix models in [2, 3]. Two

sequences of moment variables {Mk}k≥1 and {Jk}k≥1 are introduced in the case of one-cut

solutions. They reduce to only one sequence in the double scaling limit. Note the Itzykson-

Zuber ansatz was used in [2] to derive the equivalence between the double scaling limit of

Hermitian one-matrix model and Kontsevich model.

Inspired by the Itzykson-Zuber ansatz especially the introduction of Ik, the second

named author carried out a comprehensive study of one-dimensional topological gravity

in [28] in the hope that this would lead to a better understanding of the Itzykson-Zuber

ansatz. He considered the action function:

S(x) = −1

2
x2 +

∞∑
n=0

tn
xn+1

(n+ 1)!
, (1.9)

and its renormalization by the iterated procedure of completing the square. In the limit of

this procedure, one reaches the critical point x∞ of the action function which satisfies the

following equation ([28], proposition 2.1):

x∞ =
∑
n>0

tn
xn∞
n!
, (1.10)

and the Taylor expansion of S(x) at x = x∞ is

S(x) = S(x∞) +
∞∑
n=2

(I ′n−1 − δn,2)
(x− x∞)n

n!
, (1.11)

where

I ′n(t) =
∑
k>0

tn+k
xk∞
k!
, n > 1. (1.12)

One can see that x∞ and I ′k are exactly I0 and Ik by definition! In [28], by Lagrange

inversion formula, the second named author derived an explicit formula for I0 in terms of

{tn}n≥0:

I0 = t0 +

∞∑
k=2

1

k

∑
p1+···+pk=k−1
pi>0,i=1,··· ,k

tp1
p1!
· · · tpk

pk!
. (1.13)

By plugging this into (1.7), one can get similar expressions for Ik. He also considered the

inverse transformation, and got the following result:

tn =
∑
k>0

In+k
(−1)kIk0

k!
, n > 0. (1.14)

As we have mentioned, {tn}n>0 are understood as coordinates on the big phase space.

Now {In}n>0 can be understood as new coordinates on the big phase space. They are

called the renormalized coupling constants in [28]. The reason for this terminology is

– 3 –
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because the striking analogy with Wilson’s renormalization theory in the sense that one

starts with an arbitrary set of infinitely many coupling constants and the fixed point of the

renormalization flow gives one another set of infinitely coupling constants. Another analogy

with Wilson’s theory is that with the introduction of these renormalized constants makes

the theory become soluble in finitely many degrees of freedom. This is our interpretation of

the Itzykson-Zuber ansatz (1.8). In fact, inspired by Itzykson-Zuber’s ansatz, the second

author proved that for the 1D topological gravity theory,

F 1D
g (t) =

∑
∑

26k62g−1(k−1)lk=2g−2

〈
τ l22 τ

l3
3 · · · τ

l2g−1

2g−1

〉1D
g

2g−1∏
j=2

1

lj !

(
Ij

(1− I1)
j+1
2

)lj

(1.15)

for g > 2, where F 1D
g is the free energy of genus g of the 1D topological gravity.

Another example we treat in this work is the Hermitian one-matrix models of order

N (i.e. the matrix is of N ×N). The second named author understood the 1D topological

gravity as the Hermitian one-matrix models of order 1 and extended some results for 1D

topological gravity to Hermitian one-matrix models in [29–31]. Using the same method,

he proved that for Hermitian one-matrix models,

FN
g (t) =

∑
∑

26k62g−1(k−1)lk=2g−2

〈
τ l22 τ

l3
3 · · · τ

l2g−1

2g−1

〉N
g

2g−1∏
j=2

1

lj !

(
Ij

(1− I1)
j+1
2

)lj

(1.16)

for g > 2, where FN
g is the free energy of genus g.

The proofs of (1.15) and (1.16) in previous works of the second named author are

based on rewriting the corresponding puncture equation and the dilaton equation in 1D

topological gravity and Hermitian one-matrix models in terms of the I-coordinates. It was

announced in [28] that the same method can be applied to establish the Itzykson-Zuber

ansatz. In this work we will achieve more than that. More precisely, we will show that

all the Virasoro operators {Lm}m>−1 in all the above three examples can be rewritten in

terms of the I-coordinates, and using this fact, one can also calculate the free energies of

in arbitrary genus g recursively.

In [33] the second named author introduced some coupling constants t−n for n ≥ 1

and call them the ghost variables. They were used to defined the following extension of

free energy F 2D
0 in genus zero:

F̃ 2D
0 = F 2D

0 +
∑
n≥0

(−1)n(tn − δn,1)t−n−1. (1.17)

This was used to make sense of the following special deformation of Airy curve introduced

in [32]:

w2D := z
1
2 −

∞∑
n=0

tn
(2n− 1)!!

zn−
1
2 −

∞∑
n=0

(2n+ 1)!!
∂F 2D

0

∂tn
z−n−

3
2 . (1.18)

See also section 5. In this paper we also consider the renormalizations of the ghost variables.

They will be denoted by I−k for k ≥ 1:

I−k =
∞∑
n=0

tn−k
In0
n!
. (1.19)

– 4 –
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When we impose the condition t−m = 0 for m > 0, the ghost variables I−n can be expressed

as formal series in {Ik}k≥0:

I−n|t−m=0,m≥1 =
∞∑
k=0

Ik
(−1)kIk+n

0

k!(n− 1)!(k + n)
. (1.20)

It turns out that certain shift, denoted by Ĩ−n is more natural. An amazing result is that

F 1D
0 = Ĩ−1|t−m=0, m≥1, (1.21)

FN
0 = N · Ĩ−1|t−m=0, m≥1, (1.22)

F 2D
0 =

1

2

∑
n>1

(−1)nĨnĨ−n−1|t−m=0, m≥1. (1.23)

We also used the renormalized ghost variables to investigate the applications of the

I-coordinates to the study of the special deformations of the emergent spectral curves in

the three cases we consider in this paper. It turns out that they manifest some uniform

behaviors related to (1.9) in this new perspective. We summarize them in the end of the

paper where we present some concluding remarks.

In summary, we have studied the Itzykson-Zuber Ansatz and its analogues from the

point of view of Wilson’s renormalization theory. One can interpret the results stated

in such Ansatz as generalizations of the constitutive relations in the mean field theory

approach studied by Dijkgraaf and Witten [9]. It is interesting to see that renormalization

leads to the derivations of results in mean field theory in these theory. We believe this

should hold in general and hope to return to this in future investigations.

We arrange the rest of the paper in the following fashion. We treat the cases of 1D

topological gravity and Hermitian one-matrix models in section 2 and section 3 respectively.

We verify the Itzykson-Zuber Ansatz in section 4. We generalize the renormalized coupling

constants to include the ghost coupling constants in section 5, and use the renormalized

ghost variables to study the special deformation of the Airy curve induced by the Witten-

Kontsevich tau-function. In section 6 we rederive the constitutive relations in genus zero

due to Dijkgraaf and Witten [9] and derive their analogues for F 1D
0 and FN

0 . In the final

section 7 we comment on the uniform behavior of the special deformations of the spectral

curves in the perspective of I-coordinates.

2 Computations in 1D topological gravity by Virasoro constraints in

renormalized coupling constants

In this section we recall the 1D topological gravity [28]. The partition function of this theory

satisfies Virasoro constraints derived in [25] and further studied in [28]. We rewrite the

Virasoro constraints in the I-coordinates. Using these constraints, we derive a recursively

way to solve free energy in I-coordinates. We also study the special deformation of the 1D

gravity in I-coordinates.

– 5 –
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2.1 Renormalized coupling constants in the 1D topological gravity

In order to understand how the I-coordinates in the Itzykson-Zuber Ansatz naturally arise,

the second named author proposed in [28] to start with the 1D topological gravity and

understand its action function from the point of view of Wilson’s renormalization theory.

The partition function of 1D gravity is the following formal Gaussian integral:

Z1D =
1√
2πλ

∫
e

1
λ2

S(x)dx, (2.1)

where the action function of the 1D topological gravity is given by:

S(x) = −1

2
x2 +

∞∑
n=0

tn
xn+1

(n+ 1)!
. (2.2)

The coefficients {tn}n>0 are the bare coupling constants of this theory. One can modify

the action by completion of square:

S =

(
t−1 +

1

2

t20
1− t1

+
∑
n≥3

tn−1
n!

(
t0

1− t1

)n)
+ x̃

∑
n≥2

tn
n!

(
t0

1− t1

)n

− 1

2

(
1−

∑
n≥0

tn+1
1

n!

(
t0

1− t1

)n)
x̃2 +

∞∑
m=3

x̃m

m!

∑
n≥0

tn+m−1
1

n!

(
t0

1− t1

)n

,

where x̃ = x − x1. A new set of coupling constants is then obtained in this fashion. As

explained in [28], by repeating this procedure for infinitely many times, one gets a limiting

set of coupling constants which are fixed by the procedure of completing the square. More

precisely, the action function has the following form:

S(x) =

∞∑
k=0

(−1)k

(k + 1)!
(Ik + δk,1)I

k+1
0 +

∞∑
n=2

(In−1 − δn,2)
(x− I0)n

n!
(2.3)

in the limit. The limiting set of coupling constants {In}n≥0 will be referred to as the

renormalized coupling constants. Here In are defined by:

Ik =
∑
n≥0

tn+k
xn∞
n!
, (2.4)

where I0 = x∞ satisfies the equation

∂S

∂x
(x∞) = 0,

or, more explicitly,

x∞ =
∑
n≥0

tn
xn∞
n!
. (2.5)

This situation is analogous to Wilson’s renormalization theory. First of all, Wilson con-

sidered the space of Hamiltonians with all possible coupling constants. In our case, we

allow our action function S to have all possible coupling constants tn, at the expense of

– 6 –
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considering only formal Gaussian integrals instead of addressing the issue of convergence

of the Gaussian integrals. Secondly, Wilson started with a theory with arbitrary coupling

constants and modified it to get a new theory of the same form with different coupling

constants. In our case, we use the completion of square to modify our coupling constants.

Thirdly, Wilson introduced the notion of a fixed point to describe the limiting theory of

the renormalization flow. In our case the situation is similar. We reach the critical point of

the action function and use the expansion there to obtain the limiting coupling constants.

Furthermore, in [28] it was proved that the transformation from {tn}n≥0 to {In}n≥0 can be

regarded as a nonlinear change of coordinates, and the space of the theory of 1D topological

gravity can be regarded as an infinite-dimensional manifold with at least two coordinate

patches given by local coordinates {tn}n≥0 and {In}n≥0 respectively.

It turns out that the analogue of the Itzykson-Zuber Ansatz also holds in 1D topological

gravity. The free energy of 1D topological gravity is defined by:

F 1D = logZ1D. (2.6)

There is a genus expansion for F 1D:

F 1D =

∞∑
g=0

λ2g−2F 1D
g , (2.7)

where {F 1D
g }g>0 are formal power series of t0, t1, · · · . By [28], if we define

deg tn = n− 1, n = 0, 1, 2, · · · (2.8)

then F 1D
g is weighted homogeneous in t0, t1, · · · with

degF 1D
g = 2g − 2, g = 0, 1, 2, · · · (2.9)

By (2.4), it is natural to define

deg In = n− 1, n = 0, 1, 2, · · · (2.10)

and then F 1D
g can be viewed as weighted homogeneous formal series of degree 2g − 2 in

I-coordinates. In [28], the second named author used two different methods, the Feynman

diagram technique and the Virasoro constraints, to get the following results:

Theorem 2.1.1. ([28, theorem 6.4 and 6.6])

F 1D
0 =

∞∑
k=0

(−1)k

(k + 1)!
(Ik + δk,1)I

k+1
0 , (2.11)

F 1D
1 =

1

2
log

1

1− I1
, (2.12)

F 1D
g =

∑
∑

26k62g−1 mk(k−1)=2g−2

〈
2g−1∏
j=2

τ
mj

j

〉1D

g

·
2g−1∏
j=2

1

mj !

(
Ij

(1− I1)
j+1
2

)mj

, g > 2, (2.13)

where the correlators are defined by:

〈τa1 · · · τan〉
1D
g =

∂nF 1D
g

∂ta1 · · · ∂tan

∣∣∣∣
t=0

. (2.14)

– 7 –
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2.2 Virasoro constraints for 1D topological gravity in I-coordinates

Let us now recall how to prove the above theorem by Virasoro constraints. First one has

the following theorem:

Theorem 2.2.1. (Virasoro constraints [28]) The partition function Z1D of 1D topological

gravity satisfies the following equations for m > −1:

L1D
m Z1D = 0, (2.15)

where

L1D
−1 =

t0
λ2

+
∑
n>1

(tn − δn,1)
∂

∂tn−1
, (2.16)

L1D
0 = 1 +

∑
n>0

(n+ 1)(tn − δn,1)
∂

∂tn
, (2.17)

L1D
m = λ2(m+ 1)!

∂

∂tm−1
+
∑
n>0

(m+ n+ 1)!

n!
(tn − δn,1)

∂

∂tm+n
, (2.18)

for m > 1. Furthermore, {L1D
m }m>−1 satisfies the following commutation relations:[

L1D
m , L1D

n

]
= (m− n)L1D

m+n, (2.19)

for m,n > −1.

Next the change of coordinates between {tn}n≥0 and {In}n≥0 induces the linear trans-

formations between { ∂
∂tn
}n≥0 and { ∂

∂In
}n≥0. The concrete expressions are given by:

Lemma 2.2.1. ([28], corollary 2.7 and proposition 2.8) The vector fields { ∂
∂Ik
}k>0 can be

expressed in terms of the vector fields { ∂
∂tk
}k>0 as follows:

∂

∂I0
=

∂

∂t0
−
∑
k>0

tk+1
∂

∂tk
, (2.20)

∂

∂Il
=

l∑
k=0

(−1)l−kI l−k0

(l − k)!

∂

∂tk
, l > 1 (2.21)

and conversely,

∂

∂tk
=

1

1− I1
Ik0
k!

(
∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

)
+
∑

16l6k

Ik−l0

(k − l)!
∂

∂Il
, k > 0 (2.22)

Using these expressions, the following formula for L1D
−1 and L1D

0 has been proved [28,

(192), (196)]:

L1D
−1 = − ∂

∂I0
+

1

λ2

∞∑
n=0

(−1)nIn0
n!

In, (2.23)

L1D
0 = −I0

∂

∂I0
− 2

∂

∂I1
+
∑
l>1

(l + 1)Il
∂

∂Il
+ 1. (2.24)

– 8 –
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From these one can derive (2.11)–(2.13). The main result of this section is that by express-

ing L1D
m for higher m in I-coordinates, one can find an algorithm to explicitly compute

F 1D
g . In this subsection we first express L1D

m in I-coordinates. The applications to the

computations of F 1D
g will be presented in the next subsection.

