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1 Introduction and summary

’t Hooft anomalies are robust and useful observables in quantum field theory. They are
invariant under renormalization group flow and can be used to constrain the phases of
theories at long distances. The most familiar type of ’t Hooft anomalies are arguably per-
turbative anomalies for continuous, ordinary (0-form) symmetries, which only occur in even
spacetime dimension. The full set of anomalies, however, is much richer. This work is con-
cerned with anomalies for discrete symmetries, generalized or higher-form symmetries [1],
and anomalies in the space of coupling constants of a quantum field theory [2, 3].

’t Hooft anomalies are particularly helpful in the study of the dynamics of strongly-
coupled field theories in the framework of geometric engineering. Moreover, anomalies
provide an organizing principle in exploring the landscape of such theories. Discrete higher-
form symmetries for field theories engineered by M-theory on a singular local geometry have
been recently studied in [4, 5].

This work focuses on field theories engineered with M5-branes. Using M5-branes, one
can realize 6d (2,0) theories of type AN−1 [6, 7], as well as 6d (1,0) theories obtained by
putting the M5-brane stack on top of an orbifold singularity [8]. A vast class of 4d theories
is realized by further compactification on a Riemann surface, possibly with punctures, as
first studied for N = 2 theories in [9, 10], and further extended to N = 1 theories [11–15].
It is beneficial to develop tools to extract ’t Hooft anomalies of a field theory engineered
using branes directly from the topology and geometry of the brane configuration. Anomaly
inflow provides the framework to address this problem. Building on the results of [16–19]
about anomaly inflow onto a stack of M5-branes, systematic tools have been developed
to compute perturbative ’t Hooft anomalies for 0-form symmetries via inflow for setups
engineered with M5-branes [20–22] and D3-branes [23].

A more complete understanding of the space of quantum field theories would require
one to extend the scope of this program to include other types of ’t Hooft anomalies.
In this paper, we address a class of discrete and higher-form symmetries for 4d SCFTs
engineered with wrapped M5-branes. In particular, we perform a detailed analysis for M5-
branes probing a Z2 singularity, further wrapped on a Riemann surface. This case study
furnishes a controlled example that exhibits interesting features. Our strategy and results
are summarized below.
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Summary of results. For a 4d SCFT engineered with wrapped M5-branes, non-trivial
information about ’t Hooft anomalies for discrete symmetries, higher-form symmetries, and
anomalies in the space of coupling constants [2] can be extracted via anomaly inflow. This is
done by studying the topological couplings in the 5d low-energy effective action originating
from reduction of M-theory onM6, the compact space that encodes the geometry transverse
to the four extended directions of the M5-branes worldvolume.

In our analysis, we include all 5d 0-, 1-, 2- and 3-form gauge fields associated to
expansion of the M-theory 3-form C3 onto cohomology classes of M6, as well as 1-form
gauge fields associated to isometries of M6. A crucial role is played by 5d topological mass
terms of BF type between a 1-form gauge field A1 and a 3-form gauge field c3, and between
pairs (B2i, B̃

i
2) of 2-form gauge fields,

S =
∫
M5

[
− 1

2π k c3 ∧ dA1 −
1

2π N B̃i
2 ∧ dB2i

]
, (1.1)

where M5 is 5d spacetime, and i labels the pairs of 2-form gauge fields. As we shall see,
for setups with wrapped M5-branes the integers k and N are determined by the G4-flux
quanta of the system, and i = 1, . . . , g where g is the genus of the Riemann surface. The
BF term 1

2π kA1 ∧ dc3 implies that the 5d U(1) 0-form gauge symmetry associated to A1
is spontaneously broken to a Zk 0-form gauge symmetry, and the 5d U(1) 2-form gauge
symmetry associated to c3 is spontaneously broken to a Zk 2-form gauge symmetry (see
e.g. [24, 25] for reviews). In a similar way, for each i the term 1

2π N B̃i
2 ∧ dB2i signals the

spontaneous breaking of a bulk U(1)2 1-form gauge symmetry to a (ZN )2 1-form gauge
symmetry. After a choice of topological boundary conditions for the BF terms is made,
the discrete gauge symmetries in the bulk are mapped to discrete global symmetries of the
4d SCFT. Moreover, the extended operators of the 5d BF theory are mapped to defects in
the 4d SCFT, which are charged under the discrete global symmetries. A similar analysis
in the context of AdS4/CFT3 has been recently performed for ABJM-type theories [26].

In order to compute the full set of topological terms in five dimensions, including the
contributions of gauge fields associated to isometries ofM6 and an arbitrary external space-
time metric, we use the tools developed in [22]. The 5d topological terms are conveniently
encoded in a gauge-invariant closed 6-form I inflow

6 , which is a polynomial in the 5d gauge
field strengths. As concrete examples, we consider 4d SCFTs engineered by M5-branes
wrapped on a Riemann surface [14, 15], as well as theories from M5-branes wrapped on a
Riemann surface and probing a Z2 singularity — in this case the gravity dual was identified
in [27] to be one of the solutions first discussed in [28]. The 6-form I inflow

6 for these setups
are given in (5.7), (5.9), respectively.

The 6-form I inflow
6 encodes the ’t Hooft anomalies of the 4d SCFT, together with the

anomalies of modes that decouple in the IR. Since the 5d bulk theory contains massive
gauge fields, care has to be taken in reading off 4d ’t Hooft anomalies from I inflow

6 .
If one is interested in perturbative anomalies for continuous global symmetries of the

4d field theory, the topologically massive gauge fields in five dimensions must be integrated
out. A similar mechanism is at play for 6d (1,0) SCFTs engineered with M5-branes probing
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an ALE singularity, and clarifies how the Green-Schwarz terms in the 8-form anomaly
polynomial [29] are reproduced by inflow.

The perturbative anomaly polynomial for wrapped M5-branes probing a Z2 singularity,
recorded in (5.14), contains several terms with 0-form gauge fields (i.e. axions), with 1-form
field strengths. Following [2], we interpret such terms as anomalies in the space of coupling
constants. The couplings in question are associated to exactly marginal operators of the 4d
SCFT. We argue that these operators can be thought of as dimensional reduction on the
Riemann surface of the 6d conserved U(1) currents associated to the Cartan U(1)N×U(1)S
of the SU(2)N × SU(2)S flavor symmetry of the 6d (1,0) theory engineered by M5-branes
on a Z2 singularity.

After the continuous part of a topologically massive gauge field is integrated out, a
discrete gauge field is left over, whose precise features depend on the choice of boundary
conditions for the BF terms. Hence, in order to extract 4d ’t Hooft anomalies for discrete
symmetries from the 6-form I inflow

6 , we need to specify the boundary conditions. For
definiteness, we focus on the case in which we assign Dirichlet boundary conditions to the
fields A1 and B2i (and free boundary conditions to c3 and B̃i

2), so that the 4d field theory
admits a Zk global 0-form symmetry and a (ZN )g global 1-form symmetry. The field c3
acts as a Lagrange multiplier that imposes a constraint on A1. If we write A1 = Acont

1 +A1,
the constraint fixes Acont

1 in terms of gauge fields for continuous symmetries, and forces
A1 to be a flat 1-form gauge field with holonomies that are k-th roots of unity. Similarly,
the Lagrange multiplier B̃i

2 imposes a constraint on B2i = Bcont
2i + B2i, which determines

Bcont
2i in terms of continuous gauge fields, and forces B2i to be a flat 2-form gauge field

with holonomies that are N -th roots of unity.
By substituting A1 = Acont

1 + A1, B2i = Bcont
2i + B2i into the 6-form I inflow

6 , we obtain
a formal expression that encodes ’t Hooft anomalies for both the continuous symmetries
and the Zk 0-form symmetry and (ZN )g 1-form symmetry. Discrete anomalies are read
off from terms in I inflow

6 with dA1, dB2i. These objects are zero as differential forms. To
circumvent this difficulty, we reinterpret the quantity I inflow

6 in the framework of differential
cohomology (see e.g. [2, 30] and appendix D for some background material). Differential
forms are regarded as a proxy for classes in differential cohomology, and their wedge product
is a proxy for the product in differential cohomology. A crucial feature of the latter is that
the product of a flat gauge field with other gauge fields is not necessarily zero. This
approach dates back to Dijkgraaf and Witten [31] and has also been recently used in [32].

We apply the recipe outlined in the previous paragraphs to the setup with wrapped
M5-branes probing a Z2 singularity. The terms in I inflow

6 involving dA1, dB2i are collected
schematically in (5.33), while the full result is recorded in appendix E. We encounter a
rich variety of ’t Hooft anomalies involving the discrete symmetries, including: a cubic
term in dA1; terms mixing dA1 and dB2i to the other continuous symmetries, including a
gravitational term dA1 p1(T ); a mixed anomaly between the two discrete symmetries and
a coupling constant.

Finally, we observe that the BF couplings in the 5d topological bulk theory can also be
used to identify some of the singleton modes of the 5d supergravity theory. (By “singleton
modes” we mean modes that are pure gauge in the 5d bulk, but propagate on the conformal
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boundary; they are holographically dual to modes in the 4d field theory that decouple in the
IR.) For setups with wrapped M5-branes with 4d N = 2 supersymmetry, the knowledge of
singleton modes from BF terms, combined with supersymmetry, is sufficient to reconstruct
from the gravity side the entire set of modes that decouple on the field theory side. This
offers a proof of principle that one can compute the exact anomaly polynomial from the
gravity dual, including O(1) terms in the number of M5-branes.

2 Topological mass terms in 5d supergravity

Let us consider a supersymmetric AdS5 solution of M-theory with internal space M6.
These solutions were classified in [28]. We study the 5d supergravity theory obtained
from reduction of M-theory on a warped product of the form M5 ×w M6, where external
spacetime M5 is negatively curved. The case M5 = AdS5 is recovered as the vacuum
solution of the 5d supergravity theory. We restrict our attention to solutions where the
space M6 is compact and smooth, and the warp factor is smooth and non-vanishing. In
this section we focus on the topological couplings in the low-energy effective action of the
5d supergravity.

In particular, we are interested in identifying the topological mass terms for the p-
form gauge fields that arise from Kaluza-Klein expansion of the M-theory 3-form C3 onto
a basis of non-trivial cohomology classes on M6. If the internal space M6 has isometries,
the 5d supergravity theory contains additional (possibly non-Abelian) gauge fields. For
the remainder of this section, these gauge fields associated to isometries of M6 are turned
off, since it can be checked that they do not contribute to the topological terms of interest.
They will be reinstated in section 5.

2.1 Ansatz for G4 and dimensional reduction

The spectrum of the 5d supergravity obtained from reduction of M-theory on M6 contains
massless Abelian p-form gauge fields coming from the Kaluza-Klein expansion of the M-
theory 3-form C3. These massless p-form gauge fields are in 1-to-1 correspondence with
non-trivial cohomology classes of M6.

For each q = 0, . . . , 6 we choose a basis in the lattice Hq(M6,Z)free,1 which has rank
given by the Betti number bq(M6). The Betti numbers of M6 satisfy b0(M6) = b6(M6) = 1,
b1(M6) = b5(M6), b2(M6) = b4(M6). Elements of Hq(M6,Z)free can be identified with
de Rham cohomology classes of closed q-forms with integral periods. As a result, we can
represent a basis of Hq(M6,Z)free using a set of closed (but not exact) q-forms on M6 with
integral periods. We use the following notation for these forms,

1-forms: λ1u , u = 1, . . . , b1(M6) ,
2-forms: ω2α , α = 1, . . . , b2(M6) ,
3-forms: Λ3x , x = 1, . . . , b3(M6) ,
4-forms: Ωα

4 , α = 1, . . . , b2(M6) .

(2.1)

1This is the finitely generated free Abelian group defined by the short exact sequence

0→ TorHq(M6,Z)→ Hq(M6,Z)→ Hq(M6,Z)free → 0 ,

where TorHq(M6,Z) is the torsion subgroup of Hq(M6,Z).
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The 5d gauge fields originating from C3 and their field strengths are denoted as follows,

0-form potentials: ax0 , fx1 = dax0 , x = 1, . . . , b3(M6) ,
1-form potentials: Aα1 , Fα2 = dAα1 , α = 1, . . . , b2(M6) ,
2-form potentials: Bu

2 , Hu
3 = dBu

2 , u = 1, . . . , b1(M6) ,
3-form potential: c3 , γ4 = dc3 .

(2.2)

Throughout this work, we adopt conventions in which the periods of the field strength of an
Abelian p-form gauge fields are quantized in units of 2π. (A 0-form gauge field whose field
strength is quantized in units of 2π is the same as a compact scalar field with period 2π.)

In string/M-theory compactifications, torsion cycles in the internal space can be a
source of discrete gauge symmetries [33, 34]. In this work, we do not study the effects of
torsion in the homology of M6. The geometries M6 that are relevant for the setups with
wrapped M5-branes studied in this paper do not have torsion in homology.

With the notation introduced in (2.1) and (2.2), the M-theory 4-form field strength
G4 = dC3, including both its background value and fluctuations associated to cohomology
classes on M6, is given by

G4
2π = Nα Ωα

4 + Fα2
2π ∧ ω2α + fx1

2π ∧ Λ3x + Hu
3

2π ∧ λ1u + γ4
2π . (2.3)

The integers Nα specify the background flux that threads M6. The periods of G4 in (2.3)
are quantized in units of 2π.2

In our normalization conventions for G4, the topological terms of the low-energy effec-
tive action of M-theory are3

Stop =
∫
M11

[
− 1

6 (2π)2 C3∧G4∧G4−
1

2π C3∧X8

]
, X8 = p2

1(TM11)− 4 p2(TM11)
192 . (2.4)

The low-energy effective action for the 5d p-form gauge fields listed in (2.2) is computed
via standard Kaluza-Klein reduction. Recall that external metric fluctuations and gauge
fields associated to isometries of M6 are turned off in this section. For the purpose of

2The flux quantization condition in M-theory on an orientable spacetime M11 can be written as [35]∫
C4

G4

2π = 1
2

∫
C4

w4(TM11) mod 1 , for any 4-cycle C4 in M11 .

where w4 denotes the fourth Stiefel-Whitney class. It is known that w4 is zero for a spin manifold of
dimension ≤ 7 (the argument can be found for instance on page 65 of [36]). In our setups the internal space
M6 and external spacetime are spin manifolds, hence the shift in the quantization condition of G4 is not
important. This holds true also for the purposes of writing the anomaly polynomial of a 4d theory using
descent: in that case external spacetime is effectively six-dimensional.

3In these conventions, the Einstein-Hilbert term and the kinetic term for G4 take the form

Skin =
∫
M11

[
2π (2π `P)−9 R ∗ 1− 1

2 (2π)−1 (2π `P)−3 G4 ∧ ∗G4

]
,

where `P is the 11d Planck length. The action enters the path integral via eiS and is defined mod 2π.
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computing the effective action for the modes in (2.2) the term C3X8 plays no role.4 The
kinetic term for G4 yields standard kinetic terms for the 5d gauge fields. The Chern-Simons
coupling C3G4G4 yields a set of topological terms in the 5d effective action. They are most
conveniently written in terms of a gauge-invariant 6-form,

Stop = 2π
∫
M5

I
(0)
5 , dI

(0)
5 = I6 , (2.5)

where the 6-form I6 is given by

I6 = 1
(2π)2

[
−Nα γ4 ∧ Fα2 + 1

2 NαKαuvHu
3 ∧Hv

3

]
(2.6)

+ 1
(2π)3

[
− 1

6 Kαβγ F
α
2 ∧ F

β
2 ∧ F

γ
2 +Kxuα fx1 ∧ Fα2 ∧Hu

3 + 1
2 Kxy γ4 ∧ fx1 ∧ f

y
1

]
.

The quantities Kαuv, Kαβγ , Kxuα, Kxy are integer intersection numbers which can be defined
in terms of the closed forms on M6 as

Kαuv =
∫
M6

Ωα
4 ∧ λ1u ∧ λ1v , Kαβγ =

∫
M6

ω2α ∧ ω2β ∧ ω3γ ,

Kxuα =
∫
M6

Λ3x ∧ λ1u ∧ ω2α , Kxy =
∫
M6

Λ3x ∧ Λ3y . (2.7)

These intersection numbers depend only on the cohomology classes of the internal forms,
and not on the specific representatives used to write down G4 in (2.3).

The first two terms in (2.6) are the sought-for topological mass terms in the 5d super-
gravity effective action. In contrast to the other topological couplings in (2.6), they are
quadratic in the external gauge fields. We stress that the topological mass terms are due
to the background flux quanta Nα.

When b2(M6) ≥ 2 we are free to consider a change of basis in the lattice H2(M6,Z)free,
which is accompanied by a change of basis in the external 1-form gauge fields. A new basis
A′α1 can always be found such that A′1α=1 is the only 1-form gauge field with a topological
mass term with c3. Since A′1α=1 plays a special role compared to the vectors A′1α 6=1, we
introduce the notation

A′α1 = (A1,Aα̂1 ) , α̂ = 2, 3, . . . , n . (2.8)

With this notation we have

−Nα F
α
2 ∧ γ4 = −k dA1 ∧ γ4 , k = gcd(Nα) , (2.9)

while the vectors Aα̂1 do not enter the topological mass terms. Further information about
the new basis A′α1 is collected in appendix A.

4Even after the isometry gauge fields are turned on, the term C3X8 does not yield topological mass
terms (i.e. topological terms quadratic in the external fields) for the cases of interest in this work.
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g ≥ 2
p 6= 0, q 6= 0, p 6= q U(1)1 ×U(1)2 N = 1
p = 0 or q = 0 SU(2)1 ×U(1)2 or U(1)1 × SU(2)2 N = 2 MN

p = q SU(2)×U(1) N = 1 MN
g = 0 |p− q| > 2 U(1)1 ×U(1)2 × SU(2)Σ N = 1
g = 1 p 6= 0 U(1)1 ×U(1)2 N = 1

Table 1. Summary of the values of p, q that yield smooth AdS5 solutions in M-theory. Recall
p + q = 2(g − 1). In the third column we list the isometries of the internal space M6. In the last
column, MN stands for Maldacena-Nuñez and refers to the solutions of [37].

2.2 Applications to wrapped M5-branes

In this section we specialize the results of the previous section to two classes of AdS5
solutions that are particularly relevant in connection to 4d N = 1 SCFTs engineered with
M5-branes wrapped on a Riemann surface. More precisely, we consider:

• M5-branes wrapped on a Riemann surface without punctures, which correspond to
the solutions of [14, 15], referred to as BBBW.

• M5-branes probing a Z2 singularity and wrapped on a Riemann surface without
punctures [27], which correspond to a class of solutions of [28], referred to as GMSW.

2.2.1 M5-branes wrapped on a Riemann surface

The BBBW solutions [14, 15] describe the near-horizon geometry of a stack of M5-branes
wrapped on a genus-g Riemann surface Σg with a non-trivial topological twist preserving
4d N ≥ 1 superconformal symmetry. The internal space M6 is topologically an S4 bundle
over Σg. Its topology is encoded in two integer numbers p, q satisfying

p+ q = −χ(Σg) = 2 (g − 1) . (2.10)

We can regard S4 ↪→M6 → Σg as the unit-sphere bundle associated to a real rank-5 vector
bundle R5 ↪→ N → Σg. The bundle N is identified with the normal bundle to the M5-
brane stack. It splits as N = L1 ⊕ L2 ⊕N0, where L1, L2 are complex line bundles over
Σg, and N0 is a trivial real rank-1 vector bundle. The integers p, q are the Chern numbers
of the complex line bundles L1, L2, respectively.

In table 1 we summarize the choices of g, p, q for which a smooth AdS5 M-theory
solution exists, and for each case we list the isometries of the internal space M6. Some
comments are in order. In all cases, M6 admits at least a U(1)1×U(1)2 isometry, which is
the subgroup of the SO(5) isometry of the S4 fiber that is preserved by the fibration over
Σg for any choice of p, q. When g ≥ 2, p = 0, U(1)1 enhances to SU(2)1. Supersymmetry
enhances to N = 2 and the isometry group SU(2)1 × U(1)2 is identified with the R-
symmetry of the SCFT. This setup is the N = 2 Maldacena-Nuñez (MN) solution [37].
Similar remarks apply to g ≥ 2, q = 0. In the case g ≥ 2, p = q, the difference of the
generators of U(1)1 and U(1)2 enhances to SU(2), which is identified with an enhanced
flavor symmetry of the SCFT side. This is the N = 1 MN solution [37]. When g = 0,
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the Riemann surface is a round sphere S2. The space M6 admits an additional SO(3)Σ
isometry, originating from the isometry of S2. Finally, we would like to emphasize that
the case g = 1, p = q = 0, which corresponds to 4d N = 4 SYM theory, is not included in
table 1, because there is no smooth AdS5 M-theory solution with internal space S4 × T 2

without any twisting. The N = 4 SYM theory is best studied holographically via the
standard AdS5 × S5 solution in type IIB string theory.

The number of external p-form fields entering the topological terms (2.6) in the 5d
effective action is determined by the Betti numbers of M6. The latter do not depend on
the twist parameters p, q and are given by

b0(M6) = b2(M6) = b4(M6) = b6(M6) = 1 , b1(M6) = b5(M6) = 2g , b3(M6) = 0 .
(2.11)

This claim is verified in appendix B.1, where we also construct the associated closed forms
with integral periods. The fact that b4(M6) = 1 is consistent with the fact that BBBW
solutions have only one flux parameter,

Nα=1 = N , (2.12)

which is the number of M5-branes in the stack. We notice that b1(M6) = 2g stems from
the fact that the 2g harmonic 1-forms on Σg can be pulled back to M6, yielding closed but
not exact 1-forms, whose de Rham classes account for the entire 1-cohomology of M6. The
5d p-form gauge fields originating from the expansion of C3 are

c3 , Aα=1
1 = A1 , Bu

2 , u = 1, . . . , 2g , (2.13)

while we do not find any 0-form gauge potential.
Making use of the closed forms of appendix B.1, we can compute explicitly the in-

tersection numbers (2.7). The only non-zero intersection pairing is Kα=1
uv, which can be

written as
Kα=1

uv = Ωuv = CΣ
1u · CΣ

1v , u, v = 1, . . . , 2g . (2.14)

In the previous expression C1u denotes a basis of integral 1-homology on Σg, and Ωuv is the
intersection pairing, which is antisymmetric and non-degenerate. The 6-form I6 encoding
the topological couplings of the 5d action as in (2.6) is given by

I6 = 1
(2π)2

[
−N γ4 ∧ F2 + 1

2 N ΩuvH
u
3 ∧Hv

3

]
. (2.15)

It is useful to choose a basis CΣ
1u of integral 1-homology on Σg that is based on the

standard A and B cycles on the Riemann surface. Correspondingly, we write

CΣ
1u = (Ci, C̃i) ,

Ci · C̃j = −C̃j · Ci = δji ,

Ci · Cj = C̃i · C̃j = 0 ,
i, j = 1, . . . , g , (2.16)

In other words, the intersection pairing Ωuv in this basis takes the standard form

Ωuv =
(

0 δji
−δji 0

)
. (2.17)
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The group of linear transformations of the lattice H1(Σg,Z) that preserve this form of Ωuv

is Sp(2g;Z). (In our notation, Sp(2,Z) = SL(2,Z).) The choice of basis (2.16) implies that
the index u on the 2-form gauge fields Bu

2 is split into two sets of g values,

Bu
2 = (B2i, B̃

i
2) , i = 1, . . . , g . (2.18)

In this basis, the 6-form I6 reads

I6 = 1
(2π)2

[
−N γ4 ∧ F2 −N H̃ i

3 ∧H3i

]
. (2.19)

2.2.2 M5-branes probing a Z2 singularity and wrapped on a Riemann surface

Let us now consider a class of solutions first discussed in [28]. The spaceM6 is topologically
an S2 bundle over the product of two Riemann surfaces. If one of the Riemann surfaces is
a torus, the setup is best studied by dualizing the M-theory solution to a type IIB string
theory solution. We thus focus on the case where both Riemann surfaces are non-flat.
There is no smooth solutions if both Riemann surfaces are negatively curved. We are
therefore left with one sphere and one Riemann surface Σg with g = 0 or g ≥ 2. The line
element has the form

ds2(M6) = fϕ(µ) ds2(S2
ϕ) + fΣ(µ) ds2(Σg) + fµ(µ) dµ2 + fψ(µ)Dψ2 . (2.20)

In the previous expression, ψ is an angular coordinate with period 2π, while µ is a coordi-
nate on an interval, µ ∈ [µS, µN]. The quantity ds2(S2

ϕ) = dθ2 + sin2 θ dϕ2 is the standard
line element on a unit-radius two-sphere, while ds2(Σg) denotes the line element on a Rie-
mann surface of constant curvature κ = ±1, respectively. The functions fϕ, fΣ are strictly
positive on the entire µ interval. The function fµ has poles at µ = µN,S, while fψ as zeros
at µ = µN,S; as a result, the µ and ψ coordinate describe a two-dimensional space S2

ψ which
is topologically a 2-sphere, with isometry group U(1)ψ. The circle S1

ψ shrinks smoothly at
µ = µN,S. Finally, the fibration of S2

ψ over the base S2
ϕ × Σg is encoded in

dDψ = −2Vϕ − χVΣ , χ = 2− 2g , (2.21)

where Vϕ, VΣ are the volume forms on S2
ϕ, Σg, respectively, normalized according to∫

S2
ϕ

Vϕ = 2π ,
∫

Σg
VΣ = 2π . (2.22)

More details on these geometries can be found in appendix B.2.
To highlight the interpretation of M6 in terms of wrapped M5-branes, it is convenient

to present M6 as
M4 ↪→M6 → Σg , (2.23)

where the space M4 consists of the µ, ψ directions and the 2-sphere S2
ϕ. It is depicted

schematically in figure 1. The spaceM4 can be identified with the resolution of the quotient
S4/Z2 [27]. Notice that S2

ϕ does not shrink at µ = µN,S and defines two 2-cycles in M4.
The latter are identified with the resolution cycles originating from the blow-up of the
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Figure 1. Schematic depiction of the space M4 comprised by the 2-sphere S2
ϕ, the circle S1

ψ, and
the µ interval. The space M4 is the blow-up resolution of S4/Z2. The blow-up P1’s are identified
with S2

ϕ at µ = µN and µ = µS.

singularities of S4/Z2.5 This motivates the interpretation of M6 as near horizon geometry
of a stack of M5-branes probing a Z2 singularity and wrapped on a Riemann surface.

