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We explore the idea to bootstrap Feynman integrals using integrability. In particular, we put the recently
discovered Yangian symmetry of conformal Feynman integrals to work. As a prototypical example we
demonstrate that the D-dimensional box integral with generic propagator powers is completely fixed by its
symmetries to be a particular linear combination of Appell hypergeometric functions. In this context the
Bloch-Wigner function arises as a special Yangian invariant in four dimensions. The bootstrap procedure
for the box integral is naturally structured in algorithmic form. We then discuss the Yangian constraints for
the six-point double box integral as well as for the related hexagon. For the latter we argue that the
constraints are solved by a set of generalized Lauricella functions, and we comment on complications in
identifying the integral as a certain linear combination of these. Finally, we elaborate on the close relation to
the Mellin-Barnes technique and argue that it generates Yangian invariants as sums of residues.
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I. INTRODUCTION

Theoretical predictions for particle phenomenology
strongly depend on our understanding of Feynman inte-
grals. When the number of loops and legs increases,
computations quickly become intractable. Facing these
problems, theorists are challenged to identify new methods
to evaluate these integrals and to unveil their deeper
mathematical structure. Recently a new infinite dimen-
sional Yangian symmetry was identified for a large class of
so-called fishnet Feynman graphs [1,2]. In the present
paper we explore this connection between Feynman inte-
grals and the theory of integrable models, which play a
crucial role for developing analytical methods in all areas of
physics. Notably, these scalar fishnet integrals furnish some
of the most important building blocks of quantum field
theory at any loop order. Their integrability properties can
be understood through their interpretation as correlation
functions of an integrable biscalar fishnet model, which
represents an elegant reduction of deformed N ¼ 4 super
Yang-Mills theory [3]. Via this relation the integrability
features of the AdS=CFT correspondence find their way to

phenomenologically relevant building blocks of generic
quantum field theories. Moreover, this makes a connection
to an alternative interpretation of fishnet integrals in terms
of integrable vertex models, which was discovered by
Zamolodchikov almost 40 years ago [4].
In the present paper we investigate the constraining

power of the Yangian for conformal Feynman integrals. In
particular, we discuss the respective constraints for the first
two nontrivial cases of fishnet graphs in four dimensions.
These are the completely off-shell one-loop box and the
two-loop double box integral [5]:

ð1Þ

Conformal symmetry allows one to write these integrals as
functions of two and nine cross ratios, respectively. The
case of the double box integral is particularly interesting
since it has not been solved so far. Recently, a lot of
progress was made on understanding the seven-cross-ratio
limit of this integral, for which the two middle legs in
momentum space (dotted lines) are put on shell [6,7]. In
this limit the integral is known to be described by elliptic
functions [8]. Due to its interesting relation to the double
box [9] as outlined below, we also discuss the nine-variable
hexagon integral:
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ð2Þ

Also for this integral results are only known in a three-
particle on-shell case resulting in a function of six varia-
bles [10,11].
The Yangian symmetry employed in this paper pro-

vides the algebraic foundation of rational integrable
models. Traditionally it appears as a symmetry of integrable
S-matrices in two dimensions, where it typically fixes the
scattering matrix completely; cf. [12]. One may thus expect
similarly strong constraints for the above box, double box,
and hexagon integrals.
In the following we show that indeed the Yangian can be

used to fix the D-dimensional box integral with generic
propagator powers. We then discuss the analogous con-
straints for the double box and the related hexagon integral.
These constraints are formulated as systems of differential
equations in the conformal cross ratios for the respective
Feynman integrals. For the hexagon we argue that the
Yangian constraints are solved by a large set of generalized
(Srivastava-Daoust) Lauricella series in nine variables,
whose exact domains of convergence remain unclear. We
discuss a recursive strategy to fix overall constants of the
considered integrals by relating them to the star-triangle
equation in coincidence limits of external points. Finally,
we comment on the close relation of this bootstrap
approach to the Mellin-Barnes technique and the common
convergence issues faced for the considered six-point
integrals. We close with an extended outlook pointing at
various promising future directions.

II. CONFORMAL YANGIAN

Conformal Feynman integrals in D dimensions are built
from n-point vertices such that the powers aj of the n
connected propagators obey

P
n
j¼1 aj ¼ D; e.g., at one loop

we have

ð3Þ

Integrals built from such vertices are conformal; i.e., they
transform covariantly under the differential generators JA of
the conformal Lie algreba soð1; Dþ 1Þ, whose densities
read [13]

Pμ ¼ −i∂μ; Lμν ¼ ixμ∂ν − ixν∂μ;

D ¼ −ixμ∂μ − iΔ; Kμ ¼ 2xνLνμ − ix2∂μ − 2iΔxμ:

ð4Þ

Here the conformal dimensionΔ has to reflect the weight of
the respective integral; e.g., for the above one-loop integral
(3) one sets Δj ¼ aj for j ¼ 1;…; n. Due to their con-
formal symmetry, these integrals can be written in the form

In ¼ Vnϕðu1;…; uNÞ: ð5Þ

Here the prefactor Vn carries the conformal weight of the
integral while the variables uj denote the conformal cross
ratios whose number N depends on the number n of
external points.
For n ¼ 3 it is not possible to construct conformal cross

ratios, and hence, the above function ϕ is constant. This is
reflected in the well known star-triangle or uniqueness
relation, which holds for the conformality condition
aþ bþ c ¼ D:

ð6Þ

Here we have defined a0 ¼ D=2 − a as well as

Xabc ≔ πD=2 Γa0Γb0Γc0

ΓaΓbΓc
; ð7Þ

see e.g., [14], with Γx ¼ ΓðxÞ denoting the Gamma
function.
At four points, the function ϕ in (5) becomes nontrivial

due to the presence of two nontrivial conformal invariants z
and z̄ defined by

zz̄ ¼ x212x
2
34

x213x
2
24

; ð1 − zÞð1 − z̄Þ ¼ x214x
2
23

x213x
2
24

: ð8Þ

Hence, conformal symmetry is no longer sufficient to
completely fix the four-point function, and it is natural
to ask how one can further constrain the conformal
four-point integral Î4 ¼ ϕ̂ðz; z̄Þ=x213x224. As noted in the
Introduction, the class of fishnet graphs was recently shown
to feature an infinite dimensional extension of the con-
formal Lie algebra [1,2]. The so-called Yangian algebra is
generated by the level-zero generators given in (4) and the
level-one generators taking the form

ĴA ¼ 1

2
fABC

Xn
k¼1

Xk−1
j¼1

JCj J
B
k þ

Xn
j¼1

sjJAj : ð9Þ

Here fABC denote the dual structure constants of the
conformal algebra soð1; Dþ 1Þ, and the so-called evalu-
ation parameters sj are numbers associated with each
Feynman graph; cf. [1] and Sec. H. For instance, the
level-one momentum generator reads
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P̂μ ¼ −
i
2

Xn
j<k¼1

½ðLμν
j þ ημνDjÞPk;ν − ðj ↔ kÞ� þ

Xn
j¼1

sjP
μ
j :

ð10Þ

Notably, these level-one generators act nonlocally on the
external legs of the Feynman graphs; i.e., they have a
nontrivial coproduct [15]. The resulting invariance equa-
tions can be translated into partial differential equations
(PDEs) in the conformal cross ratios. More explicitly, the
application of the level-one generator to the integral In
yields

0 ¼ P̂μIn ¼ Vn

Xn
j<k¼1

xμjk
x2jk

PDEjkϕ: ð11Þ

Here, the coefficients PDEjk denote differential operators
depending only on the cross ratios, and we can employ
conformal transformations in order to vary their prefactors
independently. As shown in Appendix A the above Yangian
invariance condition requires that [17]

PDEjkϕ ¼ 0; 1 ≤ j < k ≤ n; ð12Þ

at least as long as we have no more than six external points.
Notably, this makes a connection between the Yangian
symmetry of fishnet Feynman graphs and systems of
differential equations for Feynman integrals which have
been studied in various contexts. We will exploit these
Yangian differential equations in the following.

III. BLOCH-WIGNER FUNCTION FROM
YANGIAN SYMMETRY

In order to illustrate the constraining power of the
Yangian algebra we start by considering the one-loop
box integral for the special case of propagator weights
aj ¼ 1 in D ¼ 4 dimensions:

ð13Þ

The Yangian invariance of the box integral translates into a
system of two partial differential equations

0 ¼ ½DjðzÞ −Djðz̄Þ�ϕ̂ðz; z̄Þ; j ¼ 1; 2; ð14Þ

where the differential operators Dj are given by

D1ðzÞ ¼ zðz − 1Þ2∂2
z þ ð3z − 1Þðz − 1Þ∂z þ z; ð15Þ

D2ðzÞ ¼ z2ðz − 1Þ∂2
z þ ð3z − 2Þz∂z þ z: ð16Þ

Clearly, a solution to the first differential equation will not
automatically solve the second equation and vice versa. It is
thus natural to ask which boundary conditions lead to
simultaneous solutions. We consider boundary conditions
on the line z ¼ z̄, which is the natural boundary of the
kinematic space described by the xi; cf. Appendix A for a
more detailed discussion. Expanding the equations around
this boundary, we find that the combination of both
differential equations constrains the boundary conditions
to four possible functions.
In order to find the complete solution of the above

system, we introduce the coordinates z1 and z2 as the
real and imaginary parts of z ¼ z1 þ iz2, and we expand
the equations around a generic point a ¼ ðz − z̄Þ=2i.
Moreover, we introduce the function ψðz1; z2Þ ¼
z2ϕ̂ðz1; z2Þ and expand around the line z2 ¼ a:

ψðz1; z2Þ ¼
X∞
n¼0

ðz2 − aÞn
n!