Theorem 2.2.2. In the I-coordinates, the Virasoro operators L1D
m (m ≥ 1) for 1D topo-

logical gravity can be rewritten as follows:

L1D
m = λ2(m+ 1)!

 1

1− I1
Im−10

(m− 1)!

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16l6m−1

Im−1−l0

(m− 1− l)!
∂

∂Il


− Im+1

0

∂

∂I0
+

m+1∑
i=1

(
m+ 1

i

)
Im+1−i
0

∞∑
p=1

(p+ i)!

p!
(Ip − δp,1)

∂

∂Ip+i−1
. (2.25)

Proof. The first term in the definition of L1D
m in (2.18) is:

∂

∂tm−1
=

1

1− I1
Im−10

(m− 1)!

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16l6m−1

Im−1−l0

(m− 1− l)!
∂

∂Il
. (2.26)

This is the first term of right hand of (2.25). By (1.14) and (2.22),∑
n>0

(m+n+1)!

n!
tn

∂

∂tm+n
(2.27)

=
∑
n>0

(m+n+1)!

n!

∑
k>0

(−1)kIk0
k!

In+k
Im+n
0

(m+n)!

1

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il


+
∑
n>0

(m+n+1)!

n!

∞∑
k=0

(−1)kIk0
k!

In+k

 ∑
16l6m+n

Im+n−l
0

(m+n−l)!
∂

∂Il


=
∑
p>0

∑
n+k=p

m+n+1

n!k!
(−1)kIm+n+k

0 In+k
1

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il


+
∑
l>1

∑
p>0

∑
n+k=p

(m+n+1)!

n!k!(m+n−l)!
(−1)kIm+n+k−l

0 In+k
∂

∂Il

=
(m+1+I1)I

m+1
0

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

l>1,p>0

l+1∑
i=0

(
m+1

i

)(
l+1

i

)
i!δp,l+1−iI

m+p−l
0 Ip

∂

∂Il

=
(m+1+I1)I

m+1
0

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑
l>1

l+1∑
i=0

(
m+1

i

)(
l+1

i

)
i!Im+1−i

0 Il+1−i
∂

∂Il
.

We have used the following identity:

∑
n+k=p

(m+ n+ 1)!

n!k!(m+ n− l)!
(−1)k =

l+1∑
i=0

(
m+ 1

i

)(
l + 1

i

)
i!δp,l+1−i. (2.28)
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This can be proved as follows:

∑
n+k=p

(m+ n+ 1)!

n!k!(m+ n− l)!
(−1)k =

∑
n+k=p

(
m+ n+ 1

l + 1

)
(l + 1)!

n!k!
(−1)k

=
∑

n+k=p

∑
i+j=l+1

(
m+ 1

i

)(
n

j

)
(l + 1)!

n!k!
(−1)k

=
∑

i+j=l+1

(
m+ 1

i

)
(l + 1)!

j!

∑
n+k=p

(−1)k

(n− j)!k!

=

l+1∑
i=0

(
m+ 1

i

)(
l + 1

i

)
i!δp,l+1−i.

By (2.22):

∂

∂tm+1
=

1

1−I1
Im+1
0

(m+1)!

∂

∂I0
+

Im+1
0

(m+1)!

∑
l>1

Il+1

1−I1
∂

∂Il
+

∑
16l6m+1

Im+1−l
0

(m+1−l)!
∂

∂Il
. (2.29)

Therefore,

∑
n>0

(m+n+1)!

n!
(tn−δn,1)

∂

∂tm+n

=
(m+1+I1)I

m+1
0

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑
l>1

l+1∑
i=0

(
m+1

i

)
(l+1)!

(l+1−i)!
Im+1−i
0 Il+1−i

∂

∂Il

− (m+2)Im+1
0

1−I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

− ∑
16l6m+1

(m+2)!

(m+1−l)!
Im+1−l
0

∂

∂Il

=−Im+1
0

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑
l>1

l∑
i=1

(
m+1

i

)
(l+1)!

(l+1−i)!
Im+1−i
0 Il+1−i

∂

∂Il

+
∑
l>1

Im+1
0 Il+1

∂

∂Il
+
∑
l>1

(
m+1

l+1

)
(l+1)!

0!
Im+1−l
0

∂

∂Il
−

∑
16l6m+1

(m+2)!

(m+1−l)!
Im+1−l
0

∂

∂Il

=−Im+1
0

∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∑
l>i

(l+1)!

(l+1−i)!
Il+1−i

∂

∂Il
−

m+1∑
l=1

(m+1)!

(m+1−l)!
(l+1)Im+1−l

0
∂

∂Il

=−Im+1
0

∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∞∑
p=1

(p+i)!

p!
Ip

∂

∂Ip+i−1
−

m+1∑
l=1

(
m+1

l

)
(l+1)!Im+1−l

0
∂

∂Il

=−Im+1
0

∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∞∑
p=1

(p+i)!

p!
(Ip−δp,1)

∂

∂Ip+i−1
.

Together with (2.22), the proof is completed.
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2.3 Computations of F 1D
g by Virasoro constraints in I-coordinates

As applications of the expressions of the Virasoro operators expressed in I-coordinates

derived in last subsection, we use them in this subsection to compute F 1D
g . The formulas

for F 1D
0 and F 1D

1 in the I-coordinate are already known. We will focus on F 1D
g (t) for g > 2.

Theorem 2.3.1. For free energy of 1D gravity of genus g > 2, the following equations hold:

∂F 1D
g

∂I1
=

1

2(1− I1)

2g−1∑
l=2

(l + 1)Il
∂F 1D

g

∂Il
, (2.30)

∂F 1D
g

∂I2
=

1

3(1− I1)

 1

1− I1

2g−3∑
l=1

Il+1

∂F 1D
g−1
∂Il

+

2g−2∑
p=2

(
p+ 2

p

)
Ip
∂F 1D

g

∂Ip+1

 , (2.31)

∂F 1D
g

∂Ik+2
=

1

(k + 3)(1− I1)

∂F 1D
g−1
∂Ik

+

2g−2−k∑
p=2

(
p+ k + 2

p

)
Ip

∂F 1D
g

∂Ik+p+1

 , (2.32)

where k = 1, 2, · · · , 2g − 3.

Proof. The Virasoro constraints for partition function

L1D
m Z1D = 0, m > 0

can be rewritten as the following equations for free energy in I-coordinate:

0 =−I0
∂F 1D

∂I0
−2

∂F 1D

∂I1
+
∑
l>1

(l+1)Il
∂F 1D

∂Il
+1, (2.33)

0 =λ2(m+1)m
Im−10

1−I1

∂F 1D

∂I0
+
∑
l>1

Il+1
∂F 1D

∂Il
+(1−I1)

∑
16l6m−1

(
m−1

l

)
l!I−l0

∂F 1D

∂Il


−Im+1

0

∂F 1D

∂I0
+

m+1∑
i=1

(
m+1

i

) ∞∑
p=1

(i+p)!

p!
(Ip−δp,1)Im−i+1

0

∂F 1D

∂Ii+p−1
. (2.34)

Recall the genus expansion of the free energy:

F 1D =

∞∑
g=0

λ2g−2F 1D
g ,

we have by (2.33):

I0
∂F 1D

0

∂I0
+ 2

∂F 1D
0

∂I1
=
∑
l>1

(l + 1)Il
∂F 1D

0

∂Il
(2.35)

2
∂F 1D

1

∂I1
=
∑
l>1

(l + 1)Il
∂F 1D

1

∂Il
+ 1 (2.36)

2
∂F 1D

g

∂I1
=
∑
l>1

(l + 1)Il
∂F 1D

g

∂Il
, g > 1 (2.37)
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and by (2.34):

0 = (m+ 1)m
Im−10

1− I1

∑
l>1

Il+1

∂F 1D
g−1
∂Il

+ (1− I1)
∑

16l6m−1

(
m− 1

l

)
l!I−l0

∂F 1D
g−1
∂Il

 (2.38)

+

m+1∑
i=1

(
m+ 1

i

) ∞∑
p=1

(i+ p)!

p!
(Ip − δp,1)Im−i+1

0

∂F 1D
g

∂Ii+p−1
,

for m > 1, g > 2. Comparing the coefficients of Ik0 in (2.38) for k = m + 1,m − 1,m −
2, · · · , 0, we have:

0 =
∑
p>1

(p+ 1)(Ip − δp,1)
∂F 1D

g

∂Ip
(2.39)

0 =
∑
l>1

Il+1

1− I1
∂F 1D

g−1
∂Il

+
∑
p>1

(
p+ 2

2

)
(Ip − δp,1)

∂F 1D
g

∂Ip+1
(2.40)

0 =
∂F 1D

g−1
∂Il

+
∑
p>1

(
p+ l + 2

l + 2

)
(Ip − δp,1)

∂F 1D
g

∂Ip+l+1
. (2.41)

By (2.13), F 1D
g depends only on I1, I2, · · · , I2g−1, this completes the proof.

Remark 2.3.1. Theorem 2.3.1 can be derived in another way: one can firstly rewrite L1D
−1

in I-coordinates, this will give F 1D
0 and show that F 1D

g is independent of I0 for g > 0. To

solve F 1D
g for g > 0, one can let I0 = 0, in this case, t0 = 0,

tk = Ik, k > 0 (2.42)

and

∂

∂t0
=

1

1− I1
∂

∂I0
+
∑
l>1

Il+1

1− I1
∂

∂Il
,

∂

∂tk
=

∂

∂Ik
, k > 0

(2.43)

hence one can rewrite {L1D
m }m>0 in I-coordinates in a simpler way.

Now we explain how to use theorem 2.3.1 to calculate free energies of higher genus.

By (2.13), F 1D
g depends only on I1, . . . , I2g−1 for g > 2. By (2.32), we have:

∂F 1D
g

∂I2g−1
=

1

2g(1− I1)

(
∂F 1D

g−1
∂I2g−3

)
, (2.44)

∂F 1D
g

∂I2g−2
=

1

(2g − 1)(1− I1)

(
∂F 1D

g−1
∂I2g−4

+

(
2g

2

)
I2
∂F 1D

g

∂I2g−1

)
, (2.45)

...

∂F 1D
g

∂I3
=

1

4(1− I1)

∂F 1D
g−1
∂I1

+

2g−3∑
p=1

(
p+ 3

p

)
Ip
∂F 1D

g

∂Ip+2

 . (2.46)

– 12 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
5

For
∂F 1D

g

∂I2
and

∂F 1D
g

∂I1
we have by (2.30) and (2.31):

∂F 1D
g

∂I2
=

1

3(1− I1)

 1

1− I1

2g−3∑
l=1

Il+1

∂F 1D
g−1
∂Il

+

2g−2∑
p=2

(
p+ 2

p

)
Ip
∂F 1D

g

∂Ip+1

 , (2.47)

∂F 1D
g

∂I1
=

1

2(1− I1)

2g−1∑
l=2

(l + 1)Il
∂F 1D

g

∂Il
. (2.48)

By equations (2.44)–(2.48), we can solve
{

∂F 1D
g

∂Ik

}
g>2,k=2g−1,2g−2,··· ,1

recursively, given the

computation for F 1D
g−1. Since F 1D

g is weighted homogeneous of degree 2g − 2 in Ik with

deg Ik = k − 1, we have

F 1D
g =

1

2g − 2

2g−1∑
k=1

(k − 1)Ik
∂F 1D

g

∂Ik
. (2.49)

Example 2.3.1. Let us compute F 1D
2 by the above procedure. We have

∂F 1D
2

∂I3
=

1

4(1− I1)

(
∂F 1D

1

∂I1

)
=

1

8(1− I1)2
, (2.50)

∂F 1D
2

∂I2
=

1

3(1− I1)

(
1

1− I1
I2
∂F 1D

1

∂I1
+

(
4

2

)
I2
∂F 1D

2

∂I3

)
=

5

12

I2
(1− I1)3

, (2.51)

∂F 1D
2

∂I1
=

1

2(1− I1)

(
3I2

∂F 1D
2

∂I2
+ 4I3

∂F 1D
2

∂I3

)
=

5

8

I22
(1− I1)4

+
I3

4(1− I1)3
, (2.52)

therefore

F 1D
2 =

1

2

(
I2
∂F 1D

2

∂I2
+ 2I3

∂F 1D
2

∂I3

)
=

5

24

I22
(1− I1)3

+
1

8

I3
(1− I1)2

. (2.53)

Similarly, we have with the help of a computer program:

F 1D
3 =

15

48

I42
(1−I1)6

+
25

48

I22I3
(1−I1)6

+
1

12

I23
(1−I1)4

+
7

48

I2I4
(1−I1)4

+
1

48

I5
(1−I1)3

, (2.54)

F 1D
4 =

1105

1152

I62
(1−I1)9

+
985

384

I42I3
(1−I1)8

+
445

288

I22I
2
3

(1−I1)7
+

11

96

I33
(1−I1)6

+
161

192

I32I4
(1−I1)7

+
7

12

I2I3I4
(1−I1)6

(2.55)

+
21

640

I24
(1−I1)5

+
113

576

I22I5
(1−I1)6

+
5

96

I3I5
(1−I1)5

+
1

32

I2I6
(1−I1)5

+
1

384

I7
(1−I1)4

.

2.4 Special deformation of the spectral curve of 1D topological gravity in

I-coordinates

In [28], the second named author defined the special deformation of 1D topological

gravity by:

y1D =
1√
2

∑
n>0

tn − δn,1
n!

zn +

√
2

z
+
√

2
∑
n>1

n!

zn+1

∂F 1D
0

∂tn−1
. (2.56)

This is a deformation of the Catalan curve [31]. Now we rewrite it in I-coordinates. We

get the following result:
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Theorem 2.4.1. In the I-coordinates, the special deformation of the spectral curve of 1D

topological gravity can be written as:

y1D =

√
2

z − I0
+

1√
2

∑
n>1

In − δn,1
n!

(z − I0)n. (2.57)

Proof. This is just the N = 1 case of [31, theorem 2.1].

3 Computations in Hermitian one-matrix models by the renormalized

coupling constants

In this section we recall the results on Hermitian one-matrix models in [29–31]. The

partition function of this theory satisfies Virasoro constraints. Similar to the case of 1D

topological gravity, we rewrite the Virasoro constraints for Hermitian one-matrix models

in I-coordinates and use them to derive the explicit formulas for the free energy in I-

coordinates.

3.1 Free energy functions of the Hermitian one-matrix models

For standard references on matrix models, see e.g. [7, 23]. Here we follow the notations

in [29–31]. The partition function of the Hermitian N ×N -matrix model is defined by the

formal Gaussian integral:

ZN =

∫
HN dM exp

(
1
gs
tr
(
−1

2M
2 +

∑∞
n=0 tn

Mn+1

(n+1)!