The Betti numbers of M6 are

b0(M6) = b6(M6) = 1 , b2(M6) = b4(M6) = 3 ,

b1(M6) = b5(M6) = 2g , b3(M6) = 4g . (2.24)

This is verified in appendix B.2, where we also construct the closed forms needed to rep-
resent all cohomology classes of M6. In accordance with b4(M6) = 3, this class of GMSW
solutions has three independent flux parameters. They can be taken to be

Nα = (N,N+, N−) , α = 1, 2, 3 , (2.25)

where N is the flux through M4 (at a generic point on Σg) and is identified with the
number of M5-branes in the stack, while N± = 1

2 (NN±NS) encode the fluxes through the
2-cycles in M4 at µ = µN,S combined with Σg. A more detailed discussion can be found
in appendix B.2. With reference to (2.25), the three 1-form gauge fields originating from
expansion of C3 onto 2-cohomology classes are denoted

Aα1 = (A1, A
+
1 , A

−
1 ) , Fα2 = (F2, F

+
2 , F

−
2 ) . (2.26)

The 1-cohomology classes of M6 are labeled by the same index u = 1, . . . , 2g that
labels the non-trivial 1-cycles on the Riemann surface. As in the previous section, we can
choose a canonical basis of 1-cycles on Σg, and split the index u into two sets of g values.
Accordingly, we have a total of 2g 2-form gauge fields, which we can arrange into two
groups of g each, and similarly for their field strengths,

Bu
2 = (B2i, B̃

i
2) , Hu

3 = (H3i, H̃
i
3) , i = 1, . . . g . (2.27)

5The Z2 action is (y1, y2, y3, y4, y5) 7→ (−y1,−y2,−y3,−y4, y5) in terms the Cartesian coordinates
y1,2,3,4,5 of R5 ⊃ S4. This action has two fixed points on S4 at y5 = ±1. Near each fixed point the
space looks like R4/Z2 and can be resolved by a 2-center ALE Taub-NUT geometry.
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multiplicity fields top. mass terms 5d bulk gauge symm.

b2(M6) = 3 Aα1 1
2π NαA

α
1 ∧ dγ3

U(1)2 0-form symm.

Zk 0-form symm.

1 γ3 Zk 2-form symm.

b1(M6) = 2g B2i, B̃i2 1
2π N B̃i2 ∧ dB2i (ZN × ZN )g 1-form symm.

b3(M6) = 4g a±0i, ãi±0 — 5d axions

Table 2. Summary of p-form gauge fields in 5d supergravity obtained from expansion of C3 onto
cohomology classes inM6 for M5-branes at a Z2 singularity wrapped on a genus-g Riemann surface.
We have defined k = gcd(Nα).

By a similar token, we organize the 4g 0-form gauge fields associated to 3-cohomology class
of M6 into four groups of g elements. Within each group, we label 0-form fields with the
same index i as in (2.27),

ax0 = (a+
0i, ã

i+
0 , a−0i, ã

i−
0 ) , fx1 = (f+

1i , f̃
i+
1 , f−1i , f̃

i−
1 ) , i = 1, . . . , g . (2.28)

Having introduced our choice of bases in cohomology and our notation, we can present
the expression for I6. It reads (suppressing wedge products)

I6 = 1
(2π)2

[
− (N F2 +N+ F

+
2 +N− F

−
2 ) γ4 −N H̃ i

3H3i

]
+ 1

(2π)3

[
− 1

6 χ (F+
2 )3 − 1

2 χF
+
2 (F−2 )2 + F2 F

+
2 F−2 − γ4

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
+ F+

2

(
f+

1i H̃
i
3 − f̃ i+1 H3i

)
+ F−2

(
f−1i H̃

i
3 − f̃ i−1 H3i

)]
. (2.29)

The topological mass terms are collected in the first line. We summarize the p-forms fields
and their topological mass terms in table 2. The bulk gauge groups in the last column are
explained in greater detail in the next section.

3 BF theory in the bulk and holographic interpretation

In this section we analyze the 5d dynamics of the p-form gauge fields originating from the
expansion of the M-theory 3-form C3. We make contact with well-known aspects of BF
theories [24, 25] and argue that the 5d theory contains gauge fields with discrete gauge
groups. When the 5d spacetime has a boundary, the theory has to be supplemented by
suitable boundary conditions and boundary terms, which we partially review. Moreover,
we describe the singleton modes that propagate on the boundary of spacetime. Finally, we
discuss the holographic correspondence between discrete gauge fields in five dimensions and
global discrete p-form symmetries in the 4d boundary theory, as well as the holographic
interpretation of the singleton modes of the 5d bulk theory. Most of the ideas presented
in this section are modeled on results that have appeared in the literature. Our main goal
here is to collect useful observations to set the stage for the ’t Hooft anomaly discussion of
section 5.
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3.1 Low-energy dynamics in five dimensions

The relevant couplings in the effective action for the p-form gauge fields coming from the M-
theory 3-form are the kinetic terms and the topological terms (2.5). At very low-energies,
the dynamics is governed by the topological terms that are quadratic in the p-form gauge
fields, as these terms in the 5d action contain only one derivative. These topological terms
are encoded in the first line of the formal 6-form I6 in (2.6).

We have already argued that the basis of 1-form gauge fields in (2.8) is the best
suited for discussing topological mass terms involving c3. We also notice that, in all setups
described in section 2.2, the term 1

2 NαKαuvHu
3 ∧Hv

3 takes the simple form −N H̃ i
3 ∧H3i,

see (2.19) and (2.29). For these reasons, for the remainder of this section we consider the
5d topological theory defined by the action

S =
∫
M5

[
− 1

2π k c3 ∧ dA1 −
1

2π N B̃i
2 ∧ dB2i

]
. (3.1)

In the previous expressionM5 denotes external spacetime. In writing the action (3.1) we
have chosen a specific antiderivative I(0)

5 of the formal 6-form I6. IfM5 has no boundary,
this choice does not matter. The case ∂M5 6= ∅ is discussed below. Recall that i = 1, . . . , g
and k = gcd(Nα) (if b2(M6) = 1, we define k = Nα=1). The action (3.1) describes a
collection of decoupled standard BF theories. We refer the reader to e.g. [24, 25] for
background material on BF theories and their relation to the Stückelberg mechanism.

The fact that the 1-form gauge fields Aα̂1 do not enter (3.1) means that their dynamics
is governed by the kinetic terms and the cubic topological couplings in (2.5). As a result,
the 1-form gauge fields Aα̂1 are standard U(1) gauge fields. In contrast, the dynamics of
A1, c3, B2i, and B̃i

2 is governed by (3.1) and therefore:

• A1 describes a 1-form gauge field with gauge group Zk.

• c3 describes a 3-form gauge field with gauge group Zk.

• B2i, B̃i
2 describe 2-form gauge fields with gauge group ZN .

The field A1 is a continuum description of a discrete gauge field because it is a flat con-
nection and its holonomies are restricted in Zk ⊂ U(1). Similar remarks apply to c3, B2i,
B̃i

2: for arbitrary cycles C1, C3, C2 in 5d spacetimeM5,

exp
(
i

∫
C1
A1

)
∈ Zk ⊂ U(1) , exp

(
i

∫
C3
c3

)
∈ Zk ⊂ U(1) ,

exp
(
i

∫
C2
B2i

)
∈ ZN ⊂ U(1) , exp

(
i

∫
C2
B̃i

2

)
∈ ZN ⊂ U(1) . (3.2)

We stress that, since all these p-form gauge fields are flat on-shell, the holonomies written
above only depend on the homology classes of C1, C3, C2, and not on the specific represen-
tatives. Let us also emphasize that this description of discrete gauge fields in terms of local
p-forms and their holonomies is convenient for our purposes, but in more general situations
an approach based on cocycles is preferred [31, 32].
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3.1.1 Boundary terms and boundary conditions

For applications to holography we have to consider 5d spacetimes with a conformal bound-
ary. In this case, the bulk action (3.1) has to be supplemented with suitable boundary
conditions and possibly additional boundary terms, in order to ensure a well-defined vari-
ational problem. In this section we describe some sets of boundary conditions that will be
relevant below in the holographic discussion.

Topological boundary conditions. Let us first discuss boundary conditions for the
c3, A1 BF theory. A simple choice is to assign Dirichlet boundary conditions on A1, with
free boundary conditions for c3. The variational problem is well-posed because the relevant
terms in the on-shell variation of the action (3.1) are

δS =
∫
∂M5

1
2π k c3 ∧ δA1 + . . . . (3.3)

Let us stress that imposing Dirichlet boundary conditions for both A1 and c3 would be
inconsistent, since the variational problem defined by the bulk BF action (3.1) is first-
order. If desired, the roles of A1 and c3 can be exchanged. By adding the boundary term
− k

2π
∫
∂M5

c3 ∧ A1 to (3.1), we can rewrite the relevant terms in the total action as

S′ =
∫
M5

[
− 1

2π kA1 ∧ dc3

]
+ . . . . (3.4)

In this case we impose Dirichlet boundary conditions on c3, with free boundary conditions
for A1. The boundary conditions described so far are topological, since they are invariant
under orientation-preserving diffeomorphisms of ∂M5 and do not require the choice of a
boundary metric. (See [38] for a classification of topological boundary conditions in Abelian
3d Chern-Simons theory.)

If the integer k can be factorized as k = mm′, we can also consider a generalization
of the above topological boundary conditions, along the lines of [1, 26]. Let us stress
that, since A1 is a discrete 1-form gauge field, assigning Dirichlet boundary conditions for
A1 means specifying its Zk holonomies around 1-cycles in the boundary ∂M5. We can
partially relax the boundary conditions on A1 as follows. To a given 1-cycle C1 in ∂M5 we
no longer associate an element x ∈ Zk, but rather a coset [x]Zm ∈ Zk/Zm. The holonomy
exp(i

∫
C1 A1) is free to take any value y ∈ [x]Zm , which is the same as y = x mod m′.6

Following the terminology of [26], we say that A1 is free in Zk modulo Zm′ . It is interesting
to notice that, since Zk/Zm ∼= Zm′ , the data encoded in the boundary conditions for A1 is
the same data that define a background Zm′ 1-form gauge field on the boundary.

In order to have a well-defined variational problem, we must partially restrict the field
c3. Its boundary conditions are no longer free. To a 3-cycle C3, we assign a coset [x]Zm′ and
the holonomy exp(i

∫
C3 c3) can take any value y ∈ [x]Zm′ , which is the same as y = x mod

6For example, if m = 3, m′ = 4, k = 12, the subgroup Z3 ⊂ Z12 consists of {0, 4, 8}. The elements of
the quotient Z12/Z3 are the cosets [0]Z3 = {0, 4, 8} ⊂ Z12, [1]Z3 = {1, 5, 9} ⊂ Z12, [2]Z3 = {2, 6, 10} ⊂ Z12,
and [3]Z3 = {3, 7, 11} ⊂ Z12. The boundary conditions for A1 select one coset, for example [1]Z3 , leaving
the holonomy of A1 free to take any value y = 1 mod 4, namely y = 1, 5, or 9.
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m. In short, we say that c3 is free in Zk modulo Zm. Specifying the boundary condition
for c3 is the same as choosing a background Zm 3-form gauge field on the boundary.

Let us now comment on topological boundary conditions for the B̃i
2, B2i BF theory.

For a given label i = 1, . . . , g, we may assign Dirichlet boundary conditions for B̃i
2 and free

boundary conditions for B2i, or vice versa. If N can be factorized as N = nn′, we can also
consider boundary conditions in which B2i is free in ZN modulo Zn′ , while B̃i

2 is free in
ZN modulo Zn (in the same terminology explained above.)

The full set of boundary conditions for the B̃i
2, B2i BF theory, however, is richer. In-

deed, we can select suitable linear combinations (B′2i, B̃′i2 ) of the original 2-forms (B2i, B̃
i
2),

and impose that B′2i be free in ZN modulo Zn′ , and B̃′i2 be free in ZN modulo Zn. More-
over, the duality group Sp(2g,Z) acts on the set of topological boundary conditions. We
leave the problem of classifying topological boundary conditions for the B̃i

2, B2i BF theory
to future work.

The role of kinetic terms. Let us close this section by emphasizing that the discussion
of boundary conditions is qualitatively different if the kinetic terms are included in the
analysis. This is because, if the kinetic terms are retained, the variational problem is a
second-order problem. It is therefore possible, for instance, to impose Dirichlet boundary
conditions on all fields. This point is discussed in [39, 40] in the context of 3d and 5d
topological theories. We expect similar features in our 5d BF system.

3.1.2 Singleton modes propagating on the boundary

When a topological 5d BF theory with a coupling between a p-form gauge field and a
(4− p)-form gauge field is considered in a spacetime with a boundary, there is a massless
(p−1)-form gauge field propagating along the boundary. (Equivalently, the massless mode
on the boundary can be thought of as a (3−p)-form gauge field.) These massless boundary
modes are usually referred to as singletons. For a justification of the previous claims and
of the following statements, see e.g. [24, 25]. For the case at hand, the singleton modes are:

• One 0-form gauge field in ∂M5.

• 2g 1-form gauge fields in ∂M5.

All these gauge fields are standard U(1) gauge fields, as opposed to discrete gauge fields.
While the Hilbert space of the singleton fields is insensitive to the choice of boundary

terms and boundary conditions, its dynamics (i.e. the Hamiltonian on the Hilbert space)
is different for different boundary terms and boundary conditions. In this work, we refrain
from a detailed analysis of the singleton dynamics. We will be mainly interested in counting
singletons and discussing their holographic duals. A thorough analysis of the singleton
sector would require to take into account the kinetic terms, as in [40, 41]. We leave such
investigation for the future.

3.2 Holographic interpretation

Let us now turn to a discussion of the holographic interpretation of the features of the bulk
BF theory listed in the previous section.
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3.2.1 Global discrete symmetries in four dimensions

We have argued above that the 1-form gauge fields Aα̂1 are standard U(1) gauge fields in five
dimensions. As a result, they are dual to global U(1) 0-form symmetries in the interacting
CFT living on the boundary.

In contrast, the holographic interpretation of the discrete gauge fields A1, c3, B2i,
and B̃i

2 is more subtle. We describe it in the purely topological BF theory, neglecting
kinetic terms.

Holography of the topological BF theory. The holographic interpretation of the
5d bulk BF theory (3.1) depends on the choice of boundary conditions. In other words,
different boundary conditions correspond to different dual CFTs, which may have different
global symmetries. This is a standard phenomenon in the paradigmatic example of AdS5×
S5 in type IIB [42] and has recently been studied in the context of ABJM theories [26].

Firstly, let us focus on the A1, c3 system. The holographic interpretation of the
topological boundary conditions discussed above is as follows.

(a) Dirichlet boundary conditions for A1 and free boundary conditions for c3:
The dual interacting CFT admits a global Zk 0-form symmetry. Specifying the bound-
ary condition for A1 is the same as fixing a configuration for the 4d background 1-form
gauge field that couples to this global symmetry.

(b) Dirichlet boundary conditions for c3 and free boundary conditions for A1:
The dual interacting CFT admits a global Zk 2-form symmetry. Specifying the bound-
ary condition for c3 is the same as fixing a configuration for the 4d background 3-form
gauge field that couples to this global symmetry.

(c) The case k = mm′ with A1 free in Zk modulo Zm′ and c3 free in Zk modulo Zm:
The dual interacting CFT admits both a global Zm′ 0-form symmetry and a global
Zm 2-form symmetry. Specifying the boundary conditions for A1 and c3 is the same
as fixing a configuration for the 4d background 1-form and 3-form gauge fields that
couple to these global symmetry.

Case (c) is intermediate between cases (a) and (b). In case (c), there is a mixed ’t
Hooft anomaly between the Zm′ 0-form symmetry and the Zm 2-form symmetry. This ’t
Hooft anomaly is encoded in the 6-form I6 = −k dc3

2π ∧
dA1
2π , which is related by descent to

the BF coupling in the 5d bulk action.7
Let us also observe that cases (b) and (c) can be obtained from case (a) via gauging.

More precisely, suppose k = mm′. The CFT of case (a) has a global Zk 0-form symmetry.
We may gauge a subgroup Zm ⊂ Zk of this global symmetry. The gauging is performed by

7Roughly speaking, terms in I6 involving two or more Dirichlet fields are interpreted as ’t Hooft anoma-
lies. If we choose Dirichlet boundary conditions for A1, the field c3 has free boundary conditions. The
6-form I6 = −k dc3

2π ∧
dA1
2π does not encode a ’t Hooft anomaly, and indeed we only have a global Zk 0-form

symmetry. When we let A1 free in Zk modulo Zm′ and c3 free in Zk modulo Zm, both fields A1 and c3 are
“partially Dirichlet”. As a result, I6 = −k dc3

2π ∧
dA1
2π now encodes the mixed ’t Hooft anomaly between the

0-form and 2-form global symmetries.
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path-integrating over the background 1-form gauge field that couples to the Zm subgroup.
This is the same as modifying the boundary conditions for A1: we go from Dirichlet
boundary conditions, to having A1 free in Zk modulo Zm′ . After gauging, the residual
global 0-form symmetry is Zm′ . There is also an emergent global Zm 2-form symmetry.
We recognize the features of the CFT of case (c). Selecting m = k, m′ = 1 we recover
case (b).

The B2i, B̃i
2 system can be analyzed in a similar way. As recalled in section 3.1.1, the

full set of allowed topological boundary conditions is rich, and their classification is left for
future work. To illustrate the relation between boundary conditions and global discrete
symmetries, we consider a simple class of boundary conditions, in which we can treat each
label i = 1, . . . , g independently. One may thus consider the following three scenarios.

(a′) Dirichlet boundary conditions for B2i and free boundary conditions for B̃i
2:

The dual interacting CFT admits a global (ZN )g 1-form symmetry of “electric type”.
Specifying the boundary condition for B2i is the same as fixing a configuration for the
4d background 2-form gauge fields that couple to this global symmetry.

(b′) Dirichlet boundary conditions for B̃i
2 and free boundary conditions for B2i:

The dual interacting CFT admits a global (ZN )g 1-form symmetry of “magnetic type”.
Specifying the boundary condition for B̃i

2 is the same as fixing a configuration for the
4d background 2-form gauge fields that couple to this global symmetry.

(c′) The case N = nn′ with B2i free in ZN modulo Zn′ and B̃i
2 free in ZN modulo Zn:

The dual interacting CFT admits both a global (Zn′)g 1-form symmetry of “electric
type” and a global (Zn)g 1-form symmetry of “magnetic type”. Specifying the bound-
ary conditions for B2i and B̃i

2 is the same as fixing configurations for the 4d background
2-forms that couple to these global symmetries.

As before, the case (c′) is intermediate between (a′) and (b′), and in case (c′) there is a
mixed ’t Hooft anomaly between the (Zn′)g and (Zn)g 1-form symmetries. This ’t Hooft
anomaly is encoded in the 6-form I6 = N

dB̃i2
2π ∧

dB2i
2π .

3.2.2 Singleton modes as Goldstone modes

According to the usual holographic dictionary, the supergravity theory in the bulk of 5d
spacetime M5 is dual to an interacting CFT living on ∂M5. The gravity theory in five
dimensions has additional singleton modes, that only propagate on the conformal boundary
of 5d spacetime. These modes to not gravitate. They are holographically dual to additional,
decoupled free fields in four dimensions.

BF singletons as Goldstone modes. In section 3.1.2 we have identified a subset of the
singleton modes for the 5d gravitational theories of interest in this work. More precisely,
we have identified the singleton modes associated to the 5d BF theory (3.1). For these
singleton modes we can offer an interpretation in terms of Goldstone’s theorem, as follows.

The singleton mode associated to the BF coupling k c3∧dA1 is a 4d 0-form gauge field,
i.e. an axion. The BF coupling k c3 ∧ dA1 can be related by dualization to a Stückelberg
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coupling between the vector A1 and the axion dual to c3. (Useful background material can
be found in [24, 25].) The 5d theory describes a U(1) 0-form gauge symmetry Higgsed down
to Zk. According to the usual holographic dictionary, the U(1) 0-form gauge symmetry in
five dimensions is dual to a U(1) 0-form global symmetry in four dimensions. The boundary
value of the 5d gauge field A1 is identified with the Noether 1-form current J1 for the
global U(1) 0-form symmetry in four dimensions. Since the U(1) 0-form gauge symmetry
is spontaneously broken in five dimensions, the dual U(1) 0-form global symmetry in four
dimensions is also spontaneouly broken. As a result, we have a 4d massless Goldstone
scalar Φ, related to the current J1 by the schematic relation J1 ∼ dΦ. The Goldstone
mode Φ enjoys a global shift symmetry Φ→ Φ + const. It is an axion and its interactions
are derivative interactions. In the deep IR, Φ decouples from the rest of the 4d theory. We
identify it with the holographic dual of the singleton mode from the BF coupling k c3∧dA1.

Similar remarks apply to the singleton modes associated to the BF coupling N B̃i
2∧B2i.

A general statement is as follows:

AD-dimensional BF coupling BD−1−p∧dAp between a p-form gauge field
Ap and a (D − 1 − p)-form gauge field BD−1−p yields a singleton mode
which is a massless U(1) (p− 1)-form gauge field in (D− 1) dimensions.
It is identified with the Goldstone mode originating from spontaneous
breaking of a global (p − 1)-form symmetry in the (D − 1)-dimensional
dual field theory.