fa;nðz1Þ: ð17Þ

Note that this form is completely general (for generic a),
since we do not need to consider the possibility that ϕ̂
diverges for generic a. The above differential equations (14)
now translate into differential equations for the coefficient
functions fa;n. In particular, the full solution for the above
box integral can be obtained from fa;0 via the relation
ψðz1; aÞ ¼ fa;0ðz1Þ. Here fa;0 is essentially found by
solving an ordinary third-order differential equation, which
can be done straightforwardly in Mathematica. The integra-
tion constants appearing in the solution of these ordinary
differential equations can be fixed, e.g., by requiring that

∂afa;0ðz1Þ ¼ fa;1ðz1Þ: ð18Þ

In agreement with the boundary conditions, the full solution
to the Yangian constraints obtained in this way has four free
parameters cj:

ϕ̂ðz; z̄Þ ¼
X4
j¼1

cj
fjðz; z̄Þ
z − z̄

: ð19Þ

Here we have defined

f1 ¼ 1; ð20Þ

f2 ¼ logðz̄Þ − logðzÞ; ð21Þ

f3 ¼ logð1 − z̄Þ − logð1 − zÞ; ð22Þ

f4 ¼ 2Li2ðzÞ − 2Li2ðz̄Þ þ log
1 − z
1 − z̄

logðz̄zÞ: ð23Þ

Obviously, the box integral is invariant under permutations
of any of its external legs. This results in functional relations
for ϕ̂ðz; z̄Þ:
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ϕ̂ðz; z̄Þ ¼ ϕ̂ð1 − z; 1 − z̄Þ; ð24Þ

zz̄ ϕ̂ðz; z̄Þ ¼ ϕ̂ðz−1; z̄−1Þ: ð25Þ

Imposing these permutation symmetries on ϕ̂ uniquely fixes
the solution to be given by the well-known Bloch-Wigner
function f4 given in (23) divided by an overall factor z − z̄:

ϕ̂ðz; z̄Þ ¼ c4
f4ðz; z̄Þ
z − z̄

: ð26Þ

Below we will also demonstrate that the overall constant is
fixed by the star-triangle integral (6) and takes the value
c4 ¼ π2. This is in agreement with the results in the
literature [18].
In conclusion, the four-point box integral is completely

fixed by its symmetries. Note that we did not assume any
boundary conditions, nor did we use an ansatz to obtain the
solution. The situation resembles the star-triangle relation
at three points, which is fixed by the level zero of the
Yangian, i.e., by the conformal Lie algebra symmetry (see
Table I).

IV. PARAMETRIC BOX IN D DIMENSIONS

Next we would like to understand more generic Yangian-
invariant four-point functions. A natural extension is to
generalize the above four-point box to D spacetime
dimensions and to introduce generic propagator powers:

ð27Þ

Conformal symmetry requires that aþ bþ cþ d ¼ D and
that the scaling dimensions entering (4) take values

Δj ¼ ða; b; c; dÞj; j ¼ 1;…; 4: ð28Þ

Note that using the star-triangle relation (6), this integral
can be mapped (modulo an external propagator) to a two-
loop integral with two connected three-point stars:

ð29Þ

Here the parameter e is fixed through the constraint
aþ bþ e ¼ D=2. Note that the propagators on the
right-hand side sum up to D at each of the two integration
vertices. For D ¼ 6 this integral is the natural four-point
Yangian invariant composed of three-point vertices and
with propagator weights

a ¼ 1; b ¼ 1; c ¼ 2; d ¼ 2; e ¼ 1:

ð30Þ

To investigate the Yangian invariance of the above
D-dimensional integral with generic propagator powers
we write I4 ¼ V4ϕðu; vÞ, where

V4 ¼ x2bþ2c−D
14 x2d−D13 x−2c−2dþD

34 x−2b24 ; ð31Þ

and note that the evaluation parameters for the Yangian
generators are given in Eq. (H1). For conciseness we
introduce the Euler operators θj ¼ vj∂vj with

u≡ v1 ¼ zz̄; ð32Þ

v≡ v2 ¼ ð1 − zÞð1 − z̄Þ; ð33Þ

and the shorthand θjk ¼ θj þ θk. The Yangian constraints
then translate into the following parametric differential
equations:

0 ¼ ðαβ þ ðαþ βÞθ12 þ θ212 − θ1∂u − γ∂uÞϕðu; vÞ;
0 ¼ ðαβ þ ðαþ βÞθ12 þ θ212 − θ2∂v − γ0∂vÞϕðu; vÞ: ð34Þ

Here greek parameters are given in terms of latin propa-
gator powers and the spacetime dimension D:

α ¼ b; γ ¼ þD
2
− c − dþ 1;

β ¼ D
2
− d; γ0 ¼ −

D
2
þ bþ cþ 1: ð35Þ

Importantly, Eqs. (34) can be identified with the system of
partial differential equations defining the Appell hyper-
geometric function F4 of two variables u and v [19]:

F4

�
α; β
γ; γ0

; u; v

�
¼

X∞
m;n¼0

ðα; mþ nÞðβ; mþ nÞ
ðγ; mÞðγ0; nÞð1; mÞð1; nÞ u

mvn:

ð36Þ

Here the Pochhammer symbol is given by the ratio of
Gamma functions ðλ; kÞ ¼ Γλþk=Γλ. In agreement with our

TABLE I. The star-triangle integral (6) is fixed by the level-zero
Yangian symmetry, i.e., by invariance under the conformal Lie
algebra generators (4). Similarly, the four-point integral (13) is
fixed by invariance under the level-one Yangian generators (9)
supplemented by permutation symmetries.

Yangian 3 points 4 points

Level zero Fixed (star-triangle) ϕ̂ðz; z̄Þ
Level one þ perm. � � � Fixed (Bloch-Wigner)
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findings on the special case in the previous section, it is
well known that the space of solutions to the above PDEs is
spanned by four functions [20]:

g1 ¼ F4

�
α; β
γ; γ0

; u; v

�
; ð37Þ

g2 ¼ u1−γF4

�
αþ 1 − γ; β þ 1 − γ

2 − γ; γ0
; u; v

�
; ð38Þ

g3 ¼ v1−γ
0
F4

�
αþ 1 − γ0; β þ 1 − γ0

γ; 2 − γ0
; u; v

�
; ð39Þ

g4 ¼ u1−γv1−γ
0
F4

�
αþ 2 − γ − γ0; β þ 2 − γ − γ0

2 − γ; 2 − γ0
; u; v

�
:

ð40Þ

The final steps for fixing this integral will be outlined in
detail in Sec. V. For completeness let us already note that
we can employ the permutation symmetries of the box
integral to completely fix the solution up to an overall
constant N4:

ϕðu; vÞ ¼ N4½ΓαΓβΓ1−γ0Γ1−γg1ðu; vÞ
þ Γ1þα−γΓ1þβ−γΓγ−1Γ1−γ0g2ðu; vÞ
þ Γ1þα−γ0Γ1þβ−γ0Γ1−γΓγ0−1g3ðu; vÞ
þ Γ2þβ−γ−γ0Γ2þα−γ−γ0Γγ0−1Γγ−1g4ðu; vÞ�: ð41Þ

The overall constant can be fixed by comparison with the
star-triangle integral in a coincidence limit of two external
points:

N4 ¼
π2þαþβ−γ−γ0

ΓαΓ1þβ−γΓ1þβ−γ0Γ2þα−γ−γ0
: ð42Þ

If we send one of the external points of the above four-
point invariant to infinity via a conformal transformation,
this result perfectly agrees with the triangle integral
computed by Boos and Davydychev [21].
As already pointed out in the classic reference [20], the

limit a; b; c; d → 1 of unit propagator powers in D ¼ 4 is
subtle, since in this limit the above four solutions (37)–(40)
coincide. Moreover, their coefficients in (41) diverge.
Careful investigation shows that the solution is given by
(cf. [22])

ϕðu; vÞ ¼ π4

3
h1ðu; vÞ þ π2h2ðu; vÞ: ð43Þ

Here h1ðu; vÞ ¼ F4ð1; 1; 1; 1; u; vÞ, and using the notation
f;α ≔ ∂αf and f;αβ ≔ ∂α∂βf we have defined

h2 ¼ ½h1 logðuÞ logðvÞ þ logðuÞðF4;α þ F4;β þ 2F4;γ0 Þ
þ logðvÞðF4;β þ F4;β þ 2F4;γÞ
þ F4;αα þ F4;ββ þ 2F4;αβ

þ 2F4;αγ þ 2F4;αγ0 þ 2F4;βγ þ 2F4;βγ0 þ 4F4;γγ0 �α;β
γ;γ0¼1:

This result indeed reproduces the Bloch-Wigner function
(26) as found above.

V. BOOTSTRAPPING THE BOX

In this section we demonstrate explicitly how to boot-
strap the box integral with generic propagator powers from
scratch. This is particularly instructive in view of the more
involved examples considered in the subsequent sections.
In order to solve the Yangian differential equations, we
make a power series ansatz,

ϕðu; vÞ ¼
X
m;n

gαβγγ
0

mn umvn; ð44Þ

and translate the PDEs into the following set of recurrence
relations for the coefficient functions gαβγγ

0
m;n :

gαβγγ
0

m;nþ1 ¼
ðmþ nþ αÞðmþ nþ βÞ

ðnþ 1Þðnþ γ0Þ gαβγγ
0

mn ; ð45Þ

gαβγγ
0

mþ1;n ¼
ðmþ nþ αÞðmþ nþ βÞ

ðmþ 1Þðmþ γÞ gαβγγ
0

mn : ð46Þ

These are straightforwardly solved using Mathematica and
the solution can be brought to the following form [23],
which is of course only determined up to an overall
constant:

gαβγγ
0

mn ¼ 1

Γmþ1Γnþ1ΓmþγΓnþγ0Γ1−m−n−αΓ1−m−n−β
: ð47Þ

Wewill refer to this expression as the fundamental solution.
Note that in order to show that gmn solves the above
recurrence equations, it is not necessary to assume thatm, n
are integers. We have hence found a formal solution of the
PDEs for every x; y ∈ ½0; 1Þ:

Gαβγγ0
x;y ðu; vÞ ¼

X
m∈xþZ
n∈yþZ

gαβγγ
0

mn umvn: ð48Þ

The solution with x ¼ y ¼ 0 corresponds to the solution g1
given in (37), i.e., to the unshifted Appell function F4:

G1 ≡Gαβγγ0
0;0 ðu; vÞ ¼

F4½α;βγ;γ0 ; u; v�
Γ1−αΓ1−βΓγΓγ0

: ð49Þ

Hence, G1 inherits its convergence properties from F4; i.e.,
for x ¼ y ¼ 0 the power series (48) converges if
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ffiffiffiffiffiffi
juj

p
þ

ffiffiffiffiffiffi
jvj

p
< 1: ð50Þ

Here, the sum in (48) effectively only extends over m; n ∈
N since the above solution (47) implies that

gαβγγ
0

m;−n ¼ gαβγγ
0

−m;n ¼ 0 ∀ m; n ∈ N: ð51Þ

In fact, this can also be observed directly by inspecting
the recurrence relations (45) and (46). Note that if we move
x or y slightly away from zero, the sum in Eq. (48) will
extend over all of Z and diverge. We assume that a
convergent series is obtained only if x and y are chosen
in such a way that the series terminates at a lower or upper
bound for both m and n. To achieve this we can identify
all zeros of the solution (47), generalizing (51) for
ðx; yÞ ¼ ð0; 0Þ. This limits us to the following 12 choices
for ðx; yÞ:

Region I Region II Region III
ð0; 0Þ ð−α; 0Þ ð0;−αÞ

ð1 − γ; 0Þ ð−β; 0Þ ð0;−βÞ
ð0; 1 − γ0Þ ðγ0 − α − 1; 1 − γ0Þ ð1 − γ; γ − α − 1Þ

ð1 − γ; 1 − γ0Þ ðγ0 − β − 1; 1 − γ0Þ ð1 − γ; γ − β − 1Þ:
ð52Þ

Hence, we have 12 solutions of the Yangian PDEs, which
are of the form (48) and for which the series terminates.
Anticipating their interpretation we have already split these
into three categories.
Let us see how this basis of solutions is related to the four

functions gj¼1;2;3;4 given in Eqs. (37)–(40) of the previous
Sec. IV. Using the identity (G2) for Gamma functions, we
immediately see that G1 corresponds to the previous
solution g1. For the case ðx; yÞ ¼ ð1 − γ; 0Þ we have

G2 ≡Gαβγγ0
1−γ;0ðu; vÞ ¼ u1−γ

X
m;n∈Z

gαβγγ
0

mþ1−γ;nu
mvn: ð53Þ

Now, note that

gαβγγ
0

mþ1−γ;n ¼ gαþ1−γ;βþ1−γ;2−γ;γ0
mn ; ð54Þ

which follows directly from the properties of the funda-
mental solution (47). We have thus found that

Gαβγγ0
1−γ;0ðu; vÞ ¼ u1−γGαþ1−γ;βþ1−γ;2−γ;γ0

0;0 ; ð55Þ

which is related to g2 by a constant factor that can be
obtained from Eq. (49). In a similar fashion, we find the
relations

G3 ≡Gαβγγ0
0;1−γ0 ðu; vÞ ∝ g3ðu; vÞ; ð56Þ

G4 ≡ Gαβγγ0
1−γ;1−γ0 ðu; vÞ ∝ g4ðu; vÞ: ð57Þ

Modulo overall constants we have thus established the
correspondence Gj ↔ gj for j ¼ 1, 2, 3, 4; i.e., we have
identified the solutions in Region I with the four solutions
discussed in Sec. IV.
So what is the meaning of the remaining eight solutions?

For the case ðx; yÞ ¼ ð0;−αÞ, we note that

gαβγγ
0

m;n−α ¼ gα;1þα−γ0;γ;1þα−β
m;−m−n ; ð58Þ

which implies

Gα;β;γ;γ0
0;−α ðu; vÞ ¼ v−αGα;1þα−γ0;γ;1þα−β

0;0

�
u
v
;
1

v

�
: ð59Þ

Comparing with the convergence condition (50), we see
that in this case the series expansion is hence convergent ifffiffiffiffiffiffiffiffiffiffiffiju=vjp þ ffiffiffiffiffiffiffiffiffiffij1=vjp

< 1. Note that we have not found a new
solution beyond the four we already encountered. The
additional solutions correspond to analytic continuations of
the four original series to different regions of kinematical
space (see Fig. 1):

Region I∶
ffiffiffiffiffiffi
juj

p
þ

ffiffiffiffiffiffi
jvj

p
< 1; ð60Þ

Region II∶
ffiffiffiffiffiffiffiffiffiffiffi
ju=vj

p
þ

ffiffiffiffiffiffiffiffiffiffi
j1=vj

p
< 1; ð61Þ

Region III∶
ffiffiffiffiffiffiffiffiffiffiffi
jv=uj

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
j1=uj

p
< 1: ð62Þ

FIG. 1. Regions I–III (green) as defined in (60), (61), and (62).
The striped (red) area indicates the region of Euclidean physical
kinematics, while its complement in the above graph corresponds
to the Minkowski signature. The dashed boundary between the
two regions is given by the line 4u ¼ ð1þ u − vÞ2 or z ¼ z̄,
respectively.
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In order to see the relation to the original solutions
explicitly, we can employ the functional identity (G3) for
the Appell function F4 given in App. G. This yields the
relation

Gαβγγ0
0;−α ðu; vÞ ¼ e−iπα

Γ1−γ0Γγ0

Γγ0−αΓ1þα−γ0
G1

þ e−iπð1þα−γ0Þ Γ2−γ0Γγ0−1

Γ1−αΓα
G3: ð63Þ

Similar relations can be established for the remaining
choices of ðx; yÞ as well. We have thus derived from
scratch that the solution to the Yangian PDEs is described
by a linear combination of four series converging around
u ¼ v ¼ 0:

ϕ ¼ c1G1 þ c2G2 þ c3G3 þ c4G4: ð64Þ

Here, we have suppressed the dependence on the cross
ratios u, v as well as the parameters α; β; γ; γ0 for the
functions Gj and the coefficients cj.

A. Permutation symmetries

As anticipated in Sec. IV, the coefficients can be con-
strained by employing the invariance of the integral I4
under simultaneous permutations of the external points xj
and the associated propagator powers a, b, c, d entering the
solutions through the relations (35). In order to derive the
consequences of permutation invariance in a compact form,
we consider the generators σx1 ¼ ð1234Þ and σx2 ¼ ð12Þ of
the permutation group S4, which act on the external legs of
the Feynman diagram. These generators act on the cross
ratios and parameters α; β; γ; γ0 as

σ1∶
� ðu; vÞ ↦ ðv; uÞ;
ðα; β; γ; γ0Þ ↦ ð1þ β − γ; 1þ α − γ; γ0; 2 − γÞ;

σ2∶
� ðu; vÞ ↦ ðu=v; 1=vÞ;
ðα; β; γ; γ0Þ ↦ ð1þ β − γ0; β; γ; 1þ β − αÞ:

We recall the relation between the function ϕðu; vÞ and the
integral

I4 ¼ x2γ
0−2

14 x2γ−234 x−2β13 x−2α24 ϕαβγγ0 ðu; vÞ; ð65Þ

and we note the functional relations that follow from
invariance under σ1 and σ2, respectively:

ϕαβγγ0 ðu; vÞ ¼ u1−γϕ1þβ−γ;1þα−γ;γ0;2−γðv; uÞ; ð66Þ

ϕαβγγ0 ðu; vÞ ¼ v−βϕ1þβ−γ0;β;γ;1þβ−α
�
u
v
;
1

v

�
: ð67Þ

The invariance under σ1 allows one to express the coef-
ficients c2, c3, and c4 in the ansatz (64) in terms of c1:

c2 ¼ c1 ∘ σ1; c4 ¼ c1 ∘ σ21; c3 ¼ c1 ∘ σ31: ð68Þ

The additional invariance under σ2 implies functional
relations for c1 as a function of the parameters α; β; γ; γ0.
The simplest way to state these relations is to note that the
function

Nαβγγ0
4 ¼ π−4 sin πα sin πβ sin πγ sin πγ0cαβγγ

0
1 ð69Þ

is invariant under both the actions of σ1 and σ2 on the
parameters. As a function of the parameters a, b, c, d, N4 is
hence invariant under all permutations of its arguments.
This allows us to express all coefficients appearing in our

ansatz (64) in terms of the coefficient Nαβγγ0
4 .