))
∫
HN dM exp

(
− 1

2gs
trM2

) , (3.1)

where HN is the space of Hermitian N ×N -matrices. One can see that for N = 1,

ZN=1 = Z1D. (3.2)

The following result is well known, for the proof, one can see [7, 23].

Proposition 3.1.1. For the Hermitian one-matrix integrals, one has:∫
HN

dM exp

(
1

gs
trV (M)

)
=

∫
RN

∏
16i<j6N

(λi − λj)2 exp

(
1

gs

N∑
i=1

V (λi)

)
N∏
i=1

dλi, (3.3)

where λ1, λ2, · · · , λN are eigenvalues of M .

By taking V (M) = −1
2M

2 +
∑∞

n=0 tn
Mn+1

(n+1)! in this proposition, we get the following

analogue of the renormalization of 1D topological gravity:

Proposition 3.1.2. For the Hermitian one-matrix integrals, one has:∫
HN

dM exp

(
1

gs
tr

(
−1

2
M2+

∞∑
n=0

tn
Mn+1

(n+1)!

))
(3.4)

= exp

(
N

gs

∞∑
k=0

(−1)k

(k+1)!
(Ik+δk,1)I

k+1
0

)
·
∫
HN

dM exp

(
1

gs
tr

(
−1

2
M2+

∞∑
n=1

In
Mn+1

(n+1)!

))
.
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Proof. By 3.1.1 and renormalization of the action function of 1D gravity, one has:

∫
HN

dM exp

(
1

gs
tr

(
−1

2
M2+

∞∑
n=0

tn
Mn+1

(n+1)!

))

=

∫
RN

∏
16i<j6N

(λi−λj)2 exp

(
1

gs

N∑
i=1

(
−1

2
λ2i +

∞∑
n=0

tn
λn+1
i

(n+1)!

))
N∏
i=1

dλi

=

∫
RN

∏
16i<j6N

(λi−I0−(λj−I0))2 exp

(
1

gs

N∑
i=1

∞∑
k=0

(−1)k

(k+1)!
(Ik+δk,1)I

k+1
0

)

·exp

(
1

gs

N∑
i=1

(
−1

2
(λi−I0)2+

∞∑
n=1

In
(λi−I0)n+1

(n+1)!

))
N∏
i=1

dλi

= exp

(
N

gs

∞∑
k=0

(−1)k

(k+1)!
(Ik+δk,1)I

k+1
0

)

·
∫
RN

∏
16i<j6N

(λi−λj)2 exp

(
1

gs

N∑
i=1

(
−1

2
λ2i +

∞∑
n=1

In
λn+1
i

(n+1)!

))
N∏
i=1

dλi

= exp

(
N

gs

∞∑
k=0

(−1)k

(k+1)!
(Ik+δk,1)I

k+1
0

)
·
∫
HN

dM exp

(
1

gs
tr

(
−1

2
M2+

∞∑
n=1

In
Mn+1

(n+1)!

))
.

The free energy FN of Hermitian one-matrix models is defined by:

FN := logZN . (3.5)

There is a genus expansions for FN :

FN =

∞∑
g=0

gg−1s FN
g , (3.6)

where {FN
g }g>0 are formal power series of t0, t1, · · · . This is called the thin genus expansion

in [30]. By a result in [30], if we define

deg tn = n− 1, n = 0, 1, 2, · · · (3.7)

then FN
g is weighted homogeneous in t0, t1, · · · with

degFN
g = 2g − 2, g = 0, 1, 2, · · · (3.8)

The following analogue of the Itzykson-Zuber Ansatz and theorem 2.1.1 is proved in [30]:
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Theorem 3.1.1. ([30, theorem 5.1 and 5.2])

FN
0 = N

∞∑
k=0

(−1)k

(k + 1)!
(Ik + δk,1)I

k+1
0 , (3.9)

FN
1 =

N2

2
log

1

1− I1
, (3.10)

FN
g =

∑
∑

26k62g−1 mk(k−1)=2g−2

〈
2g−1∏
j=2

τ
mj

j

〉N

g

·
2g−1∏
j=2

1

mj !

(
Ij

(1− I1)
j+1
2

)mj

, g > 2 (3.11)

where the correlators are defined by:

〈τa1 · · · τan〉
N
g =

∂nFN
g

∂ta1 · · · ∂tan

∣∣∣∣
t=0

. (3.12)

In the literature another type of genus expansion is used. By introducing the ’t Hooft

coupling constant

t = Ngs, (3.13)

FN can be rewritten as:

FN =

∞∑
g=0

g2g−2s F t
g , (3.14)

where {F t
g}g>0 are formal power series of t0, t1, · · · and t. This is called the fat genus

expansion in [30]. We will study both thin and fat genus expansions for the free energy

function of Hermitian one-matrix model by the correspondence Virasoro constraints.

3.2 Virasoro constraints of Hermitian one-matrix model

See the Introduction for more references on Virasoro constraints of Hermitian one-matrix

models.

Theorem 3.2.1. (Virasoro constraints for thin genus expansion [30]) The partition func-

tion ZN of Hermitian one-matrix model satisfies the following equations for m > −1:

LN
mZ

N = 0, (3.15)

where

LN
−1 =

Nt0
gs

+
∑
n>1

(tn−δn,1)
∂

∂tn−1
, (3.16)

LN
0 =N2+

∑
n>0

(n+1)(tn−δn,1)
∂

∂tn
, (3.17)

LN
m = 2Ngsm!

∂

∂tm−1
+
∑
n>0

(m+n+1)!

n!
(tn−δn,1)

∂

∂tm+n
+g2s

m−1∑
k=1

k!(m−k)!
∂

∂tk−1

∂

∂tm−k−1
.

(3.18)

for m > 1. Furthermore, {LN
m}m>−1 satisfies the following commutation relations:[

LN
m, L

N
n

]
= (m− n)LN

m+n, (3.19)

for m,n > −1.
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Theorem 3.2.2. (Virasoro constraints for fat genus expansion [30]) The partition function

ZN of Hermitian one-matrix model with t = Ngs satisfies the following equations for

m > −1:

Lt
mZ

N = 0, (3.20)

where

Lt
−1 =

tt0
g2s

+
∑
n>1

(tn−δn,1)
∂

∂tn−1
, (3.21)

Lt
0 =

t2

g2s
+
∑
n>0

(n+1)(tn−δn,1)
∂

∂tn
, (3.22)

Lt
m = 2tm!

∂

∂tm−1
+
∑
n>0

(m+n+1)!

n!
(tn−δn,1)

∂

∂tm+n
+g2s

m−1∑
k=1

k!(m−k)!
∂

∂tk−1

∂

∂tm−k−1
.

(3.23)

for m > 1. Furthermore, {Lt
m}m>−1 satisfies the following commutation relations:[

Lt
m, L

t
n

]
= (m− n)Lt

m+n, (3.24)

for m,n > −1.

Similarly as in the 1D topological gravity theory, one can rewrite the Virasoro operators

in I-coordinates:

Theorem 3.2.3. The Virasoro operators for thin genus expansion can be written in

I-coordinates as follows:

LN
−1 =− ∂

∂I0
+
N

gs

∞∑
n=0

(−1)nIn0
n!

In, (3.25)

LN
0 =−I0

∂

∂I0
−2

∂

∂I1
+
∑
l>1

(l+1)Il
∂

∂Il
+N2, (3.26)

LN
m = 2Ngsm!

 1

1−I1
Im−10

(m−1)!
dX+

∑
16l6m−1

Im−1−l0

(m−1−l)!
∂

∂Il

 (3.27)

−Im+1
0

∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∞∑
p=1

(p+i)!

p!
(Ip−δp,1)

∂

∂Ip+i−1

+g2s

(
m+1

3

)(
(m−2)Im−30

1−I1
dX

∂

∂I1
+

Im−20

(1−I1)2
d2X+

(
(m−2)Im−30

(1−I1)2
+
Im−20 I2
(1−I1)3

)
dX

)
+2g2s

m−2∑
j=2

(
m+1

j+3

)
(j+1)!

Im−2−j0

1−I1

(
∂

∂Ij−1
+dX

∂

∂Ij

)

+g2s

m−2∑
i=1

m−2−i∑
j=1

(
m+1

i+j+3

)
(i+1)!(j+1)!Im−2−i−j0

∂

∂Ii

∂

∂Ij
,

where

dX =
∂

∂I0
+
∑
l>1

Il+1
∂

∂Il
. (3.28)
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Moreover, by taking N = t
gs

, one get the Virasoro operators for fat genus expansion in

I-coordinates:

Lt
−1 =− ∂

∂I0
+
t

g2s

∞∑
n=0

(−1)nIn0
n!

In, (3.29)

Lt
0 =−I0

∂

∂I0
−2

∂

∂I1
+
∑
l>1

(l+1)Il
∂

∂Il
+
t2

g2s
, (3.30)

Lt
m = 2tm!

 1

1−I1
Im−10

(m−1)!
dX+

∑
16l6m−1

Im−1−l0

(m−1−l)!
∂

∂Il

 (3.31)

−Im+1
0

∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∞∑
p=1

(p+i)!

p!
(Ip−δp,1)

∂

∂Ip+i−1

+g2s

(
m+1

3

)(
(m−2)Im−30

1−I1
dX

∂

∂I1
+

Im−20

(1−I1)2
d2X+

(
(m−2)Im−30

(1−I1)2
+
Im−20 I2
(1−I1)3

)
dX

)
+2g2s

m−2∑
j=2

(
m+1

j+3

)
(j+1)!

Im−2−j0

1−I1

(
∂

∂Ij−1
+dX

∂

∂Ij

)

+g2s

m−2∑
i=1

m−2−i∑
j=1

(
m+1

i+j+3

)
(i+1)!(j+1)!Im−2−i−j0

∂

∂Ii

∂

∂Ij
,

Proof. We have proved the following identity in the proof of theorem 2.2.2:

∑
n>0

(m+n+1)!

n!
(tn−δn,1)

∂

∂tm+n
=−Im+1

0
∂

∂I0
+

m+1∑
i=1

(
m+1

i

)
Im+1−i
0

∞∑
p=1

(p+i)!

p!
(Ip−δp,1)

∂

∂Ip+i−1
.

(3.32)

Now we rewrite
∑m−1

k=1 k!(m− k)! ∂
∂tk−1

∂
∂tm−k−1

in I-coordinates:

m−1∑
k=1

k!(m− k)!
∂

∂tk−1

∂

∂tm−k−1

=

m−1∑
k=1

k!(m− k)!

 1

1− I1
Ik−10

(k − 1)!

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16i6k−1

Ik−1−i0

(k − 1− i)!
∂

∂Ii


·

 1

1− I1
Im−k−10

(m− k − 1)!

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16j6m−k−1

Im−k−1−j0

(m− k − 1− j)!
∂

∂Ij


=

m−1∑
k=1

kIk−10

1− I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16i6k−1

k!Ik−1−i0

(k − 1− i)!
∂

∂Ii


·

(m− k)Im−k−10

1− I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

+
∑

16j6m−k−1

(m− k)!Im−k−1−j0

(m− k − 1− j)!
∂

∂Ij
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=

m−1∑
k=1

k(m− k)
Im−20

(1− I1)2

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

2

+

m−1∑
k=1

∑
16j6m−k−1

k(m− k)!

(m− k − 1− j)!
Im−2−j0

1− I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 ∂

∂Ij

+
m−1∑
k=1

∑
16i6k−1

(m− k)k!

(k − 1− i)!
Im−2−i0

1− I1
∂

∂Ii

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il


+

m−1∑
k=1

k−1∑
i=1

m−k−1∑
j=1

(m− k)!k!

(k − 1− i)!(m− k − 1− j)!
Im−2−i−j0

∂

∂Ii

∂

∂Ij

+
m−1∑
k=1

k(m− k)
Im−30

(1− I1)3
((m− k − 1)(1− I1) + I0I2)

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il


+

m−1∑
k=1

∑
16j6m−k−1

k(m− k)!

(m− k − 2− j)!
Im−3−j0

1− I1
∂

∂Ij

+

m−1∑
k=2

(m− k)k!

(k − 2)!

Im−30

(1− I1)2

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 .

Denote these summations by (a)-(g) respectively, then using the following identity:

m−b∑
k=a

k!(m− k)!

(k − a)!(m− k − b)!
=

(
m+ 1

a+ b+ 1

)
a!b!, (3.33)

we have:

(a) =

(
m+ 1

3

)
Im−20

(1− I1)2

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

2

, (3.34)

(b) =

m−2∑
j=1

(
m+ 1

j + 3

)
Im−2−j0

1

1− I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 (j + 1)!
∂

∂Ij
, (3.35)

(c) =

m−2∑
i=1

(
m+ 1

i+ 3

)
Im−2−i0

1

1− I1
(i+ 1)!

∂

∂Ii

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 (3.36)

=
m−2∑
i=1

(
m+ 1

i+ 3

)
Im−2−i0

1

1− I1

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 (i+ 1)!
∂

∂Ii

+

m−2∑
i=2

(
m+ 1

i+ 3

)
Im−2−i0

1

1− I1
(i+ 1)!

∂

∂Ii−1
,

(d) =

m−2∑
i=1

m−2−i∑
j=1

m−j−1∑
k=i+1

(m− k)!k!

(k − 1− i)!(m− k − 1− j)!
Im−2−i−j0

∂

∂Ii

∂

∂Ij
(3.37)

=

m−2∑
i=1

m−2−i∑
j=1

(
m+ 1

i+ j + 3

)
Im−2−i−j0 (i+ 1)!(j + 1)!

∂

∂Ii

∂

∂Ij
,
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(e) =

(
2

(
m+ 1

4

)
Im−30

(1− I1)2
+

(
m+ 1

3

)
Im−20 I2

(1− I1)3

) ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 , (3.38)

(f) =

m−3∑
j=1

(
m+ 1

j + 4

)
Im−3−j0

1− I1
(j + 2)!

∂

∂Ij
, (3.39)

(g) = 2

(
m+ 1

4

)
Im−30

(1− I1)2

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

 . (3.40)

Plus all these equations together, we complete the proof.

3.3 Computations of FN
g by Virasoro constraints for thin genus expansion in

I-coordinates

As applications of the expressions of the Virasoro operators expressed in I-coordinates

derived in last subsection, we use them in this subsection to compute FN
g .

Theorem 3.3.1. For the free energies {FN
g }g>2 of the Hermitian one-matrix model, the

following equations hold:

∂FN
g

∂I1
=

1

2(1−I1)

2g−1∑
n=2

(n+1)In
∂FN

g

∂In
, (3.41)

∂FN
g

∂I2
=

N

3(1−I1)
1

1−I1
dX
(
FN
g−1
)
+

2g−2∑
n=2

(n+2)!

3!n!