In the case D = 2p + 1 we can formulate a similar statement regarding Chern-Simons
couplings.

A (2p + 1)-dimensional Chern-Simons coupling Ap ∧ dAp for a p-form
gauge field Ap yields a singleton mode which is a massless chiral U(1) (p−
1)-form gauge field in 2p dimensions. It is identified with the Goldstone
mode originating from spontaneous breaking of a global (p − 1)-form
symmetry in the 2p-dimensional dual field theory.

Here a chiral (p−1)-form gauge field is by definition a gauge field whose p-form field strength
obeys a self-duality constraint of the form ∗2pFp = ±Fp or ∗2pFp = ±i Fp, depending on
the dimension and signature of spacetime.

4 Extended operators and discrete symmetries

In this section we review the extended operators of the 5d topological BF theory with
action (3.1). We identify the 11d origin of these operators in terms of wrapped M2-branes.
We also consider the interplay between these operators and the topological boundary con-
ditions for the BF system (3.1) and infer what extended operators are expected in the dual
4d field theories.
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4.1 Extended operators in the BF bulk theory

A natural set of gauge-invariant observables in the 5d theory (3.1) is given by the holonomies
of the gauge fields c3, A1, B̃i

2, B2i on cycles in 5d spacetime,

Wc(Cext
3 , n) = exp

[
i n

∫
Cext

3

c3

]
, WA(Cext

1 , n) = exp
[
i n

∫
Cext

1

A1

]
,

W
B,B̃

(Cext
2 , n, ñ) = exp

[
i

∫
Cext

2

(
ñiB2i − ni B̃i

2

)]
, (4.1)

where n, ni, and ñi are integers and Cext
1 , Cext

2 , Cext
3 and 1-, 2-, 3-cycles in 5d spacetime.

The superscript ‘ext’ stands for external and is inserted to avoid possible confusions with
cycles in the internal geometry M6. We remind the reader that p-form gauge fields are
normalized to have periods quantized in units of 2π. In the topological BF theory, the
operatorWc(Cext

3 , n) describes a 3d defect in 5d spacetime extended along Cext
3 with electric

charge n under c3. In a similar way, WA(Cext
1 , n) represents a 1d defect extended along

Cext
1 with charge n under A1, while WB,B̃

(Cext
2 , n, ñ) describes a 2d defect along Cext

2 with
charges ni, ñi under B2i, B̃i

2. The operators (4.1) will be referred to as electric operators.
If a defect charged underA1 is transported around a defect charged under c3, it acquires

a non-trivial Zk Aharonov-Bohm phase. The latter is encoded in the correlator

〈Wc(Cext
3 , n)WA(Cext

1 , n′)〉 ∼ exp
[
i
n n′

k
L(Cext

3 , Cext
1 )

]
, (4.2)

where L(Cext
3 , Cext

1 ) is the integer linking number of Cext
1 and Cext

3 in the ambient 5d space-
time. By a similar token, the Aharonov-Bohm phases of defects charged under B2i, B̃2i
are captured by the correlators

〈W
B,B̃

(Cext
2 , n, ñ)W

B,B̃
(Cext

2
′, n′, ñ′)〉 ∼ exp

[
i
ni ñ

′i − ñi n′i
N

L(Cext
2 , Cext

2
′)
]
. (4.3)

The derivation of (4.2) and (4.3) can be found e.g. in [24, 25].
In addition to the electric operators in (4.1), the 5d topological theory also admits

“mixed” electric-magnetic operators. If we consider a 2-cycle Bext
2 in external spacetime,

we can define a ’t Hooft operator for A1 supported on Bext
2 . This is done in the usual way.

We remove a small tubular neighborhood of Bext
2 from 5d spacetime. The boundary of the

tubular neighborhood is an S2 bundle over Bext
2 . The ’t Hooft operator on Bext

2 is defined by
performing the path integral over A1 with the boundary condition 1

2π
∫
S2 F2 = 1. Because

of the k c3 ∧ dA1 coupling in the action, the ’t Hooft operator is not gauge invariant. It
must be supplemented with a charge-k Wilson operator for c3 on a 3-chain Cext

3 such that
∂Cext

3 = Bext
2 [42–44].8 In a completely analogous fashion, one can consider a ’t Hooft

8After removing a small tubular neighborhood U of Bext
2 , the gauge variation of the 5d action reads

δS = − 1
2π k

∫
M5\U

δc3 ∧ F2 = − 1
2π k

∫
M5\U

dΛ2 ∧ F2 = −k
∫
Bext

2

Λ2 ,

where we have used 1
2π

∫
S2 F2 = 1. The above expression shows that the gauge variation of the ’t Hooft

operator for A1 can be cancelled by k Wilson operators for c3.
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operator for c3 supported on a 0-cycle Bext
0 (a collection of points taken with signs). To

preserve gauge invariance, this must be supplemented with a charge-k Wilson operator
for A1 supported on a 1-chain Cext

1 with ∂Cext
1 = Bext

0 . Finally, analogous mixed electric-
magnetic operators exist for the (B̃i

2, B2i) system.

M-theory origin of extended operators. The purely electric operators Wc(Ce
3, n) are

realized by a stack of n M2-brane probes sitting at a point in the internal space M6, and
extending along Ce

3 in the external spacetime directions. By a similar token, the operators
WA(Ce

1, n) are a stack of n probe M2-branes wrapping a 2-cycle in M6. More precisely,
the 2-cycle is mα Cα2 = C′2α=1, where the integers mα are defined in (A.4), and in the
second step we refer to the primed basis of 2-cycles defined by (A.2). Finally, the operators
W
B,B̃

(Ce
2, n, ñ) originate from probe M2-branes wrapping a 1-cycle in M6. The charges ñi,

ni are identified with the integers that define this 1-cycle, with respect to a fixed basis
of 1-cycles in M6. It can also be verified that the 5d Aharonov-Bohm phases encoded in
the correlators (4.2), (4.3) can be reproduced from an 11d perspective, using the C3G4G4
coupling in the M-theory low-energy effective action.

The mixed electric-magnetic operators are realized using probe configurations with M2-
branes ending on M5-branes. As an example, let us consider a charge-1 ’t Hooft operator
for A1 on Bext

2 together with a charge-k Wilson operator for c3 on Cext
3 , with ∂Cext

3 = Bext
2 .

This 5d operator is realized by one M5-brane wrapping a 4-cycle onM6 and extending along
Bext

2 . With reference to the change of basis discussed in appendix A, we can characterize
this 4-cycle as C′α=1

4 . Since there are k units of G4-flux threading the 4-cycle C′α=1
4 , there

is a tadpole in the worldvolume theory of the probe M5-brane. This is canceled by adding
k M2-branes ending on the M5-brane. The M2-branes sit at a point on C′α=1

4 ⊂ M6 and
are extended along Cext

3 in the external directions. In a similar way, one can describe the
11d origin of all other mixed electric-magnetic operators.

In our discussion so far we have not taken supersymmetry into consideration. One
could determine the BPS conditions for probe M2-branes and M5-branes by analyzing
κ-symmetry on their worldvolumes.

4.2 Extended operators in the dual field theory

The operators of the 5d topological theory discussed in the previous section can yield
operators in the dual boundary field theory. The choice of boundary conditions for A1, c3,
B2i, B̃i

2 determines whether a 5d operator is allowed to end on the boundary ∂M5 or not.
A similar discussion has recently appeared in [26] in the context of AdS4/CFT3.

Let us discuss operators constructed with A1, c3. We make contact to the cases (a),
(b), (c) discussed in section 3.2.1. In case (a) the operators WA(Ce

1, n) defined in (4.1) are
allowed to end on ∂M5, while the operatorsWc(Ce

3, n) are forbidden from ending on ∂M5.9
The 5d operator WA(Ce

1, 1) yields a local operator O on ∂M5 that has unit charge under
the global Zk 0-form symmetry of the field theory. In a similar way, in case (b) it is the
operators Wc(Ce

3, n) that can end on the boundary, and Wc(Ce
3, 1) yields a surface operator

9More precisely, Wc(Ce
3, n) can end on ∂M5 only if n is a multiple of k, in which case the operator

Wc(Ce
3, n) is trivial.
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on ∂M5 with unit charge under the global Zk 2-form symmetry of the field theory. In case
(c), with factorization k = mm′, the operator WA(Ce

1, n) is allowed to end on ∂M5 if the
charge n is a multiple of m, while Wc(Ce

3, n) can end on the boundary if n is a multiple
of m′. In the boundary field theory we obtain both local operators and surface operators,
compatibly with the global Zm′ 0-form and Zm 2-form symmetry.

The mixed electric-magnetic operators of the 5d topological bulk theory act as baryon
vertices [45] from the point of view of the dual field theory. For example, in case (a) we can
consider the operator Ok on the boundary and connect it to a point in the bulk, where a
charge-1 ’t Hooft operator for c3 is supported (a “monopole event”). The arguments of [44]
show that in this case Ok acquires a VEV. Notice that this phenomenon does not break
the global Zk 0-form symmetry. Analogous remarks apply to cases (b) and (c).

Let us now turn to the operators W
B,B̃

(Ce
2, n, ñ) in (4.1). In section 3.2.1 we have

defined the cases (a′), (b′), (c′). Notice that we can choose any of these three options
independently for each label i = 1, . . . , g. For the sake of simplicity, let us discuss the
situation in which we choose case (a′) for all i = 1, . . . , g. Other choices of topological
boundary conditions for the (B̃i

2, B2i) system can be discussed in a similar way.
If we select case (a′) for all i = 1, . . . , g, the operator W

B,B̃
(Ce

2, n, ñ) is allowed to end
on ∂M5 if its B̃i

2 charges ni are all equal to zero. If this condition is met, we get a line
operator in the dual field theory. It has charges ñi under the global “electric” (ZN )g 1-form
symmetry of the QFT. If ñi = N s̃i for some integers s̃i, we can connect the line operator
on the boundary to a mixed electric-magnetic operator (baryon vertex) in the bulk. More
precisely, the line operator onM5 is connected by a 2d worksheet to a line Bext

1 in the bulk,
which supports a ’t Hooft operator for H̃ i

3 with charges s̃i.10 According to the analysis
of [44], the presence of the baryon vertex in the 5d bulk implies condensation of the line
operator with charges ñi = N s̃i.11 This condensation does not trigger a spontaneous
breaking of the (ZN )g 1-form symmetry.

The analysis of extended operators and boundary conditions in the Bi, B̃i BF theory
can be used as a tool to access allowed line operators in 4d SCFTs from wrapped M5-
branes. The goal is a classification that generalizes the results of [46] beyond Lagrangian
gauge theories. We expect a rich variety of line operators and a non-trivial action of the
duality group Sp(2g,Z) on them. Notice that this strategy can be applied to both N = 2
and N = 1 theories. We plan to study this problem in greater detail in future work.

5 ’t Hooft anomalies from inflow

In this section we compute the inflow anomaly polynomial for the M-theory setups of
interest in this work. We include all p-form gauge fields originating from expansion of C3
onto cohomology classes of M6, as well as background fields for isometries of M6, and an
arbitrary background metric. A systematic method for performing this computation was
developed in [22]. One main novelty here is the interpretation of the terms involving A1,

10More explicitly, we consider a small tubular neighborhood of Bext
1 inM5. Its boundary is an S3 bundle

over Bext
1 . We impose the boundary condition 1

2π

∫
S3 H̃

i
3 = s̃i.

11A line operator is said to be condensed if it obeys a perimeter law [1].
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c3, B2i, B̃i
2, which encode ’t Hooft anomalies for discrete global symmetries. Moreover,

in the case of M5-branes probing a Z2 singularity, we include background 0-form gauge
fields and we discuss their interpretation in terms of anomalies in the space of coupling
constants.

5.1 Inflow anomaly polynomial

Let us outline the recipe for the computation of the inflow anomaly polynomial. We refer
to [22] for further explanations. The input data is the internal geometry M6 and the
background G4-flux configuration G4. In the notation of (2.3), the latter is G4/(2π) =
Nα Ωα

4 . Our goal is to compute the 6-form inflow anomaly polynomial I inflow
6 . As per usual

descent formalism, I inflow
6 is a closed, gauge-invariant 6-form that is defined in a fiducial

spacetimeM6, which is taken to be Euclidean and six-dimensional.
In order to compute ’t Hooft anomalies for symmetries associated to isometries of M6,

we have to consider a fibration of M6 over the fiducial spacetimeM6. The relevant space
is therefore an auxiliary 12-manifold M12,

M6 ↪→M12 →M6 . (5.1)

The desired 6-form I inflow
6 is computed by fiber integration along M6 of a globally defined

12-form I12 on M12,
I inflow

6 =
∫
M6
I12 . (5.2)

The 12-form I12 is constructed from the class X8(TM12) (see (2.4) for the definition of X8
in terms of Pontryagin classes) and from a 4-form E4 on M12, according to

I12 = −1
6 E4 ∧ E4 ∧ E4 − E4 ∧X8 . (5.3)

The expression for E4 is discussed below. It is argued in [22] that the 6-form (5.2) is equal
to minus the ’t Hooft anomalies of the full 4d theory living on the M5-branes stack. In
the cases of interest in this paper, the 4d theory consists of an interacting SCFT, together
with free decoupled modes. We may then write

I inflow
6 + ISCFT

6 + Idecoupl
6 = 0 . (5.4)

We comment further on Idecoupl
6 in section 5.2.

Let us now turn to a description of the 4-form E4. It is a globally defined, closed
4-form on M12 with integral periods, which can be written as

E4 = Nα (Ωα
4 )eq + Fα2

2π ∧ (ω2α)eq + fx1
2π ∧ (Λ3x)eq + Hu

3
2π ∧ (λ1u)eq + γ4

2π . (5.5)

In the previous expression the forms Fα2 , fx1 , Hu
3 , γ4 are closed forms on the base M6

of the fibration (5.1), pulled back to the total space M12 (the pullpack is implicit in our
notation). Exactly as in (2.3), we interpret Fα2 , fx1 , Hu

3 , γ4 as the field strengths of p-form
background gauge fields on M6, so that the periods of Fα2 , fx1 , Hu

3 , γ4 are quantized in
units of 2π.

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

The forms (Ωα
4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq are globally defined, closed forms on M12

with integral periods.12 They can be regarded as a gauge-invariant and closed extension of
the forms Ωα

4 , ω2α, Λ3x, λ1u on the fiber M6. Indeed, if the fibration (5.1) is replaced by a
direct product and all external gauge fields related to isometries of M6 are turned off, the
forms (Ωα

4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq reduce to Ωα
4 , ω2α, Λ3x, λ1u.

We discuss the construction of the forms (Ωα
4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq in ap-

pendix C. We would like to emphasize here, however, that they are not uniquely determined
by the forms Ωα

4 , ω2α, Λ3x, λ1u on M6. Different realizations of (Ωα
4 )eq differ by a closed

(but not necessarily exact) 4-form on M12, and similarly for the other forms. We show in
appendix C that the ambiguities related to a specific choice of (Ωα

4 )eq, (ω2α)eq, (Λ3x)eq,
(λ1u)eq in E4 can always be undone by adding exact pieces to E4 (which do not alter the
integral (5.2)) and/or performing a field redefinition of the external field strengths Fα2 , Hu

3 ,
γ4. We also verify that the necessary field redefinitions preserve the lattice of periods of the
field strengths. We conclude that the inflow anomaly polynomial I inflow

6 is unambiguously
defined, up to a choice of basis in the space of external p-form gauge fields onM6.

After these preliminary remarks, we can discuss anomaly inflow for the wrapped M5-
brane setups of interest in this work.

5.1.1 M5-branes wrapped on a Riemann surface

In section 2.2.1 we have summarized the choices of g, p, q that lead to a smooth supersym-
metric AdS5 M-theory solution, see table 1. In all cases,M6 admits at least a U(1)1×U(1)2
isometry, associated to angular directions φ1, φ2. We couple these isometries to external
Abelian gauge fields Aφ1 , Aφ2 . We introduce the notation

cφ1
1 = dAφ1

2π = c1(U(1)1) , cφ2
1 = dAφ2

2π = c1(U(1)2) (5.6)

for the first Chern classes of these background connections. When g = 0, the space M6
admits an additional SO(3)Σ ∼= SU(2)Σ isometry. We can couple this isometry to a triplet
of external gauge fields. We use the notation cΣ

2 = c2(SU(2)Σ) for the second Chern class
of these SU(2)Σ background gauge fields. appendix B.1 contains a more detailed discussion
of the gauging of isometries of M6.

The derivation of the inflow anomaly polynomial is reported in appendix B.1. The
result reads (suppressing wedge products)

I inflow
6 = − 2

3
(
N3 − 1

4 N
) [
p cφ1

1 (cφ2
1 )2 + q cφ2

1 (cφ1
1 )2

]
− 1

6 N
[
p (cφ1

1 )3 + q (cφ2
1 )3

]
+ 1

24 N
[
p cφ1

1 + q cφ2
1

]
p1(T ) + 1

6
[
(N3 q2 −N) p cφ1

1 + (N3 p2 −N) q cφ2
1

]
cΣ

2

+ 1
(2π)2

[
−N γ4 F2 −N H̃ i

3H3i
]
. (5.7)

12The label “eq” stands for equivariant, because the forms (Ωα4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq on M12 can
be regarded as representatives of classes in the G-equivariant cohomology of M6, where the group G is the
isometry group of M6 [22].
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This result includes the terms originating from −E4X8 in I12. In (5.7), p1(T ) denotes the
first Pontryagin class of the background metric on spacetime. Notice that the coefficients
of the BF terms are both equal to N here. It is understood that the terms with cΣ

2 are only
present if g = 0. We stress that (5.7) does not contain mixed ’t Hooft anomalies between
the symmetries related to isometries of M6 and the symmetries associated to cohomology
classes on M6.13

Interpretation. If we focus only on continuous symmetries, the background fields F2,
γ4, H̃ i

3, H3 are set to zero. This follows from the tadpole condition on E2
4 + 2X8 discussed

in [22]. Alternatively, we notice that I inflow
6 in (5.7) can be regarded as collecting all

topological terms in the 5d AdS5 effective action. Enforcing the tadpole condition is
equivalent to using the 5d EOMs for A1, c3, B̃i

2, B2i that come from this topological
action: all these fields are flat on-shell. After integrating out F2, γ4, H̃ i

3, H3, the first
two lines of (5.7) reproduce known results [15, 22] and their interpretation is standard:
they encode ’t Hooft anomalies for the symmetries U(1)1, U(1)2, SU(2)Σ and Poincaré
symmetry.

The terms γ4 F2 and H̃ i
3H3i on the last line of (5.7) are a proxy for ’t Hooft anomalies

involving discrete global symmetries. More precisely, the global symmetry on the boundary
SCFT depends on the choice of boundary conditions for A1 ≡ A1, c3, B2i, B̃2

i . The terms
γ4 F2 and H̃ i

3H3i each encode a mixed ’t Hooft anomaly if we choose boundary conditions
of type (c), (c′) in the terminology of section 3.2.1.

5.1.2 M5-branes probing a Z2 singularity and wrapped on a Riemann surface

If we consider a higher-genus Riemann surface, the internal space M6 has isometry group
U(1)ψ × SU(2)ϕ. In the case g = 0 we have an additional SO(3)Σ ∼= SU(2)Σ isometry. We
introduce the compact notation

cψ1 = c1(U(1)ψ) , cϕ2 = c2(SU(2)ϕ) , cΣ
2 = c2(SU(2)Σ) (5.8)

for the Chern classes of the background gauge fields for U(1)ψ, SU(2)ϕ, SU(2)Σ.
The computation of the inflow anomaly polynomial can be found in appendix B.2. Let

us write the result as
I inflow

6 = I inflow,1
6 + I inflow,2

6 + I inflow,3
6 , (5.9)

where I inflow,1
6 encodes the anomalies involving exclusively the symmetries associated to

isometries and Poincaré symmetry, I inflow,2
6 collects all terms that only involve p-form gauge

fields originating from expansion of C3, and I inflow,3
6 contains all other terms. Explicitly,

I inflow,1
6 =

(1
3 χN

3 +N2N−

)
cψ1 c

ϕ
2 −

1
3 N− (cψ1 )3 + 1

12 N− c
ψ
1 p1(T )− 1

3 χN cψ1 c
ϕ
2

+
[1

3 N
3
− −N2N− −

2
3 N

3 + 2
3 (N +N−)

]
cψ1 c

Σ
2 . (5.10)

13The anomaly polynomial is sensitive to the choice of the forms (Ωα4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq. There
exists a choice such the result takes the form (5.7). As we shall see, in the GMSW setup such a choice is
not possible.
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I inflow,2
6 = 1

(2π)2

[
− (N F2 +N+ F

+
2 +N− F

−
2 ) γ4 −N H̃ i

3H3i
]

(5.11)

+ 1
(2π)3

[
− 1

6 χ (F+
2 )3 − 1

2 χF
+
2 (F−2 )2 + F2 F

+
2 F−2 − γ4

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
+ F+

2

(
f+

1i H̃
i
3 − f̃ i+1 H3i

)
+ F−2

(
f−1i H̃

i
3 − f̃ i−1 H3i

)]
,

I inflow,3
6 = − 1

(2π)2 N− c
ψ
1 (F+

2 )2 + 1
2π

(
N N− + 1

2 N
2 χ− 1

2 χ
)

(cψ1 )2 F+
2 (5.12)

− 1
2π N

(
N− F

+
2 +N+ F

−
2

)
cϕ2 + 1

24 χ
F+

2
2π p1(T )

+ 1
2π (N +N−)

[
N+ F

−
2 +N− F

+
2 −N+ F2

]
cΣ

2

+ 1
(2π)2

[
N (cψ1 )2 −N cϕ2 − 2 cψ1

F+
2

2π

] (
f+

1i f̃
i+
1 + f−1i f̃

i−
1

)
− 1

(2π)3 c
ψ
1 F
−
2

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
− 1

(2π)2 N cψ1

(
f+

1i H̃
i
3 − f̃ i+1 H3i

)
.

It should be stressed that, in presenting I inflow
6 , we have implicitly chosen a basis of external

p-form fields originating from expansion of C3. We are free to consider field redefinitions
that shift these p-form fields with terms constructed with the background connections
for the isometries of M6. Unlike the BBBW case, however, there is no such redefinition
that can set to zero all mixed terms between symmetries originating from isometries, and
symmetries originating from C3.