B. Overall constant.

The above requirement does not determine the coeffi-
cient Nαβγγ0

4 uniquely, and we employ the coincidence limit
2 → 1 of external points of the Feynman diagram in order
to fix it. Applying this limit to the box integral, we find

lim
2→1

I4 ¼
Z

dDx0

x2ðaþbÞ
10 x2c30x

2d
40

¼ Xaþb;c;d

x2d
0

13 x
2ðaþbÞ0
34 x2c

0
14

: ð70Þ

On the other hand, for the cross ratios the limit 2 → 1
implies that ðu; vÞ → ð0; 1Þ, and we can write

lim
2→1

I4 ¼
limðu;vÞ→ð0;1Þϕðu; vÞ

x2d
0

13 x
2ðaþbÞ0
34 x2c

0
14

: ð71Þ

We thus read off that

lim
ðu;vÞ→ð0;1Þ

ϕðu; vÞ ¼ Xaþb;c;d: ð72Þ

On the basis functions Gj appearing in our ansatz (64), this
limit acts as (we assume γ < 1)

G0 →
Γγ0−α−β

Γ1−αΓ1−βΓγΓγ0−αΓγ0−β
; G1 → 0;

G2 →
Γγ0−α−β

Γ1−αΓ1−βΓγΓγ0−αΓγ0−β
; G3 → 0:

Here we have employed the identity (G4) for the Gauß
hypergeometric function to end up with expressions in
terms of Gamma functions. Hence, we have obtained the
relation
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lim
ðu;vÞ→ð0;1Þ

ϕðu; vÞ ¼ Nαβγγ0
4 Γ1−γΓγ0Γ1−γ0Γγ0−α−β

×

�
ΓαΓβ

Γγ0−αΓγ0−β
−
Γ1þα−γ0Γ1þβ−γ0

Γ1−αΓ1−β

�

¼ πD=2Γ1−γΓ1þα−γ0Γβ

Γ1þαþβ−γ0Γ1þβ−γΓ2þα−γ−γ0
;

which we solve for Nαβγγ0
4 to find

Nαβγγ0
4 ¼ π2þαþβ−γ−γ0

ΓαΓ1þβ−γΓ1þβ−γ0Γ2þα−γ−γ0
¼ πD=2

ΓaΓbΓcΓd
:

Note that the latter form makes the permutation symmetry
manifest. We have thus bootstrapped the D-dimensional
box integral (27) with generic propagator powers and
obtained the result

ϕ ¼ Nαβγγ0
4 ðG̃1 − G̃2 − G̃3 þ G̃4Þ; ð73Þ

where for j ¼ 1;…; 4 we have defined

G̃j ¼
π4 csc πγ csc πγ0Gα;β;γ;γ0

xj;yj

sin πðαþ xj þ yjÞ sin πðβ þ xj þ yjÞ
: ð74Þ

Here ðxj; yjÞ label the four shifts in Region I of (52), and we
remind the reader that the propagator powers a, b, c, d are
related to the greek parameters via (35).
It may be useful to summarize the algorithmic steps that

allowed us to bootstrap the above box integral:
(1) translate the Yangian PDEs into recurrence equa-

tions (45) and (46);
(2) find a fundamental solution (47);
(3) find all zeros (52) of the fundamental solution;
(4) classify the zeros by their kinematic region (52);

(5) in a given kinematic region, use the permutation
symmetries and coincidence limits to fix the linear
combination.

Importantly, we note that as external input we have used the
convergence properties of the Appell function F4 as given
in the literature. Moreover, classification of the kinematic
regions (point 4.) can be achieved through investigation of
shift identities of the form (58); similar identities are not
guaranteed to exist for fundamental solutions à la (47) for
different integrals.

VI. SIX-POINT DOUBLE BOX

Being a member of the class of fishnet Feynman graphs
discussed in [1,2], the double box integral is also invariant
under the conformal Yangian algebra:

ð75Þ

In this case conformal symmetry dictates that I3;3 is of the
form

Î3;3 ¼
1

x213x
2
25x

2
46

ϕ̂3;3ðu1;…; u9Þ; ð76Þ

with a conformally invariant function ϕ̂3;3 of nine cross
ratios that we define as in Appendix A (cf. [24]). The partial
differential equations arising from the Yangian level-one
symmetry read

PDEjk ϕ̂3;3ðu1;…; u9Þ ¼ 0; ð77Þ

with 6 of the 15 differential operators PDEjk given by

PDE12 ¼ −θ26 þ u6ðD168 þ 1ÞD365 þ u5u6ðD168 þ 1ÞðD2534 þ 1Þ − u6u8D365D1928 þ u4u5u6D142ðD168 þ 1Þ
þ u6u8u9D365D392 − u5u6u7u8D1928ðD2534 þ 1Þ;

PDE13 ¼ θ8ðD168 þ 1Þ − u8D1928D5867 − u7u8D475D1928 þ u8u9D392D5867;

PDE14 ¼ ðθ1 − θ9ÞD1928 − u1D142ðD168 þ 1Þ þ u9D392ðD798 þ 1Þ;
PDE15 ¼ −θ2D392 þ u2D1928ðD2534 þ 1Þ − u1u2ðD168 þ 1ÞðD2534 þ 1Þ þ u2u4D475D1928;

PDE16 ¼ ðθ3 − 1Þθ3 − u3D365D392 þ u2u3D365D1928 − u3u5D392D5867 − u1u2u3ðD168 þ 1ÞD365

− u3u5u7D392ðD798 þ 1Þ þ u2u3u4u5D1928D5867;

PDE25 ¼ ðθ3 − θ4ÞðD2534 þ 1Þ þ u3D365D392 − u4D142D475: ð78Þ
Above, for compactness, the Euler operators θj ¼ uj∂uj are packaged into

Dijk ¼ θi þ θj − θk;

Dijkl ¼ θi þ θj − θk − θl: ð79Þ
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Moreover, the remaining nine Yangian differential oper-
ators PDEjk of the set (12), which annihilate ϕ3;3, are
obtained from the following permutations of cross ratio
labels:

σu3 ¼ ð16Þð25Þð34Þð79Þ; σu4 ¼ ð19Þð34Þð67Þ: ð80Þ

Notably, these permutations of the cross ratios ui leave ϕ3;3

invariant:

ϕ3;3ðu6; u5; u4; u3; u2; u1; u9; u8; u7Þ
¼ ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ð81Þ

ϕ3;3ðu6; u5; u4; u3; u2; u1; u9; u8; u7Þ
¼ ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ: ð82Þ

These identities result from imposing invariance of the
double box Feynman graph under the permutations

σx3 ¼ ð14Þð25Þð36Þ; σx4 ¼ ð13Þð46Þ; ð83Þ

of the six external legs, respectively. An important point to
note is that these permutations leave not only the integral
invariant but also the level-one momentum generator (10).
Therefore, the full invariance equation (11) stays invariant
under this permutation, which makes it easy to identify
pairs of differential equations that are related by the
corresponding functional identity. Further functional iden-
tities generalizing the invariance under the permutations
above for the box integral, are listed in Appendix D.
Similar differential equations as given in (78) can be

written down for the double box integral with generic
propagator powers

I3;3 ¼
Z

dDx0dDx00

x2a10x
2b
20x

2c
30x

2l
000x

2d
400x

2e
500x

2f
600

¼ V3;3ϕ3;3; ð84Þ

where we have stripped off a prefactor

V3;3 ¼ x2l−D13 xD−2l
14 x−2d−2e15 x2dþ2e−2a

16 x−2b26 xD−2c−2l
36

× x2l−2d−D46 x2d56; ð85Þ

and conformality requires aþ bþ cþ l ¼ D and dþ eþ
f þ l ¼ D.
Solving these differential equations in nine variables is

obviously a much more involved task than for the two-
variable box function. Moreover, the double box integral
has fewer permutation symmetries than the totally sym-
metric cross integral. It is thus reasonable to approach this
problem from a more symmetric direction and to consider a
simpler situation.

VII. HEXAGON

The double box integral inD dimensions is related to the
(Dþ 2)-dimensional hexagon via the following simple
differential equation relating the respective conformally
invariant functions [9]:

∂u8ϕ3;3ðu1;…; u9; DÞ ¼ −
πD=2−1

Γl
ϕ6ðu1;…; u9; Dþ 2Þ;

ð86Þ

which holds true for D=2 − l ¼ 1 and with ϕ3;3 and ϕ6 as
defined in Appendix C. In fact, using the expressions
provided in Appendix C it can be shown that the following
slightly stronger equation holds true

ð87Þ

Note that here the Feynman diagrams do not represent
the full integrals but rather the conformally invariant
functions ϕ3;3ðu1;…; u9Þ on the left-hand side and
ϕ6ðu1;…; u7; u0; u9Þ on the right-hand side, respectively.
The above relation implies that the hexagon integral obeys
similar differential equations as the double box. In fact,
we can give an argument independent of the double box,
which shows that the hexagon is Yangian invariant in three
and six spacetime dimensions. First, in three dimensions,
the hexagon is simply the fundamental Yangian-invariant
vertex, similar to the box integral in four dimensions [2]. In
six dimensions, Yangian invariance follows from the
following two observations: (i) In [2] it was noted that
six-dimensional Feynman graphs with propagator weights
two and built from three-point vertices are Yangian
invariant (similar results hold for deformed propagator
powers). (ii) Using the star-triangle relation (6), the
hexagon multiplied by external propagators on the left-
hand side can be related to a three-point graph shown on the
right-hand side:

ð88Þ

Here the star-triangle relation requires the constraints aþ
f þ g ¼ D=2, bþ hþ c ¼ D=2, and dþ jþ e ¼ D=2.
Let us now consider the resulting Yangian constraints for

the conformal hexagon integral in the form

ð89Þ

YANGIAN BOOTSTRAP FOR CONFORMAL FEYNMAN INTEGRALS PHYS. REV. D 101, 066006 (2020)

066006-9



Here we have aþ bþ cþ dþ eþ f ¼ D and the
prefactor

V6 ¼ x2D−2a−2f
16 x−2b26 x−2c36 x−2d46 x−2e−2fþD

56 x2f−D15 : ð90Þ

Moreover, we have redefined the cross ratios employed in
the conformal parametrization above according to

w1 ¼ u3; w2 ¼ u3u5; w3 ¼ u3u5u7;

w4 ¼ u9; w5 ¼ u2u3u9; w6 ¼ u2u3u4u5u9;

w7 ¼ u8u9; w8 ¼ u1u2u3u8u9; w9 ¼ u6u8u9: ð91Þ

These turn out to be convenient in order to write the
fundamental solution to the Yangian recurrence equations
in the form of a Taylor series.
Having established the Yangian symmetry and the

conformal parametrization of the hexagon integral, we
employ the evaluation parameters given in Eq. (H3) and
apply the Yangian level-one generator P̂μ to the above
expression. This yields an invariance equation of the form
(11), from which we read off the 15 partial differential
equations collected in Appendix E. We then employ a
series ansatz in terms of the cross ratios (91):