In
1−I1

∂FN
g

∂In+1
, (3.42)

∂FN
g

∂I3
=

N

6(1−I1)
∂FN

g−1
∂I1

+

2g−3∑
n=2

(n+3)!

4!n!

In
1−I1

∂FN
g

∂I2+n
+

1

4!(1−I1)3
g−2∑
g1=1

dX
(
FN
g1

)
dX
(
FN
g−1−g1

)
+

1

4!(1−I1)

(
1

1−I1
dX

)2 (
FN
g−2
)
+δg,2

N

4!(1−I1)2
, (3.43)

∂FN
g

∂I4
=

N

10(1−I1)
∂FN

g−1
∂I2

+

2g−4∑
n=2

(n+4)!

5!n!

In
1−I1

∂FN
g

∂In+3
+

1

30(1−I1)2
g−2∑
g1=1

∂FN
g1

∂I1
dX
(
FN
g−1−g1

)
+

1

60(1−I1)3

(
dX
(
FN
g−2
)
+2(1−I1)dX

(
∂FN

g−2
∂I1

))
, (3.44)

∂FN
g

∂Ip+4
=

2N(p+3)!

(p+5)!(1−I1)
∂FN

g−1
∂Ip+2

+

2g−4−p∑
n=2

(p+n+4)!

n!(p+5)!

In
1−I1

∂FN
g

∂Ip+n+3
(3.45)

+

g−2∑
g1=1

p+1∑
k=2

k!(p+3−k)!

(p+5)!(1−I1)
∂FN

g1

∂Ik−1

∂FN
g−1−g1

∂Ip+2−k
+

2

(1−I1)2
(p+2)!

(p+5)!

g−2∑
g1=1

∂FN
g1

∂Ip+1
dX
(
FN
g−1−g1

)
+

p+1∑
k=2

k!(p+3−k)!

(p+5)!(1−I1)
∂2FN

g−2
∂Ik−1∂Ip+2−k

+
1

(1−I1)2
(p+2)!

(p+5)!

(
∂FN

g−2
∂Ip

+2dX

(
∂FN

g−2
∂Ip+1

))
,

where p = 1, 2, · · · , 2g − 5.
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Proof. The first equation has been proved in [30]. For the rest equations, we first rewrite

Virasoro constraints for partition function into Virasoro constraints for free energy:

0 = (ZN )−1LN
mZ

N = 2Ngsm!
∂FN

∂tm−1
+
∑
n>0

(m+n+1)!

n!
(tn−δn,1)

∂FN

∂tm+n
(3.46)

+g2s

m−1∑
k=1

k!(m−k)!
∂FN

∂tk−1

∂FN

∂tm−k−1
+g2s

m−1∑
k=1

k!(m−k)!
∂2FN

∂tk−1∂tm−k−1
,

Let

F̃N =
∑
g>1

gg−1s FN
g , (3.47)

then F̃N does not depend on I0, and

0 = 2Nm!
∂FN

0

∂tm−1
+

1

gs

∑
n>0

(m+ n+ 1)!

n!
(tn − δn,1)

∂FN
0

∂tm+n
+

m−1∑
k=1

k!(m− k)!
∂FN

0

∂tk−1

∂FN
0

∂tm−k−1

+ 2gs

m−1∑
k=1

k!(m− k)!
∂FN

0

∂tk−1

∂F̃N

∂tm−k−1
+ gs

m−1∑
k=1

k!(m− k)!
∂2FN

0

∂tk−1∂tm−k−1
,

+ 2Ngsm!
∂F̃N

∂tm−1
+
∑
n>0

(m+ n+ 1)!

n!
(tn − δn,1)

∂F̃N

∂tm+n

+ g2s

m−1∑
k=1

k!(m− k)!
∂F̃N

∂tk−1

∂F̃N

∂tm−k−1
+ g2s

m−1∑
k=1

k!(m− k)!
∂2F̃N

∂tk−1∂tm−k−1
. (3.48)

Now we let I0 = 0, under this condition, one has:

t0 =0,

tk =Ik, k > 0

and

∂

∂t0
=

1

1− I1
∂

∂I0
+
∑
l>1

Il+1

1− I1
∂

∂Il
, (3.49)

∂

∂tk
=

∂

∂Ik
, k > 0 (3.50)

By (3.9)

∂FN
0

∂I0
= Nt0, (3.51)

∂FN
0

∂Ik
= N

(−1)kIk+1
0

(k + 1)!
, k > 1. (3.52)

So one has:
∂FN

0

∂I0

∣∣∣∣
I0=0

=
∂FN

0

∂Ik

∣∣∣∣
I0=0

= 0, (3.53)
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and therefore,
∂FN

0

∂t0

∣∣∣∣
I0=0

=
∂FN

0

∂tk

∣∣∣∣
I0=0

= 0. (3.54)

Moreover,

∂2FN
0

∂I20
= N(1− t1), (3.55)

∂2FN
0

∂I0∂Ik
= N

(−1)kIk0
k!

, k > 1 (3.56)

∂2FN
0

∂Ik∂Il
= 0, k, l > 1. (3.57)

When restrict I0 = 0, these equations give

∂2FN
0

∂I20

∣∣∣∣
I0=0

= N(1− I1), (3.58)

∂2FN
0

∂I0∂Ik

∣∣∣∣
I0=0

=
∂2FN

0

∂Ik∂Il

∣∣∣∣
I0=0

= 0, k, l > 1. (3.59)

Therefore

∂2FN0
∂t20

∣∣∣∣
I0=0

=

 1

1−I1

∂

∂I0
+
∑
l>1

Il+1

1−I1

∂

∂Il

2

(FN
0 )

∣∣∣∣
I0=0

(3.60)

=
1

(1−I1)2

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

2

(FN
0 )

∣∣∣∣
I0=0

+
I2

(1−I1)3

 ∂

∂I0
+
∑
l>1

Il+1
∂

∂Il

(FN
0 )

∣∣∣∣
I0=0

=
1

(1−I1)2
∂2FN0
∂I20

∣∣∣∣
I0=0

=
N

1−I1
,

∂2FN0
∂t0∂tk

∣∣∣∣
I0=0

=

 1

1−I1

∂

∂I0
+
∑
l>1

Il+1

1−I1

∂

∂Il

(∂FN0
∂Ik

)∣∣∣∣
I0=0

(3.61)

=

 1

1−I1

∂

∂I0
+
∑
l>1

Il+1

1−I1

∂

∂Il

(N (−1)kIk+1
0

(k+1)!

)∣∣∣∣
I0=0

= 0 k> 1,

∂2FN0
∂tk∂tl

∣∣∣∣
I0=0

=
∂2FN0
∂Ik∂Il

∣∣∣∣
I0=0

= 0, k, l> 1. (3.62)

Hence (3.48) becomes

0 = δm,2
Ngs

1− I1
+ 2Ngsm!

∂F̃N

∂tm−1
+
∑
n>1

(m+ n+ 1)!

n!
(tn − δn,1)

∂F̃N

∂tm+n
(3.63)

+ g2s

m−1∑
k=1

k!(m− k)!
∂F̃N

∂tk−1

∂F̃N

∂tm−k−1
+ g2s

m−1∑
k=1

k!(m− k)!
∂2F̃N

∂tk−1∂tm−k−1
,
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or

0 = δm,2δg,1
N

1− I1
+ 2Nm!

∂FN
g

∂tm−1
+
∑
n>0

(m+ n+ 1)!

n!
(tn − δn,1)

∂FN
g+1

∂tm+n
(3.64)

+
∑

g1+g2=g

m−1∑
k=1

k!(m− k)!
∂FN

g1

∂tk−1

∂FN
g2

∂tm−k−1
+

m−1∑
k=1

k!(m− k)!
∂2FN

g−1
∂tk−1∂tm−k−1

,

with

∂

∂t0
=

1

1− I1
dX , (3.65)

∂

∂tk
=

∂

∂Ik
, k > 0 (3.66)

for m = 1:

0 = 2N
∑
l>1

Il+1

1− I1
∂FN

g

∂Il
+
∑
n>1

(n+ 2)!

n!
(In − δn,1)

∂FN
g+1

∂In+1
, (3.67)

for m = 2:

0 = 4N
∂FN

g

∂I1
+
∑
n>1

(n+ 3)!

n!
(In − δn,1)

∂FN
g+1

∂I2+n
+

g−1∑
g1=1

∑
l>1

Il+1

1− I1
∂FN

g1

∂Il

∑
k>1

Ik+1

1− I1
∂FN

g−g1
∂Ik

+

∑
l>1

Il+1

1− I1
∂

∂Il

2 (
FN
g−1
)

+ δg,1
N

1− I1
,

(3.68)

for m = 3:

0 = 12N
∂FN

g

∂I2
+
∑
n>0

(n+ 4)!

n!
(In − δn,1)

∂FN
g+1

∂I3+n
+ 4

g−1∑
g1=1

∂FN
g1

∂I1

∑
l>1

Il+1

1− I1
∂FN

g−g1
∂Il

+ 4
∑
l>1

Il+1

1− I1
∂2FN

g−1
∂Il∂I1

+ 2
∑
l>1

Il+1

(1− I1)2
∂FN

g−1
∂Il

,

(3.69)

for m > 4:

0 = 2Nm!
∂FN

g

∂Im−1
+
∑
n>0

(m+n+1)!

n!
(In−δn,1)

∂FN
g+1

∂Im+n
+

g−1∑
g1=1

m−2∑
k=2

k!
∂FN

g1

∂Ik−1
(m−k)!

∂FN
g−g1

∂Im−k−1

+2

g−1∑
g1=1

(m−1)!
∂FN

g1

∂Im−2

∑
l>1

Il+1

1−I1
∂FN

g−g1
∂Il

+

m−2∑
k=2

k!(m−k)!
∂2FN

g−1
∂Ik−1∂Im−k−1

+2(m−1)!
∑
l>1

Il+1

1−I1
∂2FN

g−1
∂Il∂Im−2

+(m−1)!
1

1−I1
∂FN

g−1
∂Im−3

. (3.70)

The proof is completed.
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Now we explain how to use theorem 3.3.1 to calculate free energies of higher genus.

By (3.11), FN
g depends only on I1, . . . , I2g−1 for g > 2. By (3.45), we have:

∂FNg
∂I2g−1

=
2N(2g−2)!

(2g)!(1−I1)

∂FNg−1

∂I2g−3
+

1

(1−I1)2
(2g−3)!

(2g)!

∂FNg−2

∂I2g−5
+

g−2∑
g1=1

2g−4∑
k=2

k!(2g−2−k)!

(2g)!(1−I1)

∂FNg1
∂Ik−1

∂FNg−1−g1
∂I2g−3−k

(3.71)

+
2(2g−3)!

(2g)!(1−I1)2

g−2∑
g1=1

∂FNg1
∂I2g−4

dX
(
FN
g−1−g1

)
+

2g−4∑
k=2

k!(2g−2−k)!

(2g)!(1−I1)

∂2FNg−2

∂Ik−1∂I2g−3−k
,

∂FNg
∂I2g−2

=
2N(2g−3)!

(2g−1)!(1−I1)

∂FNg−1

∂I2g−4
+

(2g)!

2!(2g−1)!

I2
1−I1

∂FNg
∂I2g−1

(3.72)

+

g−2∑
g1=1

2g−5∑
k=2

k!(2g−3−k)!

(2g−1)!(1−I1)

∂FNg1
∂Ik−1

∂FNg−1−g1
∂I2g−4−k

+
2

(1−I1)2
(2g−4)!

(2g−1)!

∂FNg−2

∂I2g−5
dX
(
FN
1

)
+

2g−5∑
k=2

k!(2g−3−k)!

(2g−1)!(1−I1)

∂2FNg−2

∂Ik−1∂I2g−4−k
+

1

(1−I1)2
(2g−4)!

(2g−1)!

(
∂FNg−2

∂I2g−6
+2dX

(
∂FNg−2

∂I2g−5

))
,

...

∂FNg
∂I5

=
N

15(1−I1)

∂FNg−1

∂I3
+

2g−5∑
n=2

(n+5)!

6!n!

In
1−I1

∂FNg
∂In+4

(3.73)

+

g−2∑
g1=1

1

180(1−I1)

∂FNg1
∂I1

∂FNg−1−g1
∂I1

+
1

60(1−I1)2

g−2∑
g1=1

∂FNg1
∂I2

dX
(
FN
g−1−g1

)
+

1

180(1−I1)

∂2FNg−2

∂I1∂I1
+

1

120(1−I1)2

(
∂FNg−2

∂I1
+2dX

(
∂FNg−2

∂I2

))
.

For
∂FNg
∂Ii

, i = 4, 3, 2, 1, we have by (3.41)–(3.44):

∂FN
g

∂I4
=

N

10(1−I1)
∂FN

g−1
∂I2

+

2g−4∑
n=2

(n+4)!

5!n!

In
1−I1

∂FN
g

∂In+3
+

1

30(1−I1)2
g−2∑
g1=1

∂FN
g1

∂I1
dX
(
FN
g−1−g1

)
+

1

60(1−I1)3

(
dX
(
FN
g−2
)
+2(1−I1)dX

(
∂FN

g−2
∂I1

))
, (3.74)

∂FN
g

∂I3
=

N

6(1−I1)
∂FN

g−1
∂I1

+

2g−3∑
n=2

(n+3)!

4!n!

In
1−I1

∂FN
g

∂I2+n
+

1

4!(1−I1)3
g−2∑
g1=1

dX
(
FN
g1

)
dX
(
FN
g−1−g1

)
+

1

4!(1−I1)

(
1

1−I1
dX

)2 (
FN
g−2
)
+δg,2

N

4!(1−I1)2
, (3.75)

∂FN
g

∂I2
=

N

3(1−I1)
1

1−I1
dX
(
FN
g−1
)
+

2g−2∑
n=2

(n+2)!

3!n!