Perturbative anomalies. Let us extract physical information about perturbative
anomalies for continuous symmetries from the inflow anomaly polynomial (5.9). The gauge
fields B2i, B̃i

2, c3, together with one linear combination of the three vectors A1, A±1 , are
topologically massive gauge fields in five dimensions and therefore cannot be interpreted
as background gauge fields for continuous symmetries in the 4d field theory. If we are only
interested in studying local aspects of ’t Hooft anomalies for continuous global symmetries,
we have to eliminate the topologically massive fields from the anomaly polynomial. This
is done enforcing the tadpole constraints on E2

4 + 2X8 discussed in [22]. Equivalently, we
impose the equations of motion for c3, B2i, B̃i

2 in the 5d topological theory defined by
I inflow

6 . If we do so, we obtain the relations

0 = 1
2π
(
N F2 +N+ F

+
2 +N− F

−
2

)
+ 1

(2π)2

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
,

0 = 1
2π N H3i + 1

(2π)2

(
F+

2 f+
1i + F−2 f−1i

)
− 1

2π N cψ1 f
+
1i ,

0 = 1
2π N H̃ i

3 + 1
(2π)2

(
F+

2 f̃ i+1 + F−2 f̃ i−1

)
− 1

2π N cψ1 f̃
i+
1 . (5.13)

We may solve these relations for F2, H3i, H̃ i
3. After plugging the corresponding expressions

back into I inflow
6 , the field γ4 drops away and we are left with a polynomial in cψ1 , c

ϕ
2 , cΣ

2 ,
p1(T ), F±2 , f±1i , f̃ i±1 . This polynomial encodes the sought-for perturbative anomalies and
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reads

I inflow,pert
6 =

(1
3 χN

3 +N2N−

)
cψ1 c

ϕ
2 −

1
3 N− (cψ1 )3 + 1

12 N− c
ψ
1 p1(T )− 1

3 χN cψ1 c
ϕ
2

+
[1

3 N
3
− −N2N− −

2
3 N

3 + 2
3 (N +N−)

]
cψ1 c

Σ
2

+ 1
(2π)3

[
− χ

6 (F+
2 )3 −

(
N−
N

+ χ

2

)
F+

2 (F−2 )2 − N+
N

F−2 (F+
2 )2

]
+ 1

(2π)4

[
− 1
N

(F−2 )2 f−1i f̃
i−
1 −

1
N

(F+
2 ) f+

1i f̃
i+
1 −

2
N
F+

2 F−2

(
f+

1i f̃
i−
1 −f̃

i+
1 f−1i

)]
− 1

(2π)2 N− c
ψ
1 (F+

2 )2 − 1
(2π)3 2 cψ1 F+

2 f−1i f̃
i−
1 + 1

(2π)2 N (cψ1 )2 f−1i f̃
i−
1

+ 1
2π

(
N N− + χ

2 N
2 − χ

2

)
(cψ1 )2 F+

2 −
1

2π N (N+ F
−
2 +N− F

+
2 ) cϕ2

− 1
(2π)2 N

(
f+

1i f̃
i+
1 +f−1i f̃ i−1

)
cϕ2 + 1

2π

(
N N−+N2

−+N2
++N−N

2
+

N

)
F+

2 c
Σ
2

+ 1
2π

(
N N+ + 2N+N− + N+N

2
−

N

)
F−2 c

Σ
2 + 1

2π
χ

24 F
+
2 p1(T )

+ 1
(2π)2

(
N+ + N−N+

N

)
cΣ

2

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
. (5.14)

The above expression extends the results of [27] with the inclusion of the terms involving
f±1i , f̃ i±1 . Notice the appearance of 1/N factors in the ’t Hooft anomaly coefficients. They
originate from solving the relations (5.13). Physically, they come from integrating out
topologically massive modes. The perturbative anomaly polynomial (5.14) can be used to
compute central charges via a-maximization; at leading order in N , one finds a perfect
match with the dual supergravity computation based on the GMSW solutions [27].

Aside: topologically massive fields and Green-Schwarz terms in six dimensions.
A variant of the mechanism that generates 1/N terms in (5.14) by integrating out topologi-
cally massive fields is at play in six dimensions. More precisely, let us consider a stack of N
M5-branes probing a ΓADE ⊂ SU(2) singularity. The internal geometry is S4/ΓADE. Upon
resolution of the orbifold singularities at the north and south poles of S4, we get a smooth
internal space M4. At each pole we have a collection of resolution 2-cycles. Expansion of
the M-theory 3-form C3 in cohomology of M4 yields an external 3-form gauge field c3 and
a collection of 1-form gauge fields, associated to the resolution 2-cycles at the north and
south poles. In the limit in which the resolution cycles are shrunk to zero size we have
an GN

Γ ×GS
Γ non-Abelian gauge symmetry in the 7d low-energy effective action, where GΓ

is the ADE Lie group associated to ΓADE. The topological couplings of the 7d effective
action are conveniently encoded in a gauge-invariant 8-form, which contains the terms

− 1
2 N

γ2
4

(2π)2 −
1
4
γ4
2π

[tr (FN)2

(2π)2 − tr (F S)2

(2π)2

]
. (5.15)

The 4-form γ4 is the field strength of the 3-form gauge field c3, while FN,S is the field
strength of the gauge group GN,S

Γ . The 3-form gauge field c3 is topologically massive by
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virtue of the 7d Chern-Simons coupling encoded in the term γ2
4 in (5.15). In order to study

the perturbative anomalies for continuous global symmetries of the system, we have to
integrate out this massive field. Eliminating c3 via its classical equation of motion is the
same as enforcing the tadpole constraint of [22]. The terms (5.15) are traded for

1
32N

[tr (FN)2

(2π)2 − tr (F S)2

(2π)2

]2
. (5.16)

In the analysis of [29] this term is interpreted as a Green-Schwarz term related to the center-
of-mass mode of the M5-branes, see also the recent field-theoretic analysis of [47]. Our
analysis of topological mass terms in supergravity reveals how this term is automatically
accounted for in inflow via integrating out massive modes.

Remarks on the background 0-form gauge fields a±
0i, ãi±

0 . The terms in I inflow
6 with

f±1i = da±0i, f̃ i±1 = dãi±0 should be interpreted along the lines of [2] as ’t Hooft anomalies in
the space of coupling constants. We can think of a±0i, ãi±0 as background fields for global
“(−1)-form symmetries” in the 4d field theory. (We refer the reader to [2] for a careful
discussion of the merits and limitations of the notion of “(−1)-form symmetry”.)

Recall that a±0i, ãi±0 originate form expansion of C3 onto 3-cycles in the internal space
M6. We can offer an interpretation of a±0i, ãi±0 in terms of the picture of M5-branes probing a
Z2 singularity. The 6d SCFT on the worldvolume of the M5-branes has an SU(2)N×SU(2)S
global symmetry. This theory is reduced on Σg with a non-zero flavor flux, which breaks
SU(2)N×SU(2)S to the Cartan subgroup U(1)N×U(1)S. The 6d background 1-form gauge
fields for this 0-form symmetry can be dimensionally reduced along 1-cycles in Σg to yield
0-form gauge fields in four dimensions. Since Σg has 2g 1-cycles, this reduction generates a
total of 2×2g = 4g 0-form gauge fields in four dimensions, which matches the total number
of a±0i, ãi±0 fields.

The operators in the 4d SCFT coupled to a±0i, ãi±0 are exactly marginal operators. In
a schematic semi-Lagrangian language, the deformation of the SCFT associated to a±0i, ãi±0
takes the form

∆S =
∫
M4

∗41
2π

[
a+

0i Õ
i+− ãi+0 O

+
i +a−0i Õ

i−− ãi−0 O
−
i

]
, ∆(O±i ) = ∆(Õi±) = 4 . (5.17)

In light of the discussion of the previous paragraph, we can regard O±i , Õi± as coming from
the dimensional reduction on Σg of the 6d 1-form conserved current operators associated
to the 6d U(1)N ×U(1)S 0-form symmetry. Schematically,

∗6 J±1,6d ∼ (∗4O±i ) ∧ λ̃i − (∗4Õi±) ∧ λi , (5.18)

where λi, λ̃i are closed 1-forms on Σg as in section 2.1. We also notice that a±0i, ãi±0
are compact scalars with period 2π. This indicates that the spacetime integrals of the
associated operators O±i , Õi± satisfy a quantization condition of the form∫

M4
O±i ∗4 1 ∈ Z ,

∫
M4
Õi± ∗4 1 ∈ Z . (5.19)
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Intuitively, the operators O±i , Õi± are analogous to tr (FF ) in gauge theory, and a±0i, ãi±0
are analogous to θ angles.

Let us stress that a±0i, ãi±0 are distinct from the axionic couplings that originate from
the complex structure moduli of the Riemann surface Σg. The geometric origin of the
latter resides in a deformation of the metric on Σg. ’t Hooft anomalies associated to these
coupling constants have been analyzed in [48].

5.1.3 Anomalies for discrete symmetries

The inflow anomaly polynomial balances against the total ’t Hooft anomalies of interacting
and decoupled modes in the 4d field theory, see (5.4). It should be stressed that the
separation into interacting and decoupling modes does not necessary correspond to a simple
factorization of the partition function in field theory. From the perspective of the dual
gravity theory, the singleton sector in a string theory/M-theory compactification decouples
from the rest of the dynamics of quantum gravity, but in general the full quantum gravity
partition function does not simply factorize into a contribution from the singleton sector
times a contribution from interacting modes. Rather, as argued in [40], one expects the
total string theory/M-theory partition function to be of the schematic form

Ztot ∼
∑
β

Zβ Zsingleton
β . (5.20)

In the previous expression, the discrete label β enumerates the relevant topological sectors
of string theory/M-theory in the background under consideration. The quantities Zsingleton

β

encode the contribution of singleton modes, while Zβ encode the contributions of all other
interacting bulk modes. The holographic duals of Zβ are the conformal blocks of an
interacting 4d CFT, while the holographic duals of Zsingleton

β are the conformal blocks of a
free 4d theory.

As demonstrated in [40], the correct strategy to compute Zsingleton
β on the gravity side is

to consider both kinetic terms and topological terms in the 5d supergravity effective action.
In this approach the Hamiltonian in the singleton sector is unambiguously determined. (In
contrast, in the purely topological BF theory without kinetic terms, the Hamiltonian can
be modified by adding boundary terms.) For the setups of interest in this work, one needs
to consider the BF couplings (3.1) supplemented with standard kinetic terms.

In the setups with wrapped M5-branes studied in this work, the total worldvolume
theory has a partition function of the form (5.20) with more than one term on the r.h.s. .
Indeed, the different summands labeled by β correspond to inequivalent choices of bound-
ary conditions for the fields entering the BF couplings (3.1). In the total worldvolume
theory, the fields A1, c3, B2i, B̃i

2 are associated to global continuous U(1) 0-, 2-, and 1-
form symmetries. These U(1) symmetries are spontaneously broken. The breaking pattern
is different for the various β summands in (5.20). Indeed, we know that interacting theories
associated to different choices of boundary conditions have different global discrete sym-
metries. For example, with reference to the terminology of section 3.2.1, the U(1) 0-form
symmetry associated to A1 is broken to Zk in case (a), is broken to nothing in case (b),
and is broken to Zm′ in case (c).
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The inflow anomaly polynomial I inflow
6 in (5.7) or (5.9) is interpreted as minus the

anomaly polynomial of the total worldvolume theory (5.20). Since this theory has contin-
uous symmetries, we can describe its anomalies using the language of differential forms. If
we ignore the specific breaking pattern of the U(1)’s to discrete symmetries, all interacting
SCFTs with partition functions Zβ have the same perturbative ’t Hooft anomalies for their
unbroken continuous symmetries. For wrapped M5-branes these anomalies are the first two
lines of (5.7), while for wrapped M5-branes at a Z2 singularity the perturbative anomalies
are collected in (5.14).

Extracting the anomalies for discrete symmetries of a given interacting SCFT Zβ is
more challenging. We expect that the language of differential cohomology should give us
the proper mathematical framework to discuss these anomalies. In appendix D we provide
a brief review of the aspects of differential cohomology that are relevant for this work.
We use the notation Ȟ`(M4) to denote the `-th differential cohomology group of external
spacetime. An element of Ȟ`(M4) models an (`− 1)-form U(1) gauge field.

As a first case, let us consider the BBBW setup and assign Dirichlet boundary condi-
tions to A1 and free boundary conditions to c3, case (a) in the terminology of section 3.2.1.
We can dualize the 3-form gauge field c3 to a 0-form gauge field φ0. The effect of the
dualization is to convert the original BF theory (3.1) (supplemented by standard kinetic
terms) into a Stückelberg theory written in terms of the combination Dφ0 = dφ0 − kA1.
In the deep IR, the 1-form gauge field A1 and the 0-form gauge field dφ0 are subject to the
constraint Dφ0 = 0, or

kA1 = dφ0 . (5.21)

The gauge field kA1 is pure gauge, because it is given in terms a globally defined closed
1-form dφ0 with periods that are quantized in units of 2π. Crucially, this does not mean
that A1 is trivial. Instead, A1 is a flat gauge field that is allowed to have non-trivial
holonomies that are k-th roots of unity. These features show that the pair (A1, φ0) subject
to the constraint (5.21) describes a background 1-form Zk gauge field, as in [25, 32].14

In the process of dualizing c3 to φ0, the BF term kA1∧dc3 is removed. As a result, the
anomaly polynomial (5.7) does not contain c3 nor A1. This is consistent with the global
symmetries of the theory in case (a): we have a global 0-form Zk symmetry from A1, but
no global symmetry from c3, and thus no mixed anomaly between the two. Moreover,
since (5.7) lacks mixed terms between F2, γ4, and the other field strengths, there are no
mixed anomalies between the 0-form Zk symmetry and other symmetries.

Similar remarks apply to case (b), in which we assign Dirichlet boundary conditions
to c3. In this situation we dualize A1 to φ2, and we impose the constraint

k c3 = dφ2 . (5.22)
14If G is a finite group, giving a connection on a principal G-bundle over M4 is the same as specifying

an element of Hom(π1(M4), G). For the case at hand G = Zk is Abelian, and therefore (by Hurewicz
theorem) we can equivalently consider Hom(H1(M4),Zk). The pair (A1, φ0) determines indeed an element
of Hom(H1(M4),Zk), because the holonomies of A1 for any 1-cycle are in Zk ⊂ U(1), and only depend on
the homology class of the 1-cycle because A1 is flat. If external spacetimeM4 has no torsion in homology,
we also have Hom(H1(M4),Zk) ∼= H1(M4,Zk) from the universal coefficient theorem.
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Thus, the pair (c2, φ2) models a 3-form gauge field for a Zk symmetry. The B2i, B̃i
2 system

is studied in a similar way.
The setup with wrapped M5-branes probing a Z2 singularity is considerably richer.

Let us focus on the fields A1, c3, and let us impose Dirichlet boundary conditions on A1.
In the total anomaly polynomial (5.9) we can collect all terms with a γ4 factor,

− γ4
2π

[
k
F2
2π + f+

1i f̃
i−
1 − f̃

i+
1 f−1i

(2π)2

]
, (5.23)

where we have recalled that Nα F
α
2 = kF2. The dualization of c3 yields a 0-form gauge

field φ0 as before. The analog of the constraint (5.21) reads now

kA1 +Aff̃1 = dφ0 . (5.24)

In the previous expression, Aff̃1 denotes the 1-form gauge field whose field strength satisfies

dAff̃1
2π = f+

1i f̃
i−
1 − f̃

i+
1 f−1i

(2π)2 . (5.25)

More precisely, the 0-form gauge fields a±0i, ãi±0 can be modeled by elements of the dif-
ferential cohomology group Ȟ1(M4). In differential cohomology a well-defined notion of
product exists, which maps Ȟ1(M4) × Ȟ1(M4) to Ȟ2(M4). In other words, to a pair
of 0-form gauge fields one can associate a 1-form gauge field, see appendix D for further
details. It is in this sense that Aff̃1 is constructed from a±0i, ãi±0 . The relation (5.24) should
be interpreted as a relation between elements of Ȟ2(M4). If we take the field strength of
both sides, we get an equation for differential 2-forms,

kF2 + f+
1i f̃

i−
1 − f̃

i+
1 f−1i

2π = 0 . (5.26)

This relation is one of the equations of motions of the topological theory defined by (5.9),
or equivalently one of the tadpole constraints on E2

4 + 2X8.
The 2-form equation (5.26) can be integrated on any 2-cycle in spacetime. Since F2

has periods that are quantized in units of 2π, we learn that dAff̃1 has periods that are
quantized in units of 2π k. This indicates that we can introduce a new 1-form gauge field
A1 defined as

A1 = A1 + 1
k
Aff̃1 , (5.27)

and that dA1 has periods that are quantized in units of 2π. It should therefore be possible
to model A1 with an element of Ȟ2(M4). The new gauge field A1 satisfies

kA1 = dφ0 . (5.28)

Therefore, the pair (A1, φ0) describes a background gauge field for a Zk 0-form symmetry.
We can now go back to the anomaly polynomial (5.9). Dualization of γ4 has removed

all terms with a γ4 factor. There are several other terms, however, that contain A1. We
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rewrite these terms using (5.27) to trade A1 for A1 and Aff̃1 . After this rewriting, we find
terms with dA1, for example the term

I inflow
6 ⊃ n dA1

2π ∧ c
ϕ
2 , (5.29)

where n is an integer ’t Hooft anomaly coefficient. The 2-form dA1 is zero: how
should (5.29) be interpreted? We regard the 6-form I inflow

6 as the field strength of a U(1)
5-form gauge field, modeled by an element of Ȟ6(M6). The wedge product in (5.29) is
reinterpreted as the product in differential cohomology. The second Chern class cϕ2 admits
a natural extension in differential cohomology and defines an element of Ȟ4(M4). A more
detailed discussion of this point can be found in appendix D. The 1-form gauge field A1 is
thought of as an element of Ȟ2(M4). Their product is thus an element in Ȟ6(M6). Even
though the field strength of this element of Ȟ6(M6) is zero (because A1 is flat), this object
is still non-trivial. It encodes a non-zero ’t Hooft anomaly between the discrete Zk 0-form
symmetry and the SU(2)ϕ symmetry.

The ideas outlined in the previous paragraphs can also be applied to the B2i, B̃i
2

system. For example, if we assign Dirichlet boundary conditions to B2i (for each label i),
we have to collect all terms in (5.9) with H̃ i

3 an dualize B̃i
2 to a 1-form gauge field φ1i. We

obtain a Stückelberg-like system that enforces a constraint of the form

N B2i +Bcomp
2i = dφ1i . (5.30)

The quantity Bcomp
2i is a composite 2-form gauge field, whose field strength satisfies

dBcomp
2i = F+

2 f+
1i + F−2 f−1i

2π −N cψ1 f
+
1i . (5.31)

As in the case of Aff̃1 , the object dBcomp
2i is best thought of as a sum of products in

differential cohomology of 1-form and 0-form gauge fields. The relation (5.30) is interpreted
as an equation in Ȟ3(M4). Taking the field strength of both sides we get an equation for
3-forms, which is the second equation of motion in (5.13). The periods of dBcomp

2i are
quantized in units of 2πN , thus it makes sense to consider 1/N Bcomp

2i . Reasoning as
above, a new 2-form gauge field B2i can be introduced, in terms of which (5.30) takes a
simpler form,

B2i = B2i + 1
N
Bcomp

2i , N B2i = dφ1i . (5.32)

The dualization of B̃i
2 to φ1i has removed all terms with H̃ i

3 from (5.9). There are other
terms containing B2i, however. We rewrite such terms trading B2i for B2i. As before, the
terms that contain dB2i encode mixed ’t Hooft anomalies between the “electric” (ZN )g
1-form symmetry and other symmetries of the field theory.

In appendix E we present a case study for a detailed analysis of the anomalies, along
the lines explained in the previous paragraphs. In particular, we give the full anomaly
polynomial in the case in which we assign Dirichlet boundary conditions to A1 and B2i.
We find a rich variety of mixed anomalies involving the Zk 0-form symmetry, the (ZN )g

– 30 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

1-form symmetry, and the continuous symmetries of the system, see (E.18)–(E.21). The
terms in the anomaly polynomial that involve dA1 and dB2i have the following structure,

I inflow
6 ⊃ a1

(dA1)3

(2π)3 + a2 c
ψ
1

(dA1)2

(2π)2 + a3,α̂
F α̂2 (dA1)2

(2π)3 + a4
(f+

1i f̃
i−
1 − f̃

i+
1 f−1i) (dA1)2

(2π)3

+ a5
f+

1i f̃
i+
1 (dA1)2

(2π)3 + a6 c
ϕ
2
dA1
2π + a7 c

Σ
2
dA1
2π + a8 (cψ1 )2 dA1

2π + a9 p1(T ) dA1
2π

+ a10,α̂ c
ψ
1
F α̂2 dA1
(2π)2 + a11,α̂β̂

F α̂2 F
β̂
2 dA1

(2π)3 + a12 c
ψ
1
f−1i f̃

i−
1 dA1

(2π)3 + a13,α̂
f+

1i f̃
i+
1 F α̂ dA1
(2π)4

+ a14 c
ψ
1

(f+
1i f̃

i−
1 − f̃

i+
1 f−1i) dA1

(2π)3 + a15,α̂
(f+

1i f̃
i−
1 − f̃

i+
1 f−1i)F α̂2 dA1

(2π)3

+ a16
(f+

1i f̃
i−
1 − f̃

i+
1 f−1i)2 dA1

(2π)5 + a17
f−1ij f̃

j−
1 (f+

1i f̃
i−
1 − f̃

i+
1 f−1i) dA1

(2π)5

+ a18,α̂
F α̂2 f̃ i+1 dB2i

(2π)3 + a19,α̂
F α̂2 f̃ i−1 dB2i

(2π)3 + a20 c
ψ
1
f̃ i+1 dB2i

(2π)2

+ a21
(f+

1j f̃
j−
1 − f̃ j+1 f−1j) f̃ i+1 dB2i

(2π)4 + a22
dA1 dB2i f̃

i+
1

(2π)3 . (5.33)

In the previous expression we have made use of the notation introduced in (2.8), in which
the index α̂ refers to the continuous U(1)2 symmetry associated to two out of the three
vectors coming from expansion of C3 onto cohomology classes. The explicit expressions of
the anomaly coefficients a1, . . . , a22 can be read off from (E.18)–(E.21). Among the various
terms in (5.33) we notice in particular: terms that are cubic and quadratic in dA1; the
term p1(T ) dA1 describing a mixed discrete-gravitational anomaly; the last term in (5.33)
which mixes the two discrete symmetries with a continuous axionic “(−1)-form symmetry”.

In closing this section, let us comment on boundary conditions of type (c) or (c′).
Intuitively speaking, in case (c) only a part of the field c3 should be dualized to φ0, and
a part of A1 should be dualized to φ2. More precisely, we expect a difficulty in using a
Lagrangian formalism to describe this case, analogous for instance to the difficulties that
one encounters in formulating a 4d U(1) gauge theory with both the electric and magnetic
photon in the Lagrangian. Even though we are not able to describe the dualization from BF
form to Stückelberg form with the same level of detail as in cases (a) and (b), we can still
give an interpretation of (5.9) in terms of ’t Hooft anomalies for discrete symmetries. As
already anticipated in section 3.2.1, the term kF2 γ4 describes a mixed anomaly between
the Zm′ 0-form symmetry and the Zm 2-form symmetry. By a similar token, all terms
involving F2 signal non-zero ’t Hooft anomalies between the Zm′ 0-form symmetry and
the other symmetries in the system, and similarly for terms with γ4. Analogous remarks
apply to B2i, B̃i

2. As in the case studied in appendix E, we find a rich structure of mixed
’t Hooft anomalies.

5.2 Singletons and ’t Hooft anomalies

A better understanding of the decoupled sector of the 4d field theory is crucial to obtain a
detailed prediction for the anomalies of the interacting CFTs of interest. The holographic
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dictionary suggests a general strategy to extract information about the decoupling modes
on the field theory side from the gravity side: one has to study the singleton modes that
propagate on the conformal boundary ofM5 ×wM6.

Let us consider the setup with a stack of M5-branes wrapped on a Riemann surface. In
this case we know the decoupling modes on the field theory side. They are obtained from
dimensional reduction on Σg of a free 6d N = (2, 0) tensor multiplet, which corresponds to
the center-of-mass degrees of freedom of the M5-brane stack. Our goal is to compare the
set of decoupled fields with singleton modes inM5 ×wM6, where M6 is the internal space
of BBBW solutions.

The dimensional reduction of a free 6d N = (2, 0) tensor multiplet on a genus-g
Riemann surface with twist parameters p, q is discussed in appendix F. Recall that, for
any values of p, q, the internal space has a U(1)1 × U(1)2 isometry. We find the following
4d N = 1 multiplets:

g vector multiplets: Aµ (0, 0) , λ (1, 1) ;
one chiral multiplet: Φ (0, 0) , b0 (0, 0) , ψ (−1,−1) ;

h0(K
p
p+q ) chiral multiplets: Q (2, 0) , Λ (1,−1) ;

h0(K
q
p+q ) chiral multiplets: Q̂ (0, 2) , Λ̂ (−1, 1) .

(5.34)

In the above expressions, K is the canonical bundle of Σg (we are assuming g 6= 1, see
appendix F for the case g = 1). The scalars Φ, b0 are real, while Q, Q̂ are complex.
The spinors λ, ψ, Λ, Λ̂ are Weyl spinors of positive chirality. For each field, we have
included its U(1)1 × U(1)2 charges. The combination U(1)1 + U(1)2 is an R-symmetry,
while U(1)1 −U(1)2 is a flavor symmetry.