ϕ6ðwjÞ ¼
X

n1;…;n9

hn1���n9w
n1
1 � � �wn9

9 : ð92Þ

Here, for convenience we have set

hn1���n9 ¼ fn1���n9
Y9
j¼1

Γ−1
njþ1: ð93Þ

The recurrence equations for fn1���n9, which follow from
imposing the Yangian PDEs on the above series ansatz,
are listed in Appendix F. Notably, these equations appear
too complicated to be solved by elementary means.
However, a fundamental solution to these recurrences
can be obtained from the Feynman parameter represen-
tation of the hexagon integral given in (C3). Taylor
expanding this representation in the cross ratios and
integrating order by order yield the expression

fn1���n9 ¼
1

Γ1−M1
Γ1−M2

Γ1−M3
Γ1−M4

ΓM5
ΓM6

; ð94Þ

where we use the shorthands

M1 ¼ αþ
X9
k¼1

nk;

M2 ¼ β1 þ n1 þ n5 þ n8 þ n9;

M3 ¼ β2 þ n2 þ n6 þ n7 þ n8;

M4 ¼ β3 þ n3 þ n4 þ n5 þ n6;

M5 ¼ γ1 þ n1 þ n2 þ n3 þ n5 þ n6 þ n8;

M6 ¼ γ2 þ n4 þ n5 þ n6 þ n7 þ n8 þ n9; ð95Þ

and the greek parameters encode the propagator powers
of (89):

α ¼ D
2
− f; β1 ¼ b; β2 ¼ c; β3 ¼ d;

γ1 ¼ 1þD
2
− a − f; γ2 ¼ 1þD

2
− e − f: ð96Þ

The above function hn1���n9 defined through (93) repre-
sents an analogue of the fundamental solution (47) for the
box integral. Plugging this solution to the recurrence
equations into the series (92), we obtain a Yangian
invariant that can be identified with a (Srivastava-
Daoust) Lauricella function [25,26]

H1 ¼
X

n1;…;n9∈Z
hn1;…;n9w

n1
1 …wn9

9 : ð97Þ

This is the analogue of the function G1 given in (49) in
the bootstrap of the box integral. Similar to the case of
the box, H1 yields the analytic part of the hexagon
integral (89) in the conformal variables wj:

ð98Þ

Here the coefficient c1 is given by

c1 ¼
π2þαþβ1þβ2þβ3−γ1−γ2Γ1−β1Γ1−β2Γ1−β3ραργ1ργ2

Γ1þα−γ1Γ1þα−γ2Γ2þβ1þβ2þβ3−γ1−γ2
; ð99Þ

with the shorthand ρx ¼ ΓxΓ1−x. As before, additional
solutions of the Yangian invariance conditions can be
obtained by summing over a shifted lattice with base
point ðx1;…; x9Þ:

Hx1…x9 ¼
X

nj∈xjþZ

hn1…n9w
n1
1 …wn9

9 : ð100Þ

Obviously we have H1 ¼ H0���0. Restricting to base
points for which the series terminates in all nine
parameters, we find 2530 possible sets ðx1;…; x9Þ, which
compares to the situation of the box integral as follows:
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Box Hexagon

Variables 2 9

Series 12 2530

ð101Þ

As for the case of the box integral, we expect that these
Yangian invariants are series representations converging
in different domains but are linked by functional relations
similar to Eq. (G3). One may thus expect that the total
number of Yangian invariants is lower than the number
2530 of series representations found above.
In the algorithm outlined at the end of Sec. V, the next

step would be to classify the above sets ðx1;…; x9Þ, i.e., the
zeros of the fundamental solution hn1���n9 , by their kinematic
region. For the box integral this can most efficiently be
done by employing the shift identities listed in Appendix B.
However, it is not clear that similar shift identities exist for
the given fundamental solution of the hexagon. This
obscures the identification of a linear combination of the
above series that represents the full hexagon integral.
Moreover, a full analysis of the domain of convergence
of all series representations seems to require a significant
improvement in the current understanding of the properties
of the above generalized Lauricella functions. We thus
leave further steps into these directions for future work.
As argued above, the double box integral is even more

involved than the hexagon considered in this section. This
makes it clear that gaining full control over the hexagon
bootstrap is a natural prerequisite for further investigations
of the double box discussed in Sec. VI.

VIII. RECURSIVE STRUCTURE AND
OVERALL CONSTANTS

As demonstrated in Sec. VII, Yangian symmetry does not
fix the considered six-point integrals completely. This under-
lines the need for further constraints required to eventually
bootstrap these integrals. As argued in Sec. V for the case of
the box integral, the considered six-point integrals can also be
recursively related to the star-triangle relation which can thus
be used to e.g., fix their overall constants:

ð102Þ

While the four-point situationwas alreadydiscussed inSec.V
[see (71)], let us explain the six-point cases in more detail.

A. Hexagon

In the case of the hexagon we can take a coincidence
limit for three external points, e.g., 2 → 1, 3 → 1, 4 → 1, to
obtain the triangle integral of (6):

lim
2→1
3→1
4→1

I6 ¼
Z

dDx0

x2ðD−e−fÞ
10 x2e50x

2f
60

¼ XD−e−f;e;f

x2f
0

15 x
−2ðeþfÞ0
56 x2e

0
16

: ð103Þ

Note that taking only two of the above coincidence limits
yields the box integral at an intermediate step. On the other
hand, for the above cross ratios (91) the triple coincidence
limit implies

wj → ŵj; with ŵj¼1;2;3 ¼ 1; ŵj>3 ¼ 0; ð104Þ
and we can evaluate the limit on the right-hand side of (89)
to find

lim
2→1
3→1
4→1

I6
limwj→ŵj

ϕ6ðw1;…; w9Þ
x2f

0
15 x

−2ðeþfÞ0
56 x2e

0
16

: ð105Þ

Comparing to (103) we thus read off that

lim
wj→ŵj

ϕ6ðw1;…; w9Þ ¼ Xaþb;cþd;eþf: ð106Þ

Note that we can similarly take coincidence limits of
different external points leading to further equations which
constrain the coefficients of Yangian invariant functions
and in particular the overall constant of the integral.

B. Double box

The case of the double box integral is slightly more
involved. Consider the conformal double box with param-
eters obeying aþ bþ cþ l ¼ D and lþ eþ f þ g ¼ D:

I3;3 ¼
Z

dDx0dDx00

x2a10x
2b
20x

2c
30x

2l
000x

2d
400x

2e
500x

2f
600

: ð107Þ

We now take the coincidence limits 2 → 1 and 5 → 4 of the
external points such that

lim
5→4
2→1

I3;3 ¼
Z

dDx0dDx00

x2ðaþbÞ
10 x2c30x

2l
000x

2ðdþeÞ
400 x2f

500
; ð108Þ

and we use the star-triangle relation (6) on the first integral
to find the box integral

lim
5→4
2→1

I3;3 ¼
Xaþb;c;l

x2l
0

13

Z
dDx00

x2c
0

100x
2ðaþbÞ0
300 x2ðdþeÞ

400 x2f
600

: ð109Þ

Note that the sum of propagators in the remaining box
integral gives lþ dþ eþ f ¼ D; i.e., the integral has
conformal Yangian symmetry. We can take a further
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coincidence limit 4 → 3 and use again the star-triangle
relation to find

lim
5→4
2→1
4→3

I3;3 ¼
Xaþb;c;l

x2l
0

13

Z
dx00

x2c
0

100x
2ðaþbÞ0þ2ðdþeÞ
300 x2f

600

¼ Xaþb;c;lXD=2−c;D=2þc−f;f

x2ðD−l−fÞ
13 x2ðf−cÞ16 x2c36

: ð110Þ

For the cross ratios the above consecutive triple coinci-
dence limit corresponds to

wj → ŵj; with ŵj¼1;4;5;7;8 ¼ 1; ŵj¼2;3;6;9 ¼ 0:

ð111Þ

Hence, the limit on the right-hand side of (84) can be
written as

lim
5→4
2→1
4→3

I3;3 ¼
limwj→ŵj

ϕ3;3ðw1;…; w9Þ
x2ðD−l−fÞ
13 x2ðf−cÞ16 x2c36

: ð112Þ

We thus read off that

lim
wj→ŵj

ϕ3;3ðw1;…; w9Þ ¼ Xaþb;c;lXD=2−c;D=2þc−f;f: ð113Þ

Again, this is the result of only one possible coincidence
limit, and we can obtain further constraints by taking other
limits.

IX. YANGIAN INVARIANTS AND
MELLIN-BARNES INTEGRALS

Integrability is very constraining and if properly under-
stood one can expect that it completely fixes physical
observables through the underlying symmetry constraints.
In [1,2] it was shown that certain Feynman graphs provide a
means to obtain an infinite class of Yangian invariants. In
the previous section we have shown that these Yangian
invariants have a fine structure; i.e., there are more
elementary Yangian invariants whose linear combination
is selected by imposing further symmetries (e.g., permu-
tation invariance) of the considered Feynman integrals. So
what is the construction principle underlying these more
elementary Yangian invariants, and what is the most natural
way to fix their linear combination? In order to get more
insights into this, it is useful to compare the above
construction to the Mellin-Barnes technique for obtaining
certain Feynman integrals.
Let us discuss the box integral in more detail. Its Mellin-

Barnes representation is most conveniently obtained by
iteratively applying the rule

1

ðAþ BÞλ ¼
1

Γλ

1

2πi

Z
C
dz

Az

Bλþz Γ−zΓλþz ð114Þ

to the Feynman parameter representation in Appendix C
and integrating out the Feynman parameter integrals. Here
the contour C extends from −i∞ to þi∞ and is chosen
such that it separates the two pole series of the Gamma
functions. If the intersection between the areas character-
ized by Reð−zÞ > 0 and Reðλþ zÞ > 0 is nonempty, the
contour C can be taken to be a straight line cþ iR with c
being a real number such that both Gamma functions have a
positive real part. Carrying out the above procedure yields
the following Mellin-Barnes representation for the box
integral:

ϕ4 ¼
N4

ð2πiÞ2
Z
κ4þiR2

dz1 ∧ dz2ω4; ð115Þ

where

ω4 ¼ uz1vz2Γ−z1Γ−z2Γ1−γ−z1Γ1−γ0−z2Γαþz1þz2Γβþz1þz2 ;