In
1−I1

∂FN
g

∂In+1
, (3.76)

∂FN
g

∂I1
=

1

2(1−I1)

2g−1∑
n=2

(n+1)In
∂FN

g

∂In
. (3.77)
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By equations (3.71)–(3.77), we can solve
{

∂FNg
∂Ik

}
g>2,k=2g−1,2g−2,··· ,1

recursively, given the

computation for FN
k<g. Since FN

g is weighted homogeneous of degree 2g − 2 in Ik with

deg Ik = k − 1, we have

FN
g =

1

2g − 2

2g−1∑
k=1

(k − 1)Ik
∂FN

g

∂Ik
. (3.78)

Example 3.3.1. Let us compute FN
2 by the above procedure. We have

∂FN
2

∂I3
=

N

6(1− I1)
∂FN

1

∂I1
+

N

4!(1− I1)2
=

N + 2N3

24(1− I1)2
, (3.79)

∂FN
2

∂I2
=

N

3(1− I1)
1

1− I1
dX
(
FN
1

)
+ 2

I2
1− I1

∂FN
2

∂I3
=

(N + 4N3)I2
12(1− I1)3

, (3.80)

∂FN
2

∂I1
=

1

2(1− I1)

3∑
l=2

(l + 1)Il
∂FN

2

∂Il
=

(N + 4N3)I22
8(1− I1)4

+
(N + 2N3)I3
12(1− I1)3

, (3.81)

therefore

FN
2 =

1

2

(
I2
∂FN

2

∂I2
+ 2I3

∂FN
2

∂I3

)
=

(N + 4N3)I22
24(1− I1)3

+
(N + 2N3)I3
24(1− I1)2

. (3.82)

Similarly, we have with the help of a computer program:

FN
3 =

(
216N4 + 189N2

)
Î42 +

(
216N4 + 234N2

)
Î22 Î3 +

(
18N4 + 30N2

)
Î23 (3.83)

+
(
45N4 + 60N2

)
Î2Î4 +

(
5N4 + 10N2

)
Î5,

FN
4 =

(
13608N5 + 26892N3 +

8505

2
N

)
Î62 +

(
22032N5 + 49248N3 + 8505N

)
Î42 Î3

+
(
7776N5 + 20304N3 + 3960N

)
Î22 Î

2
3 +

(
288N5 + 1056N3 + 240N

)
Î33

+
(
5400N5 + 13770N3 + 2565N

)
Î32 Î4 +

(
2160N5 + 6480N3 + 1440N

)
Î2Î3Î4

+

(
90N5 + 300N3 +

165

2
N

)
Î24 +

(
1080N5 + 3330N3 + 675N

)
Î22 Î5

+
(
144N5 + 600N3 + 156N

)
Î3Î5 +

(
168N5 + 630N3 + 147N

)
Î2Î6

+
(
14N5 + 70N3 + 21N

)
Î7, (3.84)

where

Îk :=
1

(k + 1)!

Ik
(1− I1)(k+1)/2

(3.85)

3.4 Special deformation in thin genus expansion of the Hermitian one-matrix

models in I-coordinates

In [31], the second named author studied the special deformation of the Hermitian one-

matrix models which is defined by:

yN =
1√
2

∑
n>0

tn − δn,1
n!

zn +

√
2N

z
+
√

2
∑
n>1

n!

zn+1

∂FN
0

∂tn−1
. (3.86)

Now we rewrite it in I-coordinates, we have:

– 25 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
5

Theorem 3.4.1. In I-coordinates, the special deformation of the Hermitian one-matrix

models is as follows:

yN =

√
2N

z − I0
+

1√
2

∑
n>1

In − δn,1
n!

(z − I0)n. (3.87)

Proof. This is just [31, theorem 2.1].

3.5 Special deformation in fat genus expansion of the Hermitian one-matrix

models in I-coordinates

In [31], the second named author also studied another special deformation of the Hermitian

one-matrix models based on the fat genus expansion, which is defined by

yt =
1√
2

∑
n>0

tn − δn,1
n!

zn +

√
2t

z
+
√

2
∑
n>1

n!

zn+1

∂F t
0

∂tn−1
. (3.88)

We can also rewrite this special deformation in I-coordinates, and we get:

Theorem 3.5.1. In I-coordinates, the special deformation (3.88) can be written as:

yt =

√
2t

z − I0
+

1√
2

∑
n>1

In − δn,1
n!

(z − I0)n +
1

(z − I0)2
1

1− I1
dX(F̃ t

0) +
∑
l>1

(l + 1)!

(z − I0)l+2

∂F̃ t
0

∂Il
.

(3.89)

Here F̃ t
0 is defined as follows:

F̃ t
0 = F t

0 − F t
0,0, (3.90)

where F t
0 is free energy of genus 0 in fat genus expansion and F t

0,0 is defined as follows:

F t
0,0 := t

∫
t0dI0 = tF 1D

0 . (3.91)

Proof. Similar to the proof of theorem 2.4.1.

In fact, in [30, section 7], the second named author has pointed out that one can get

F̃ t
0 from the thin genus expansion, and one has the following result:

Proposition 3.5.1. F̃ t
0 has an expansion in ’t Hooft coupling constant t:

F̃ t
0 =

∑
k>1

tk+1F t
0,k, (3.92)
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with F t
0,k weighted homogeneous of degree 2k − 2, and it satisfies the following equations:

∂F t0,k
∂I1

=
1

2(1−I1)

2g−1∑
n=2

(n+1)In
∂F t0,k
∂In

+δk,1
1

2(1−I1)
, (3.93)

∂F t0,k
∂I2

=
1

3(1−I1)

1

1−I1
dX
(
F t
0,k−1

)
+

2k−2∑
n=2

(n+2)!

3!n!

In
1−I1

∂F t0,k
∂In+1

, (3.94)

∂F t0,k
∂I3

=
1

6(1−I1)

∂F t0,k−1

∂I1
+

2k−3∑
n=2

(n+3)!

4!n!

In
1−I1

∂F t0,k
∂I2+n

+
1

4!(1−I1)3

k−2∑
k1=1

dX
(
F t
0,k1

)
dX
(
F t
0,k−1−k1

)
,

(3.95)

∂F t0,k
∂I4

=
1

10(1−I1)

∂F t0,k−1

∂I2
+

2k−4∑
n=2

(n+4)!

5!n!

In
1−I1

∂F t0,k
∂In+3

+
1

30(1−I1)2

g−2∑
k1=1

∂F t0,k1
∂I1

dX
(
F t
0,k−1−k1

)
,

(3.96)

∂F t0,k
∂Ip+4

=
2(p+3)!

(p+5)!(1−I1)

∂F t0,k−1

∂Ip+2
+

2k−4−p∑
n=2

(p+n+4)!

n!(p+5)!

In
1−I1

∂F t0,k
∂Ip+n+3

+
k−2∑
k1=1

p+1∑
i=2

i!(p+3−i)!

(p+5)!(1−I1)

∂F t0,k1
∂Ii−1

∂F t0,k−1−k1
∂Ip+2−i

+
2

(1−I1)2
(p+2)!

(p+5)!

k−2∑
k1=1

∂F t0,k1
∂Ip+1

dX
(
F t
0,k−1−k1

)
.

(3.97)

This proposition gives a recursively way to compute F t
0,g, which is similar to the com-

putation of FN
g . We have:

F t
0,1 =

1

2
log

1

1−I1
, (3.98)

F t
0,2 =

1

6

I22
(1−I1)3

+
1

12

I3
(1−I1)2

, (3.99)

F t
0,3 =

1

6

I42
(1−I1)6

+
1

4

I22I3
(1−I1)6

+
1

32

I23
(1−I1)4

+
1

16

I2I4
(1−I1)4

+
1

144

I5
(1−I1)3

, (3.100)

F t
0,4 =

7

24

I62
(1−I1)9

+
17

24

I42I3
(1−I1)8

+
3

8

I22I
2
3

(1−I1)7
+

1

48

I33
(1−I1)6

+
5

24

I32I4
(1−I1)7

+
1

8

I2I3I4
(1−I1)6

+
1

160

I24
(1−I1)5

+
1

24

I22I5
(1−I1)6

+
1

120

I3I5
(1−I1)5

+
1

180

I2I6
(1−I1)5

+
1

2880

I7
(1−I1)4

. (3.101)

In general,

F t
0,k = a1

I2k−1
(1− I1)k

+ a2
I2I2k−2

(1− I1)k+1
+ a3

I3I2k−3
(1− I1)k+1

+ · · · . (3.102)

a1 =
1

k!(k + 1)!
, (3.103)

a2 =
k2

k!(k + 1)!
, (3.104)

a3 =
g2(k − 1)

2 · k!(k + 1)!
. (3.105)
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Remark 3.5.1. One can also get the proposition 3.5.1 by Virasoro constraints for fat genus

expansion as follows. By proposition 3.1.2, one can rewrite the partition function ZN as

ZN = e
1
gs

FN0 Z̃N , (3.106)

with Z̃N does not depend on I0. Then Z̃N can be viewed as partition function of Hermitian

one-matrix model with g1 = 0 and gk =
Ik−1

(k−1)! . The free energy function F̃N = log Z̃N has

a genus expansion (the fat genus expansion)

F̃N =
∑
g>0

g2g−2s F̃ t
g , (3.107)

then the two definitions of F̃ t
0 are coincident. By the proof of theorem 3.3.1, Z̃N satisfies

the following constraints:

L̃t
mZ̃

N = 0, m > 0 (3.108)

where

L̃t
0 = −2

∂

∂I1
+
∑
l>1

(l + 1)Il
∂

∂Il
+
t2

g2s
, (3.109)

L̃t
1 =

2t

1− I1
dX +

∑
n>1

(n+ 2)!

n!
(In − δn,1)

∂

∂In+1
, (3.110)

L̃t
2 = 4t

∂

∂I1
+
∑
n>1

(n+ 3)!

n!
(In − δn,1)

∂

∂In+2
+ g2s

(
1

1− I1
dX

)2

+
t

1− I1
, (3.111)

L̃t
m = 2tm!

∂

∂Im−1
+
∑
n>1

(m+ n+ 1)!

n!
(In − δn,1)

∂

∂Im+n
(3.112)

+ g2s(m− 1)!

(
1

1− I1
dX

∂

∂Im−2
+

∂

∂Im−2

1

1− I1
dX

)
+ g2s

m−2∑
k=2

k!(m− k)!
∂

∂Ik−1

∂

∂Im−k−1
+ δm,2

t

1− I1
,

for m > 3. This gives another proof of the proposition 3.5.1.

4 Itzykson-Zuber Ansatz in 2D topological gravity

In this section we will prove the validity of Itzykson-Zuber Ansatz in 2D topological gravity.

4.1 Preliminary results of the 2D topological gravity

According to Witten [26], the mathematical theory of the 2D topological gravity studies

the following intersection numbers on the Deligne-Mumford moduli spaces:

〈τd1 · · · τdn〉
2D
g :=

∫
Mg,n

ψd1
1 ∧ · · · ∧ ψ

dn
n . (4.1)
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The free energy of the 2D topological gravity is the generating series of these intersection

numbers:

F 2D(t) =
∞∑
g=0

F 2D
g :=

∞∑
g=0

∑
n0,n1,n2···

〈τn0
0 τn1

1 τn2
2 · · · 〉

2D
g

tn0
0

n0!

tn1
1

n1!

tn2
2

n2!
· · · . (4.2)

It is well known that intersection number 〈τn0
0 τn1

1 τn2
2 · · · 〉

2D
g satisfies the following selection

rule: ∑
i

(i− 1)ni = 3g − 3. (4.3)

In other words, if we define

deg ti = i− 1, (4.4)

then F 2D
g is weighted homogeneous of degree 3g − 3. The partition function of the 2D

topological gravity is defined by:

Z2D := eF
2D
. (4.5)

4.2 Virasoro constraints for 2D topological gravity

The following theorem is a consequence of the famous Witten Conjecture/Kontsevich the-

orem [20, 26]. See also [8] or [17]. More references can be found in the Introduction.

Theorem 4.2.1. The partition function Z2D of the 2D topological gravity satisfies the

following equations:

L2D
n Z2D = 0, n > −1 (4.6)

where

L2D
−1 =

t20
2

+
∑
n>1

(tn − δn,1)
∂

∂tn−1
, (4.7)

L2D
0 =

1

8
+
∑
n>0

(2n+ 1)(tn − δn,1)
∂

∂tn
, (4.8)

L2D
m =

∑
n>0

(2n+ 2m+ 1)!!

(2n− 1)!!
(tn − δn,1)

∂

∂tm+n
+

1

2

∑
k+l=m−1

(2k + 1)!!(2l + 1)!!
∂2

∂tk∂tl
, (4.9)

for m > 1.Furthermore, {L2D
m }m>−1 satisfies the following commutation relations:[

L2D
m , L2D

n

]
= (m− n)L2D

m+n, (4.10)

for m,n > −1.

4.3 The Itzykson-Zuber Ansatz

It was announced in [28] that the first two Virasoro constraints L2D
−1 and L2D

0 in I-

coordinates can be used to solve free energies in genus g = 0, 1 and establish the Itzykson-

Zuber ansatz. Here we present some details which are similar to the 1D topological gravity

case in [28].
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Theorem 4.3.1. (Itzykson-Zuber Ansatz [17]) For free energy of 2D gravity, we have:

F 2D
0 =

1

6
I30 −

∑
n>0

(−1)nIn+2
0

(n+ 2)!
In +

1

2

∑
j,k>0

(−1)j+kIj+k+1
0

j!k!(j + k + 1)
IjIk, (4.11)

F 2D
1 =

1

24
log

1

1− I1
, (4.12)

and for g ≥ 2,

F 2D
g (t) =

∑
∑

26k63g−2(k−1)lk=3g−3

〈
τ l22 τ

l3
3 · · · τ

l3g−2

3g−2

〉2D
g

3g−2∏
j=2

1

lj !

(
Ij

(1− I1)
2j+1

3

)lj

. (4.13)

Proof. We first rewrite L2D
−1 in I-coordinates:

L2D
−1 = − ∂

∂I0
+

1

2

( ∞∑
n=0

(−1)nIn0
n!

In

)2

. (4.14)

This gives

∂F 2D

∂I0
=

1

2

( ∞∑
n=0

(−1)nIn0
n!

In

)2

. (4.15)

By analyzing degree of F 2D
g , one has

∂F 2D
0

∂I0
=

1

2

( ∞∑
n=0

(−1)nIn0
n!

In

)2

, (4.16)

∂F 2D
g

∂I0
= 0, g > 0. (4.17)

This gives

F 2D
0 =

1

6
I30 −

∑
n>0

(−1)nIn+2
0

(n+ 2)!
In +

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

n!k!(n+ k + 1)
InIk, (4.18)

and F 2D
g is independent on I0. By

L2D
0 Z2D = 0,

one has

0 =
1

8
+
∑
n>0

(2n+ 1)(tn − δn,1)
∂F 2D

∂tn
. (4.19)

Let I0 = 0, we have

0 =
1

8
+
∑
n>1

(2n+ 1)(In − δn,1)
∂F 2D

∂In
. (4.20)

This is equal to

0 =
∑
n>1

(2n+ 1)(In − δn,1)
∂F 2D

g

∂In
+

1

8
δg,1. (4.21)
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Write F 2D
g as formal power series in I1, with coefficients a priori formal series in I2, I3, · · · :

F 2D
g =

∞∑
n=0

ag,n(I2, I3, · · · )In1 . (4.22)

Write

ag,0 =
∑

αl2,l3,··· ,lm

m∏
i=2

I lii
li!
. (4.23)

Since I0 = 0 is equivalent to t0 = 0 and tk = Ik(k > 0),

αl2,l3,··· ,lm =
〈
τ l22 τ

l3
3 · · · τ

lm
m

〉2D
g
. (4.24)

This vanishes unless the following selection rule is satisfied:

m∑
i=2

(i− 1)li = 3g − 3. (4.25)

So li = 0 unless i 6 3g − 2. Therefore

ag,0 =
∑〈

τ l22 τ
l3
3 · · · τ

l3g−2

3g−2

〉2D
g

3g−2∏
i=2

I lii
li!
, (4.26)

where the summation is taken over all nonnegative integers l2, l3, · · · , l3g−2 such that

3g−2∑
i=2

(i− 1)li = 3g − 3. (4.27)

Let

E =
∑
k>2

2k + 1

3
Ik

∂

∂Ik
. (4.28)

Then the equation (4.21) gives us the following recursion relations:

ag,1 = E(ag,0) +
1

24
δg,1, (4.29)

mag,m = (m− 1)ag,m−1 + E(ag,m−1). (4.30)

When g = 1, we have a1,0 = 0 by selection rule. One can see that a1,n = 1
24n for n > 1.

