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1 Introduction

Quantum entanglement has been considered as a crucial physical resource in quantum
information science such as quantum communication [1, 2], quantum teleportation [3],
quantum cryptography [4] and dense coding [2], etc, and it has been extensively studied in
various physical aspects. Recently, a lot of interest has been attracted in the role played by
entanglement in a variety of physical contexts, such as the critical phenomena in condensed
matter systems [5–7], the description of non-classical states of light [8, 9], the explanation
for the origin of black hole entropy [10–12] and the anti-de Sitter/conformal field theory
correspondence [13].

It has been realized that vacuum can be a resource of entanglement for the vacuum state
of a free quantum field can maximally violate Bell’s inequalities as was shown in the formal
algebraic quantum field theory [14, 15], and a pair of initially uncorrelated detectors can
extract entanglement from vacuum via locally interacting with vacuum fields [16, 17]. This
phenomenon of entanglement extraction has been extensively studied in an operational ap-
proach employing the Unruh-DeWitt (UDW) detector model [18–32], which is now known
as the entanglement harvesting protocol [33]. A lot of studies have demonstrated that the
phenomenon of entanglement harvesting involves a combination of relativistic and quantum
effects, and it is sensitive to the spacetime topology [18, 26, 28, 29, 31], intricate motions
of detectors [32], and even cosmology [21, 22]. More recently, the entanglement harvesting
in some special circumstances has been investigated, such as in the background with black
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holes [28], in the presence of gravitational waves [34] and near the horizon mimicked by
imposing a moving mirror as the boundary [35, 36]. In particular, the entanglement har-
vesting has been studied for inertial detectors in 1+1 dimensional moving mirror spacetimes
in ref. [35], where it was argued that there exists an entanglement inhibition phenomenon
similar to that found for black holes and the concrete harvesting process is sensitive to the
mirror trajectory. While, for an accelerated mirror moving along a particular trajectory pa-
rameterized by the product-log function, the mimicked effects of horizon on entanglement
harvesting have been discussed in ref. [36], which reveals a sensitivity of the entanglement
harvested to the dynamics of the trajectories and an insensitivity of entanglement to the
sign of radiation flux emitted by such an accelerated mirror.

In this paper, we plan to investigate the entanglement harvesting for two UDW de-
tectors at rest or uniformly accelerated near a static perfectly reflecting boundary rather
than a drifting mirror that is used to mimic a dynamical spacetime. This would allow
us to consider how the reflecting boundary and the motion status of detectors affect the
entanglement harvesting phenomenon in a more realistic 1+3 dimensional spacetime. The
phenomenon of entanglement harvesting in the circumstance with accelerated detectors
necessarily involves both the relativistic effects due to the non-inertial motion of the detec-
tors and quantum effects arising from the modification of quantum vacuum fluctuations of
the scalar fields by the presence of a boundary which the detectors are coupled to. Let us
note here that the most fascinating effect associated with the uniform acceleration is the
Unruh effect, which attests that accelerated detectors in vacuum will observe a thermal
radiation spectrum of particles. The thermal noise due to the Unruh effect is generally
expected to drive the accelerated detectors to decohere. Therefore, the behavior of entan-
glement harvesting therein would be an interesting topic, since it is expected to be affected
by both the presence of the boundary and the accelerated motion of the detectors which
is connected the Unruh effect. Indeed, on one hand, a lot of studies have revealed the
influence of acceleration on quantum entanglement via various detector models, including
two-level detectors or UDW models [17, 33], harmonic oscillators [37, 38], and wave pack-
ets [39, 40]. In particular, it was argued in ref. [33] that the entanglement extraction can
be enhanced for two UDW detectors in anti-parallel acceleration in comparison with those
in inertial motion or parallel acceleration. On the other hand, it has been demonstrated
that the presence of boundaries in flat spacetime, which changes the spacetime topology
and causes modification of fluctuations of quantum fields [41], brings new features to novel
quantum effects associated acceleration, such as the Casimir-Polder interaction [42–44], the
modified radiative properties of accelerated atoms [45–47], the geometric phase [48] and
the modified entanglement dynamics [49, 50].

Therefore, questions arise naturally as to what role the boundary would play in per-
forming the entanglement harvesting protocols via a pair of inertial as well as uniformly
accelerated detectors and what would happen to the entanglement harvesting for two de-
tectors in different acceleration scenarios near the boundary. To address these questions,
we will first consider a pair of inertial detectors and then a pair of uniformly accelerated
UDW detectors, which are initially prepared in a separable state and locally interact with
the vacuum massless scalar fields near a perfectly reflecting plane boundary. For the case
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of accelerated detectors, three distinct acceleration scenarios, i.e, parallel acceleration and
anti-parallel acceleration with respect to the boundary as well as mutually perpendicular
acceleration in a plane parallel to the boundary, will be examined. According to the en-
tanglement harvesting protocol, the reduced density of two detectors can be written in an
X-type form, and the concurrence as a measure of entanglement, which is employed to
characterize the amount of the entanglement harvested from vacuum by such detectors,
can be calculated for a chosen switching function.

The paper is organized as follows. In the next section, basic formulae for the UDW
detectors locally interacting with vacuum scalar fields are reviewed. In section 3, we mainly
study the influence of a boundary on the transition probabilities of uniformly accelerated
detectors interacting with the quantum fields in a finite duration. In section 4, we con-
sider the entanglement harvesting for both two inertial detectors and two detectors moving
along different acceleration trajectories near the boundary, including those of parallel ac-
celeration, anti-parallel acceleration and acceleration in mutually perpendicular directions
in a plane parallel to the boundary. The influence of the boundary on the behavior of
the entanglement harvesting is examined in detail, with a cross-comparison of the results
obtained. Finally, we end up with conclusions in section 5.

Throughout this paper we adopt the natural units in which ~ = c = 1 for convenience.