The multiplicities and the U(1)1 × U(1)2 charges of the free fields listed in (5.34) are
such that their combined ’t Hooft anomalies match exactly with the dimensional reduction
on Σg of the 8-form anomaly polynomial of a free 6d N = (2, 0) tensor multiplet, as
expected. Notice that the anomalies only depend on the difference h0(K

p
p+q )− h0(K

q
p+q ),

which is fixed by the Riemann-Roch theorem, see appendix F.
How are the free fields in (5.34) identified with singleton modes onM5×wM6? The g

vectors Aµ (we omit the degeneracy label) are identified with the g singleton 1-form gauge
field associated to the BF coupling N B̃i

2 ∧ dB2i. In a similar way, the real scalar b0 is
identified with the singleton 0-form gauge field associated to the BF coupling kA1 ∧ dc3.
The origin of the other scalar modes and of the fermions is different. These fields are
identified with suitable Kaluza-Klein modes of 11d supergravity on M5 ×w M6, whose
internal wavefunction is such that they are pure gauge in the bulk of M5, but propagate
on the conformal boundary ∂M5. We may refer to these modes as Kaluza-Klein singletons.
They are well-understood for the AdS5 × S5 solution in type IIB supergravity [49].

As we can see from (5.34), the Kaluza-Klein singletons Φ, λ, ψ sit in supermultiplets
that contain the BF singletons. The existence and charges of these Kaluza-Klein singletons
can be easily determined by counting BF singletons (which are neutral under U(1)1×U(1)2)
and using 4d N = 1 supersymmetry. In contrast, the chiral multiplets (Q,Λ) and (Q̂, Λ̂) do
not contain BF singletons. It follows that to verify the existence, charges, and multiplicities
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of these Kaluza-Klein singletons we cannot rely on a simple counting of BF terms, and we
rather have to perform a direct analysis of the Kaluza-Klein spectrum.

The situation is different if we specialize to g ≥ 2, q = 0, i.e. the N = 2 Maldacena-
Nuñez solution. The U(1)1 isometry enhances to SU(2)1 and the internal spaceM6 contains
a round S2. The free fields in (5.34) can be reorganized into 4d N = 2 multiplets,

g vector multiplets: Aµ [10] , Q [12] , λ′ [21] ;
one hypermultiplet: b0 [10] , Q̂ ′ [30] , ψ′ [2−1] .

(5.35)

For each field we have indicated its SU(2)1 representation and U(1)2 charge. The triplet of
real scalars Q̂ ′ comes from combining the complex scalar Q̂ and the real scalar Φ in (5.34),
while the fermion λ′ comes from λ, Λ, and the fermion ψ′ comes from ψ, Λ̂. It is clear
from (5.35) that in this 4d N = 2 setup all Kaluza-Klein singletons are related to BF sin-
gletons by supersymmetry. Thus, the existence, charges, and multiplicities of the Kaluza-
Klein singletons can be easily inferred from counting BF singletons and exploiting 4d N = 2
supersymmetry.

If we consider the setup with wrapped M5-branes probing a Z2 singularity, the task at
hand it to identify singleton modes for GMSW solutions on the gravity side. A subset of
these modes is easily identified: a real 0-form BF singleton b0 and a set of g real 1-form BF
singletons Aµ. These fields are neutral under the SU(2)ϕ flavor symmetry and the U(1)ψ
isometry, which is an R-symmetry.15 Exploiting 4d N = 1 supersymmetry, we predict the
following multiplets of singleton modes in GMSW,

g vector multiplets: Aµ [10] , λ [11] ;
one chiral multiplet: b0 [10] , Φ [10] , ψ [1]−1 .

(5.36)

We have indicated the SU(2)ϕ representation and the U(1)ψ charge. (All these fields are
neutral under the baryonic U(1)2 symmetry.) In analogy with (5.34), we expect additional
chiral multiplets of Kaluza-Klein singletons, whose charges and multiplicities cannot be
inferred from the BF terms alone. To identify these chiral multiplets, we need to perform a
more detailed study of the Kaluza-Klein spectrum of GMSW solutions. We plan to address
this problem in future work.

It should be stressed, however, that we do not expect Kaluza-Klein singletons to ex-
haust the entire set of singleton modes for these geometries. This expectation is based on
analogy with D3-brane setups in type II string theory. As pointed out in [24], if we con-
sider type IIB supergravity on AdS5 × T 1,1, we only see one vector BF singleton (coming
from the term B2 ∧ dC2, where B2 in the NSNS 2-form and C2 is the RR 2-form). On
the other hand, the worldvolume theory on the D3-branes is a U(N)×U(N) quiver theory
(with superpotential) in which the two U(1)’s in U(N) × U(N) decouple in the IR. The
overall U(1) is identified with the BF vector, but the relative U(1) does not appear to have
an obvious singleton interpretation within the supergravity approximation. The geome-
try AdS5 × T 1,1 can be regarded as originating from blow-up of a Z2 orbifold singularity.
This feature is qualitatively similar to our interpretation of the smooth GMSW solutions

15The superconformal R-symmetry is the linear combination of U(1)ψ and the baryonic U(1)2 symmetry
fixed by a-maximization [50].
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in terms of a blow-up of the C2/Z2 singularities at the north and south poles of S4. For
this reason, we expect that, in order to capture all decoupling modes on the worldvolume
theory of the M5-brane stack, one has to analyze singleton modes beyond the supergravity
approximation, including stringy modes. This program could give an exact answer for
the decoupled modes, which, combined with inflow, would yield the exact anomaly of the
interacting SCFT, including O(1) terms.

6 Outlook

The problems studied in this work suggest several directions for future research. For
instance, a systematic analysis of topological boundary conditions for the BF theory N B̃i

2∧
dB2i, including the action of the duality group Sp(2g,Z), has not been performed. Such
a study has the potential of furnishing an organizing principle for the classification of
line operators in 4d SCFTs engineered with M5-branes, with either N = 2 or N = 1
supersymmetry.

Another problem that deserves further analysis is the computation of the partition
function vector of the singleton modes in a setup with wrapped M5-branes. The full
partition function from the gravity side is expected to take the form (5.20), where the
vector Zβ encodes the contribution of interacting bulk modes (and is dual to the partition
function vector of an interacting SCFT), while Zsingleton

β is the partition function vector of
singleton modes. The latter is computable following the methods of [40, 41]. The action
of Sp(2g,Z) on the conformal blocks Zβ of the interacting SCFT can be determined from
its action on Zsingleton

β . One may then explore the interplay between the duality group and
’t Hooft anomalies for various global symmetries.

We have observed that BF couplings in the bulk 5d topological theory account for a set
of singleton modes on the gravity side. On the other hand, additional singleton modes are
present, which do not originate from BF terms. In general N = 1 setups, supersymmetry
is not sufficient to determine all singleton modes starting from BF singleton modes. It
would be beneficial to perform a systematic study of singleton modes in string/M-theory
compactifications, especially in setups with lower amounts of supersymmetry. On the basis
of the holographic dictionary, it is expected that singleton modes on the gravity side should
account for all modes that decouple in the IR on the field theory side. A detailed knowledge
of decoupling modes can provide access to precision holography, allowing for example for
a computation of exact anomalies, beyond the large-N limit, including O(1) terms. The
role of singleton modes in holographic flows is also worth analyzing further.

It is natural to wonder how the results of this paper would be modified by the inclusion
of punctures on the Riemann surface. In order to address this question in a more systematic
way, a better understanding of punctures for 4d N = 1 theories engineered with M5-branes
would be useful. With regards to N = 1 regular punctures for 6d (2, 0) theories of type
AN−1 on a Riemann surface, our expectation is that there should be no mixed anomalies
between the continuous 0-form flavor symmetries at the punctures and the discrete and
higher-form symmetries of the system. On the other hand, we anticipate a much richer
structure in setups with M5-branes probing a Z2 singularity and wrapped on the Riemann
surface with punctures.
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Finally, it would be useful to extend the discussion of symmetries and anomalies in
geometric engineering, including other possible sources of internal discrete symmetries (such
as discrete isometries of the internal space or torsion cycles [33, 34]), as well as spacetime
discrete symmetries (such as parity or time reversal).
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A A change of basis

In this appendix we consider an internal space M6 with n := b2(M6) ≥ 2. The lattice
H2(M6,Z)free is preserved by the action of SL(n,Z). In terms of the closed 2-forms ω2α,
we can consider a change of basis of the form

ω′2α = ω2β (M−1)βα , M ∈ SL(n,Z) . (A.1)

This linear transformation is accompanied by transformations on the closed 4-forms Ωα
4 ,

as well as on the basis Cα2 of 2-cycles in M6, and the basis C4
α of 4-cycles in M6. In order

to preserve the relations
∫
M6

ω2α ∧ Ωβ
4 = δβα,

∫
Cα2
ω2β = δαβ , and

∫
C4
α

Ωβ
4 = δβα, we must set

Ω′α4 = Mα
β Ωβ

4 , C′2α = Mα
β Cβ2 , C4

α
′ = C4

β (M−1)βα . (A.2)

The ansatz (2.3) for G4 contains the terms Aα1 ∧ ω2α and Nα Ωα
4 . As a result, the linear

transformation (A.1) induces a linear transformation for the external 1-form gauge fields
and flux quanta,

A′1
α = Mα

β A
β
1 , N ′α = Nβ (M−1)βα . (A.3)

To proceed, we define the integers k and mα via the relations

k = gcd(N1, . . . , Nn) , Nα = kmα . (A.4)

It can then be shown that a matrix M ∈ SL(n,Z) exists, such that

A′1
α=1 = mβ A

β
1 . (A.5)

This can be argued as follows. The integers {mα}nα=1 are relatively prime. There must
exist labels α1, α2 ∈ {1, . . . , n}, α1 6= α2, such that mα1 and mα2 are relatively prime.
After reordering {mα}nα=1 if necessary, we can take α1 = 1, α2 = 2. We may then consider
the following matrix,

Mα
β =



m1 m2 m3 m4 . . . mn−1 mn

r s 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1


, detM = sm1 − rm2 . (A.6)
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Sincem1 andm2 are relatively prime, there exist integers r and s satisfying sm1−rm2 = 1.
This follows from Bézout’s identity in elementary number theory. Thus M ∈ SL(n,Z) and
clearly A′1α=1 = mβ A

β
1 .

In the new basis N ′α of flux quanta, the component N ′α=1 = k is the only non-zero
component, and we have

Nα dA
α
1 = k dA′1

α=1 . (A.7)

This is why this basis is best suited to study the topological terms in the 5d action.

B Cohomology classes and gauging of isometries

In this appendix we study non-trivial cohomology classes of the internal space M6 for
BBBW solutions and GMSW solutions. To compute the full inflow anomaly polynomial,
we need to activate background gauge fields for the isometries of M6. After turning on
these gauge fields, the relevant spacetime is denoted M12 and is of the form

M6 ↪→M12 →M6 , (B.1)

where M6 denotes external spacetime. For the purposes of computing anomalies in the
descent formalism, we take X6 to be Euclidean and six-dimensional. We discuss represen-
tatives for cohomology classes in M6 and their counterparts in M12. We suppress wedge
products throughout this appendix.

B.1 BBBW solutions

B.1.1 Cohomology classes in M6

In the BBBW solutions, the internal spaceM6 is topologically an S4 fibration over a genus-
g Riemann surface Σg. We refer to [15] for the full expression of the metric on M6. For
the purposes of this work, we can use the following simplified line element on M6, which
captures the topology and isometries of the metric in [15],

ds2(M6) = ds2(Σg) + dµ2
0 + dµ2

1 + dµ2
2 + µ2

1Dφ
2
1 + µ2

2Dφ
2
2 , (B.2)

dDφ1 = −p VΣ , dDφ2 = −q VΣ ,

∫
Σg
VΣ = 2π , p+ q = −χ = 2(g − 1) .

The angles φ1, φ2 have periodicity 2π and ds2(Σg) denotes the metric on Σg with constant
curvature κ ∈ {0, 1,−1}. We have also introduced three constrained coordinates µ0, µ1,
µ2, satisfying

µ2
0 + µ2

1 + µ2
2 = 1 , −1 ≤ µ0 ≤ 1 , 0 ≤ µ1 ≤ 1 , 0 ≤ µ2 ≤ 1 . (B.3)

We use B2 to denote the 2d space parametrized by µ0, µ1, µ2. The total space of the
S1
φ1
× S1

φ2
fibration over B2 is an S4. We refer to the points µ0 = ±1 as the north and

south poles of S4, respectively. The space B2 is depicted schematically in figure 2.
The space M6 admits one integral 4-homology class. A representative is obtained by

considering the 4-cycle C4 that is obtained by taking the S4 fiber on top of a generic point

– 36 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

µ1 = 0

<latexit sha1_base64="qVbx5w/J4jYMYxQAwKyudpzG5gA=">AAAB53icbZC7SgNBFIbPxFuMt6ilzWAQUkjYlUBshICNZQRzkWQJs5OTZMjM7jIzGwhLnsFCEAstfBwfwbdxE7dJ4l99nP9c+I8fSWGs4/yQ3Nb2zu5efr9wcHh0fFI8PWuZMNYcmzyUoe74zKAUATatsBI7kUamfIltf3K/8NtT1EaEwZOdRegpNgrEUHBm09JzT8V9l95Rp18sORVnKboJbgYlyNToF797g5DHCgPLJTOm6zqR9RKmreAS54VebDBifMJGmDBlzEz5c3qlmB2bdW9R/M/rxnZ46yUiiGKLAU9bUm8YS2pDushCB0Ijt3KWAuNapJcpHzPNuE0Tr24yGDCF5poOpiIyS/aS5fvmhTS7u550E1o3FbdaqT5WS/Vy9oU8XMAllMGFGtThARrQBA4KXuEDPokgL+SNvP+15kg2cw4rIl+/RqaMGQ==</latexit>

µ2 = 0

<latexit sha1_base64="2SkXPXcDumAOpLBPZmFEWKkyVac=">AAAB53icbZC7SgNBFIbPxluMt6ilzWAQUkjYDQFthICNZQRzkWQJs5OTZMjM7jIzGwhLnsFCEAstfBwfwbdxErdJ4l99nP9c+E8QC66N6/44ua3tnd29/H7h4PDo+KR4etbSUaIYNlkkItUJqEbBQ2wabgR2YoVUBgLbweR+4benqDSPwiczi9GXdBTyIWfU2NJzTyb9Krkjbr9YcivuUmQTvAxKkKnRL373BhFLJIaGCap113Nj46dUGc4Ezgu9RGNM2YSOMKVS65kM5uRKUjPW696i+J/XTczw1k95GCcGQ2ZbrDdMBDERWWQhA66QGTGzQJni9jJhY6ooMzbx6iaNIZWor8lgymO9ZD9dvm9esNm99aSb0KpWvFql9lgr1cvZF/JwAZdQBg9uoA4P0IAmMJDwCh/w6XDnxXlz3v9ac042cw4rcr5+AUgljBo=</latexit>

µ0 = +1

<latexit sha1_base64="8Ud9lciBkMeodvLO0DUyZ5LtO7w=">AAAB6HicbZDLSsNAFIZP6q3WW9Wlm8EiFJSSSEE3QsGNywr2gm0ok+lpO3ZmEmYmhRL6Di4EcaEL38ZH8G1Mazat/quP858L/wkiwY113W8nt7a+sbmV3y7s7O7tHxQPj5omjDXDBgtFqNsBNSi4woblVmA70khlILAVjG/nfmuC2vBQPdhphL6kQ8UHnFGblh67Mu655Iace71iya24C5G/4GVQgkz1XvGr2w9ZLFFZJqgxHc+NrJ9QbTkTOCt0Y4MRZWM6xIRKY6YymJEzSe3IrHrz4n9eJ7aDaz/hKootKpa2pN4gFsSGZB6G9LlGZsU0Bco0Ty8TNqKaMptGXt5kUFGJ5oL0JzwyC/aTxf9mhTS7t5r0LzQvK161Ur2vlmrl7At5OIFTKIMHV1CDO6hDAxgoeIF3+HCenGfn1Xn7bc052cwxLMn5/AGtq4xO</latexit>

µ0 = �1

<latexit sha1_base64="0sbmEKG+/3mZxoKvdsm1s6c/1cU=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQUmjYlYA2QsDGMoK5YLKE2clJMmZmdpmZDYQl72AhiIUWvo2P4Nu4idsk+lcf5z8X/hNEghvrut9Obm19Y3Mrv13Y2d3bPygeHjVNGGuGDRaKULcDalBwhQ3LrcB2pJHKQGArGN/O/dYEteGherDTCH1Jh4oPOKM2LT12ZdxzyQ258HrFkltxFyJ/wcugBJnqveJXtx+yWKKyTFBjOp4bWT+h2nImcFboxgYjysZ0iAmVxkxlMCNnktqRWfXmxf+8TmwH137CVRRbVCxtSb1BLIgNyTwM6XONzIppCpRpnl4mbEQ1ZTaNvLzJoKISzTnpT3hkFuwni//NCml2bzXpX2heVrxqpXpfLdXK2RfycAKnUAYPrqAGd1CHBjBQ8ALv8OE8Oc/Oq/P225pzspljWJLz+QOwo4xQ</latexit>

B2
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Figure 2. Schematic depiction of the space B2 described by the constrained coordinates (B.3) with
line element dµ2

0 + dµ2
1 + dµ2

2. We have also indicated the orientation of ∂B2 used throughout this
appendix.

on the Riemann surface. Correspondingly, there is one non-trivial 4-cohomology class on
M6. We represent it by a closed but not exact 4-form ω4, which integrates to 1 on the
C4 cycle, ∫

C4
Ω4 = 1 . (B.4)

The closed 4-form ω4 is parametrized as follows,

Ω4 = h2
Dφ1
2π

Dφ2
2π + h1

1
Dφ1
2π

dDφ2
2π + h2

1
Dφ2
2π

dDφ1
2π . (B.5)

In the above expression, h2 is a 2-form on B2, while h1,2
1 are 1-forms on B2. Closure of ω4

requires
h2 = dh1

1 = −dh2
1 . (B.6)

It follows that d(h1
1 + h2

1) = 0 and therefore (since B2 has trivial cohomology) there exists
a 0-form h0 such that

h1
1 + h2

1 = −dh0 . (B.7)

Without loss of generality, we can take h0 to satisfy

(h0)N = −(h0)S , (B.8)

where the superscript N, S means evaluation at µ0 = ±1, respectively. The 1-forms h1
1,

h2
1 satisfy additional requirements that ensure the regularity of ω4. In particular, we must

demand that h1
1 be zero if restricted to the locus {µ1 = 0} ⊂ B2, and similarly for h2

1,

h1
1|µ1=0 = 0 , h2

1|µ2=0 = 0 . (B.9)

This is due to the fact that S1
φ1

shrinks along µ1 = 0, and similarly for S1
φ2
. We also have

to impose (B.4),

1 =
∫
B2
h2 =

∫
∂B2

h1
1 =

∫
{µ1=0}

h1
1 −

∫
{µ2=0}

h2
1 =

∫
{µ2=0}

dh0 = (h0)N − (h0)S . (B.10)

In the first step we have integrated over φ1, φ2. In the second step we used (B.6). The
boundary ∂B2 consists of the arcs {µ1 = 0} and {µ2 = 0}, with a relative minus due to
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orientation, see figure 2. We conclude recalling (B.9) and (B.7). We learn that (h0)N −
(h0)S = 1, which, combined with (B.8), yields

(h0)N = 1
2 , (h0)S = −1

2 . (B.11)

Poincaré duality implies that the space M6 admits one non-trivial 2-cohomology class.
It can be represented by a closed but not exact 2-form ω2, normalized in such a way that∫

M6
Ω4 ω2 = 1 . (B.12)

We parametrize ω2 as

ω2 = d

[
H1

0
Dφ1
2π +H2

0
Dφ2
2π

]
= dH1

0
Dφ1
2π + dH2

0
Dφ2
2π − (pH1

0 + q H2
0 ) VΣ

2π , (B.13)

where H1
0 , H2

0 are 0-forms on B2. We might have included an additional term ∆ω2 =
(const)VΣ, but such term can always be reabsorbed by redefining H1

0 or H2
0 . (We do

not consider the case p = 0 = q because it does not correspond to a smooth M-theory
solution.) The 0-forms H1

0 , H2
0 satisfy additional requirements that ensure regularity of

ω2. In particular, regularity the term dH1
0 ∧Dφ1 implies that the function H1

0 restricted
to {µ1 = 0} must be a constant. Similarly, H2

0 restricted to {µ2 = 0} must be a constant,

d(H1
0 |µ1=0) = 0 , d(H2

0 |µ2=0) = 0 . (B.14)

Since we can connect the north and south poles with either the arc {µ1 = 0} or {µ2 = 0},
we conclude that the values of H1

0 , H2
0 at the poles are equal,

(H1
0 )N = (H1

0 )S , (H2
0 )N = (H2

0 )S . (B.15)

Next, let us consider the integral in (B.12). It can be computed with manipulations similar
to those in (B.10). The result is∫

M6
Ω4 ω2 = −

[
p (H1

0 )N + q (H2
0 )N

] [
(h0)N − (h0)S

]
. (B.16)

Using (B.11), we conclude that, in order to have (B.12), the values (H1
0 )N, (H2

0 )N must
satisfy

p (H1
0 )N + q (H2

0 )N = −1 . (B.17)

Next, let us discuss 1-cohomology classes on M6. The Riemann surface admits 2g
independent non-trivial 1-cohomology classes, which are represented by closed but not
exact 1-forms λ1u, u = 1, . . . , 2g. These 1-forms can be pulled back to the total space M6,
yielding 1-forms that we still denote λ1u and that are still closed. It can be checked that
they are not exact inM6, and that they furnish representatives for all 1-cohomology classes
of M6. The associated 1-cycles on M6 are realized by taking a 1-cycle on the Riemann
surface, at the point µ0 = 1, where both S1

φ1
and S1

φ2
shrink. (Choosing µ0 = −1 yields

1-cycles in M6 that are homologous to those at µ0 = 1.) Finally, the space M6 admits no
3-cohomology class and no 3-cycles.
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B.1.2 Inclusion of background gauge fields for isometries

The background gauge fields for the U(1)1 × U(1)2 isometry are denoted Aφ1 , Aφ2 , with
field strenghts F φ1 = dAφ1 , F φ2 = dAφ2 . After turning on Aφ1 , Aφ2 we introduce the
1-forms

D̃φi = Dφi − 2Aφi , dD̃φ1 = −p VΣ − 2F φ1 , dD̃φ2 = −q VΣ − 2F φ2 . (B.18)

The periods of the field strengths F φ1 , F φ2 are quantized in units of 2π and we have16

cφ1
1 = c1(U(1)1) = F φ1

2π , cφ2
1 = c1(U(1)2) = F φ2

2π . (B.19)

In the case g = 0, the Riemann surface is a round 2-sphere and the space M6 admits an
additional SO(3)Σ ∼= SU(2)Σ isometry. We find it convenient to describe the 2-sphere as
the locus ya ya = 1 in R3, where a = 1, 2, 3 is a vector index of SO(3)Σ. One can verify
that the following 1-forms on M6 are dual to Killing vectors in the metric (B.2),

εabc y
b dyc + 1

2 p ya µ
2
1Dφ1 + 1

2 q ya µ
2
2Dφ2 . (B.20)

In other words, the SO(3)Σ isometry of the Riemann surface extends to an isometry of the
total space M6 for any value of p, q. We couple the SO(3)Σ isometry to a triplet Aa of
external gauge fields. Our conventions are

Dya = dya + 1
2 ε

abcAb yc , F a = dAa + 1
2 ε

abcAbAc . (B.21)

After turning on Aa, the volume form VΣ on the Riemann surface in (B.18) must be replaced
with the global angular form of SO(3)Σ,

VΣ
2π → eΣ

2 = 1
8π
[
εabcDy

aDyb yc − 2Fa ya
]
. (B.22)

The 2-form eΣ
2 is the closed and SO(3)Σ-invariant completion of VΣ/(2π). Integrals of

powers of eΣ
2 on S2 are computed via the Bott-Cattaneo formula [51],∫

S2
(eΣ

2 )2s+1 = 2−2s
[
p1(SO(3)Σ)

]s
,

∫
S2

(eΣ
2 )2s = 0 , s = 0, 1, 2, . . . (B.23)

and in particular
∫
S2 eΣ

2 = 1 in our normalization. In writing the inflow anomaly polynomial
below, we find it convenient to replace p1(SO(3))Σ with the second Chern class of SU(2)Σ,
according to

p1(SO(3)Σ) = −4 c2(SU(2)Σ) ≡ −4 cΣ
2 . (B.24)

After activating the gauge fields for isometries of M6 we are effectively considering
the auxiliary 12 space M12 in (B.1). We have to discuss how the closed forms ω4, ω2,
λ1u extend to closed forms (ω4)eq, (ω2)eq, (λ1u)eq on M12. We start by noting that the
1-forms λ1u are unaffected by the gauging of the isometry U(1)1 × U(1)2. Since they are

16The normalization of Aφ1 , Aφ2 in (B.18) can be checked by matching anomaly inflow with the know
anomaly polynomial of the 4d SCFT.