Therefore,

F 2D
1 =

∞∑
n=1

1

24n
In1 =

1

24
log

1

1− I1
. (4.31)

When g > 1, one finds

ag,n =
∑

∑3g−2
j=2 (j−1)lj=3g−3

〈
τ l22 τ

l3
3 · · · τ

l3g−2

3g−2

〉2D
g

(−1)n
(
g − 1−

∑3g−2
j=2 jlj

n

) 3g−2∏
i=2

I lii
li!
. (4.32)
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This proves

F 2D
g =

∑
∑3g−2
j=2 (j−1)lj=3g−3

〈
τ l22 τ

l3
3 · · · τ

l3g−2

3g−2

〉2D
g

1

(1− I1)
∑3g−2
j=2 jlj−g+1

3g−2∏
i=2

I lii
li!

(4.33)

=
∑

∑3g−2
j=2 (j−1)lj=3g−3

〈
τ l22 τ

l3
3 · · · τ

l3g−2

3g−2

〉2D
g

3g−2∏
i=2

1

li!

(
Ij

(1− I1)(2j+1)/2

)lj

.

Remark 4.3.1. The formula for F 2D
0 in (4.11) is equivalent to the version announced in [28].

It is different from the original formula given by Itzyskon-Zuber [17]. Their version will be

proved in corollary 5.3.1.

In [28], the second named author studied another kind of coordinates {∂nI0∂tn0
}n>0, and

proved the following transformation equations between this coordinates and I-coordinates:

∂nI0
∂tn0

=
∑

∑
j>1 jmj=n−1

(
∑

j(j + 1)mj)!∏
j((j + 1)!)mjmj !

·
∏

j I
mj

j+1

(1− I1)
∑
j(j+1)mj+1

, (4.34)

In = −
∑

∑
j>1 jmj=n−1

(
∑

j(j + 1)mj)!∏
j((j + 1)!)mjmj !

·

∏
j

(
−∂j+1I0

∂tj+1
0

)mj

(
∂I0
∂t0

)∑
j(j+1)mj+1

. (4.35)

In an earlier work by Euguchi, Yamada and Yang [12], the Itzykson-Zuber Ansatz is

written in two forms:

F 2D
g =

∑
∑3g−2
j=2 (j−1)lj=3g−3

al2···l3g−2

(u′′)l2 · · · (u(3g−2))l3g−2

(u′)2(1−g)+
∑3g−2
j=2 jlj

(4.36)

=
∑

∑3g−2
j=2 (j−1)lj=3g−3

bl2···l3g−2

I l22 · · · I
l3g−2

3g−2

(u′)2(1−g)+
∑3g−2
j=2 lj

, (4.37)

where u = I0, and u(n) = ∂nI0
∂tn0

. They proved (4.36) by KdV hierarchy plus string equation,

and derived (4.37) by (4.36) following a proposal by Itzyson and Zuber [17]. In this subsec-

tion, we have proved (4.37) by Virasoro constraints, and by (4.35), one can derives (4.36)

by (4.37). Our proof seems to be simpler because we use only two linear equations while

the KdV hierarchy is a sequence of nonlinear equations. Furthermore, in our proof, we

have only used L2D
−1 and L2D

0 in I-coordinates. In the next subsection, we will show that

it is possible to use the higher Virasoro constraints in I-coordinates to derive a recursive

method to solve free energies in higher genera.

4.4 Computations of F 2D
g by Virasoro constraints in I-coordinates

In the above we have shown that for g ≥ 2, F 2D
g is independent of I0. It follows that after

we rewrite the Virasoro constraints in I-coordinates, we can take I0 = 0 to compute F 2D
g .
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Theorem 4.4.1. For free energy of the 2D topological gravity of g > 2, the following

equations hold:

∂F 2D
g

∂J1
=

3g−2∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂Jp
, (4.38)

∂F 2D
g

∂J2
=

3g−3∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂J1+p
+

1

2

1

1−3J1

(
3g−4∑
l=1

(2l+3)
Jl+1

1−3J1

∂

∂Jl

)2 (
F 2D
g−1
)

(4.39)

+
1

2

1

1−3J1

g−1∑
g1=1

3g1−2∑
l1=1

(2l1+3)
Jl1+1

1−3J1

∂F 2D
g1

∂Jl1

3g−3g1−2∑
l2=1

(2l2+3)
Jl2+1

1−3J1

∂F 2D
g−g1
∂Jl2

,

∂F 2D
g

∂J3
=

3g−4∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂J2+p
+

g−1∑
g1=1

∂F 2D
g1

∂J1

3g−3g1−2∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂F 2D

g−g1
∂Jl

(4.40)

+

3g−5∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂2F 2D

g−1
∂Jl∂J1

+3

3g−5∑
l=1

(2l+3)
Jl+1

(1−3J1)3
∂F 2D

g−1
∂Jl

,

∂F 2D
g

∂Jr+1
=

3g−2−r∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂Jr+p
+

g−1∑
g1=1

∂F 2D
g1

∂Jr−1

3g−3g1−2∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂F 2D

g−g1
∂Jl

(4.41)

+

3g−3−r∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂2F 2D

g−1
∂Jl∂Jr−1

+
2r−1

(1−3J1)2
∂F 2D

g−1
∂Jr−2

+
1

2

1

1−3J1

 g−1∑
g1=1

r−2∑
l1=1

∂F 2D
g1

∂Jl1

∂F 2D
g−g1

∂Jr−1−l1
+

r−2∑
l1=1

∂2F 2D
g−1

∂Jl1∂Jr−1−l1

 ,
for r = 3, 4, · · · 3g − 3, where

Jk =
Ik

(2k + 1)!!
.

Proof. By the constraint L2D
m Z2D = 0 for m ≥ 1, one gets:

0 =
∑
n>0

(2n+ 2m+ 1)!!

(2n− 1)!!
(tn − δn,1)

∂F 2D
g

∂tm+n
+

1

2

∑
k+l=m−1

(2k + 1)!!(2l + 1)!!
∂2F 2D

g−1
∂tk∂tl

(4.42)

+
1

2

g∑
g1=0

∑
k+l=m−1

(2k + 1)!!(2l + 1)!!
∂2F 2D

g1

∂tk

∂F 2D
g−g1
∂tl

.

We want to rewrite these equations in I-coordinates under the condition I0 = 0. By (4.11),

∂F 2D
0

∂I0
=

1

2

∑
k>0

(−1)kIk0
k!

Ik

2

, (4.43)

∂F 2D
0

∂In
=

(−1)n+1In+2
0

(n+ 2)!
+
∑
k>0

(−1)n+kIn+k+1
0

n!k!(n+ k + 1)
Ik, n > 0. (4.44)
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Hence

∂F 2D
0

∂I0

∣∣∣∣
I0=0

=
∂F 2D

0

∂In

∣∣∣∣
I0=0

= 0, (4.45)

and this gives

∂F 2D
0

∂t0

∣∣∣∣
I0=0

=
∂F 2D

0

∂tn

∣∣∣∣
I0=0

= 0. (4.46)

Now we restrict equation (4.42) in I0 = 0, and g > 2, we have:

for m = 1:

0 =
∑
n>1

(2n+ 3)!!

(2n− 1)!!
(In − δn,1)

∂F 2D
g

∂In+1
+

1

2

(
2g−1∑
l=1

Il+1

1− I1
∂

∂Il

)2

(F 2D
g−1) (4.47)

+
1

2

g−1∑
g1=1

(
2g−1∑
l=1

Il+1

1− I1
∂F 2D

g1

∂Il

)(
2g−1∑
l=1

Il+1

1− I1
∂F 2D

g−g1
∂Il

)
,

for m = 2:

0 =
∑
n>1

(2n+ 5)!!

(2n− 1)!!
(In − δn,1)

∂F 2D
g

∂In+2
+ 3!!

∑
l>1

Il+1

1− I1
∂2F 2D

g−1
∂Il∂I1

+
3!!

2

∑
l>1

Il+1

(1− I1)2
∂F 2D

g−1
∂Il

+

g−1∑
g1=1

3!!
∂2F 2D

g1

∂I1

∑
l>1

Il+1

1− I1
∂F 2D

g−g1
∂Il

, (4.48)

for m > 3:

0 =
∑
n>1

(2n+2m+1)!!

(2n−1)!!
(In−δn,1)

∂F 2D
g

∂Im+n
+

1

2

m−2∑
k=1

(2k+1)!!(2m−2k−1)!!
∂2F 2D

g−1

∂Ik∂Im−k−1
(4.49)

+(2m−1)!!
∑
l>1

Il+1

1−I1

∂2F 2D
g−1

∂Il∂Im−1
+

(2m−1)!!

2

∂F 2D
g−1

∂Im−2

+
1

2

g−1∑
g1=1

m−2∑
k=1

(2k+1)!!(2m−2k−1)!!
∂2F 2D

g1

∂Ik

∂F 2D
g−g1

∂Im−k−1
+

g−1∑
g1=1

(2m−1)!!
∂2F 2D

g1

∂Im−1

∑
l>1

Il+1

1−I1

∂F 2D
g−g1
∂Il

.

Together with theorem 4.3.1, we complete the proof.
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We explain how to use these equations to solve F 2D
g for g > 2. By above theorem,

∂F 2D
g

∂J3g−2
=

6g−7

(1−3J1)2
∂F 2D

g−1

∂J3(g−1)−2
+

1

2

1

1−3J1

3g−5∑
l1=1

∂2F 2D
g−1

∂Jl1∂J3g−4−l1
+

g−1∑
g1=1

3g−5∑
l1=1

∂F 2D
g1

∂Jl1

∂F 2D
g−g1

∂J3g−4−l1

, (4.50)

∂F 2D
g

∂J3g−3
=

5J2

1−3J1

∂F 2D
g

∂J3g−2
+

5J2

(1−3J1)2

(
∂F 2D

1

∂J1

∂F 2D
g−1

∂J3(g−1)−2
+

∂2F 2D
g−1

∂J1∂J3(g−1)−2

)
(4.51)

+
6g−9

(1−3J1)2
∂F 2D

g−1

∂J3g−6
+

1

2

1

1−3J1

 g−1∑
g1=1

3g−6∑
l1=1

∂F 2D
g1

∂Jl1

∂F 2D
g−g1

∂J3g−5−l1
+

3g−6∑
l1=1

∂2F 2D
g−1

∂Jl1∂J3g−5−l1

 ,
...

∂F 2D
g

∂J4
=

5

(1−3J1)2
∂F 2D

g−1

∂J1
+

3g−5∑
p=2

(2p+1)Jp
1−3J1

∂F 2D
g

∂Jp+3
+

g−1∑
g1=1

∂F 2D
g1

∂J2

3g−3g1−2∑
l=1

(2l+3)Jl+1

(1−3J1)2
∂F 2D

g−g1
∂Jl

(4.52)

+

3g−6∑
l=1

(2l+3)Jl+1

(1−3J1)2
∂2F 2D

g−1

∂Jl∂J2
+

1

2

1

1−3J1

 g−1∑
g1=1

∂F 2D
g1

∂J1

∂F 2D
g−g1
∂J1

+
∂2F 2D

g−1

∂J2
1

 ,
∂F 2D

g

∂J3
=

3g−4∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂J2+p
+

g−1∑
g1=1

∂F 2D
g1

∂J1

3g−3g1−2∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂F 2D

g−g1
∂Jl

(4.53)

+

3g−5∑
l=1

(2l+3)
Jl+1

(1−3J1)2
∂2F 2D

g−1

∂Jl∂J1
+3

3g−5∑
l=1

(2l+3)
Jl+1

(1−3J1)3
∂F 2D

g−1

∂Jl
,

∂F 2D
g

∂J2
=

3g−3∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂J1+p
+

1

2

1

1−3J1

(
3g−4∑
l=1

(2l+3)
Jl+1

1−3J1

∂

∂Jl

)2 (
F 2D
g−1
)

(4.54)

+
1

2

1

1−3J1

g−1∑
g1=1

3g1−2∑
l1=1

(2l1+3)
Jl1+1

1−3J1

∂F 2D
g1

∂Jl1

3g−3g1−2∑
l2=1

(2l2+3)
Jl2+1

1−3J1

∂F 2D
g−g1

∂Jl2
,

∂F 2D
g

∂J1
=

3g−2∑
p=2

(2p+1)
Jp

1−3J1

∂F 2D
g

∂Jp
. (4.55)

Since F 2D
g is weighted homogeneous of degree 3g − 3 with deg Jk = k − 1, one has:

F 2D
g =

1

3g − 3

3g−2∑
i=1

(i− 1)Ji
∂F 2D

g

∂Ji
. (4.56)

Example 4.4.1. Let us compute F 2D
2 by the above procedure.

∂F 2D
2

∂J4
=

5

(1−3J1)2
∂F 2D

1

∂J1
+

1

2

1

1−3J1

(
∂2F 2D

1

∂J2
1

+

(
∂F 2D

1

∂J1

)2
)

=
105

128

1

(1−3J1)3
, (4.57)

∂F 2D
2

∂J3
=

5J2
1−3J1

∂F 2D
2

∂J4
+

5J2
(1−3J1)2

((
∂F 2D

1

∂J1

)2

+
∂2F 2D

1

∂J2
1

)
+

15J2
(1−3J1)3

∂F 2D
1

∂J1
(4.58)

=
1015

128

J2
(1−3J1)4

,
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∂F 2D
2

∂J2
=

5J2
1−3J1

∂F 2D
2

∂J3
+

7J3
1−3J1

∂F 2D
2

∂J4
+

1

2

1

1−3J1

(
5J2

1−3J1

∂

∂J1
+

7J3
1−3J1

∂

∂J2

)2 (
F 2D
1

)
+

1

2

25J2
2

(1−3J1)3

(
∂F 2D

1

∂J1

)2

=
6300

128

J2
2

(1−3J1)5
+

1015

128

J3
(1−3J1)4

. (4.59)

so we have

F 2D
2 =

1

3

(
105

128

3J4
(1−3J1)3

+
1015

128

2J2J3
(1−3J1)4

+
6300

128

J3
2

(1−3J1)5
+

1015

128

J2J3
(1−3J1)4

)
(4.60)

=
2100

128

J3
2

(1−3J1)5
+

1015

384

J2J3
(1−3J1)4

+
105

128

J4
(1−3J1)3

.