2 The basic formulas

Without loss of generality, the two-level point-like detector is treated as the UDW module
with a ground state |0D〉 and excited state |1D〉, which locally interacts with the massless
scalar field φ(xD). Here, xD denotes the coordinates of spacetime with the subscript D
specifying which UDW detector we are considering. Let us suppose that the classical
spacetime trajectory of the detector is parameterized by its proper time τ . Then the
interaction Hamiltonian for such a detector in the interaction picture takes the following
form

HD(τ) = λχ(τ)
[
eiΩDτσ+ + e−iΩDτσ−

]
φ [xD(τ)] , (2.1)

where λ is the coupling strength, ΩD is the energy gap of the detector, σ+ = |1D〉〈0D|
and σ− = |0D〉〈1D| denote the ladder operators of the SU(2) algebra, and χ(τ) =
exp[−τ2/(2σ2

D)] is the Gaussian switching function which controls the duration of interac-
tion via parameter σD.

Before the interaction begins, we assume that two UDW detectors (labeled A and B)
are in their ground state and the field in a vacuum state |0M 〉. Then the joint state of the
detectors and the field can be written as |Ψ〉 = |0A〉 |0B〉 |0M 〉. According to the detector-
field interaction Hamiltonian (2.1), the finial state of the system (two detectors plus the
field) is given by

|Ψf 〉 := T exp
[
−i
∫
dt

(
dτA
dt

HA(τA) + dτB
dt

HB(τB)
)]
|Ψ〉 , (2.2)

where T denotes the time ordering operator. For simplicity, the two detectors are assumed
to be completely identical with a fixed but not too large energy gap, i.e., Ω = ΩA = ΩB
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and σ = σA = σB, in the following discussions. Based on the perturbation theory, the
density matrix for the finial state of the two detectors can be obtained from eq. (2.2) by
tracing out the field degrees of freedom, and after some algebraic manipulations, it takes
the following form in the basis {|0A〉 |0B〉 , |0A〉 |1B〉 , |1A〉 |0B〉 , |1A〉 |1B〉} [26, 28, 29]

ρAB : = trφ
(
|Ψf 〉 〈Ψf |

)

=


1− PA − PB 0 0 X

0 PB C 0
0 C∗ PA 0
X∗ 0 0 0

+O(λ4) , (2.3)

where the transition probability PD reads

PD := λ2
∫∫

dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W
(
xD(t), xD(t′)

)
D ∈ {A,B} , (2.4)

and quantities C and X which characterize nonlocal correlations are given by

C := λ2
∫∫

dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W
(
xA(t), xB(t′)

)
, (2.5)

X :=−λ2
∫∫

dτdτ ′χ(τ)χ(τ ′)e−iΩ(τ+τ ′)
[
θ(t′−t)W

(
xA(t),xB(t′)

)
+θ(t−t′)W

(
xB(t′),xA(t)

)]
,

(2.6)

where W (x, x′) := 〈0M |φ(x)φ(x′) |0M 〉 is the Wightman function of the field and θ(t)
represents the Heaviside theta function. Note that the detector’s coordinate time is a
function of its proper time, i.e., t = t(τ) and t′ = t′(τ ′), in the above equations.

According to the entanglement harvesting protocol, we can employ the concurrence as
a measure of entanglement [51], which specifically quantifies the entanglement harvested
by the detectors via local interaction with the fields. For an X-type density matrix (2.3),
the concurrence takes a simple form [26, 28, 29]

C(ρAB) = 2 max
[
0, |X| −

√
PAPB

]
+O(λ4) . (2.7)

The concurrence C(ρAB) is dependent only on the nonlocal correlation X and the transition
probabilities. As a result, the Wightman function of the scalar fields plays a crucial role in
entanglement harvesting. In what follows, We will examine the entanglement harvesting
phenomenon for both a pair of inertial and uniformly accelerated detectors near a perfectly
reflecting plane boundary, focusing on the influence of the presence of the boundary.

3 The transition probabilities of detectors near the reflecting boundary

Let us first analyze the transition probabilities. To facilitate the discussion, we assume
that a plane boundary is located at z = 0, and the uniformly accelerated UDW detector is
moving along the trajectories with a distance ∆z away from the boundary, that is

xD :=
{
t = a−1 sinh(aτ), x = a−1 cosh(aτ), y = 0, z = ∆z

}
, (3.1)
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where a is the proper acceleration and τ is the detector’s proper time. The Wightman
function for vacuum massless scalar fields in four dimensional Minkowski spacetime in the
presence of a reflecting boundary is, according to the method of images, given by [41]

W
(
xD, x

′
D

)
=− 1

4π2

[ 1
(t− t′ − iε)2 − (x− x′)2 − (y − y′)2 − (z − z′)2

− 1
(t− t′ − iε)2 − (x− x′)2 − (y − y′)2 − (z + z′)2

]
. (3.2)

Substituting trajectory (3.1) and eq. (3.2) into eq. (2.4), we have, after some manipulations
(see appendix A)

PD = λ2aσ

4π3/2

∫ ∞
0

ds̃
cos(s̃β)e−s̃2α

(
sinh2 s̃− s̃2

)
s̃2 sinh2 s̃

+ λ2aσ

4π3/2 PV
∫ ∞

0
ds̃

cos(βs̃)e−s̃2α

sinh2 s̃− a2∆z2

+ λ2

4π
[
e−Ω2σ2 −

√
πΩσErfc(Ωσ)

]
+ λ2aσ

4
√
π

e−αs̃
2 sin(βs̃)

sinh(2s̃)

∣∣∣∣∣
s̃=arcsinh(a∆z)

, (3.3)

where β = 2Ω/a, α = 1/(aσ)2 and Erfc(x) := 1− Erf(x) with the error function Erf(x) :=∫ x
0 2e−t2dt/

√
π.