– 39 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

only present for g 6= 0, the SO(3)Σ isometry plays no role.17 We conclude that we do not
need to modify λ1u in any way after gauging the isometries of M6,

(λ1u)eq = λ1u . (B.25)

Next, let us consider the 2-form (ω2)eq. It can be written as

(ω2)eq = d

[
H1

0
D̃φ1
2π +H2

0
D̃φ2
2π

]
+ 2 (H1

0 )N F φ1

2π + 2 (H2
0 )N F φ2

2π . (B.26)

This is manifestly closed and gauge-invariant. It is also globally defined, and reduces to
ω2 if all background gauge fields for isometries of M6 are turned off. The 2-form (ω2)eq

in M12 should have integral periods. In particular, we may consider a 2-cycle in external
spacetime, sitting at µ0 = ±1 and a generic point on the Riemann surface in M6. We have
defined (ω2)eq in such a way that its integral over such cycles is zero. Indeed, the relevant
terms are

(ω2)eq = 2
[
(H1

0 )N −H1
0

] F φ1

2π + 2
[
(H2

0 )N −H2
0

] F φ2

2π + . . . (B.27)

and the relation (B.15) implies that the prefactors of F φi vanish both at µ0 = 1 and
µ0 = −1.

Finally, let us turn to (ω4)eq. We parametrize it as

(Ω4)eq = h2
D̃φ1
2π

D̃φ2
2π + h1

1
D̃φ1
2π

dD̃φ2
2π + h2

1
D̃φ2
2π

dD̃φ1
2π − h0

dD̃φ1
2π

dD̃φ2
2π . (B.28)

Closure of (ω4)eq follows from the relations (B.6), (B.7). Moreover (ω4)eq is globally defined
and has integral periods in M12.

We conclude with two remarks. First, in the case g = 0 the background gauge fields for
SO(3)Σ are implicitly included in (B.26) and (B.28) inside the 1-forms D̃φi. Second, the
forms (ω2)eq, (ω4)eq are not the only possible choices of a closed and gauge-invariant com-
pletion of ω2, ω4. As argued in appendix C, however, any other choice leads to equivalent
results for the inflow anomaly polynomial.

B.1.3 Computation of the inflow anomaly polynomial

Our first task is the computation of −1
6
∫
M6

E3
4 , where E4 is given by

E4 = N (Ω4)eq + F2
2π (ω2)eq + Hu

3
2π (λ1u)eq + γ4

2π . (B.29)

To compute the integral
∫
M6

E3
4 , we first collect terms with exactly one D̃φ1 and one D̃φ2

factor. The integral over the Riemann surface for g 6= 0 is straightforward; in the case
g = 0, we perform it with the help of the Bott-Cattaneo formula (B.23). We are left with
an integral over B2. It is performed in a similar way as in (B.10). More precisely, the

17One might wonder if, in the case g = 1, the isometries of the T 2 base extend to isometries of M6. We
have checked that, contrary to the g = 0 case, for p 6= 0 one cannot find globally-defined Killing vector
fields on M6 that reduce to the Killing vectors on the base T 2.
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integrand 2-form is cast as a total derivative of a 1-form on B2. Applying Stokes’ theorem,
we reduce the problem to an integral over the two arcs {µ1 = 0}, {µ2 = 0}, with a relative
minus sign. In the computation, we make use of (B.6), (B.7), (B.9), (B.11), (B.14), (B.15),
and (B.17). The result reads

−1
6

∫
M6

E3
4 = − 2

3 N
3
[
p cφ1

1 (cφ2
1 )2 + q cφ2

1 (cφ1
1 )2

]
+ 1

6
[
N3 q2 p cφ1

1 +N3 p2 q cφ2
1

]
cΣ

2

+ 1
(2π)2

[
−N γ4 F2 −N H̃ i

3H3i
]
. (B.30)

We have used the relation (B.24) and we have written final expression in the notation
introduced in the main text.

To proceed, we need the 8-form class X8, defined in (2.4). The computation of X8 for
BBBW setups is reviewed e.g. in [22]. One finds

−
∫
M6

E4X8 = 1
6 N

[
p cφ1

1 (cφ2
1 )2 + q cφ2

1 (cφ1
1 )2

]
− 1

6 N
[
p (cφ1

1 )3 + q (cφ2
1 )3

]
+ 1

24 N
[
p cφ1

1 + q cφ2
1

]
p1(T )− 1

6 N
[
p cφ1

1 + q cφ2
1

]
cΣ

2 . (B.31)

Combining (B.30) and (B.31) we get the result (5.7) quoted in the main text.

B.2 GMSW solutions

B.2.1 Cohomology classes in M6

The exact line element onM6 in recorded in [28]. For the purposes of this appendix, we can
use the schematic line element in (2.20) without a detailed knowledge of the f functions.

We can define the following 4-cycles in M6,

C4
N : S2

ϕ × Σg at µ = µN ,

C4
S : S2

ϕ × Σg at µ = µS ,

C4
C : S2

ϕ × S2
ψ at a point on Σg ,

C4
Σ : Σg × S2

ψ at a point on S2
ϕ .

(B.32)

We recall that S2
ψ is the two-dimensional space spanned by the angle ψ and the µ interval,

with topology of a two-sphere and isometry U(1)ψ. The 4-cycles C4
N, C4

S, C4
C, C4

Σ define
elements in the integral 4-homology of M6. They are not all independent, however, since
the following relation holds in homology,

C4
N − C4

S + χ C4
C + 2 C4

Σ = 0 . (B.33)

The above can be verified by checking that the linear combination of 4-cycles on the l.h.s.
yields integral zero when paired with an arbitrary closed 4-form onM6. The relation (B.33)
implies that C4

N − C4
S represents an even 4-homology class. (The Euler characteristic χ is

always an even integer.) The class C4
N + C4

S = (C4
N − C4

S) + 2 C4
S is therefore also an even

class. This observation allows us to choose the following basis of integral 4-homology,

C4
α=1 = C4

C , C4
α=2 = 1

2 (C4
N + C4

S) , C4
α=3 = 1

2 (C4
N − C4

S) . (B.34)
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We can check that C4
N, C4

S, C4
C, and C4

Σ can all be written as linear combinations of C4
α with

integer coefficients.
To each 4-homology class C4

α there is a corresponding 4-cohomology class, which can
be represented by a closed but not exact 4-form Ωα

4 . The 4-forms Ωα
4 are parametrized as

Ωα
4 =

(
dUαϕ

Vϕ
2π + dUαΣ

VΣ
2π

)
Dψ

2π +
(
Cα − 2UαΣ − χUαϕ

)
Vϕ
2π

VΣ
2π , (B.35)

where Cα is constant and Uϕ, UΣ are functions of µ only, satisfying

Uαϕ (µN) + Uαϕ (µS) = 0 , UαΣ(µN) + UαΣ(µS) = 0 . (B.36)

We demand the standard pairing
∫
C4
α

Ωβ
4 = δβα between 4-homology and 4-cohomology

classes. This fixes the values of Uϕ(µN), UΣ(µN), Cα,

Uαϕ (µN) UαΣ(µN) Cα

α = 1 1/2 −χ/4 0
α = 2 0 0 1
α = 3 0 −1/2 0

(B.37)

To each 4-homology class C4
α there is also a Poincaré dual 2-cohomology class, which we

represent by a closed but not exact 2-form ω2α. The parametrization of ω2α reads

ω2α = dHα
Dψ

2π +
(
tϕα − 2Hα

) Vϕ
2π +

(
tΣα − χHα

) VΣ
2π , (B.38)

where tϕα, tΣα are constants and Hα is a function of µ only, satisfying

Hα(µN) +Hα(µS) = 0 . (B.39)

We impose the relation
∫
M6

Ωα
4 ω2β = δαβ to fix the values of Hα(µN), tϕα, and tΣα ,

Hα(µN) tϕα tΣα

α = 1 0 0 1
α = 2 1/2 0 0
α = 3 0 −1 −χ/2

(B.40)

We can define the following five 2-cycles inside M6,

Cϕ,N2 : S2
ϕ at µ = µN and at a point on Σg ,

Cϕ,S2 : S2
ϕ at µ = µS and at a point on Σg ,

CΣ,N
2 : Σg at µ = µN and at a point on S2

ϕ ,

CΣ,S
2 : Σg at µ = µS and at a point on S2

ϕ ,

Cfiber
2 : the S2

ψ fiber at a point on the base S2
ϕ × Σg .

(B.41)
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They all correspond to elements in the integral 2-homology of M6, but they satisfy two
linear relations in homology,

Cϕ,N2 − Cϕ,S2 + 2 Cfiber
2 = 0 ,

CΣ,N
2 − CΣ,S

2 + χ Cfiber
2 = 0 . (B.42)

The previous relations can be checked by pairing the combinations of 2-cycles with an
arbitrary closed 2-form on M6. It is convenient to use a basis of integral 2-homology Cα2
such that

∫
Cα2
ω2β = δαβ . One can check that such a basis is given by

Cα=1
2 = CΣ,N

2 − χ

2 C
ϕ,N
2 ,

Cα=1
2 = Cfiber

2 ,

Cα=3
2 = −Cfiber

2 − Cϕ,N2 . (B.43)

Moreover, we verify that all the five 2-cycles defined in (B.41) can be written as integral
linear combinations of the basis 2-cycles Cα2 .

Let us now discuss 3-cycles in M6. We can define several 3-cycles in terms of the
1-cycles on the Riemann surface. Let Ωuv denote the inverse of the intersection pairing
Ωuv, with the convention Ωuv Ωvw = −δwu . Since Ωuv is integral and unimodular, so is Ωuv.
From

∫
Σg λ1u λ1v = Ωuv = CΣ

1u · CΣ
1v, we see that a basis of 1-cycles CΣu

1 with
∫
CΣu

1
λ1v = δuv

is given by CΣu
1 = Ωuv CΣ

1v. We use these 1-cycles on the Riemann surface to construct
3-cycles in M6,

CNu
3 : S2

ϕ × CΣu
1 at µ = µN ,

CSu
3 : S2

ϕ × CΣu
1 at µ = µS ,

Cψu3 : S2
ψ fibered over CΣu

1 at a point on S2
ϕ .

(B.44)

These 3-cycles represent integral 3-homology classes, subject to the relations

CNu
3 − CSu

3 + 2 Cψu3 = 0 . (B.45)

In total, we have 4g independent 3-homology classes. The above relation implies that
CNu

3 − CSu
3 is an even 3-homology class. The class CNu

3 + CSu
3 = (CNu

3 − CSu
3 ) + 2 CSu

3 is also
even. It follows that the following classes are integral,

Cu±3 = 1
2 (CNu

3 ± CSu
3 ) . (B.46)

We use them as a basis of 3-homology,

Cx3 = (Cu+
3 , Cu−3 ) . (B.47)

Notice that CNu
3 , CSu

4 , and Cψu3 can all be written as linear combinations of Cx3 with integer
coefficients.
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The 3-cohomology classes dual to the 3-homology classes Cx3 can be represented by
closed but not exact 3-forms Λ3x. We parametrize them as follows,

Λ3x = (Λ3u+,Λ3u−) , Λ3u± =
(
dS±

Dψ

2π − 2S±
Vϕ
2π

)
λ1u , (B.48)

where λ1u are the harmonic 1-forms on the Riemann surface, pulled back to M6, and S±
are functions of µ only. If we demand

∫
Cx3

Λ3y = δxy we derive

S+(µN) = −1
2 , S+(µS) = −1

2 , S−(µN) = −1
2 , S−(µS) = +1

2 . (B.49)

The pairing Kxy defined in (2.7) takes the form

Kxy =
(
Ku+,v+ Ku+,v−
Ku−,v+ Ku−,v−

)
=
(

0 −Ωuv

−Ωuv 0

)
, (B.50)

and is antisymmetric and unimodular. Finally, we may compute the intersection numbers
Kxvα in (2.7). The only non-zero components of Kxvα are

Ku+,v,α=2 = Ωuv , Ku−,v,α=3 = Ωuv . (B.51)

B.2.2 Inclusion of background gauge fields for isometries

For g ≥ 2, the isometry group of M6 is U(1)ψ × SO(3)ϕ. To describe the isometries of
ds2(S2

ϕ) = dθ2 + sin2 θ dϕ2 it is convenient to introduce three constrained coordinates

ỹã ỹã = 1 , ỹã = (sin θ cosϕ, sin θ sinϕ, cos θ) , ã = 1, 2, 3 . (B.52)

In the previous expression, ã is a vector index of SO(3)ϕ. The gauging of U(1)ψ is performed
by introducing a background connection Aψ, while for SO(3)ϕ we introduce a triplet Ãã of
connections. Our conventions for the gauging of the 1-forms dỹã on S2

ϕ are

Dỹã = dỹã + 1
2 ε

ãb̃c̃ Ãb̃ ỹc̃ , F̃ ã = dÃã + 1
2 ε

ãb̃c̃ Ãb̃ Ãc̃ . (B.53)

It is worth commenting on how the SO(3)ϕ isometry of S2
ϕ, considered in isolation, extends

to an isometry of the total space M6. We have verified that the 1-forms

fϕ εãb̃c̃ ỹ
b̃Dỹc̃ + fψ ỹãDψ (B.54)

are globally defined on M6 and dual to Killing vectors in the line element (2.20).
In the case g = 0, the space M6 admits an additional SO(3)Σ isometry, originating

from the isometries of the Riemann surface. As in section B.1.2, we describe the Riemann
surface in terms of three constrained coordinates ya, where a = 1, 2, 3 is an index of SO(3)Σ
(not to be confused with the ã indices of SO(3)ϕ). The gauge fields of SO(3)Σ are denoted
Aa. The gauging of dya is performed as in (B.21). The SO(3)Σ isometry of the Riemann
surface extends to an isometry of M6 because the following 1-forms are dual to Killing
vectors in the metric (2.20),

fΣ εabc y
bDyc + fψ yaDψ . (B.55)
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After turning on Aψ, Ãã, and (for g = 0) Aa, the 1-form Dψ is replaced by its gauged
version D̃ψ, which satisfies (cfr. with the ungauged version (2.21))

dD̃ψ

2π = −2 eϕ2 − χ eΣ
2 + 2 F

ψ

2π . (B.56)

In the previous expression Fψ = dAψ. The 2-form eϕ2 is the global angular form of SO(3)ϕ,

eϕ2 = 1
8π
[
εãb̃c̃Dỹ

ãDỹb̃ ỹc̃ − 2 F̃ã ỹã
]
. (B.57)

It is the closed and gauge-invariant completion of Vϕ/(2π) and satisfies Bott-Cattaneo
identities analogous to (B.23). The 2-form eΣ

2 is understood in different way depending on
g ≥ 2 or g = 0: for g ≥ 2 it is simply proportional to the volume form VΣ, while for g = 0
it is the global angular form of SO(3)Σ,

for g ≥ 2: eΣ
2 = VΣ

2π , for g = 0: eΣ
2 = 1

8π
[
εabcDy

aDyb yc − 2Fa ya
]
. (B.58)

The anomaly polynomial will be written in terms of the second Chern classes of SU(2)Σ and
SU(2)ϕ. They are related to the first Pontryagin classes of SO(3)Σ and SO(3)ϕ by (B.24)
and the analogous relation for p1(SO(3)ϕ).

Let us now turn to a discussion of the extension of the closed 4-forms Ωα
4 on M6 to

closed 4-forms (Ωα
4 )eq on M12. We define

(Ωα
4 )eq = d

[(
Uαϕ e

ϕ
2 + UαΣ e

Σ
2

) D̃ψ
2π

]
+ Cα eϕ2 e

Σ
2 , (B.59)

and we verify that (Ωα
4 )eq are globally defined, closed 4-forms onM12 with integral periods.

By a similar token, the 2-forms ω2α on M6 extend to the 2-forms (ω2α)eq, defined as

(ω2α)eq = d

[
Hα

D̃ψ

2π

]
+ tϕα e

ϕ
2 + tΣα e

Σ
2 . (B.60)

The 1-forms λ1u are unaffected by the gauging of the U(1)ψ × SU(2)ϕ isometry,

(λ1u)eq = λ1u . (B.61)

Finally, the 3-forms Λ3u± on M6 extend to the following 3-forms on M12,

(Λ3u±)eq = d

[
S±

D̃ψ

2π

]
λ1u . (B.62)

B.2.3 Computation of the inflow anomaly polynomial

Having defined the closed forms (Ωα
4 )eq, (ω2α)eq, (Λ3u±)eq, and (λ1u)eq, we have a fully

explicit expression for the quantity E4. The other ingredient for the computation of the
inflow anomaly polynomial is the 8-form X8. Following [27], we can compute it using the
following relations among Pontryagin classes,

p1(TM12) = p1(T ) + p1(SO(3)ϕ) + p1(SO(3)Σ) +
[
dD̃ψ

2π

]2
,

p2(TM12) =
[
p1(T ) + p1(SO(3)ϕ) + p1(SO(3)Σ)

] [
dD̃ψ

2π

]2
. (B.63)
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In the previous expressions, p1(T ) is the first Pontryagin class of external spacetime. The
terms with p1(SO(3)Σ) are understood to be present only in the case g = 0. By combin-
ing (B.63) and (B.56) we obtain an explicit expression for the 8-form X8.

The computation of the integrals
∫
M6

E3
4 and

∫
M6

E4X8 is straightforward. After
collecting the terms with exactly one D̃ψ factor, we can integrate over S2

ϕ with the help of
the Bott-Cattaneo formula. The integral over Σg receives two contributions: terms with
an odd power of eΣ

2 (treated with the Bott-Cattaneo formula), and terms with exactly two
λ1u factors (treated using

∫
Σg λ1u λ1v = Ωuv). We are left with a one-dimensional integral

over the µ interval, which is evaluated making use of (B.37), (B.40), and (B.49). The final
result is recorded in the main text.

Let us conclude with a comment on the large N limit. We define this limit by letting
the three flux quanta Nα scale in the same way, Nα ∼ O(N), with fixed ratios Nα/Nβ for
α 6= β. We assign scaling N0 to p1(T ) and to the background fields associated to isometries
of M6, while we assign scaling N1 to all external gauge fields originating from expansion
of C3 onto cohomology classes of M6. In this way, the O(N3) terms in I inflow

6 all originate
from the E3

4 term in I12, while the O(N) terms originate from E4X8.

C Construction of E4

In this appendix we discuss the construction and properties of the forms (Ωα
4 )eq, (ω2α)eq,

(Λ3x)eq, (λ1u)eq that enter the parametrization (5.5) of E4.
Suppose that M6 admits a collection of Killing vectors kmI , with m = 1, . . . , 6 a

curved tangent index on M6, and I labeling a basis of Killing vectors. The latter obey
the Lie algebra

£IkJ ≡ £kIkJ = [kI , kJ ] = fIJ
K kK , (C.1)

where £ denotes Lie derivative. The fibration in (5.1) includes arbitrary background gauge
fields associated to the isometries of theM6 fiber. These gauge fields are 1-form gauge fields
on the baseM6. We refer to the operation of turning them on as gauging. In terms of local
coordinates ξm on the M6 fiber, the gauging is conveniently described by the replacement

dξm → Dξm = dξm + kmI A
I , (C.2)

where AI is the external gauge field associated to the Killing vector kmI . In our conventions,
the field strength F I of AI reads (we suppress wedge products throughout this appendix)

F I = dAI − 1
2 fJK

I AJ AK . (C.3)

Let ωq be a q-form on M6,

ωq = 1
q! ωm1...mq dξ

m1 . . . dξmq , (C.4)

where the components ωm1...mq depend only on the coordinates ξm on M6. We use the
symbol (ωq)g for the gauged version of ω, obtained by means of the replacement (C.2),

(ωq)g = 1
q! ωm1...mq Dξ

m1 . . . Dξmq . (C.5)
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A useful identity for (ωq)g is

d(ωq)g +AI (£Iωq)g = (dωq)g + F I (ιIωq)g , (C.6)

where ιI denotes the interior product of the vector kmI with a differential form.
If we choose a metric onM6, we can select the harmonic representatives for the de Rham

classes defined by Ωα
4 , ω2α, Λ3x, λ1u. A harmonic form is automatically invariant under all

isometries of M6.18 This means that (after adding suitable exact forms, if necessary) we
can take the closed forms Ωα

4 , ω2α, Λ3x, λ1u to be invariant under all isometries of M6,

£Iλ1u = 0 , £Iω2α = 0 , £IΛ3x = 0 , £IΩα
4 = 0 . (C.7)

It follows that the forms ιIλ1u, ιIω2α, ιIΛ3x, ιIΩα
4 are closed. We may then write

2π ιIλ1u = cuI , 2π ιIω2α + dω0αI = cα
u
I λ1u ,

2π ιIΛ3x + dΛ1xI = cx
α
I ω2α , 2π ιIΩα

4 + dΩα
2I = cαxI Λ3x , (C.8)

where cuI , cαuI , cxαI , cαxI are constants. For example, we have observed that 2π ιIω2α
is a closed 1-form, and that the de Rham classes of λ1u furnish a basis of H1(M6,R). It
follows there are suitable constants cαuI such that the difference 2π ιIω2α − cα

u
I λ1u is

exact. Similar remarks apply to the other expressions in (C.8). The forms ω0αI , Λ1xI , Ωα
2I

are only defined modulo addition of a closed form. Without loss of generality, they can be
taken to satisfy

£Iω0αJ = fIJ
K ω0αK , £IΛ1xJ = fIJ

K Λ1xI , £IΩα
2J = fIJ

K Ωα
2K . (C.9)

Symmetrizing in IJ and using (C.8) we derive

0 = 2π£(Iω0α|J) = cα
u

(I cu|J) ,

0 = 2π£(IΛ1x|J) = cx
α

(I
[
cα
u
J) λ1u − dω0α|J)

]
+ 2π dι(IΛ1x|J) ,

0 = 2π£(IΩα
2|J) = cαx(I

[
cx
β
J) ω2β − dΛ1x|J)

]
+ 2π dι(IΩα

2|J) . (C.10)

If we integrate the second relation on a non-trivial 1-cycle in M6, only the term with λ1u
contributes. It follows that its coefficient must be zero. Similar remarks apply to the third
line. We conclude that the constants c satisfy

cα
u

(I cu|J) = 0 , cx
α

(I cα
u
J) = 0 , cαx(I cx

β
J) = 0 . (C.11)

It follows from (C.10) that the forms 2π ι(IΛ1x|J)−cxα(I ω0α|J) and 2π ι(IΩα
2|J)−c