This can be written in I-coordinates as:

F 2D
2 =

7

1440
Ǐ32 +

29

5760
Ǐ2Ǐ3 +

1

1152
Ǐ4, (4.61)

where

Ǐj =
Ij

(1− I1)(2j+1)/3
. (4.62)

Similarly, we have with the help of a computer program:

F 2D
3 =

245

20736
Ǐ62 +

193

6912
Ǐ42 Ǐ3+

205

13824
Ǐ22 Ǐ

3
3 +

583

580608
Ǐ33 +

53

6912
Ǐ32 Ǐ4+

1121

241920
Ǐ2Ǐ3Ǐ4 (4.63)

+
607

2903040
Ǐ24 +

17

11520
Ǐ22 Ǐ5+

503

1451520
Ǐ3Ǐ5+

77

414720
Ǐ2Ǐ6+

1

82944
Ǐ7,

F 2D
4 =

259553

2488320
Ǐ92 +

475181

1244160
Ǐ72 Ǐ3+

145693

331776
Ǐ52 Ǐ

2
3 +

43201

248832
Ǐ32 Ǐ

3
3 +

134233

7962624
Ǐ2Ǐ

4
3 +

14147

124416
Ǐ62 Ǐ4

+
83851

414720
Ǐ42 Ǐ3Ǐ4+

26017

331776
Ǐ22 Ǐ

2
3 Ǐ4+

185251

49766400
Ǐ33 Ǐ4+

5609

276480
Ǐ32 Ǐ

2
4 +

177

20480
Ǐ3Ǐ

2
4

+
175

995328
Ǐ34 +

21329

829440
Ǐ52 Ǐ5+

13783

414720
Ǐ32 Ǐ3Ǐ5+

1837

259200
Ǐ2Ǐ

2
3 Ǐ5+

7597

1382400
Ǐ22 Ǐ4Ǐ5

+
719

829440
Ǐ3Ǐ4Ǐ5+

533

1935360
Ǐ2Ǐ

2
5 +

2471

552960
Ǐ42 Ǐ6+

7897

2073600
Ǐ22 Ǐ3Ǐ6+

1997

6635520
Ǐ23 Ǐ6

+
1081

2322432
Ǐ2Ǐ4Ǐ6+

487

18579456
Ǐ5Ǐ6+

4907

8294400
Ǐ32 Ǐ7+

16243

58060800
Ǐ2Ǐ3Ǐ7+

1781

92897280
Ǐ4Ǐ7

+
53

921600
Ǐ22 Ǐ8+

947

92897280
Ǐ3Ǐ8+

149

39813120
Ǐ2Ǐ9+

1

7962624
Ǐ10. (4.64)

5 Special deformation of the Airy curve in renormalized coupling

constants

In this section we reformulate the special deformation of Airy curve introduced in the

setting of 2D quantum gravity in [32] using renormalized coupling constants. It is re-

markable that we need to consider ghost variables introduced in [33] and consider their

renormalizations.
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5.1 Special deformation of the Airy curve and ghost variables in 2D

topological gravity

In [32], the second named author studied the following special deformation of Airy curve

defined by:

w2D := z
1
2 −

∞∑
n=0

tn
(2n− 1)!!

zn−
1
2 −

∞∑
n=0

(2n+ 1)!!
∂F 2D

0

∂tn
z−n−

3
2 . (5.1)

When all tn are set to be equal to 0, one gets a plane algebraic curve

(w2D)2 = z. (5.2)

This is called the Airy curve because its quantization gives the Airy equation.

To make sense of the right-hand side of (5.1), the following extension of the free energy

F 2D
0 was introduced in [33]:

F̃ 2D
0 = F 2D

0 +
∑
n≥0

(−1)n(tn − δn,1)t−n−1, (5.3)

where t−1, t−2, . . . are formal variables referred to as the ghost variables. The reason for

adding these extra terms to F 2D
0 is that the moduli spaces M0,1 and M0,2 do not make

sense geometrically, however, from the following formula for n ≥ 3:∑
m1,...,mn≥0

〈τm1 · · · τmn〉0x
m1
1 · · ·x

mn
n = (x1 + · · ·+ xn)n−3, (5.4)

it is customary to use the following conventions:

〈τn〉0 = δn,−2,

〈τkτ−k−1〉0 = (−1)k.

Consider the generating series∑
n∈Z

∂F̃ 2D
0

∂tn
·xn+1 =

∑
n≥0

(−1)n(tn−δn,1)x−n+
∑
n≥0

(
∂F 2D

0

∂tn
(t)+(−1)nt−n−1

)
·xn+1 , (5.5)

and its Laplace transform:∑
n∈Z

∂F̃ 2D
0

∂tn
·
∫ ∞
0

1√
x
e−zxxn+1dx

=
∑
n≥0

(−1)n(tn−δn,1)Γ
(
−n+

1

2

)
zn−1/2+

∑
n≥0

(
∂F 2D

0

∂tn
(t)+(−1)nt−n−1

)
·Γ
(
n+

3

2

)
z−n−3/2

=
∑
n∈Z

(tn−δn,1)(−1)nΓ

(
−n+

1

2

)
zn−1/2+

∑
n≥0

(
∂F 2D

0

∂tn
(t)+2(−1)nt−n−1

)
·Γ
(
n+

3

2

)
z−n−3/2.

(5.6)

After setting t−n = 0 for n ≥ 1, the right-hand side of the last equality gives us w2D, up

to a factor of
√
π.

– 37 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
5

5.2 Renormalized ghost variables

From the above discussions we are lead to consider:∑
n∈Z

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2 . (5.7)

This seems to play the role of S(z) in 1D topological gravity. Recall the renomralization

of the coupling constants in S(z) leads us to the following identity

∞∑
n=0

(tn − δn,1)
xn+1

(n+ 1)!
= I−1 −

1

2
I20 +

∞∑
n=2

(In−1 − δn,2)
(x− I0)n

n!
, (5.8)

where I−1 is defined by:

I−1 =

∞∑
n=0

tn
In+1
0

(n+ 1)!
.

Also recall for k ≥ 0,

Ik =
∑
n≥0

tn+k
In0
n!
.

Therefore, after the introduction of the ghost variables {t−n}n∈Z+ , we can introduce the

renormalized ghost variables {I−k}k∈Z+ as follows:

I−k =
∞∑
n=0

tn−k
In0
n!
. (5.9)

Recall for n ≥ 0 we have [28, Prop. 2.4]:

tn =

∞∑
k=0

In+k
(−1)kIk0

k!
. (5.10)

Proposition 5.2.1. The identity (5.10) holds for all n ∈ Z.

Next we present an analogue of (5.8) in 2D topological gravity:

Proposition 5.2.2. The following identity holds:

∑
n∈Z

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2 =

∑
p∈Z

(−1)pIpΓ

(
n+

3

2

)
(z − I0)p−

1
2 , (5.11)

where we use the following convention for expanding (z − I0)p−
1
2 :

(z − I0)p−
1
2 = zp−

1
2

∞∑
k=0

(
p− 1

2

k

)(
−I0
z

)k

. (5.12)
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Proof. By (5.10),∑
n∈Z

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2 =

∑
n∈Z

(−1)n
∞∑
k=0

(−1)kIk0
k!

In+kΓ

(
−n+

1

2

)
zn−

1
2

=
∑
p∈Z

(−1)pIpΓ

(
n+

3

2

) ∞∑
k=0

Γ(−p+ k + 1
2)

k!Γ
(
n+ 3

2

) Ik0 z
p−k− 1

2

=
∑
p∈Z

(−1)pIpΓ

(
n+

3

2

)
zp−

1
2

∞∑
k=0

(
p− 1

2

k

)(
−I0
z

)k

=
∑
p∈Z

(−1)pIpΓ

(
n+

3

2

)
zp−

1
2

(
1− I0

z

)p− 1
2

=
∑
p∈Z

(−1)pIpΓ

(
n+

3

2

)
(z − I0)p−

1
2 .

5.3 F 2D
0 in I-coordinates with renormalized ghost variables

When we impose the condition t−n = 0 for n > 0, the ghost variables I−n can be expressed

as formal series in {tm}m≥0 by the following equation:

I−n|t−m=0,m≥1 =
∞∑
k=0

tk
Ik+n
0

(k + n)!
. (5.13)

The case of I−1 is first introduced in [28, (26)], and can be also expressed as:

I−1|t−m=0,m≥1 =

∞∑
k=0

Ik
(−1)kIk+1

0

(k + 1)!
. (5.14)

The following result generalizes this identity:

Proposition 5.3.1. Under the same condition, one can also rewrite I−n in terms of

{Im}m≥0 as follows:

I−n|t−m=0,m≥1 =
∞∑
k=0

Ik
(−1)kIk+n

0

k!(n− 1)!(k + n)
. (5.15)

Proof. By (5.10) again, we get:

I−n|t−m=0,m≥1 =

∞∑
m=0

tm
Im+n
0

(m+ n)!

=
∞∑

m=0

∞∑
l=0

Im+l
(−1)lI l0

l!

Im+n
0

(m+ n)!

=

∞∑
k=0

IkI
k+n
0

∑
m+l=k

(−1)l

l!(m+ n)!

=
∞∑
k=0

Ik
(−1)kIk+n

0

k!(n− 1)!(k + n)
.

– 39 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
5

We have used the following identity:∑
m+l=k

(−1)l

l!(m+ n+ 1)!
=

(−1)k

n!k!(n+ k + 1)
. (5.16)

This can be proved as follows. By the following well known identity:(
n+ k + 1

l

)
=

(
n+ k

l − 1

)
+

(
n+ k

l

)
, (5.17)

we have

k∑
l=0

(
n+ k + 1

l

)
(−1)l =

k∑
l=1

(
n+ k

l − 1

)
(−1)l +

k∑
l=0

(
n+ k

l

)
(−1)l

=
k−1∑
l=0

(
n+ k

l

)
(−1)l+1 +

k∑
l=0

(
n+ k

l

)
(−1)l

=

(
n+ k

k

)
(−1)k.

Then, divide (n+ k + 1)! on both side of this equation, we get (5.16).

We also denote the shifted I-coordinates by Ĩn, the definitions are as follows:

Ĩn :=
∑
k>0

Ik0
k!
t̃k+n = In −

I1−n0

(1− n)!
, (5.18)

where t̃k = tk − δk,1. Then one can see by above proposition,

Ĩ−n|t−m=0,m≥1 = I−n|t−m=0,m≥1 −
I1+n
0

(1 + n)!
=

∞∑
k=1

Ĩk
(−1)kIk+n

0

k!(n− 1)!(k + n)
. (5.19)

We can express the free energy of genus 0 with these notations as below:

Theorem 5.3.1. The following formula for F 2D
0 holds:

F 2D
0 =

1

2

∑
n>1

(−1)nĨnĨ−n−1|t−m=0,m≥1. (5.20)

Proof. Recall in theorem 4.3.1 we have proved the following expression of F 2D
0 :

F 2D
0 =

1

6
I30 −

∑
n>0

(−1)nIn+2
0

(n+ 2)!
In +

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

k!n!(n+ k + 1)
InIk. (5.21)

One can rewrite this formula using Ĩn as follows:

F 2D
0 =

1

2

∑
n,k>1

(−1)n+kIn+k+1
0

k!n!(n+ k + 1)
ĨnĨk. (5.22)

Together with equation (5.19), the proof is completed.
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Remark 5.3.1. Note we can rewrite (2.11) as follows:

F 1D
0 = Ĩ−1|t−n=0,n≥1. (5.23)

For the thin expansion of Hermitian one-matrix model of size N × N , because we have

FN
0 = NF 1D

0 , we also have

FN
0 = N · Ĩ−1|t−n=0,n≥1. (5.24)

As a corollary, we now recover the following formula in [17, (5.12)]:

Corollary 5.3.1. The genus zero free energy of 2D gravity satisfies the following equality:

F 2D
0 =

I30
6
−
∑
k>0

Ik+2
0

k!(k + 2)
tk +

1

2

∑
n>0

∑
k>0

In+k+1
0

n!k!(n+ k + 1)
tntk. (5.25)

Proof. We have,

∑
p>1

(−1)pĨpĨ−p−1 =
∑
p>1

(−1)p
∑
i>0

t̃i+p
Ii0
i!

∑
j>0

t̃j−p−1
Ij0
j!

=
∑
n∈Z

t̃n
∑

j−p−1=n

∑
i>0

(−1)pt̃i+p
Ii+j
0

j!i!

=
∑
n>0

t̃n
∑
p>1

∑
i>0

t̃i+p
(−1)pIn+p+i+1

0

i!(n+p+1)!
+
∑
n<0

t̃n
∑
j>0

∑
i>0

(−1)j−1−nt̃i+j−1−n
Ii+j
0

i!j!

=
∑
n,k>0

t̃nt̃k
∑

p+i=k

(−1)pIn+k+1
0

i!(n+p+1)!
+
∑
n,k>0

t̃−n−1t̃k+n

∑
i+j=k

(−1)j+n I
k
0

i!j!

=
∑
n>0

∑
k>0

In+k+1
0

n!k!(n+k+1)
t̃nt̃k+

∑
n>0

(−1)nt̃nt̃−n−1.

Hence,

1

2

∑
n>1

(−1)nĨnĨ−n−1 (5.26)

=
1

2

∑
n>0

∑
k>0

In+k+1
0

n!k!(n+ k + 1)
t̃nt̃k +

1

2

∑
n>0

(−1)n(tn − δn,1)t−n−1

=
I30
6
−
∑
k>0

Ik+2
0

k!(k + 2)
tk +

1

2

∑
n>0

∑
k>0

In+k+1
0

n!k!(n+ k + 1)
tntk +

1

2

∑
n>0

(−1)n(tn − δn,1)t−n−1.

The proof is completed by invoking the condition that t−n−1 = 0 for n ≥ 0 to (5.20).

It is a remarkable coincidence that the right-hand side of (5.26) is almost the same

as F̃ 2D
0 in (5.3) used to interpret the special deformation of the Airy curve using ghost

variables. Inspired by this coincidence, we have the following result.
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Theorem 5.3.2. The extension F̃ 2D
0 of the free energy F 2D

0 satisfies the following equality:

F̃ 2D
0 =

1

6
I30 −

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

k!n!(n+ k + 1)
InIk +

∑
n>1

(−1)n(In − δn,1)I−n−1. (5.27)

Proof. We have,∑
p>0

(−1)ptpt−p−1

=
∑
p>0

(−1)p
∑
i>0

(−1)iIi0
i!