An analytical result of eq. (3.3) can hardly be found. Fortunately, numerical eval-
uations can be implemented for a finite duration of interaction (finite nonzero σ). It is
worth noting that the second and fourth term in eq. (3.3) arise from the image part of the
Wightman function, which are dependent on the distance between the boundary and the
detector ∆z, while the remaining two terms are just those of the transition probabilities
of uniformly accelerated detectors in free Minkowski spacetime [32]. In the limit of a→ 0,
the transition probabilities become

PD = λ2

4π
[
e−Ω2σ2−

√
πΩσErfc(Ωσ)

]
+ λ2σ

4π3/2

∫ ∞
−∞

ds
e−iΩse−s

2/(4σ2)

(s−iε)2−4∆z2

= λ2

4π
[
e−Ω2σ2−

√
πΩσErfc(Ωσ)

]
−λ

2σe−∆z2/σ2

8
√
π∆z

{
Im
[
e2iΩ∆zErf

(
i∆z
σ

+Ωσ
)]
−sin(2Ω∆z)

}
. (3.4)

We show our numerical evaluation of eqs. (3.3) and (3.4) in figure 1. As we can see
there, the transition probabilities for a finite duration generally increase as the acceleration
increases, which is consistent with what we expect that high acceleration causes strong
thermalization. However, the thermalization is suppressed by the presence of the boundary.
Especially, when the detector is very close to the boundary (∆z/σ � 1), the transition
probabilities become very small. At the same time, one can also observe that the transition
probabilities seem to be an increasing function of ∆z/σ which flatten up when ∆z/σ
becomes relatively large.

4 Entanglement harvesting near the reflecting boundary

In this section, we will examine the phenomenon of the entanglement harvesting, paying
particular attention to the influence of the boundary. We start with a discussion of how
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Figure 1. The transition probability of UDW detectors is plotted as a function of the acceleration
with parameters Ωσ = 0.10 and ∆z/σ = {0.10, 0.50, 1.00} in (a), and plotted as a function of ∆z/σ
with Ωσ = 0.10 and aσ = {0, 0.50, 1.00, 1.20} in (b). For convenience, all other physical parameters
are expressed in the unit of the interaction duration parameter σ. Note that the dashed lines
indicate the case of without any boundary in (a) and inertial detectors at rest in (b), respectively.

the reflecting boundary affects the entanglement harvested by two inertial detectors at
rest at a certain fixed distance ∆z from the boundary, followed by an analysis of two
uniformly accelerated detectors. For convenience of comparing the boundary influence in
these two circumstances, the trajectories of two accelerated detectors are assumed to align
parallel to the boundary plane with a distance ∆z away from it as well. The effects of
the boundary on the entanglement harvesting in three different acceleration scenarios, i.e.,
parallel acceleration, anti-parallel acceleration and mutually perpendicular acceleration,
are to be analyzed in detail.

4.1 Entanglement harvesting for inertial detectors

For two detectors at rest which are aligned parallel to the reflecting boundary with a fixed
distance ∆z from it and separated by a distance ∆d, their trajectories can, without loss of
generality, be written as

xA := {τA , x = 0 , y = 0 , z = ∆z} , xB := {τB , x = ∆d , y = 0 , z = ∆z} . (4.1)

In order to examine the effect of the boundary on the entanglement harvesting for inertial
detectors, we should first compute the transition probability PD given by eq. (2.4) and
the relevant non-local correlation term X given by eq. (2.6) along the trajectories (4.1).
The analytical expression of the transition probability of a static detector has already been
given by eq. (3.4), and X particularized here as X0, can be obtained straightforwardly via
the method of Cauchy principle value,

X0 = iλ2σ

4
√
π
e−

∆d2+4σ4Ω2
4σ2


Erfc

[
i
√

∆d2 + 4∆z2/(2σ)
]

√
∆d2 + 4∆z2

e−∆z2/σ2 −
Erfc

[
i∆d/(2σ)

]
∆d

 . (4.2)
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Then the concurrence can be found by substituting eq. (3.4) and eq. (4.2) into eq. (2.7).
In order to show the properties of the entanglement harvesting, we plot the concurrence as
a function of the distance ∆z and the separation ∆d in figure 2, respectively.

It is worth pointing out that X0 will be vanishingly small when the two detectors are
placed infinitely close to the reflecting boundary and so will be the concurrence, suggesting
that the entanglement harvesting will be greatly inhibited as is illustrated by figure 2a.
More interestingly, one may find a peak of the extracted entanglement approximately at
the position where ∆z is comparable to the interaction duration parameter σ for a not too
large fixed ∆d/σ.1 At large enough ∆z/σ, the concurrence asymptotically approaches its
free space value as expected. Let us note here that these features, e.g., the appearance of
peaks of the extracted entanglement, have also been found for inertial detectors in 1+1
dimensional mirror spacetimes in ref. [35].

In order to gain an understanding to this property, we show the behaviors of PD and
|X0| versus ∆z/σ in figure 3. As we can see, the reflecting boundary would in general
restrain both the transition probabilities PD and the non-local correlation of the fields
X0. However, as the distance ∆z increases to approach σ, the degree of suppression is
different (see the vertical dashed line in figure 3). That is, at the beginning, the difference
between |X0| and PD grows as the distance increases. However, when the distance grows
across σ, |X0| no longer increases significantly with increasing ∆z/σ, while the transition
probability PD still significantly increases for a while. As a result, the difference between
|X0| and PD becomes a little smaller, resulting in a peak in the difference therein. As,
according to the definition in eq. (2.7), the concurrence is in fact a competition between
the nonlocal correlation X and the transition probabilities, the above analysis explains
why the harvested entanglement peaks when the distance is comparable to the parameter
σ. Remarkably, the peak value of the concurrence is even larger than that without a
boundary, suggesting that the detectors may harvest more entanglement than when there
is no boundary.