αx
(I Λ1x|J)

are closed. We can therefore write

2π ι(IΛ1x|J) = cx
α

(I ω0α|J) + bxIJ , 2π ι(IΩα
2|J) + dΩα

0IJ = cαx(I Λ1x|J) + bαuIJ λ1u ,

(C.12)
where bxIJ and bαuIJ are constants and Ωα

0IJ are 0-forms, defined up to a constant.
18For example, if ω2 is a harmonic 2-form, the fact that £Iω2 = 0 can be seen as follows. From

dω2 = 0 we derive £Iω2 = d(ιIω2). Making use of ∇(mkI|n) = 0 and ∇mωmn = 0, we verify (£Iω2)mn =
∇p(kI ∧ω2)pmn. We have thus established that the 2-form £Iω2 is both exact and co-exact. It follows that∫
M10−d

(£Iω2) ∗ (£Iω2) = 0 (no sum over I), which in turn guarantees £Iω2 = 0.
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We can now write the forms (Ωα
4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq. They are given by

(Ωα
4 )eq = (Ωα

4 )g + F I

2π (Ωα
2I)g + F I

2π
F J

2π Ωα
0IJ ,

(Λ3x)eq = (Λ3x)g + F I

2π (Λ1xI)g ,

(ω2α)eq = (ω2α)g + F I

2π ω0αI ,

(λ1u)eq = (λ1u)g . (C.13)

Making use of the identity (C.6), the Bianchi identity for F I , and the relations (C.8), (C.12)
we compute

d(λ1u)eq = F I

2π cuI ,

d(ω2α)eq = F I

2π cα
u
I (λ1u)eq ,

d(Λ3x)eq = F I

2π cx
α
I (ω2α)eq + F I

2π
F J

2π bxIJ ,

d(Ωα
4 )eq = F I

2π c
αx
I (Λ3x)eq + F I

2π
F J

2π bαuIJ (λ1u)eq . (C.14)

For the spacesM6 of interest in this work, all c and b constant vanish, and we verify closure
of (Ωα

4 )eq, (ω2α)eq, (Λ3x)eq, (λ1u)eq, as anticipated in the main text. If we were to study a
setup with non-zero c or b constants, we could still make use of (5.5), but we would have
to modify the Bianchi identities for the external field strengths,

dfx1 = −Nα c
αx
I F

I ,

dFα2 = cx
α
I f

x
1 F

I ,

dHu
3 = −cαuI Fα2 F I −Nα b

αu
IJ F

I F J ,

dγ4 = cuI H
u
3 F

I + bxIJ f
x
1 F

I F J . (C.15)

We leave further investigation of this case to future work.
We noticed above that the forms Ωα

2I , Λ1xI , ω0αI are only defined up to addition of a
closed form. We can parametrize this ambiguity by writing

Ωα
2I
′ = Ωα

2I + dYα1I + ναβI ω2β ,

Λ1xI
′ = Λ1xI + dY0xI + νx

u
I λ1u ,

ω0αI
′ = ω0αI + ναI (C.16)

where the ν parameters are constant, and the Y forms can be taken to satisfy relations
analogous to (C.9). Since we have a new Ωα

2I , we have to determine a new Ωα
0IJ , by solving

the second relation in (C.12). For simplicity, we only consider the situation in which the c
and b constants are zero. We can then write

Ωα
0IJ
′ = Ωα

0IJ + 2π ι(IYα1|J) + ναβ(I ω0α|J) + ταIJ , (C.17)
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where ταIJ are arbitrary constants. If we insert the primed objects into the expression of
E4, we obtain a new realization of E4, denoted E′4,

E′4 =Nα (Ωα
4 )eq +

[
Fα2
2π +Nβ ν

βα
I
F I

2π

]
(ω2α)eq + fx1

2π (Λ3x)eq

+
[
Hu

3
2π + νx

u
I
fx1
2π

F I

2π

]
(λ1u)eq +

[
γ4
2π +Nα τ

α
IJ

F I

2π
F J

2π + ναI
Fα2
2π

F I

2π

]
+ d

[
F I

2π Nα (Yα1I)g − F I

2π
fx1
2π Y0xI

]
. (C.18)

The last line collects the total derivative of a globally defined 3-form on M12. Adding an
exact piece to E4 has no effect on the computation of I inflow

6 . We see that, up to this
immaterial total derivative, E′4 has the same form as E4, if we perform a redefinition of
the external gauge fields,

Fα2
′

2π = Fα2
2π +Nβ ν

βα
I
F I

2π ,
Hu

3
′

2π = Hu
3

2π + νx
u
I
fx1
2π

F I

2π ,

γ′4
2π = γ4

2π +Nα τ
α
IJ

F I

2π
F J

2π + ναI
Fα2
2π

F I

2π . (C.19)

Let us stress that the constants νβαI , νxuI , ναI , ταIJ are not completely arbitrary: they must
be chosen in such a way that E′4 has integral periods. Let us assume that the normalization
of the Killing vectors in (C.2) has been chosen in such a way that F I has periods that are
quantized in units of 2π (here we are assuming an Abelian isometry group for simplicity).
The ν and τ constants have to be chosen in such a way that

Nβ ν
βα

I ∈ Z , νx
u
I ∈ Z , Nα τ

α
IJ ∈ Z , ναI ∈ Z . (C.20)

It then follows that the redefinition (C.19) preserves the lattice of periods of the external
gauge fields.19

D Aspects of differential cohomology

In this appendix we give a brief review of some basic aspects of differential cohomology. We
follow a presentation based on Cheeger-Simons differential characters [52]. Introductions
aimed at physicists can be found e.g. in [2, 30].

Cheeger-Simons differential characters. A degree-` Cheeger-Simons differential
character χ on a manifold M is a group homomorphism χ ∈ Hom(Z`−1(M),U(1)) with
the following property: there exists a globally defined `-form Fχ such that

χ(∂B`) = exp
[
2πi

∫
B`

Fχ

]
, for all B` ∈ C`(M) . (D.1)

19We notice that the field redefinitions for Hu
3 and γ4 are non-linear. For example, the quantity fx

1
2π

F I

2π
can be regarded as the 3-form field strength of a “composite” 2-forms gauge field constructed from ax0 and
AI . This notion of product of a p-form gauge field and a q-form gauge field to yield a (p + q + 1)-gauge
field can be made mathematically precise in the framework of differential cohomology, see appendix D.
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The notation C`(M) stands for the group of `-chains in M, while Z`−1(M) denotes the
group of (` − 1)-cycles. (Chains and cycles are understood in the context of smooth sin-
gular homology.) One can verify from the definition of χ that the `-form Fχ is uniquely
determined, is closed, and has integral periods. The set of degree-` Cheeger-Simons differ-
ential characters has a natural Abelian group structure. We find it convenient to adopt an
additive notation, and write

(χ1 + χ2)(Σ`−1) := χ1(Σ`−1)χ2(Σ`−1) , Σ`−1 ∈ Z`−1(M) . (D.2)

In this notation, χ = 0 means that χ associates 1 ∈ U(1) to every Σ`−1 ∈ Z`−1(M). The
group of degree-` Cheeger-Simons differential characters is denoted Ȟ`(M). (Contrary to
ordinary cohomology groups, Ȟ`(M) is usually infinite-dimensional.)

The mathematical object χ models an (`− 1)-form U(1) gauge field, or more precisely,
the equivalence class of an (`− 1)-form U(1) gauge field up to gauge transformations. To
see this, we interpret the map χ : Z`−1(M)→ U(1) as the map that to each (`−1)-cycle in
spacetimeM assigns the holonomy of the gauge field on that cycle. The globally-defined,
closed `-form Fχ with integral periods is identified with the field strength of the (`−1)-form
gauge field. (Notice that, in the main text, field strengths are normalized to have periods
that are quantized in units of 2π.) The equation (D.1) encodes the expected physical
relation between the holonomy of a gauge field along a boundary of a chain, and the flux
of its field strength through that chain.

A differential character χ ∈ Ȟ`(M) determines uniquely an element aχ ∈ H`(M,Z),
called the characteristic class of χ.20 The characteristic class aχ and the field strength Fχ
satisfy the following compatibility condition,

[Fχ]dR = %(aχ) . (D.3)

The notation [Fχ]dR ∈ H`(M,R) stands for the de Rham class of the closed form Fχ, while
% is the natural map

% : H`(M,Z)→ H`(M,R) . (D.4)

The relation (D.3) might erroneously suggest that all interesting information about aχ is
already contained in the field strength Fχ. Crucially, however, the map % forgets torsion: aχ
is determined by Fχ only up to torsion elements in integer cohomology, i.e. up to an element
of TorH`(M,Z). This additional data encoded in aχ (and missed by Fχ) is particularly
important if the spacetime manifold M has torsion in homology, as already emphasized
for instance in [31].

A differential character χ is called topologically trivial if aχ = 0. It can be proven that
aχ = 0 if and only χ can be written in terms of a globally defined (`− 1)-form A as

χ(Σ`−1) = exp
[
2πi

∫
Σ`−1

A

]
, Σ`−1 ∈ Z`−1(M) . (D.5)

20This can be seen as follows. Every group homomorphism χ : Z`−1(M)→ U(1) admits a (non-unique)
lift, i.e. a group homomorphism T : C`−1(M) → R, such that χ = exp(2πiT ). From (D.1) one shows that
δT = Fχ − c for some c ∈ Z`(M,Z) (the group of integer cocycles onM). While T and c are not uniquely
determined, the cohomology class aχ := [c] ∈ H`(M,Z) is uniquely fixed by χ.
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In this case, Fχ = dA and (D.1) follows from Stokes’ theorem. Moreover, (D.3) is satisfied
because [Fχ]dR = 0 (since Fχ = dA and A is globally defined).

A differential character χ is called flat if Fχ = 0. It can be proven that flat characters
are identified with elements of the (ordinary) cohomology group H`−1(M,U(1)). Interest-
ingly, there exist flat but topologically non-trivial characters. Indeed, H`−1(M,U(1)) is
a compact Abelian group that generically has more than one connected component. The
connected component of the identity consists of characters that are both flat and topo-
logically trivial (we may refer to them as Wilson lines). The connected components of
H`−1(M,U(1)) are labeled by TorH`(M,Z). This fits with the fact that aχ for a flat
character χ is an element of TorH`(M,Z) (this follows from (D.3) and Fχ = 0).

Let us emphasize that χ ∈ Ȟ`(M) contains more information than its field strength
Fχ and its characteristic class aχ. In fact, Fχ and aχ are unaffected if we shift χ by a
Wilson line.

The language of differential characters offers a uniform way to describe U(1) p-form
gauge fields, including 0-form fields. In fact, one can prove that Ȟ1(M) is the same as the
group of smooth maps fromM to S1. This mathematical fact fits with the physics picture
of a 0-form gauge field as a circle-valued scalar field.

Product in differential cohomology. There is a notion of product in differential co-
homology compatible with the grading by the degree `,

? : Ȟ`1(M)× Ȟ`2(M)→ H`1+`2(M) . (D.6)

With reference to the additive notation of (D.2), the product ? is distributive,

(χ1 + χ2) ? χ3 = χ1 ? χ3 + χ2 ? χ3 , χ1, χ2 ∈ Ȟ`1(M) , χ3 ∈ Ȟ`2(M) . (D.7)

The product is graded commutative, like the wedge product of differential forms,

χ1 ? χ2 = (−)`1 `2 χ2 ? χ1 , χ1 ∈ Ȟ`1(M) , χ2 ∈ Ȟ`2(M) . (D.8)

The field strength and characteristic class of the character χ1 ?χ2 are determined by those
of χ1, χ2 via

χ3 := χ1 ? χ2 , Fχ3 = Fχ1 ∧ Fχ2 , aχ3 = aχ1 ^ aχ2 , (D.9)

where in the last relation ^ denotes the cup product in integer cohomology. If χ1 is
topologically trivial, then χ3 is topologically trivial, for any χ2. Indeed, if χ1 is determined
by the (`1−1)-form A1, then χ3 is determined by the (`1+`2−1)-form A1∧Fχ2 . By a similar
token, if χ1 is flat, so is χ3, for any χ2. If we regard the flat character χ1 as an element of
H`1−1(M,U(1)), and the flat character χ3 as an element of H`1+`2−1(M,U(1)), then we
can write χ3 = χ1 ^ aχ2 , where ^: H`1−1(M,U(1)) ×H`2(M,Z) → H`1+`2−1(M,U(1))
is a well-defined cup product in cohomology.
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Cheeger-Simons characters and Zk gauge fields. In section 5.1.3 we have encoun-
tered a constrained 1-form gauge field A1, subject to (5.21). If we describe the (gauge-
equivalence class of the) 1-form gauge field A1 with a differential character χ ∈ Ȟ2(M),
we have the correspondence

kA1 = dφ0 ↔ k χ := χ+ · · ·+ χ︸ ︷︷ ︸
k times

= 0 ∈ Ȟ2(M) . (D.10)

Indeed, we have argued that kA1 = dφ0 means that kA1 is pure gauge. Since differen-
tial characters are gauge-equivalence classes of gauge fields, kA1 is described by the zero
character 0 ∈ Ȟ`(M). The equation k χ = 0 implies

Fχ = 0 , k aχ = 0 , χ(Σ1) ∈ Zk ⊂ U(1) for all Σ1 ∈ Z1(M) . (D.11)

Crucially, k aχ = 0 does not imply aχ = 0, but merely that aχ is a k-torsion element in
integer cohomology. Even if aχ = 0 (which is the case ifM has no torsion in homology), the
character χ can be non-zero: it is a Wilson line with holonomies in Zk ⊂ U(1) determined
by a globally-defined closed 1-form. In physics terms, we may simply write A1 = 1

k dφ0 [25].
There exist other realizations of the differential cohomology groups Ȟ`(M), for

instance in terms of Hopkins-Singer cocycles [53] or Deligne-Beilinson cocycles, see
e.g. [32, 54] for a review. Loosely speaking, in these formalisms one can model not only
the gauge-equivalence class of a gauge field, but the gauge field itself. In these mathemat-
ical frameworks we can give a precise definition to A1 and dφ0 separately, and impose the
relation kA1 = dφ0. This approach is taken in [32] using Deligne-Beilinson cocycles.

Cheeger-Simons characters and characteristic classes. The notions of Chern
classes, Pontryagin classes, Euler classes admit a natural generalization in the framework of
differential cohomology. For definiteness, let us focus on Chern classes; analogous remarks
hold for other characteristic classes. Our exposition follows [55].

Let V be a complex rank-n vector bundle overM, with structure group U(n), equipped
with a hermitian fiber metric and a connection ∇ compatible with the fiber metric. The
curvature of ∇ is the 2-form F∆ on M. In our conventions, F∆ is antihermitian. The
Chern forms ck(∇) are defined via

det
(
I + i F∇

2π

)
= 1 + c1(∇) + c2(∇) + . . . , ck(∇) ∈ Ω2k

Z (M) . (D.12)

The 2k-form ck(∇) is closed and has integral periods. If we choose a different connection
∇′ on the same vector bundle, the form ck(∇′) is generically different from ck(∇), but they
differ by an exact piece. Their de Rham classes are the same, allowing us to define

cRk (V) = [ck(∇)]dR ∈ H2k(M,R) . (D.13)

The superscript R on cRk (V) is inserted to emphasize that it is an object in the real coho-
mology ofM. It is known, however, that cRk (V) admits an integral refinement: an integer
cohomology class ck(V) can be defined, such that

cRk (V) = %
(
ck(V)

)
, ck(V) ∈ H2k(M,Z) , (D.14)
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where % is the map (D.4). The integer class ck(V) contains more information than the
real class cRk (V). For example, if the bundle V can be equipped with a flat connection,
cRk (V) = 0 but ck(V) can be a non-trivial element in TorH2k(M,Z).

By definition, a differential refinement of the k-th Chern class is a map that sends a
pair (V,∇) to an element čk(∇) ∈ Ȟ2k(M), satisfying the following properties:

(i) The field strength of the differential character čk(∇) is the Chern form ck(∇) ∈
Ω2k
Z (M).

(ii) The characteristic class of the differential character čk(∇) is the integral Chern class
ck(V) ∈ H2k(M,Z).

(iii) For every smooth map f :M′ →M, one has f∗čk(∇) = čk(f∗∇).

In the last point, f∗čk(∇) ∈ Ȟ2k(M′) is the pullback from M to M′ of the differential
character ck(∇), while čk(f∗∇) denotes the element of Ȟ2k(M′) that is associated to
the pullback vector bundle f∗V equipped with the pullback connection f∗∇. It can be
proven that Chern classes admit a unique differential refinement. Similar theorems hold
for Pontryagin classes and Euler classes.

Notice that the differential refinement čk(∇) retains information about the specific
choice of connection ∇. In more physical terms, čk(∇) has information about the specific
U(n) background gauge field configuration, whereas the integral Chern class ck(V) only
depends on the topology of the bundle V.

E Case study: wrapped M5-branes at a Z2 singularity

In this appendix we consider the total anomaly polynomial (5.9) for wrapped M5-branes at
a Z2 singularity and we extract physical information about ’t Hooft anomalies for discrete
symmetries. More precisely, we consider the case in which we assign Dirichlet boundary
conditions to A1 and B2i (for each label i = 1, . . . , g). The interacting SCFT has therefore
a global Zk 0-form symmetry and an “electric” global (ZN )g 1-form symmetry.

Our strategy is as follows:

1. Perform an SL(3,Z) transformation on the 1-form gauge fields Aα1 = (A1, A
+
1 , A

−
1 ) to

single out the linear combination that enters the BF coupling with γ4, as described
in appendix A. The new basis is denoted (A1,A+

1 ,A
−
1 ).

2. Collect all terms with γ4 and H̃ i
3 and define new gauge fields A1, B2i in such a way

that these terms take the form

I inflow
6 ⊃ −k γ4

2π
dA1
2π −N

H̃ i
3

2π
dB2i
2π . (E.1)

As explained in section 5.1.3, we can then dualize c3 and B̃i
2 to φ0, φ1i, respectively.

We get a Stückelberg-type theory for the pairs (A1, φ0), (B2i, φ1i) with constraints

kA1 = dφ0 , N B2i = dφ1i . (E.2)
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Thus A1 is the background gauge field for the global Zk 0-form symmetry and B2i is
the background gauge field for the global (ZN )g 1-form symmetry.

3. Remove all terms with γ4 and H̃ i
3 from I inflow

6 , and write the rest of I inflow
6 in terms of

A±1 , A1, B2i, a±0i, ãi±0 , p1(T ), and the background gauge fields for isometries of M6.

Let us address each step in turn.
Given the flux quanta Nα = (N,N+, N−) we define the integers k, m, m± via

k = gcd(N,N+, N−) , N = km , N± = km± . (E.3)

As a simplifying technical assumption, we suppose that m and m+ are relatively prime.
(Other cases are studied in a similar way.) It follows that integers r, s exist such that

ms−m+ r = 1 . (E.4)

The integers r, s are not uniquely determined by this equation. We suppose that a choice
for r, s is made and kept fixed throughout. The change of basis of the 1-form gauge fields
can be written as A1

A+
1

A−1

 = M−1

A1
A+

1
A−1

 , M =

m m+ m−
r s 0
0 0 1

 . (E.5)

The field strengths of A1, A±1 are denoted F2, F±2 .
Next, we examine the terms in (5.9) with γ4 and H̃ i

3. We find

I inflow
6 ⊃ − γ4

2π

[
k
F2
2π + f+

1i f̃
i−
1 − f̃

i+
1 f−1i

(2π)2

]
− H̃ i

3
2π

[
N
H3i
2π +

(
mF+

2 +m− rF−2 − rF2
2π −N cψ1

)
f+

1i
2π + F

−
2

2π
f−1i
2π

]
. (E.6)

This means that the new gauge fields A1 are defined by B2i satisfy

k
dA1
2π = k

F2
2π + f+

1i f̃
i−
1 − f̃

i+
1 f−1i

(2π)2 ,

N
dB2i
2π = N

H3i
2π +

(
mF+

2 +m− rF−2 − rF2
2π −N cψ1

)
f+

1i
2π + F

−
2

2π
f−1i
2π . (E.7)

The final step is to remove the terms in the anomaly polynomial with γ4, H̃ i
3, and

write the rest using (E.7) to trade F2, H3i for dA1, dB2i. The result is quite lengthy: we
present it as the sum of several contributions, listed as follows.

• Terms containing only fields for isometries of M6 and Poincaré symmetry:

I inflow
6 ⊃ − 1

3 N− (cψ1 )3 + 1
12 N− c

ψ
1 p1(T ) +

(
N2N− + χ

3 N
3 − χ

3 N
)
cψ1 c

ϕ
2

+
(
− 2

3 N
3 −N2N− + 1

3 N
3
− + 2

3 N + 2
3 N−

)
cψ1 c

Σ
2 . (E.8)
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• Terms with three factors F±2 :

I inflow
6 ⊃ 1

(2π)3

[
− χ

6 m
3 (F+

2 )3 − 1
2 m (2m+ +mm− r χ)F−2 (F+

2 )2

− 1
6 m− r (6m− s+ 3χ+m2

− r
2 χ) (F−2 )3

− 1
2 (2m− (m+ r +ms) +mχ+mm2

− r
2 χ)F+

2 (F−2 )2
]
. (E.9)

• Terms with two factors F±2 and two factors f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

(2π)4

[
− 1
km

(F−2 )2 f−1i f̃
i−
1 −

1
km

(mF+
2 +m− rF−2 )2 f+

1i f̃
i+
1

− 1
2 km

{
m3 r χ (F+

2 )2 + 2m (1 +m+ r +ms+mm− r
2 χ)F+

2 F
−
2

+ r (m− (2 + 4ms) +mχ+mm2
− r

2 χ) (F−2 )2
}(

f+
1i f̃

i−
1 − f̃

i+
1 f−1i

)]
.

(E.10)

• Terms with one factor F±2 and four factors f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

(2π)5

[
− 2 r
k2m

(mF+
2 +m− rF−2 ) f+

1j f̃
j+
1

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
(E.11)

− r

2 k2m

(
m2 r χF+

2 + (2+2ms+mm− r
2 χ)F−2

) (
f+

1i f̃
i−
1 −f̃

i+
1 f−1i

)2]
.

• Terms with six factors f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

(2π)6

[
− r2

k3m
f+

1j f̃
j+
1

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)2
− r3 χ

6 k3

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)3]
.