Ii+p

∑
j>0

(−1)jIj0
j!

Ij−p−1

=
∑
n∈Z

∑
j−p−1=n

(−1)p
(−1)jIj0

j!
Ij−p−1

∑
i>0

(−1)iIi0
i!

Ii+p

=
∑
n>0

In
∑
p>0

∑
i>0

(−1)n+i+1In+p+i+1
0

i!(n+ p+ 1)!
Ii+p +

∑
n<0

In
∑
j>0

∑
i>0

(−1)i−1−n
Ii+j
0

i!j!
Ii+j−1−n

=
∑
n>0

In
∑
k>0

Ik
∑

p+i=k

(−1)p+n+k+1In+k+1
0

i!(n+ p+ 1)!
+
∑
n>0

I−n−1
∑
k>0

Ik+n

∑
i+j=k

(−1)i+n I
k
0

i!j!

=
∑
n>0

∑
k>0

(−1)n+k+1In+k+1
0

n!k!(n+ k + 1)
InIk +

∑
n>0

(−1)nInI−n−1,

and

t−2 =
∑
n>0

(−1)nIn0
n!

In−2. (5.28)

By theorem 4.3.1,

F̃ 2D
0 =

1

6
I30 −

∑
n>0

(−1)nIn+2
0

(n+ 2)!
In +

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
InIk + t−2 +

∑
n>0

(−1)ntnt−n−1

=
1

6
I30 −

∑
n>0

(−1)nIn+2
0

(n+ 2)!
In +

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
InIk

+
∑
n>0

(−1)nIn0
n!

In−2 +
∑
n>0

∑
k>0

(−1)n+k+1In+k+1
0

n!k!(n+ k + 1)
InIk +

∑
n>0

(−1)nInI−n−1

=
1

6
I30 −

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
InIk + I−2 − I0I−1 +

∑
n>0

(−1)nInI−n−1

=
1

6
I30 −

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
InIk +

∑
n>1

(−1)n(In − δn,1)I−n−1.

5.4 Special deformation of Airy curve in I-coordinates

Recall the special deformation of Airy curve:

w2D = z
1
2 −

∞∑
n=0

tn
(2n− 1)!!

zn−
1
2 −

∞∑
n=0

(2n+ 1)!!
∂F 2D

0

∂tn
z−n−

3
2 . (5.29)
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Now we consider a related deformation in a slightly different normalization as follows:

y2D := z
1
2− 1

2
√
π

∞∑
n=0

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2− 1

2
√
π

∞∑
n=0

∂F 2D
0

∂tn
Γ

(
n+

3

2

)
z−n−

3
2 . (5.30)

Now we rewrite it in I-coordinates, we get the following result:

Theorem 5.4.1. In I-coordinates, we have:

y2D = (z − I0)
1
2 − 1

2
√
π

∞∑
n=1

(−1)nInΓ

(
−n+

1

2

)
(z − I0)n−

1
2 , (5.31)

and conversely, this property determined F 2D
0 uniquely.

Proof. One can easily check that,

∂Ĩn
∂tk

=
Ik−n0

(k − n)!
+
Ik0
k!

Ĩn+1

1− I1
, (5.32)

for all n, k ∈ Z. Therefore, by (5.20)

∂F 2D
0

∂tk
=

1

2

∑
n>1

(−1)n

((
Ik−n0

(k − n)!
+
Ik0
k!

Ĩn+1

1− I1

)
Ĩ ′−n−1 + Ĩn

(
Ik+n+1
0

(k + n+ 1)!
+
Ik0
k!

Ĩ ′−n
1− I1

))

=
1

2

∑
n>0

(−1)n
Ik−n0

(k − n)!
Ĩ ′−n−1 +

1

2

∑
n>1

(−1)nĨn
Ik+n+1
0

(k + n+ 1)!

=
∑
n>0

(−1)n
Ik−n0

(k − n)!
Ĩ ′−n−1, (5.33)

where Ĩ ′n = In|t−m=0, m≥1. Hence,

∞∑
k=0

∂F 2D
0

∂tk
Γ

(
k +

3

2

)
z−k−

3
2 =

∑
k,n>0

(−1)n
Ik−n0

(k − n)!
Ĩ ′−n−1Γ

(
k +

3

2

)
z−k−

3
2

=
∑
n>0

(−1)nĨ ′−n−1
∑
k>0

Ik0
k!

Γ

(
k + n+

3

2

)
z−k−n−

3
2

=
∑
n>0

(−1)nĨ ′−n−1
Γ
(
n+ 3

2

)
(z − I0)n+

3
2

.

Together with proposition 5.2.2, one has,

y2D = z
1
2− 1

2
√
π

∞∑
n=0

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2− 1

2
√
π

∞∑
n=0

∂F 2D
0

∂tn
Γ

(
n+

3

2

)
z−n−

3
2

= z
1
2− 1

2
√
π

∑
n∈Z

(−1)nI ′nΓ

(
−n+

1

2

)
(z−I0)n−

1
2− 1

2
√
π

∑
n>0

(−1)nĨ ′−n−1
Γ
(
n+ 3

2

)
(z−I0)n+

3
2

= z
1
2− 1

2
√
π

∑
n>0

(−1)nI ′nΓ

(
−n+

1

2

)
(z−I0)n−

1
2 +

1

2
√
π

∑
n>0

(−1)n
In+2
0

(n+2)!

Γ
(
n+ 3

2

)
(z−I0)n+

3
2

= (z−I0)
1
2− 1

2
√
π

∑
n>1

(−1)nInΓ

(
−n+

1

2

)
(z−I0)n−

1
2 .
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The proof is completed.

Remark 5.4.1. When we impose the condition t−n = 0 for n > 0, we have F 2D
0 = F̃ 2D

0 . By

theorem 5.3.2

F 2D
0 =

1

6
I30 −

1

2

∑
n,k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
InIk +

∑
n>1

(−1)n(In − δn,1)I−n−1,

if we take derivatives of F 2D
0 with respect to {In}n∈Z formally, we have,

∂F 2D
0

∂In
|t−m=0, m≥1 = −

∑
k>0

(−1)n+kIn+k+1
0

(n+ k + 1)k!n!
Ik + (−1)nI−n−1|t−m=0, m≥1 = 0, (5.34)

∂F 2D
0

∂I−n−1
= (−1)nIn, (5.35)

for n > 1. Consider the generating series∑
n∈Z−{0}

∂F 2D
0

∂In
|t−m=0, m≥1 · xn+1 =

∑
n≥1

(−1)n(In − δn,1)x−n. (5.36)

and its Laplace transform:∑
n∈Z−{0}

∂F 2D
0

∂In
·
∫ ∞
0

1√
x
e−z̃xxn+1dx =

∑
n≥1

(−1)n(In − δn,1)Γ
(
−n+

1

2

)
z̃n−1/2, (5.37)

we get y2D by taking z̃ = z − I0.

6 Applications: constitutive relations

In this section we will use our results to rederive the following constitutive relations in 2D

topological gravity:

〈σiσj〉 =
1

i+ j + 1
ui+j+1. (6.1)

This is (2.34) derived by Dijkgraaf and Witten [9] as an example of constitutive relations

derived from topological recursion relations in genus zero. We will also derive the analogous

relations for F 1D
0 and FN

0 .

6.1 Constitutive relations in 2D topological gravity

In our notations, (6.1) is just:

∂2F 2D
0

∂tj∂tk
=

Ik+j+1
0

k!j!(k + j + 1)
. (6.2)

This can be proved by our results as follows. We have proved the following equation in the

proof of theorem 5.4.1:
∂F 2D

0

∂tk
=
∑
n>0

(−1)n
Ik−n0

(k − n)!
Ĩ ′−n−1, (6.3)
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where Ĩ ′n = In|t−m=0, m≥1. By this equation and (5.32), one has,

∂2F 2D
0

∂tj∂tk
=
∂I0
∂tj

∑
n>0

(−1)n
Ik−1−n0

(k−1−n)!
Ĩ ′−n−1+

∑
n>0

(−1)n
Ik−n0

(k−n)!

∂Ĩ ′−n−1
∂tj

=
1

1−I1
Ij0
j!

∑
n>0

(−1)n
Ik−1−n0

(k−1−n)!
Ĩ ′−n−1+

∑
n>0

(−1)n
Ik−n0

(k−n)!

(
Ij+n+1
0

(j+n+1)!
+
Ij0
j!

Ĩ ′−n
1−I1

)

=
∑
n>0

(−1)n
Ik−n0

(k−n)!

Ij+n+1
0

(j+n+1)!

=
Ik+j+1
0

k!j!(k+j+1)
.

This gives a proof of Constitutive Relations (6.1).

We can now interpret the Itzykson-Zuber Ansatz as given by formulas (4.11)–(4.13)

from the point of view of constitutive relations. The formula for F 2D
0 can be obtained from

the genus zero n-point functions on the small phase space by changing tn0 to (−1)n−1In0 ,

tk → Ik for k ≥ 1 as follows. Because

〈τn0 〉0 = δn,3, (6.4)

the 0-point function in genus zero on the small phase space is
t30
6 , it gives the term

I30
6 . The

one-point function can be computed by

〈τnτm0 〉0 = δm,n+2, (6.5)

it is
∑

n≥0
tn+2
0

(n+2)! tn, and so it gives the term −
∑

n≥0
(−1)nIn+2

0
(n+2)! In. The two-point function

is computed by

〈τjτkτm0 〉0 =
(j + k)!

j!k!
δm,j+k+1, (6.6)

it is 1
2

∑
j,k≥0

tj+k+1
0

j!k!(j+k+1) tjtk, and so it gives us the term 1
2

∑
j,k≥0

(−1)j+kIj+k+1
0

j!k!(j+k+1) IjIk. Since

for g ≥ 1, Fg does not involve I0, one can further restrict to the origin t0 = 0 in the small

phase space, compute a few n-point functions and change tn to In for n ≥ 1. Such formulas

generalize the constitutive relations in the mean field theory considerations of Dijkgraaf-

Witten [9]. So our discussions suggest that renormalization naturally leads to constitutive

relations.

6.2 Analogues for F 1D
0 and FN

0

By (5.23) and (5.32),one has:

∂F 1D
0

∂tk
=

Ik+1
0

(k + 1)!
. (6.7)

Since FN
0 = NF 1D

0 , one also has,

∂FN
0

∂tk
= N

Ik+1
0

(k + 1)!
. (6.8)
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We regard them as the analogues of (6.1). Furthermore, the Hessians are given by:

∂2F 1D
0

∂tj∂tk
=
Ik0
k!

∂I0
∂tj

=
1

1− I1
Ik+j
0

k!j!
, (6.9)

∂2FN
0

∂tj∂tk
= N

Ik0
k!

∂I0
∂tj

=
N

1− I1
Ik+j
0

k!j!
. (6.10)

Note the appearance of I1 on the right-hand sides means F 1D
0 and FN

0 do not satisfy the

topological recursion relations, hence they do not give us topological field theories in the

sense of [9].

7 Concluding remarks

In this paper, we have further studied the I-coordinates. By rewriting L2D
0 in I-coordinates,

we have proved the Itzykson-Zuber ansatz. Furthermore, we have developed the techniques

of rewriting all the Virasoro constraints for free energies in I-coordinates and solving free

energies recursively.

As pointed out by the second named author in [28], we understand the I-variables

as new coordinates on the big phase space. In this paper, we have checked that at least

in the cases of 1D topological gravity, Hermitian one-matrix model and 2D topological

gravity, the free energies have good properties in these new coordinates. We believe this

is a general phenomenon and hope to make generalizations in subsequent work. We have

also seen that the use of renormalized coupling constants shed some lights on the mean

field theory approach to the original theories.

Furthermore, we extend the definitions of In for n ≥ −1 to include In for all n ∈ Z.

These are inspired by the introduction of tn for all n ∈ Z in [33]. They suggest to study

an even larger phase space to include the ghost variables.

A surprising consequence is that we discover a connection between the emergent spec-

tral curve of 2D topological gravity and the action of the 1D topological gravity. The

special deformations of spectral curves of the three theories considered in this paper are:

y1D =
1√
2

∑
n>0

tn − δn,1
n!

zn +

√
2

z
+
√

2
∑
n>1

n!

zn+1

∂F 1D
0

∂tn−1
. (7.1)

yN =
1√
2

∑
n>0

tn − δn,1
n!

zn +

√
2N

z
+
√

2
∑
n>1

n!

zn+1

∂FN
0

∂tn−1
. (7.2)

y2D = z
1
2 − 1

2
√
π

∞∑
n=0

(−1)ntnΓ

(
−n+

1

2

)
zn−

1
2 − 1

2
√
π

∞∑
n=0

∂F 2D
0

∂tn
Γ

(
n+

3

2

)
z−n−

3
2 . (7.3)

When rewritten in the I-coordinates they take the following unified form:

y1D =

√
2

z − I0
+

1√
2

∑
n>1

In − δn,1
n!

(z − I0)n. (7.4)

yN =

√
2N

z − I0
+

1√
2

∑
n>1

In − δn,1
n!

(z − I0)n. (7.5)

y2D = −
√
π

2

∞∑
n=1

In − δn,1
Γ(n+ 1

2)
(z − I0)n−

1
2 . (7.6)
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Furthermore, if we define their action functions by:

S1D =

∫
y1Ddz =

√
2 log(z − I0) +

1√
2

∑
n>1

In − δn,1
(n+ 1)!

(z − I0)n+1, (7.7)

SN =

∫
yNdz =

√
2N log(z − I0) +

1√
2

∑
n>1

In − δn,1
(n+ 1)!

(z − I0)n+1, (7.8)

S2D =

∫
y2Ddz = −

√
π

2

∞∑
n=1

In − δn,1
Γ
(
n+ 3

2

)(z − I0)n+
1
2 . (7.9)

Then one has:

∂S1D

∂t0
= − 1

1− I1

√
2

z − I0
+
z − I0√

2
, (7.10)

∂SN

∂t0
= − 1

1− I1

√
2N

z − I0
+
z − I0√

2
, (7.11)

∂S2D

∂t0
= −(z − I0)

1
2 . (7.12)

These are deformations of spectral curves:

y1D =

√
2

z
− z√

2
, (7.13)

yN =

√
2N

z
− z√

2
, (7.14)

y2D = z
1
2 . (7.15)

I.e., the spectral curves are related to the action functions defined above in the following

way:

y∗ = −∂S
∗

∂t0

∣∣∣∣
I0=I1=0

, (7.16)

for ∗ = 1D, N , and 2D. We hope to understand and generalize this in future investigations.
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