Figure 2b shows that the concurrence for a fixed distance between detectors and the
boundary would rapidly degrade as the detectors’ separation increases. This arises from
the fact that X0 is exponentially suppressed as ∆d increases (see eq. (4.2)), and is consis-
tent with our intuition that the correlation of the detectors would weaken as their inter-
separation grows. Once the inter-separation increases beyond a certain value, the concur-
rence will virtually vanish and entanglement harvesting essentially on longer occurs. So,
there exists an entanglement harvesting-achievable range for ∆d, which, as shown in the
subfigure of figure 2b, is sensitive to the distance from the boundary.

To better understand the influence of the presence of the boundary on the harvesting-
achievable range of the separation ∆d where entanglement harvesting is possible. Here, we
use ∆dmax to stand for the maximum value (or critical value) of the separation ∆d, beyond
which entanglement harvesting does not occur any more. From eq. (3.4) and eq. (4.2), we
obtain the plot of ∆dmax as a function of ∆z (see figure 4). One can see that ∆dmax is
obviously a decreasing function of ∆z/σ, which means that the presence of the boundary

1If ∆d/σ were too large, the extracted entanglement would vanish.
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Figure 2. The entanglement harvested by detectors at rest in the presence of a boundary. (a)
The concurrence as a function of ∆z/σ is plotted for ∆d/σ = {0.50, 1.00, 1.50}. The dashed line
indicates the peak of the concurrence. (b) The concurrence as a function of ∆d/σ is plotted for
∆z/σ = {0.10, 0.50, 1.50}. Here, we have set Ωσ = 0.10. The concurrence C(ρAB) rapidly falls off
as the separation ∆d increases for a fixed distance from the boundary. In the limit of ∆z → 0, the
concurrence approaches zero.

0 1 2 3 4 5
0.00

0.02
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0.06

0.08

0.10

0.12

0.14

Figure 3. The nonlocal correlation term |X0| and the transition probability PD are plotted as a
function of the distance between the rest detectors and the boundary, ∆z. The vertical dashed line
(∆z/σ ≈ 1.352) indicates where the maximum difference between |X0| and PD occurs. Here, we
have set the energy gap Ωσ = 0.10 and the separation between such two rest detectors ∆d/σ = 1.00.

could enlarge the harvesting-achievable range. It should be pointed out here that a ∆dmax
on the boundary plane would make no physical sense. This is because the corresponding
Wightman function eq. (3.2) approaches zero in the limit of ∆z → 0, and as a consequence
the concurrence then vanishes and does not depend on the parameter ∆d.

Now we are in a position to explore the effects of the boundary on the entanglement
harvesting of uniformly accelerated detectors. In particular, we will study three acceleration
scenarios and make a comparison with the inertial situation.
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Figure 4. The maximum harvesting-achievable separation, ∆dmax, between two detectors is plot-
ted as a function of the distance between detectors and the boundary with Ωσ = 0.10. The dished
line indicates the case of a free space without any boundary.

4.2 Entanglement harvesting for uniformly accelerated detectors

4.2.1 Parallel acceleration

Here, we assume that two detectors are accelerated in parallel with respect to the boundary
with the same magnitude of acceleration (see figure 5), the corresponding trajectories
satisfy [33]

xA := {t = a−1 sinh(aτA) , x = a−1 cosh(aτA) , y = 0 , z = ∆z} ,
xB := {t = a−1 sinh(aτB) , x = a−1 cosh(aτB) + ∆d , y = 0 , z = ∆z} , (4.3)

where ∆d represents the separation between two detectors, as measured by an inertial
observer at a fixed x (i.e., in the laboratory reference frame).

The transition probabilities can be evaluated by using eq. (3.3), and the nonlocal
correlation term X can be obtained by substituting the Wightman function into eq. (2.6).
Here, we use X(( to denote X in the case of the parallel acceleration where the trajectories
of two detectors are described by eq. (4.3). According to eq. (2.6), we have

X(( =−λ2
∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′χ(τ)χ(τ ′)e−iΩ(τ+τ ′)

[
W
(
xA(τ ′),xB(τ)

)
+W

(
xB(τ ′),xA(τ)

)]
.

(4.4)

Letting u = τ and s = τ − τ ′, eq. (4.4) becomes, after some algebraic manipulations,

X(( = −λ
2a2

4π2

∫ ∞
−∞

du

∫ ∞
0

dsf(u, s)
[ 1
fAB(u, s) −

1
fAB(u, s) + 4a2∆z2

+ 1
fBA(u, s) −

1
fBA(u, s) + 4a2∆z2

]
, (4.5)

where

f(u, s) = exp
[
(2us− s2 − 2u2)/2σ2 − i(2u− s)Ω

]
, (4.6)

fAB(u, s) = 2 + a2∆d2 − 2 cosh(as) + 2a∆d cosh(au)− 2a∆d cosh[a(u− s)]− iε , (4.7)
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Figure 5. In the case of parallel acceleration, two uniformly accelerated detectors with a separation
∆d are aligned parallel to the boundary plane at a distance ∆z away from the boundary in (a),
the worldlines of such two accelerated detectors are depicted respectively in (b). Here, the black
arrows indicate the direction of acceleration.

and

fBA(u, s) = 2 + a2∆d2 − 2 cosh(as)− 2a∆d cosh(au) + 2a∆d cosh[a(u− s)]− iε . (4.8)

In principle, the transition probabilities PD of the uniformly accelerated detectors can be
calculated by using eq. (3.3), and the nonlocal correlation term X(( can also be obtained
from eq. (4.5). However, analytical results are quite difficult to obtain due to the presence
of the Gaussian switching function. So, numerical calculations will be resorted to later
on. The concurrence eq. (2.7), which quantifies the entanglement harvested by detectors,
can be evaluated explicitly, once the values of X(( and transition probabilities are known.
Before we show the results of numerical calculations, let us first give the same general
analysis for the other two scenarios.