(E.12)

• Terms with one factor cψ1 and F±2 and/or f±1i , f̃
i±
1 :

I inflow
6 ⊃ − 1

(2π)2 km− (mF+
2 +m− rF−2 )2 cψ1

− 1
(2π)3 2 (mF+

2 +m− rF−2 ) f−1j f̃
j−
1 cψ1

− 1
(2π)3 2m− r (mF+

2 +m− rF−2 )
(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
cψ1 (E.13)

+ 1
(2π)4

[
− 2 r

k
f−1j f̃

j−
1

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
cψ1

− m− r
2

k

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)2]
cψ1 .
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• Terms with two factors cψ1 and F±2 and/or f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

2π
1
2 (mF+

2 +m− rF−2 )
[
k2m (2m− +mχ)− χ

]
(cψ1 )2

+ 1
(2π)2

r

2 k
[
k2m (2m− +mχ)− χ

] (
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
(cψ1 )2

+ 1
(2π)2 kmf−1j f̃

j−
1 (cψ1 )2 . (E.14)

• Terms with one factor cϕ2 and F±2 and/or f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

2π

[
− k2m2m−F+

2 − k
2m (m+ +m2

− r)F−2
]
cϕ2

+ 1
(2π)2

[
− kmm− r

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
− km (f+

1i f̃
i+
1 + f−1i f̃

i−
1 )
]
cϕ2

(E.15)

• Terms with one factor cΣ
2 and F±2 and/or f±1i , f̃

i±
1 :

I inflow
6 ⊃ 1

2π k
2 (m+m−)

[
(mm− +m2

+)F+
2 + (m+ +m2

− r +m−m+ s)F−2
]
cΣ

2

+ 1
(2π)2 k (m+m−) (m− r +m+ s)

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
cΣ

2 . (E.16)

• Terms with one factor p1(T ) and F±2 and/or f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

2π
χ

24 (mF+
2 +m− rF−2 ) p1(T ) + 1

(2π)2
χ r

24 k
(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
p1(T )

(E.17)

• Terms cubic and quadratic in dA1:

I inflow
6 ⊃ 1

(2π)3
r3 χ

6 (dA1)3 − 1
(2π)2 km− r

2 cψ1 (dA1)2

+ 1
(2π)3

[
− χ

2 mr2F+
2 −

r

2 (2 s+m− r
2 χ)F−2

]
(dA1)2

+ 1
(2π)4

[
− r3 χ

2 k
(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
− r2

km
f+

1i f̃
i+
1

]
(dA1)2 . (E.18)

• Terms linear in dA1, without f±1i , f̃
i±
1 or dB2i:

I inflow
6 ⊃ + 1

2π

[
k2mm− r c

ϕ
2 − k

2 (m+m−) (m− r +m+ s) cΣ
2 −

r χ

24 p1(T )

+ r

2 (χ− k2m (2m− +mχ)) (cψ1 )2
]
dA1

+ 1
(2π)3

[
m2 r χ

2 (F+
2 )2 + r

2 (4m− s+ χ+m2
− r

2 χ) (F−2 )2
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+ (m+ r +m (s+m− r
2 χ))F+

2 F
−
2

]
dA1

+ 1
(2π)2 2 km− r cψ1 (mF+

2 +m− rF−2 ) dA1 . (E.19)

• Terms linear in dA1 with two or four factors f±1i , f̃
i±
1 :

I inflow
6 ⊃ 1

(2π)3 2 r cψ1 f−1i f̃ i−1 dA1 + 1
(2π)3 2m− r2 cψ1

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
dA1

+ 1
(2π)4

2 r
km

f+
1i f̃

i+
1 (mF+

2 +m− rF−2 ) dA1

+ 1
(2π)4

r

km

[
m2 r χF+

2 + (1 + 2ms+mm− r
2 χ)F−2

]
×
(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
dA1

+ 1
(2π)5

r3 χ

2 k2

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)2
dA1

+ 1
(2π)5

2 r2

k2m
f+

1i f̃
i+
1

(
f+

1i f̃
i−
1 − f̃

i+
1 f−1i

)
dA1 . (E.20)

• Terms with dB2i:

I inflow
6 ⊃ 1

(2π)3 F
−
2 dB2i f̃

i−
1 + 1

(2π)3 (mF+
2 +m− rF−2 ) dB2i f̃

i+
1

− 1
(2π)2 kmcψ1 dB2i f̃

i+
1 + 1

(2π)4
r

k

(
f+

1j f̃
j−
1 − f̃ j+1 f−1j

)
dB2i f̃

i+
1

− 1
(2π)3 r dA1 dB2i f̃

i+
1 . (E.21)

We have a rich variety of ’t Hooft anomalies involving the Zk 0-form symmetry and the
(ZN )g 1-form symmetry.

F Free tensor multiplet reduction on Σg with topological twist

A free 6d N = (2, 0) tensor multiplet consists of: a chiral 2-form bµν which is a singlet
of SO(5)R; a symplectic Majorana-Weyl fermion χ in the representation 4 of USp(4)R ∼=
SO(5)R; five real scalar fields φ1, . . . , φ5 in the vector representation of SO(5)R. In this
appendix we study the reduction of this multiplet on a genus-g Riemann surface Σg with
a non-zero SO(5)R background connection. The latter is encoded in the twist parameters
p, q defined in section 2.2.1 and satisfying p+ q = −χ.

Since the chiral 2-form bµν is a singlet of SO(5)R, it is unaffected by the topological
twist. Its reduction on a genus-g Riemann surface yields the following massless fields: g
real 4d vectors and one real 4d scalar b0. The reduction of the 6d fermion χ and the 6d
scalars φ1, . . . , φ5, on the other hand, is sensitive to the twist parameters. We collect all
massless 4d fields, their origins, and their multiplicities in table 3.
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6d origin U(1)1 U(1)2 U(1)Σ U(1)′Σ 4d field multiplicity

χ

+1 +1 + 1
2 1 λα g

−1 −1 + 1
2 0 ψα 1

+1 −1 + 1
2

p
p+q Λα h0(K

p
p+q )

−1 +1 + 1
2

q
p+q Λ̂α h0(K

q
p+q )

φ1 + i φ2 +2 0 0 p
p+q q h0(K

p
p+q )

φ3 + i φ4 0 +2 0 q
p+q q̂ h0(K

q
p+q )

φ5 0 0 0 0 Φ 1

bµν
0 0 ±1 ±1 Aµ g

0 0 0 0 b0 1

Table 3. Massless 4d fields originating from dimensional reduction of a 6d N = (2, 0) free tensor
multiplet on a genus-g Riemann surface (g 6= 1) with twist parameters p, q satisfying p+q = 2(g−1).

As we can see from the charges of φ1 +i φ2 and φ3 +i φ4, the subgroup U(1)1 ⊂ SO(5)R
is identified with rotations in the 12 plane, and U(1)2 ⊂ SO(5)R is identified with rotations
in the 34 plane. They are both normalized in such a way that their minimal charge is
±1. The notation U(1)Σ refers to local frame rotations on the Riemann surface. Its
normalization is such that a chiral spinor on Σg has U(1)Σ charge ±1

2 . The symbol U(1)′Σ
stands for the twisted local frame rotations on the Riemann surface. More precisely,

t′Σ = tΣ + p

2(p+ q) t1 + q

2(p+ q) t2 , (F.1)

where t′Σ, tΣ, t1, t2 are the generators of U(1)′Σ, U(1)Σ, U(1)1, U(2)2, respectively. Our
discussion applies to g 6= 1. The case g = 1 is discussed at the end of this appendix.

In table 3, the 4d fields λα, ψα, Λα, Λ̂α are Weyl spinors of positive chirality, q and
q̂ are complex scalars, Φ and b0 are real scalars, and Aµ are real vectors. For each 4d
field, the U(1)′Σ charge determines the bundle of which the corresponding internal wave-
functions must be a section. Massless fields originate from covariantly constant sections, or
equivalently holomorphic sections. The symbol K stands for the canonical bundle on Σg.

The fields listed in table 3 are organized into the following multiplets of 4d N = 1
supersymmetry:

• (Aµ, λα): a collection of g vector multiplets;

• (Φ, b0, ψα): one chiral multiplet with U(1)1 ×U(1)2 charges (0, 0);

• (q,Λα): a collection of h0(K
p
p+q ) chiral multiplets with U(1)1 ×U(1)2 charges (2, 0);

• (q̂, Λ̂α): a collection of h0(K
q
p+q ) chiral multiplets with U(1)1 ×U(1)2 charges (0, 2).

If an integer m divides 2(g − 1), it is possible to define an m-th root K 1
m of the

canonical bundle, but the root is not unique. Since p + q = 2(g − 1), the bundles K
p
p+q ,

K
q
p+q can be defined, but we would require more data to fully specify them. (For example,
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for p = q the additional data is a choice of spin structure on Σg.) Even though we are
not able to determine the multiplicities h0(K

p
p+q ) and h0(K

q
p+q ) without further input, the

Riemann-Roch theorem implies the relation

h0(K
p
p+q )− h0(K

q
p+q ) = 1

2 (p− q) . (F.2)

Notice that, since p + q is an even integer, so is p − q, so the r.h.s. is an integer. To
justify (F.2), we notice that the Riemann-Roch theorem can be stated as

h0(L)− h0(L−1 ⊗K) = deg(L) + 1− g , (F.3)

where L is a line bundle on Σg. If we set L = K
p
p+q , then we have L−1 ⊗ K = K

q
p+q .

Moreover, deg(K) = 2(g − 1) gives deg(L) = 2(g − 1) p
p+q = p, and (F.3) implies (F.2).

Interestingly, the ’t Hooft anomaly polynomial of the 4d fields listed in table 3
(with those U(1)1, U(1)2 charge assignments) only depends on the difference h0(K

p
p+q ) −

h0(K
q
p+q ). We can thus make use of (F.2) and verify that the anomaly polynomial com-

puted from table 3 matches exactly with the integration over Σg of the 8-form anomaly
polynomial of a free 6d N = (2, 0) tensor multiplet.

We also notice that if we set q = 0, p = −χ, we get a number h0(K
p
p+q ) = h0(K) = g of

chiral multplets with U(1)1×U(1)2 charges (2, 0), and a number h0(K
q
p+q ) = h0(K0) = 1 of

chiral multplets with U(1)1 ×U(1)2 charges (0, 2). The 4d multiplets (Aµ, λα) and (q,Λα)
fit into g N = 2 vector multiplets, while (Φ, b0, ψα) and (q̂, Λ̂α) fit into one N = 2 hyper-
multiplet. It should be stressed that, because of its charge assignments, the contribution
of this hypermultiplet to the 4d ’t Hooft anomalies is equal to −1 times the contribution
of a vector multiplet.

We may also consider the case p = q = −χ/2. The chiral multiplets (q,Λα), (q̂, Λ̂α)
have the same multiplicity and fit into a doublet of the enhanced flavor symmetry SU(2)F .
In contrast, the chiral multiplet (Φ, b0, ψα) is a singlet of SU(2)F . (The Cartan of SU(2)F
is proportional to the difference t1 − t2.)

Finally, let us comment on the case g = 1, p 6= 0. The Riemann surface is flat and its
canonical bundle is trivial. The total covariant derivative on T 2 (in local flat coordinates)
has no spin connection term but includes the terms originating from the background U(1)1×
U(1)2 ⊂ SO(5)R fields. It takes the schematic form Dm = ∂m+pAm (t1− t2), where Am is
a local antiderivative of the volume form on T 2. With reference to table 3, the modes of χ
with t1 = t2 = ±1 are unaffected by the U(1)1×U(1)2 background. To get massless modes
in four dimensions, we take their internal wavefunction to be a covariantly constant spinor
on T 2. Since T 2 is flat, a covariantly constant spinor is constant, yielding a multiplicity 1
for both λα and ψα. (We select periodic boundary conditions on both 1-cycles of T 2.) As
before, the fermion λα combines with Aµ in one vector multiplet, and ψα combines with
b0 and Φ in one chiral multiplet with U(1)1 × U(1)2 charges (0, 0). The mode of χ with
(t1, t2) = (+1,−1), denoted Λα in table 3, is affected by the topological twist, and behaves
as a section of Lp, where L is a degree-one line bundle on T 2. The same holds true for the
scalar φ1 + i φ2. The fields Λα, φ1 + i φ2 fit into chiral multiplets with U(1)1×U(1)2 charges
(2, 0) and multiplicity h0(Lp). In a similar way, Λ̂α and φ1 − i φ2 fit into chiral multiplets

– 59 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

with U(1)1×U(1)2 charges (0, 2) and multiplicity h0(L−p). The difference between h0(Lp)
and h0(L−p) can be computed using (F.3), with the replacement L → Lp, to give

h0(Lp)− h0(L−p) = p . (F.4)

As in the g 6= 1 case, this relation can be used to verify that the ’t Hooft anomalies of the
4d fields match with the result obtained by integration over the Riemann surface of the
8-form anomaly polynomial of a free 6d N = (2, 0) tensor multiplet.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[2] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling
constants and their dynamical applications I, SciPost Phys. 8 (2020) 001
[arXiv:1905.09315] [INSPIRE].

[3] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling
constants and their dynamical applications II, SciPost Phys. 8 (2020) 002
[arXiv:1905.13361] [INSPIRE].

[4] D.R. Morrison, S. Schäfer-Nameki and B. Willett, Higher-form symmetries in 5d, JHEP 09
(2020) 024 [arXiv:2005.12296] [INSPIRE].

[5] F. Albertini, M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher form symmetries
and M-theory, JHEP 12 (2020) 203 [arXiv:2005.12831] [INSPIRE].

[6] E. Witten, Some comments on string dynamics, in the proceedings of STRINGS’95: future
perspectives in string theory, March 13–18, Los Angeles, U.S.A. (1995) [hep-th/9507121]
[INSPIRE].

[7] A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

[8] J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via
branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].

[9] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[10] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB
approximation, arXiv:0907.3987 [INSPIRE].

[11] K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from N = 2
dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].

[12] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP
01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[13] I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, JHEP 07
(2013) 107 [arXiv:1111.3402] [INSPIRE].

[14] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann
surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

– 60 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5148
https://doi.org/10.21468/SciPostPhys.8.1.001
https://arxiv.org/abs/1905.09315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09315
https://doi.org/10.21468/SciPostPhys.8.1.002
https://arxiv.org/abs/1905.13361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.13361
https://doi.org/10.1007/JHEP09(2020)024
https://doi.org/10.1007/JHEP09(2020)024
https://arxiv.org/abs/2005.12296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12296
https://doi.org/10.1007/JHEP12(2020)203
https://arxiv.org/abs/2005.12831
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12831
https://arxiv.org/abs/hep-th/9507121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9507121
https://doi.org/10.1016/0370-2693(96)00712-5
https://arxiv.org/abs/hep-th/9512059
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9512059
https://doi.org/10.1016/S0550-3213(97)00449-5
https://arxiv.org/abs/hep-th/9705044
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9705044
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.2715
https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.3987
https://doi.org/10.1088/1126-6708/2009/09/086
https://arxiv.org/abs/0907.2625
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2625
https://doi.org/10.1007/JHEP01(2010)088
https://doi.org/10.1007/JHEP01(2010)088
https://arxiv.org/abs/0909.1327
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.1327
https://doi.org/10.1007/JHEP07(2013)107
https://doi.org/10.1007/JHEP07(2013)107
https://arxiv.org/abs/1111.3402
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.3402
https://doi.org/10.1103/PhysRevD.85.121901
https://arxiv.org/abs/1112.5487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.5487


J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

[15] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP
06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[16] M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a
one loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].

[17] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103
[hep-th/9610234] [INSPIRE].

[18] D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for
M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

[19] J.A. Harvey, R. Minasian and G.W. Moore, Non-Abelian tensor multiplet anomalies, JHEP
09 (1998) 004 [hep-th/9808060] [INSPIRE].

[20] I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Class S anomalies from M-theory inflow,
Phys. Rev. D 99 (2019) 086020 [arXiv:1812.04016] [INSPIRE].

[21] I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Anomaly inflow for M5-branes on
punctured Riemann surfaces, JHEP 06 (2019) 123 [arXiv:1904.07250] [INSPIRE].

[22] I. Bah, F. Bonetti, R. Minasian and E. Nardoni, Anomalies of QFTs from M-theory and
holography, JHEP 01 (2020) 125 [arXiv:1910.04166] [INSPIRE].

[23] I. Bah, F. Bonetti, R. Minasian and P. Weck, Anomaly inflow methods for SCFT
constructions in type IIB, JHEP 02 (2021) 116 [arXiv:2002.10466] [INSPIRE].

[24] J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds,
JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].

[25] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D
83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[26] O. Bergman, Y. Tachikawa and G. Zafrir, Generalized symmetries and holography in
ABJM-type theories, JHEP 07 (2020) 077 [arXiv:2004.05350] [INSPIRE].

[27] I. Bah and F. Bonetti, Anomaly inflow, accidental symmetry, and spontaneous symmetry
breaking, JHEP 01 (2020) 117 [arXiv:1910.07549] [INSPIRE].

[28] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of
M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].

[29] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d
SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

[30] D.S. Freed, G.W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes, Annals
Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].

[31] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun.
Math. Phys. 129 (1990) 393 [INSPIRE].

[32] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and
group cohomology, arXiv:1404.3230 [INSPIRE].

[33] P.G. Cámara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110
[arXiv:1106.0060] [INSPIRE].

[34] M. Berasaluce-Gonzalez, P.G. Cámara, F. Marchesano, D. Regalado and A.M. Uranga,
Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059
[arXiv:1206.2383] [INSPIRE].

– 61 –

https://doi.org/10.1007/JHEP06(2012)005
https://doi.org/10.1007/JHEP06(2012)005
https://arxiv.org/abs/1203.0303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.0303
https://doi.org/10.1016/0550-3213(95)00368-3
https://arxiv.org/abs/hep-th/9506126
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506126
https://doi.org/10.1016/S0393-0440(97)80160-X
https://arxiv.org/abs/hep-th/9610234
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610234
https://doi.org/10.4310/ATMP.1998.v2.n3.a8
https://arxiv.org/abs/hep-th/9803205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803205
https://doi.org/10.1088/1126-6708/1998/09/004
https://doi.org/10.1088/1126-6708/1998/09/004
https://arxiv.org/abs/hep-th/9808060
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808060
https://doi.org/10.1103/PhysRevD.99.086020
https://arxiv.org/abs/1812.04016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04016
https://doi.org/10.1007/JHEP06(2019)123
https://arxiv.org/abs/1904.07250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.07250
https://doi.org/10.1007/JHEP01(2020)125
https://arxiv.org/abs/1910.04166
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.04166
https://doi.org/10.1007/JHEP02(2021)116
https://arxiv.org/abs/2002.10466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.10466
https://doi.org/10.1088/1126-6708/2001/10/005
https://arxiv.org/abs/hep-th/0108152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108152
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.5120
https://doi.org/10.1007/JHEP07(2020)077
https://arxiv.org/abs/2004.05350
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05350
https://doi.org/10.1007/JHEP01(2020)117
https://arxiv.org/abs/1910.07549
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.07549
https://doi.org/10.1088/0264-9381/21/18/005
https://arxiv.org/abs/hep-th/0402153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0402153
https://doi.org/10.1093/ptep/ptu140
https://arxiv.org/abs/1408.5572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5572
https://doi.org/10.1016/j.aop.2006.07.014
https://doi.org/10.1016/j.aop.2006.07.014
https://arxiv.org/abs/hep-th/0605200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605200
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C129%2C393%22
https://arxiv.org/abs/1404.3230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.3230
https://doi.org/10.1007/JHEP09(2011)110
https://arxiv.org/abs/1106.0060
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.0060
https://doi.org/10.1007/JHEP09(2012)059
https://arxiv.org/abs/1206.2383
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.2383


J
H
E
P
0
3
(
2
0
2
1
)
1
9
6

[35] E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22
(1997) 1 [hep-th/9609122] [INSPIRE].

[36] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly inflow and p-form gauge theories,
arXiv:2003.11550 [INSPIRE].

[37] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds
and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[38] A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons
theory, Nucl. Phys. B 845 (2011) 393 [arXiv:1008.0654] [INSPIRE].

[39] S. Gukov, E. Martinec, G.W. Moore and A. Strominger, Chern-Simons gauge theory and the
AdS3/CFT2 correspondence, hep-th/0403225 [INSPIRE].

[40] D. Belov and G.W. Moore, Conformal blocks for AdS5 singletons, hep-th/0412167
[INSPIRE].

[41] G.W. Moore, Anomalies, Gauss laws, and Page charges in M-theory, Comptes Rendus
Physique 6 (2005) 251 [hep-th/0409158] [INSPIRE].

[42] E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012
[hep-th/9812012] [INSPIRE].

[43] D.J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string
theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [INSPIRE].

[44] D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4
(2018) 005 [arXiv:1707.08577] [INSPIRE].

[45] E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006
[hep-th/9805112] [INSPIRE].

[46] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional
gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

[47] C. Córdova, T. Dumitrescu and K. Intriligator, to appear.

[48] Y. Tachikawa and K. Yonekura, Anomalies involving the space of couplings and the
Zamolodchikov metric, JHEP 12 (2017) 140 [arXiv:1710.03934] [INSPIRE].

[49] H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2
D = 10 supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

[50] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl.
Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[51] R. Bott and A.S. Cattaneo, Integral invariants of 3-manifolds, J. Diff. Geom. 48 (1998) 91
[dg-ga/9710001].

[52] J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and
Topology, J.C. Alexander and J.L. Harer eds., Springer, Germany (1985).

[53] M.J. Hopkins and I.M. Singer, Quadratic functions in geometry, topology, and M-theory, J.
Diff. Geom. 70 (2005) 329 [math/0211216] [INSPIRE].

[54] M. Bauer, G. Girardi, R. Stora and F. Thuillier, A class of topological actions, JHEP 08
(2005) 027 [hep-th/0406221] [INSPIRE].

[55] U. Bunke, Differential cohomology, arXiv:1208.3961.

– 62 –

https://doi.org/10.1016/S0393-0440(96)00042-3
https://doi.org/10.1016/S0393-0440(96)00042-3
https://arxiv.org/abs/hep-th/9609122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609122
https://arxiv.org/abs/2003.11550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.11550
https://doi.org/10.1142/S0217751X01003937
https://arxiv.org/abs/hep-th/0007018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0007018
https://doi.org/10.1016/j.nuclphysb.2010.12.017
https://arxiv.org/abs/1008.0654
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0654
https://arxiv.org/abs/hep-th/0403225
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403225
https://arxiv.org/abs/hep-th/0412167
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412167
https://doi.org/10.1016/j.crhy.2004.12.005
https://doi.org/10.1016/j.crhy.2004.12.005
https://arxiv.org/abs/hep-th/0409158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409158
https://doi.org/10.1088/1126-6708/1998/12/012
https://arxiv.org/abs/hep-th/9812012
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812012
https://doi.org/10.1103/PhysRevD.58.106002
https://arxiv.org/abs/hep-th/9805129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805129
https://doi.org/10.21468/SciPostPhys.4.1.005
https://doi.org/10.21468/SciPostPhys.4.1.005
https://arxiv.org/abs/1707.08577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08577
https://doi.org/10.1088/1126-6708/1998/07/006
https://arxiv.org/abs/hep-th/9805112
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805112
https://doi.org/10.1007/JHEP08(2013)115
https://arxiv.org/abs/1305.0318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0318
https://doi.org/10.1007/JHEP12(2017)140
https://arxiv.org/abs/1710.03934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.03934
https://doi.org/10.1103/PhysRevD.32.389
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD32%2C389%22
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
https://arxiv.org/abs/hep-th/0304128
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304128
https://arxiv.org/abs/dg-ga/9710001
https://arxiv.org/abs/math/0211216
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0211216
https://doi.org/10.1088/1126-6708/2005/08/027
https://doi.org/10.1088/1126-6708/2005/08/027
https://arxiv.org/abs/hep-th/0406221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406221
https://arxiv.org/abs/1208.3961

	Introduction and summary
	Topological mass terms in 5d supergravity
	Ansatz for G(4) and dimensional reduction
	Applications to wrapped M5-branes
	M5-branes wrapped on a Riemann surface
	M5-branes probing a Z(2) singularity and wrapped on a Riemann surface


	BF theory in the bulk and holographic interpretation
	Low-energy dynamics in five dimensions
	Boundary terms and boundary conditions
	Singleton modes propagating on the boundary

	Holographic interpretation
	Global discrete symmetries in four dimensions
	Singleton modes as Goldstone modes


	Extended operators and discrete symmetries
	Extended operators in the BF bulk theory
	Extended operators in the dual field theory

	't Hooft anomalies from inflow
	Inflow anomaly polynomial
	M5-branes wrapped on a Riemann surface
	M5-branes probing a Z(2) singularity and wrapped on a Riemann surface
	Anomalies for discrete symmetries

	Singletons and 't Hooft anomalies

	Outlook
	A change of basis
	Cohomology classes and gauging of isometries
	BBBW solutions
	Cohomology classes in M(6)
	Inclusion of background gauge fields for isometries
	Computation of the inflow anomaly polynomial

	GMSW solutions
	Cohomology classes in M(6)
	Inclusion of background gauge fields for isometries
	Computation of the inflow anomaly polynomial


	Construction of E(4)
	Aspects of differential cohomology
	Case study: wrapped M5-branes at a Z(2) singularity
	Free tensor multiplet reduction on Sigma(g) with topological twist