ð116Þ

and withN4 as defined in Eq. (42). Here, κ4 labels a point in
R2 and is again chosen such that all Gamma functions have
a positive real part. In Fig. 2 the latter region is depicted as a
meshed (blue) triangle in the center of the plot and κ4
corresponds to the orange dot, which can be moved within

FIG. 2. Singularity structure of the Mellin-Barnes integrand
(116). Colored lines correspond to poles of Gamma functions.
The orange dot in the center of the plot marks the base point of the
integration and can be moved inside the meshed (blue) triangle
without changing the value of the integral. The latter region is
determined by the criterion that all Gamma functions have a
positive real part. Red cones mark the regions in which residues
need to be summed to obtain a valid series representation of the
integral.
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the fundamental triangle without changing the value of the
integral.
The standard method to compute integrals of the form

(114) and (115) is to use Jordan’s lemma in conjunction
with the residue theorem [27], leading to series represen-
tations, which under favorable circumstances can be
summed. To apply Jordan’s lemma, one first needs to
analyze in which domains of the integration space the
integrand is a decreasing function. An important quantity in
this context is the vector Θ⃗ which for denominator-free
integrands of the form

Y
i

Γai1z1þ���þbinznþci ð117Þ

is defined as

Θj ¼
X
i

aij: ð118Þ

Evaluating this quantity for the integrals (114) and (115)
shows that both have Θ⃗ ¼ 0 thus corresponding to the
so-called degenerate case [28]. In this case, the Gamma
functions are essentially balanced and integration contours
can typically be closed in multiple ways leading to series
representations which are valid in different kinematic
regimes. For example, the integration contour C in
Eq. (114) can be closed via the left or right half-plane
resulting in series representations which converge for
jA=Bj > 1 and jA=Bj < 1, respectively. Similarly, we will
see that multiple series representations of the box integral
coexist which are analytic continuations of each other. To
obtain these, we proceed by analyzing the singularity
structure of the Mellin-Barnes integrand (116). The
Gamma functions have poles for nonpositive integer values
of their arguments. In the Reðz1Þ − Reðz2Þ-plane these
poles correspond to singular lines; see Fig. 2. For example,
Γ−z1 has poles for z1 ¼ m with m being a non-negative
integer, and these are depicted as vertical solid orange lines.
Similarly, the Gamma functions involving only z2 lead to
the green horizontal lines while those depending on the
linear combination of both z variables correspond to the
diagonal lines. An interesting point to note is that due to
the special structure of the Mellin-Barnes integrand (116),
finding the zeros of the fundamental solution (47) is
essentially the same thing as finding the zeroth represent-
atives of all (infinite) families of singular lines.
Let us now turn to the question of how to express the

Mellin-Barnes integral (115) as a sum of residues. The
residues need to be computed at points where singular lines
intersect but we have not yet explained which subgroups
of poles should be summed to obtain a valid series
representation of the original integral. However, for two-
dimensional integrals there exists a simple graphical
procedure which can be used to find all of these regions
[28,29]. The first step consists of drawing an arbitrary cone

R with vertex κ4 in the Reðz1Þ − Reðz2Þ-plane. The cone is
called compatible with the families of singular lines if each
line intersects at most one side of the cone R. In Fig. 2 we
have drawn the three cones RI;II;III (boundaries of the red
areas) that are compatible with the six families of singular
lines. Once such a compatible cone is found, the integral
can be expressed as

ϕ4 ¼ N4

X
z⃗�∈Ri

res
z⃗¼z⃗�

ω4; ð119Þ

where the summation ranges over all intersection points
that lie inside the compatible cone Ri. As an example, let us
compute the representation that results from summing all
residues inside cone RI. Obviously, there are four families
of poles in this cone, which can be parametrized as

z⃗�1 ¼ ðm; nÞ; z⃗�2 ¼ ðmþ 1 − γ; nþ 1 − γ0Þ;
z⃗�3 ¼ ðmþ 1 − γ; nÞ; z⃗�4 ¼ ðm; nþ 1 − γ0Þ; ð120Þ

in complete agreement with table (52). Computing residues
at positions z⃗�1 yields

res
z⃗¼z⃗�

1

ω4 ¼ ΓαΓβΓ1−γΓ1−γ0
ðα; mþ nÞðβ; mþ nÞ
ðγ; mÞðγ0; nÞm!n!

umvn;

ð121Þ

where ðλ; kÞ is the Pochhammer symbol as defined in (36).
The residues at positions z⃗�1 obviously correspond to the
fundamental solution (47). Since calculating residues in
cone RI is essentially trivial, we leave the computation of
the other residues to the reader and merely state the final
result for the Mellin–Barnes integral (116)

ϕ4 ¼ N4½ΓαΓβΓ1−γ0Γ1−γ g1ðu; vÞ
þ Γ1þα−γΓ1þβ−γΓγ−1Γ1−γ0 g2ðu; vÞ
þ Γ1þα−γ0Γ1þβ−γ0Γ1−γΓγ0−1 g3ðu; vÞ
þ Γ2þβ−γ−γ0Γ2þα−γ−γ0Γγ0−1Γγ−1 g4ðu; vÞ�; ð122Þ

with giðu; vÞ and N4 as defined in Sec. IV. Note that the
above result is in complete agreement with Eq, (41) and
the Mellin-Barnes result for the triangle integral of [21].
Summing the residues in the other two cones is most
conveniently done by performing the change of variables
z01 ¼ z1 and z02 ¼ z1 þ z2 and yields similar expressions
but with Appell functions depending on ðu=v; 1=vÞ and
ðv=u; 1=uÞ, respectively. The expressions obtained by
summing over residues in cones RII and RIII exactly agree
with those obtained by applying the F4-identity (G3) to
Eq. (122), thus showing that all three expressions are
indeed analytic continuations of each other which converge
in different kinematic regions. The above arguments now
also make it clear why we chose to label the cones in
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exactly the same way as we labeled kinematic regions in
Sec. V: the three cones are in one-to-one correspondence
with the three kinematic regions in Fig. 1.
Finally, let us note that all four families of poles

fz⃗�1; z⃗�2; z⃗�3; z⃗�4g in cone RI individually lead to a Yangian
invariant quantity. This statement follows immediately
from the discussion in Sec. V and does also apply to the
eight remaining families of poles. This shows that in order
to obtain a Yangian invariant, one merely needs to sum over
all residues originating from the same type of intersection
of singular lines (see Fig. 2). Summing over all residues
inside a given cone is apparently not required for Yangian
symmetry.
Having discussed the box integral in great detail, let us

now turn to the D-dimensional hexagon integral (89).
Applying 9 times the Mellin-Barnes identity to the
Feynman parameter representation (C3) yields

ϕ6 ¼
N6

ð2πiÞ9
Z
κ6þiR9

dz1 ∧ � � � ∧ dz9ω6; ð123Þ

where

N6 ¼
π2þαþβ1þβ2þβ3−γ1−γ2

Γβ1Γβ2Γβ3Γ1þα−γ1Γ1þα−γ2Γ2þβ1þβ2þβ3−γ1−γ2
; ð124Þ

and

ω6 ¼
Y9
i¼1

ðwzi
i Γ−ziÞΓαþz1þz2þz3þz4þz5þz6þz7þz8þz9

× Γβ1þz1þz5þz8þz9Γβ2þz2þz6þz7þz8

× Γβ3þz3þz4þz5þz6Γ1−γ2−z4−z5−z6−z7−z8−z9

× Γ1−γ1−z1−z2−z3−z5−z6−z8 ; ð125Þ

with the cross ratios wi as defined in Appendix A. In
complete analogy with the two-dimensional case, the
vector κ6 ∈ R9 is defined such that all Gamma functions
have positive real parts.
Evaluating the vector Θ⃗ as defined in Eq. (118) shows

that the above integral is degenerate as well, i.e., Θ⃗ ¼ 0, so
that presumably multiple series representations coexist.
Since the integration space is nine-dimensional, the graphi-
cal method outlined above can no longer be applied and one
needs to rely on purely algebraic methods to find all
compatible cones. This, however, is left for future work.
Instead, we will content ourselves with computing the
analog of the fundamental solution (121). For this, we only
need to find the residues at the intersection points
z⃗�1 ¼ ðn1; n2; n3; n4; n5; n6; n7; n8; n9Þ. We obtain

res
z⃗¼z⃗�

1

ω6 ¼ ΓαΓβ1Γβ2Γβ3Γ1−γ1Γ1−γ2ð−1Þn5þn6þn8

×
ðα;M1Þðβ1;M2Þðβ2;M3Þðβ3;M4Þ

ðγ1;M5Þðγ2;M6Þ
Y9
i¼1

wni
i

ni!
;

ð126Þ

where theMj¼1;…;6 were defined in (95) and again we used
Pochhammer notation to emphasize the hypergeometric
nature of the residues. More precisely, summing over all the
residues z⃗�1 yields a multivariate hypergeometric series of
Srivastava-Daoust type (see [25,26]). Picking other sets of
residues leads to similar expressions with some linear
combinations of ni ’s replaced by others, all of them
representing individual Yangian invariants.
Let us finish this section with a remark on the consid-

eration of D-dimensional integrals with deformed propa-
gator powers. While the deformation naively just adds
another layer of complexity, it actually turns out to be a
blessing in the context of Mellin-Barnes integrals as it
disentangles different sets of poles which would otherwise
overlap. For the box integral the latter statement becomes
transparent by comparing the result (122) to the result for
the undeformed box integral (43). In the case of the
hexagon integral it even seems that the deformation is
what makes the residue theorem applicable in the first place
since in the undeformed case there exist singular points in
which more than nine singular hyperplanes intersect, thus
making the residues a priori no longer well defined.