4.2.2 Anti-parallel acceleration

Now, we move on to the case of two detectors with anti-parallel acceleration along x-axis
(see figure 6). For convenience, we specify the spacetime trajectories of two such detectors
in the form as [33]

xA :=
{
t = a−1 sinh(aτA) , x = a−1[cosh(aτA)− 1] , y = 0 , z = ∆z

}
,

xB :=
{
t = a−1 sinh(aτB) , x = −a−1[cosh(aτB)− 1]−∆d , y = 0 , z = ∆z

}
, (4.9)

where ∆d denotes the separation between two detectors at the closest approach (i.e., at
the origin of the time coordinate), as seen by a rest observer at a constant x, namely the
closest distance ∆d is independent of the acceleration [33]. It should be point out that the
trajectories eq. (4.9) in general relax the condition of overlapping apexes shared by four
Rindler wedges of two detectors.
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Figure 6. (a) Two detectors in anti-parallel acceleration near the reflecting boundary with a nearest
longitudinal shift ∆d along the direction of acceleration, (b) the corresponding worldlines of two
detectors. Black arrows indicate the direction of acceleration.

The transition probabilities can be numerically calculated by using eq. (3.3) as well, and
the nonlocal correlation term X, now represented by X)(, can be obtained by substituting
eq. (4.9) into eq. (2.6)

X)( = −λ
2a2

2π2

∫ ∞
−∞

du

∫ ∞
0

dsf(u, s)
[ 1
g(u, s) −

1
g(u, s) + 4a2∆z2

]
, (4.10)

where

g(u, s) = 2+(2−a∆d)2+2 cosh(as−2au)+(2a∆d−4)[cosh(au)+cosh(au−as)]−iε . (4.11)

Numerically evaluating the transition probability PD and X)( , we can explore the concur-
rence C(ρAB) to reveal the features of entanglement harvesting, which we will present in
detail later.

4.2.3 The acceleration in perpendicular orientations

In this subsection, we will consider the case of two detectors uniformly accelerated in mutu-
ally vertical directions. Concretely, we assume that two detectors are uniformly accelerated
in a plane parallel to the boundary, where one detector is accelerated in the x-axis and the
other accelerated in the y-axis (see figure 7). Hence, the spacetime trajectories of the two
perpendicularly accelerated detectors take the following form

xA :=
{
t = a−1 sinh(aτA) , x = 0 , y = a−1[cosh(aτA)− 1] , z = ∆z

}
,

xB :=
{
t = a−1 sinh(aτB) , x = a−1[cosh(aτB)− 1] + ∆d , y = 0 , z = ∆z

}
. (4.12)

– 11 –



J
H
E
P
0
8
(
2
0
2
1
)
0
2
0

 

 

  

 

s 

 

A
 

 

B

A

 

zΔ

x
 

y
 

z
 

B

dΔ

(a)

  

 

s 

 

 

 

 

 

  

 

  

  

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

A
 

 

 

 

(b)

Figure 7. (a) The plot of two uniformly accelerated detectors with the acceleration in mutual
perpendicular directions near the reflecting boundary, (b) the corresponding worldlines of such two
detectors. Black arrows indicate the direction of acceleration.

Similarly, a substitution of eq. (4.12) into eq. (2.6) yields the nonlocal correlation term X,
denoted by X⊥ in the present case

X⊥ = −λ
2a2

4π2

∫ ∞
−∞

du

∫ ∞
0

dsf(u, s)
[ 1
hAB(u, s) −

1
hAB(u, s) + 4a2∆z2 (4.13)

+ 1
hBA(u, s) −

1
hBA(u, s) + 4a2∆z2

]
where

hAB(u,s) (4.14)
= 3+(a∆d−1)2−2cosh[a(u−s)]−2(1−a∆d)cosh[au]+2sinh(au)sinh[a(u−s)]−iε ,

and

hBA(u,s) (4.15)
= 3+(a∆d−1)2−2cosh(au)−2(1−a∆d)cosh[a(u−s)]+2sinh(au)sinh[a(u−s)]−iε .

Now with the formulae needed for examining the entanglement harvesting by two detectors
uniformly accelerated in all the three different scenarios, we are to show the results of our
numerical calculations below.

4.2.4 The numerical result and cross comparison

We now turn to explore the entanglement harvesting phenomenon for two detectors in
parallel, anti-parallel and mutually perpendicular acceleration via numerical evaluation.We
begin by plotting, in figures 8 and 9, the concurrence as a function of the distance between
the boundary and the detectors, ∆z, with other parameters of the system fixed at certain
values for all three acceleration scenarios. As we can see, the distance from the boundary
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Figure 8. The concurrence is plotted as a function of ∆z/σ with fixed Ωσ = 0.10, ∆d/σ = 1.00,
and aσ = {0.10, 0.50, 1.00} from left to right. In the limit of ∆z → 0, the concurrence C(ρAB) in
all acceleration scenarios will approach zero regardless of the values of acceleration a. Obviously,
there is a peak of concurrence near ∆z/σ ∼ 1.

∆z/σ significantly influences the harvested entanglement. Particularly, similar to that in
the situation of inertial detectors at rest, the entanglement harvesting is greatly inhibited
when the detectors are close to the boundary (∆z/σ � 1). It is worth pointing out that the
concurrence asymptotically approaches that without a boundary as the distance between
the detectors and boundary grows very large (i.e., ∆z/σ � 1), as a result of the fact that
the Wightman function reduces to its free-space form in the limit of ∆z → ∞. In fact,
this is valid irrespective of whether the detector is accelerating or not. Again similar to
that in the situation of inertial detectors at rest, there also exists, for the same reason, a
peak of the extracted entanglement approximately at the position where ∆z is comparable
to the duration parameter σ, for both fixed ∆d/σ and aσ in all three scenarios. This
phenomenon of entanglement enhancement by a boundary was similarly found in ref. [50]
where entanglement dynamics of uniformly accelerated polarizable atoms coupled with
electromagnetic fields in the presence of a reflecting boundary was examined. Here, the
general inhibition of entanglement harvesting and the peak occurrence of the harvested
entanglement that arise from the effects of the boundary still remain regardless of whether
two detectors are accelerated or not. Interestingly, the location of the peak, as shown in
figures 8 and 9, is almost independent of the acceleration scenarios, although the magnitude
of the peak is noticeably affected by the acceleration scenario. In general, the parallel
acceleration case seems to have a comparatively large peak for a small acceleration or
separation between two detectors, while for a large acceleration or separation between two
detectors the anti-parallel acceleration case takes the place.

Now let us turn our attention to a cross comparison of the entanglement harvesting in
various scenarios. From figure 8 and figure 9, one can find that the issue of which accelera-
tion scenario is better in terms of entanglement harvesting crucially depends on the value of
the acceleration aσ or the detectors’ separation ∆d/σ. Since the detectors’ thermalization
that arises from the effect of acceleration would generally inhibit the extraction of entan-
glement, thus the inertial detectors at rest are likely to harvest more entanglement than
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Figure 9. The concurrence is plotted as a function of ∆z/σ for various separation ∆d/σ =
{0.50, 0.80, 1.50}. Here, we have set Ωσ = 0.10 and aσ = 0.50. In the limit of ∆z → 0, the
concurrence C(ρAB) approaches zero regardless of the value of the separation ∆d.

those in uniform acceleration scenarios at the same distance ∆z from the boundary with
not too large energy gap Ω. Among three acceleration scenarios, the parallel acceleration
case is likely to harvest more entanglement for a small acceleration (aσ < 1 and a∆d� 1).
However, in contrast, the anti-parallel acceleration extracts more entanglement for a large
acceleration (aσ � 1). Physically, these features can be understood as follows. For a small
acceleration, the average detectors’ separation during the interaction with fields charac-
terized by the duration parameter σD is the dominant factor in the non-local correlation
term X. The smaller the separation, the large the |X|. As a result, comparatively more
entanglement is extracted for the parallel acceleration due to the fact that two detectors
in parallel acceleration has a smaller average detectors’ separation (i.e., they spend more
time closer to one another). This is consistent with what happens for the inertial detectors.
But, for a large acceleration, the decrease of |X| becomes much more complicated as now it
is a consequence of the intertwined effects from a and ∆d, so that the effect of acceleration
dominates in the non-local correlation term X and overweighs that of the detectors’ sep-
aration, resulting in the anti-parallel acceleration scenario harvesting more entanglement
although the parallel acceleration case still has a smaller average detectors’ separation.

For a more thorough analysis on the difference in three acceleration scenarios, we
plot the concurrence as a function of acceleration with different fixed ∆d/σ to compare
the influence of acceleration for all three acceleration scenarios in figure 10, and that of
the detectors’ separation with different fixed acceleration to compare the influence of the
detectors’ separation in figure 11.

As shown in figures 10 and 11, the harvested entanglement in general decreases as either
the acceleration a or the detectors’ separation ∆d increases regardless of the acceleration
scenario. Similar conclusions have also been reached in the case of the circular motion with
nonlinear acceleration [32]. Interestingly, as the acceleration increases, the concurrence for
the parallel acceleration case decreases faster than that for the anti-parallel acceleration
and perpendicular acceleration cases when ∆d/σ is not too small (e.g., ∆d/σ = 0.50 or
1.00 in figure 10). While for a small ∆d/σ, the concurrence for the parallel acceleration is
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Figure 10. The concurrence C/λ2 vs aσ for ∆d/σ = {0.20, 0.50, 1.00} in the order from the
left-to-right with fixed ∆z/σ = 0.50 and Ωσ = 0.10. In each plot, the different colored solid
lines correspond to the parallel, anti-parallel and mutually perpendicular acceleration respectively.
When ∆d/σ is not too small, there seems to exist an intersection of the three curves at a nonzero
aσ. However, for small ∆d/σ, such intersecting behavior is no longer apparent (e.g., the plot of
∆d/σ = 0.20).
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Figure 11. The plots of the concurrence vs ∆d/σ for aσ = {0.10, 0.50, 1.00} in the left-to-right
order with fixed ∆z/σ = 0.50 and Ωσ = 0.10. In each plot, a comparison of different scenarios is
implemented via different colored solid curves.

generally larger than that for other acceleration scenarios (see ∆d/σ = 0.20 in figure 10).
Therefore, when ∆d/σ is not too small, the detectors in parallel-acceleration comparatively
extract more entanglement from the fields over a certain range of relatively small values of
aσ. But the harvesting-achievable range of aσ, in which the entanglement can be harvested
successfully, may be shorter in the parallel-acceleration case than that in the anti-parallel
acceleration and perpendicular acceleration cases. Another interesting feature is that for
a very large acceleration, entanglement harvesting no longer occurs although the concrete
value of acceleration when the harvesting ceases depends on the acceleration scenario.
Qualitatively similar conclusions can also be drawn from figure 11 of the role of detectors’
separation ∆d/σ in entanglement harvesting with aσ fixed at certain values.
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Figure 12. The separation, ∆dmax, between two detectors when entanglement harvesting does
not occur is plotted as a function of the distance between detectors and boundary for the three
acceleration scenarios. Here, we have set Ωσ = 0.10 and aσ = {0.10 , 0.50 , 1.00} in the left-to-right
order, and the dashed curve denotes the case two rest detectors.
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Figure 13. The plot of the threshold acceleration, amax, is shown as a function of the distance be-
tween detectors and the boundary for the three acceleration scenarios. Here, we have set Ωσ = 0.10
and ∆d/σ = {0.20 , 0.50 , 1.00} in the left-to-right order.

To further understand the influence of the presence of the boundary on the harvesting-
achievable range of the separation ∆d and the acceleration a in the parameter space where
entanglement harvesting is possible, we define a new parameter amax to denote the maxi-
mum value of the acceleration a, beyond which entanglement harvesting does not occur any
more, and plot the dependence of ∆dmax and amax on the distance between the detectors
and the boundary in figures 12 and 13 in all three acceleration scenarios.