X. CONCLUSIONS AND OUTLOOK

In this paper we have demonstrated that it is possible
to bootstrap Feynman integrals using their Yangian sym-
metry. In the case of the two-variable box integral we have
shown in full detail that the Yangian constrains the func-
tional form of the integral to a space spanned by four
Appell hypergeometric functions F4. Their linear combi-
nation is fixed through the integral’s permutation sym-
metries, and the overall constant is determined by relating
the integral to the star-triangle relation in a coincidence
limit of external points. Hence, we have completely boot-
strapped the D-dimensional conformal box integral with
generic propagator powers. For the much harder nine-
variable hexagon and double box integrals, we have
discussed the analogous Yangian constraints, which in
each case can be translated into a system of 15 differential
equations in the conformal cross ratios. For the hexagon
PDEs we have argued that these constraints are solved by a
set of 2530 generalized Lauricella series. Due to this large
number and the poor understanding of the convergence
properties of these solutions, it was not possible to identify
a linear combination of these series that corresponds to
the integral.
These investigations suggest plenty of directions that

require further understanding. First, the discussion in

LOEBBERT, MÜLLER, and MÜNKLER PHYS. REV. D 101, 066006 (2020)

066006-14



Sec. IX illustrates the close connection to the Mellin-
Barnes technique for the computation of Feynman inte-
grals, which in turn can be understood through the close
connection between Mellin-Barnes integrals and hyper-
geometric functions. In our context, the Mellin-Barnes
integrand is closely related to the fundamental solution of
the Yangian recurrence equations. In fact, both approaches
share similar problems for integrals with a larger number of
variables. These are to identify the correct linear combi-
nation of series solutions and to understand their conver-
gence properties. Already in the two-variable case a proper
convergence analysis is laborious; see e.g., [29] for the
explicit discussion of the convergence of two-variable
Mellin-Barnes integrals. This underlines the importance
of getting better control over the mathematical properties of
the often poorly understood multivariable generalizations
of hypergeometric functions. A serious convergence analy-
sis for the nine-variable case seems indeed very hard.
Let us point out that in this paper we have observed that

the Yangian differential equations for Feynman integrals
can be formulated for generic spacetime dimension D,
whereas the symmetry found in [2] was phrased in different
but fixed spacetime dimensionsD ¼ 3, 4, 6. While here the
approach with generic D emerged naturally, the case most
interesting for phenomenological applications is D ¼ 4
with unit propagator powers. It is thus natural to ask
whether working directly in this limit, the considered
integrals can be bootstrapped more easily. For the case
of the box integral we have seen in Sec. III that indeed in
this limit the Yangian constraints yield the solution by
elementary means. This solution, however, seems less
algorithmic than the bootstrap for generic propagator
powers and thus less simple to generalize. The subtleties
of the limit of unit propagator powers discussed in Sec. IV
show that it has various advantages to work with the
deformed integral. Nevertheless it is clearly interesting to
further investigate the unit-propagator bootstrap, e.g., by
studying the Yangian constraints on the symbol of the
respective function, similar to the approach of [11] for the
hexagon integral with three massless and three massive
corners.
In addition to the Yangian constraints, here we used the

permutation symmetries of the box integral as well as a
coincidence limit of two external legs to fix it. Aesthetically
it would be more pleasing to fix an integral by integrability
(alias Yangian symmetry) alone. That this is indeed in reach
is suggested by the recursive structure described in
Sec. VIII. Similar to the conformal symmetry of scattering
amplitudes in N ¼ 4 super Yang-Mills theory [30], it may
be possible to include this structure into the representation
of the Yangian on Feynman integrals. Certainly in the case
of on-shell legs, the conformal differential equations
acquire inhomogeneities, and the resulting equations have
been shown to yield powerful tools for the computation of
Feynman integrals [31,32].

For the double box, the case with unit propagator powers
and on-shell legs is known to be described by elliptic
functions, whose theory in the context of Feynman inte-
grals is still under construction [6–8,33]. It would be very
interesting to apply the Yangian PDEs studied in this paper
to an ansatz for this integral, once such an ansatz becomes
available. Moreover, explicitly relating the above elliptic
formalism and the hypergeometric building blocks that
naturally emerge in the context of the Yangian PDEs should
be a worthwhile goal.
The relation of Yangian symmetry to the PDEs (12)

shows that the roots of the Yangian symmetry lie in systems
of partial differential equations in the conformal cross
ratios. Notably, there are various strategies to write down
differential equations for Feynman integrals. In particular,
the more formal approach of the recent papers [34–36]
using the Gelfand-Kapranov-Zelevinsky systems seems
closely related to ours. It would be interesting to study
the systematics behind this relation and to see in how far the
resulting systems of differential equations agree.
The main tool of the present paper is the Yangian Hopf

algebra acting on certain Feynman graphs. Recently,
similar algebraic structures were found in the context of
other classes of Feynman integrals, in particular also in the
context of Appell and Lauricella hypergeometric functions
(see e.g., [37,38]). It should be enlightening to investigate
the parallels in these approaches and to understand whether
both algebraic structures coincide or coexist.
Curiously, integrability also enters the scene of conformal

correlation functions from a different direction. In [39] and
several follow-up works it has been shown that conformal
blocks can be understood as eigenfunctions of an integrable
Calogero-Sutherland Hamiltonian. There the eigenvalue
equation is obtained from the conformal Casimir equation
known to hold for the conformal blocks. Understanding the
connection between that approach and the integrability
properties of conformal correlators employed in the present
paper should be instructive. A natural starting point is the
box integral considered here, which can be interpreted as a
correlation function in the fishnet theory of [3].
While the present paper deals with the constraints for

scalar Feynman integrals, Feynman integrals including
fermions can also be shown to obey a Yangian symmetry
[2]. The respective diagrams are again interpreted as cor-
relators in a generalized fishnet model (see also [40,41]).
An obvious task is thus to bootstrap the simplest examples
of fermionic Feynman integrals and to see how far this
approach reaches for those cases.
Certainly, it is an interesting question on its own to

understand the constraining power of integrability in
the context of four-dimensional high energy physics.
However, a more ambitious goal of this program is to
develop efficient integrability methods for the computa-
tion of Feynman integrals and to understand the deeper
mathematical structures underlying quantum field theory.
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Here it will be important to further extend the traditional
integrability toolbox to the situations at hand. For the case
of the yet unknown six-point integrals discussed in this
paper, the present status report furnishes the groundwork
for further progress in this direction.
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APPENDIX A: DETAILS ON CONFORMAL
CROSS RATIOS

In order to understand the degrees of freedom that
remain after imposing conformal invariance, it is helpful
to consider the conformal compactification of our under-
lying spacetime, on which the conformal group acts
linearly [42]. In the case of Euclidean four-dimensional
space, the conformal compactification can be realized by
the light cone in Rð1;5Þ,

−ðX00 Þ2 þ
X5
i¼1

ðXiÞ2 ¼ 0; ðA1Þ

modulo the identification X ∼ λX. We can map this space to
R4 and vice versa employing the identifications

xμ ¼ Xμ

X0 þ X5
; ½X� ¼ ½1þ x2∶2xμ∶1 − x2�: ðA2Þ

We consider six points fXig and constrain their coordinates
as far as possible using SOð1; 5Þ transformations, i.e.,
conformal symmetry. For the first two points, it is clear
that using only SO(5) rotations, we can reach the form

½X1� ¼ ½1∶0∶0∶0∶0∶1�;
½X4� ¼ ½a∶b∶0∶0∶0∶c�: ðA3Þ

We can then determine the stabilizer of ½X1� by requiring
that M ∈ soð1; 2Þ only acts as a scaling on y ¼ ð1; 0; 1Þ
and exponentiation of the elements spanning this space. In
this way, we find that we can reach the form

½X4� ¼ ½1∶0∶0∶0∶0∶ − 1�; ðA4Þ

corresponding to infinity in R4. Proceeding similarly, we
find that ½X3� can be brought to the form

½X3� ¼ ½1∶1∶0∶0∶0∶0�; ðA5Þ
which leaves us with SO(3) as the stabilizer of these three
points. It is then straightforward to constrain the following
three points to

xμ2 ¼ ðz1; z2; 0; 0Þ; ðA6Þ
xμ5 ¼ ðz3; z4; z5; 0Þ; ðA7Þ
xμ6 ¼ ðz6; z7; z8; z9Þ; ðA8Þ

where the points on the Dirac light cone (A1) follow from
the relation (A2). It becomes clear from the above con-
struction that in the case of four points, there are 2 degrees of
freedom (compared to the 16 − 15 ¼ 1 one could expect
based on the dimension of the conformal group), since a
stabilizer group SO(2) remains. We also note that the range
of the coordinates zi is clear, since we can always pick the
respective points inR4 they represent. However, by perform-
ing rotations with angle π in R4, we can always enforce that

z2 ≥ 0; z5 ≥ 0; z9 ≥ 0: ðA9Þ
In terms of the vectors ½Xi� on the Dirac cone, the

conformal cross ratios are given by

uijkl ¼
ðXi · XjÞðXk · XlÞ
ðXi · XkÞðXj · XlÞ

¼ x2ijx
2
kl

x2ikx
2
jl

: ðA10Þ

It is helpful to express the z-variables in terms of one set of
independent cross ratios. This facilitates checking whether
any other set of cross ratios is independent (by expressing it
in terms of the first set) and is also a handy tool in order to
derive the relations between two given sets of cross ratios.
For this purpose, we consider the following set of cross
ratios:

v1 ¼ u1234 ¼ z21 þ z22;

v2 ¼ u1432 ¼ ðz1 − 1Þ2 þ z22;

v3 ¼ u1435 ¼ ðz3 − 1Þ2 þ z24 þ z25;

v4 ¼ u1534 ¼ z23 þ z24 þ z25;

v5 ¼ u1234u1425 ¼ ðz1 − z3Þ2 þ ðz2 − z4Þ2 þ z25;

v6 ¼ u1436 ¼ ðz6 − 1Þ2 þ z27 þ z28 þ z29;

v7 ¼ u1634 ¼ z26 þ z27 þ z28 þ z29;

v8 ¼ u1234u1426

¼ ðz1 − z6Þ2 þ ðz2 − z7Þ2 þ z28 þ z29;

v9 ¼ u1534u1456

¼ ðz3 − z6Þ2 þ ðz4 − z7Þ2 þ ðz5 − z8Þ2 þ z29: ðA11Þ
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For the first two of the above cross ratios, we also employ
the notation

v1 ¼ zz̄≡ u; v2 ¼ ð1 − zÞð1 − z̄Þ≡ v; ðA12Þ
with z ¼ z1 þ iz2 and z̄ its complex conjugate. For these,
we note the relations

z1 ¼
1

2
ð1þ u − vÞ; z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
u − z21

q
; ðA13Þ

from which we read off that u, v are restricted to the domain

4u ≥ ð1þ u − vÞ2; ðA14Þ
in which the radicand in (A13) is non-negative. Working
with a Minkowskian signature, we could reach the
configuration