As we can see from these figures, ∆dmax and amax decrease with the increasing distance
between the detectors and the boundary. In particular, the presence of the boundary
could enhance the harvesting-achievable range of ∆d for detectors in acceleration or at
rest. This means that the positive impact of the boundary on the harvesting-achievable
range is irrespective of the detectors’ motion status. However, the quantitative details
of ∆dmax differ slightly for different scenarios. As shown in figure 12, the inertial case
has a comparatively larger ∆dmax than three acceleration scenarios for a certain fixed ∆z,
which can be simply attributed to the negative impact of the thermal noise that arises
from acceleration. When ∆z → ∞, ∆dmax and amax approach the corresponding values
in the free spacetime without boundaries. Therefore, we conclude that the presence of
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the boundary enlarges the parameter space of ∆d and a where the entanglement could be
extracted successfully as compared to the case without a boundary, although it generally
degrades the entanglement extracted by the accelerated detectors.

One can observe from figure 12a that, for a small acceleration (aσ � 1), three solid
curves approach the dashed curve, and this is expected since in the limit of a→ 0, we should
recover the inertial case with detectors at rest. Differences also show up for different ac-
celeration scenarios. For a small acceleration, one can see that the parallel acceleration
case has a larger ∆dmax than both anti-parallel and perpendicular acceleration cases, and
the smallest is the anti-parallel acceleration case. Physically, this means that the parallel
acceleration provides spacious “room” of separation for the detectors to extract the en-
tanglement successfully, and the anti-parallel acceleration provides the least “room” for
entanglement extraction. These properties are however inconspicuous in the regime near
the boundary. Note that the dashed line, representing ∆dmax/σ for two rest detectors, is al-
ways above the solid curves, which implies that acceleration always shortens the separation
between the detectors that allows the entanglement harvesting to occur.

As acceleration grows, ∆dmax will decrease because of the increased thermal noise
caused by the Unruh effect. However, the amount of the decrease differs for different
acceleration scenarios so that when the acceleration is no longer small, the order of the
magnitude of ∆dmax changes (see figure 12b and figure 12c). In place of the parallel accel-
eration, the anti-parallel acceleration now becomes the optimum choice that has the largest
∆dmax. This can be easily understood in the same way as we did for the comprehension
of figures 8 and 9.

In figure 13, similar conclusion about amax can also be obtained. For a large ∆d/σ,
the anti-parallel acceleration has comparatively larger amax than both the parallel and
perpendicular acceleration, which means that the case of anti-parallel acceleration has a
larger range of acceleration for the detectors to harvest entanglement in the parameter
space. However, for a small ∆d/σ, the case of the parallel acceleration, especially in the
region far from the boundary, is the optimum choice that has more “room” to achieve
the entanglement harvesting. Meanwhile, in the region close to the boundary, the values
of amax become considerably large, but the differences of amax among three acceleration
scenarios become tiny.

It is worth emphasizing that in the limit of ∆z → 0 (i.e., location on the boundary
plane), the corresponding Wightman function eq. (3.2) approaches zero. As a result, the
concurrence vanishes and does not depend on the parameters ∆d and a. Then the definition
of ∆dmax and ∆amax would make no physical sense. In the concrete numerical evaluation
for figures 12 and 13, ∆z/σ < 1/100 is approximately treated as two detectors being
located on the boundary plane and no further numerical calculation is actually performed.
Of course, if we attempt to implement the numerical integration for ∆z/σ < 1/100, the
vanishingly small integral and the possible oscillatory integrand with singularities should
require extremely high precision and very long computing time. Here, we choose not
to evaluate X and PD for ∆z/σ < 1/100, since such an evaluation is not expected to
qualitatively change our conclusions. For clarity, we summarize our main results in table 1
and 2 which follow.
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Harvested entanglement Three acceleration scenarios Rest case

Inhibited by the boundary
for ∆z � σ

Yes Yes

Peaks at ∆z ∼ σ for a not
large fixed ∆d

Yes, a comparatively smaller peak
than the inertial case

Yes

Decreasing harvesting-
achievable range of ∆d as
∆z increases

Yes Yes, a comparatively larger
harvesting-achievable range
than the acceleration case

Decreases as ∆d increases
for a fixed ∆z

Yes Yes

Table 1. Main results of the boundary influence for accelerated and inertial rest detectors.

Harvested entanglement Parallel acceleration Anti-parallel acceleration Perpendicular acceleration

Degrades with increasing ∆d
(acceleration a) for a large a
(∆d) at fixed ∆z

Most rapidly Rapidly More rapidly

The amount for a small
(large) a and ∆d at fixed ∆z

Most (least) amount Least (most) amount Medium amount

The harvesting-achievable
parameter space of ∆dmax

or amax

Largest (smallest) ∆dmax

or amax for a fixed small
(large) a or ∆d

Smallest (largest) ∆dmax

or amax for a fixed small
(large) a or ∆d

Medium ∆dmax or amax

Table 2. Main results for three acceleration scenarios in comparison.

5 Conclusion

In this paper, we have explored the phenomenon of entanglement harvesting for a pair of in-
ertial as well as uniformly accelerated UDW detectors near a perfectly reflecting boundary.
Three different acceleration scenarios, i.e., parallel, anti-parallel and mutually perpendic-
ular acceleration, are considered. We find that the presence of the boundary significantly
influences on the entanglement harvesting of the accelerated detectors. As a whole, the re-
flecting boundary inhibits the transitions of detectors and nonlocal correlation of the fields
so that the harvested entanglement would degrade when two detectors are close to the
boundary. However, when the distance between detectors and the boundary is comparable
to parameter σ which characterizes the interaction duration, the harvested entanglement
may approach a peak, which even goes beyond that without a boundary. More interest-
ingly, we find that the presence of the boundary, in all three acceleration scenarios, could
enlarge the parameter space (acceleration a and detectors’ separation ∆d) beyond which
the entanglement harvesting no longer occurs. These conclusions also qualitatively hold
for inertial detectors at rest.

A comparison of three different acceleration scenarios reveals that the entanglement
harvesting crucially depends on the distance between the detectors and the boundary, the
acceleration and the detectors’ separation. As far as the amount of the entanglement har-
vested is concerned, the detectors in parallel acceleration are likely to harvest the most
entanglement in the case of a small acceleration or small detectors’ separation. However,
those in anti-parallel acceleration may harvest the most entanglement in the case of a
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large acceleration and large detectors’ separation. For the parameter space that allows
entanglement extraction to occur, we find that, for a vanishing small acceleration, the
harvesting-achievable range of detectors’ separation for all three acceleration scenarios is
basically the same near boundary. However, in the region far away from the boundary,
the parallel acceleration is the optimum choice that has the largest detectors’ separation to
achieve entanglement harvesting. While for a not too small acceleration, the anti-parallel
acceleration becomes the optimum choice that has the largest separation. Similar conclu-
sions can be obtained for the harvesting-achievable range of acceleration when entanglement
harvesting is still possible with a certain fixed detectors’ separation. Also, our direct nu-
merical calculation instead of the saddle approximation seems to indicate that acceleration
always shortens the detectors’ separation that allows the entanglement harvesting to occur.

Finally, we have demonstrated how the presence of a boundary affects the entanglement
harvesting for two uniformly accelerated detectors. We anticipate that these methods can
be used to investigate the entanglement harvesting in other cases, such as two detectors
with different magnitudes of acceleration or with acceleration along the normal direction
of the boundary or even in curved background. It is quite a challenge to perform numerical
evaluation due to the complexity of the issue. We would rather leave such studies to
future works.
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A Derivation of PD

To verify eq. (3.3), let us begin from eq. (2.4). Taking into consideration the fact that the
Wightman function (3.2) for trajectory (3.1) is only a function of the difference between τ
and τ ′ and letting u = τ and s = τ − τ ′, we have, after integrating u firstly,

PD = λ2
∫ ∞
−∞

duχD(u)
∫ ∞
−∞

dsχD(u− s)e−iΩsW (s)

= λ2√πσ
∫ ∞
−∞

dse−iΩse−s
2/(4σ2)W (s) . (A.1)

By inserting eq. (3.1) into eq. (A.1) and performing some simple algebraic manipulations,
the transition probability can be written into two terms as

PD = P1 + P2 , (A.2)

with the first term satisfying

P1 = − λ
2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

sinh2(s̃− iε)
, (A.3)
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and the second term

P2 = λ2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

sinh2(s̃− iε)− a2∆z2 , (A.4)

where β := 2Ω/a and α := 1/(aσ)2. P1 can be rewritten as

P1 = − λ
2aσ

8π3/2

∫ ∞
−∞

ds̃

[
e−is̃βe−s̃

2α

sinh2(s̃− iε)
− e−is̃βe−s̃

2α

(s̃− iε)2 + e−is̃βe−s̃
2α

(s̃− iε)2

]

= λ2aσ

4π3/2

∫ ∞
0

ds̃
cos(s̃β)(sinh2 s̃− s̃2)

s̃2 sinh2 s̃
e−s̃

2α − λ2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

(s̃− iε)2 . (A.5)

In second line of the above equation, we have neglected the factor iε since the integral is
now regular. While the second term can be re-expressed as

− λ2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

(s̃− iε)2

= − λ
2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

s̃2 + iλ2aσ

8π1/2

∫ ∞
−∞

ds̃e−is̃βe−s̃
2αδ(1)(s̃) . (A.6)

Here, we have used the following identity that arises from the successive differentiation of
the Sokhotski formula,

1
(x± iε)n = 1

xn
± (−1)n

(n− 1)! iπδ
(n−1)(x). (A.7)

In addition, recalling the definition of a distribution g acting on a test function f

〈g, f〉 :=
∫ ∞
−∞

g(x)f(x)dx , (A.8)

we have the following identities for a distribution function [26, 52]〈1
x
, f(x)

〉
= PV

∫ ∞
−∞

f(x)
x

dx , (A.9)

〈 1
x2 , f(x)

〉
=
∫ ∞

0
dx
f(x) + f(−x)− 2f(0)

x2 , (A.10)

and 〈
δ(n)(x), f(x)

〉
= (−1)nf (n)(0) , (A.11)

where PV denotes the principle value of an integral. Thus, by using eq. (A.10) and
eq. (A.11), eq. (A.6) can be further written in a simple form as

− λ2aσ

8π3/2

∫ ∞
−∞

ds̃
e−is̃βe−s̃

2α

(s̃− iε)2 = λ2

4π
[
e−Ω2σ2 −

√
πΩσ Erfc

(
Ωσ
)]
. (A.12)

As for P2, it can be written as

P2 = λ2aσ

8π3/2

∫ 0

−∞
ds̃

e−is̃βe−s̃
2α

sinh2 s̃− a2∆z2 + iε
+ λ2aσ

8π3/2

∫ ∞
0

ds̃
e−is̃βe−s̃

2α

sinh2 s̃− a2∆z2 − iε

= λ2aσ

4π3/2 PV
∫ ∞

0
ds̃

cos(s̃β)e−s̃2α

sinh2 s̃− a2∆z2 + λ2aσ

4
√
π

e−αs̃
2 sin(βs̃)

sinh(2s̃)

∣∣∣∣∣
s̃=arcsinh(a∆z)

, (A.13)
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where eq. (A.7) and eq. (A.11) have been considered in the last step. Combining eqs. (A.5),
(A.12) and (A.13), one can easily verify the expression of the transition probability given
in eq. (3.3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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