½X1� ¼ ½1∶0∶0∶0∶0∶1�;
½X2� ¼ ½1 − z̃1z̃2∶z̃1 þ z̃2∶z̃1 − z̃2∶0∶0∶1þ z̃1z̃2�;
½X3� ¼ ½0∶1∶0∶0∶0∶1�;
½X4� ¼ ½1∶0∶0∶0∶0∶ − 1�; ðA15Þ
which leads to the expressions

ũ ¼ z̃1z̃2; ṽ ¼ ð1 − z̃1Þð1 − z̃2Þ: ðA16Þ
Solving these for z̃i shows that these cross ratios are
restricted by the relation

4ũ ≤ ð1þ ũ − ṽÞ2; ðA17Þ
covering the opposite domain of the Euclidean cross ratios
and overlapping only along the line 4u ¼ ð1þ u − vÞ2.
Returning to the Euclidean cross ratios given in (A11),

we note that expressing the z-variables in terms of these
cross ratios is a straightforward exercise (which inciden-
tally also shows that the given cross ratios are indeed
independent). We find the relations (in addition to the ones
given above for z1 and z2)

z3 ¼
1

2
ð1þ v4 − v3Þ;

z4 ¼
1

2z2
ðv1 − 2z1z3 þ v4 − v5Þ;

z5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 − z23 − z24

q
;

z6 ¼
1

2
ð1þ v7 − v6Þ;

z7 ¼
1

2z2
ðv1 − 2z1z6 þ v7 − v8Þ;

z8 ¼
1

2z5
ðv4 − 2z3z6 − 2z4z7 þ v7 − v9Þ;

z9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v7 − z26 − z27 − z28

q
: ðA18Þ

The cross ratios vi given in this appendix merely serve as a
tool to understand the range of cross ratios and their
independence and to establish relations between competing
sets of cross ratios. In the discussion of the double box and
hexagon, respectively, we employ different sets of cross
ratios. We list the explicit definition of these below:

u1 ¼
x214x

2
23

x213x
2
24

; u2 ¼
x215x

2
24

x214x
2
25

; u3 ¼
x216x

2
25

x215x
2
26

;

u4 ¼
x225x

2
34

x224x
2
35

; u5 ¼
x226x

2
35

x225x
2
36

; u6 ¼
x212x

2
36

x213x
2
26

;

u7 ¼
x236x

2
45

x235x
2
46

; u8 ¼
x213x

2
46

x214x
2
36

; u9 ¼
x214x

2
56

x215x
2
46

: ðA19Þ

For completeness we also redisplay the redefined cross
ratios employed in the context of the hexagon:

w1 ¼ u3; w2 ¼ u3u5; w3 ¼ u3u5u7;

w4 ¼ u9; w5 ¼ u2u3u9; w6 ¼ u2u3u4u5u9;

w7 ¼ u8u9; w8 ¼ u1u2u3u8u9; w9 ¼ u6u8u9:

ðA20Þ

The introduction of the z-variables is also helpful in
order to discuss the “independence” of the vectors

aμjk ¼
xμjk
x2jk

; ðA21Þ

which allows us to conclude that the equation

X
j<k

aμjkPDEjkϕ ¼ 0 ðA22Þ

implies that

PDEjkϕ ¼ 0 for all j; k: ðA23Þ

In order to see this, we start from the explicit configurations
Xi given around Eq. (A4) and employ a special conformal
transformation, which is represented by

Λc ¼

0
B@

1þ 1
2
c2 −cμ − 1

2
c2

−cμ 14 cμ

1
2
c2 −cμ 1 − 1

2
c2

1
CA ðA24Þ

on the conformal compactification (cf. e.g., [43]), also for a
more detailed discussion on the conformal compactifica-
tion. Additionally, it is helpful to employ a rotation with
angle π in the (5,6)-plane in order to avoid one of the points
being mapped to infinity in Euclidean R4. In this way, we
obtain explicit expressions for the aμij, which depend on
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variables z and the parameters cμ of the special conformal
transformation. We note that Eq. (A22) is constructed in
such a way that the coefficients PDEjkϕ are conformally
invariant and thus independent of the parameters cμ.
Expanding all four components of (A22) in powers of
the parameters cμ is then sufficient to establish (A23).

APPENDIX B: SHIFT IDENTITIES
FOR THE BOX

The expansion coefficients (47) of the solutions to the
Appell PDEs,

gαβγγ
0

mn ¼ 1

Γmþ1Γnþ1ΓmþγΓnþγ0Γ1−m−n−αΓ1−m−n−β
;

satisfy a number of shift identities such as (54) and (58)
given above. For a more systematic understanding, note
that all 48 possible shifts of this type can be generated from
the following three relations:

gαβγγ
0

mn ¼ g1þβ−γ;1þα−γ;γ0;2−γ
n;mþ1−γ ;

gαβγγ
0

mn ¼ g1þβ−γ0;β;γ;1þβ−α
m;−m−n−β ;

gαβγγ
0

mn ¼ gβαγγ
0

mn : ðB1Þ
The first two of these shifts correspond to the generators
σ1, σ2 of the permutation group, respectively. In order to
derive relations such as (55) for all 12 series representations
of the solutions of the Appell PDEs, we note the following
shifts:

gαβγγ
0

mþ1−γ;n ¼ g1þα−γ;1þβ−γ;2−γ;γ0
mn ;

gαβγγ
0

m;nþ1−γ0 ¼ g1þα−γ0;1þβ−γ0;γ;2−γ0
mn ;

gαβγγ
0

mþ1−γ;nþ1−γ0 ¼ g2þα−γ−γ0;2þβ−γ−γ0;2−γ;2−γ0
mn ;

gαβγγ
0

m−α;n ¼ gα;1þα−γ;1þα−β;γ0
−m−n;n ;

gαβγγ
0

m−β;n ¼ g1þβ−γ;β;1þβ−α;γ0
−m−n;n ;

gαβγγ
0

mþγ0−α−1;nþ1−γ0 ¼ g1þα−γ0;2þα−γ−γ0;1þα−β;2−γ0
−m−n;n ;

gαβγγ
0

mþγ0−β−1;nþ1−γ0 ¼ g1þβ−γ0;2þβ−γ−γ0;1þβ−α;2−γ0
−m−n;n ;

gαβγγ
0

m;n−α ¼ gα;1þα−γ0;γ;1þα−β
m;−m−n ;

gαβγγ
0

m;n−β ¼ g1þβ−γ0;β;γ;1þβ−α
m;−m−n ;

gαβγγ
0

mþ1−γ;nþγ−α−1 ¼ g1þα−γ;2þα−γ−γ0;2−γ;1þα−β
m;−m−n ;

gαβγγ
0

mþ1−γ;nþγ−β−1 ¼ g1þβ−γ;2þβ−γ−γ0;2−γ;1þβ−α
m;−m−n : ðB2Þ

APPENDIX C: FEYNMAN PARAMETRIZATIONS

In this appendix we list (dual conformal) Feynman
parameter representations [44–46] for the integrals dis-
cussed in this paper. In their most general form, the
integrals read

I4 ¼
Z

dDx0
x2a10x

2b
20x

2c
30x

2d
40

¼ V4ϕ4;

I3;3 ¼
Z

dDx0dDx00

x2a10x
2b
20x

2c
30x

2l
000x

2d
400x

2e
500x

2f
600

¼ V3;3ϕ3;3;

I6 ¼
Z

dDx0
x2a10x

2b
20x

2c
30x

2d
40x

2e
50x

2f
60

¼ V6ϕ6; ðC1Þ

where x2a is short for ðx2Þa. Note that we evaluate all inte-
grals at their conformal point; i.e., the propagator weights
at each vertex have to add up to the dimension D.
The prefactors Vi carry the conformal weight of the integral
and are given by

V4 ¼ x2d−D13 x2bþ2c−D
14 x−2b24 xD−2c−2d

34 ;

V3;3 ¼ x2l−D13 xD−2l
14 x−2d−2e15 x2dþ2e−2a

16 x−2b26 xD−2c−2l
36

× x2l−2d−D46 x2d56;

V6 ¼ x2f−D15 xD−2a−2f
16 x−2b26 x−2c36 x−2d46 xD−2e−2f

56 : ðC2Þ

The above way of factorizing the integrals leads to the
following conformally invariant functions of 2 and 9 cross
ratios, respectively:

ϕ4 ¼ Q4

Z
∞

0

dβ2dβ3
βb−12 βc−13

XD=2−d
1 Zd

2

;

ϕ3;3 ¼ Q3;3

Z
∞

0

dβ2dβ3dβ4dβ5
βb−12 βc−13 βd−14 βe−15

XD=2−l
2 YD=2−fZf

4

;

ϕ6 ¼ Q6

Z
∞

0

dβ2dβ3dβ4dβ5
βb−12 βc−13 βd−14 βe−15

YD=2−fZf
4

; ðC3Þ

where

Q4 ¼
πD=2ΓD=2−d

ΓaΓbΓc
;

Q3;3 ¼
πDΓD=2−lΓD=2−f

ΓaΓbΓcΓlΓdΓe
;

Q6 ¼
πD=2ΓD=2−f

ΓaΓbΓcΓdΓe
; ðC4Þ

and

X1 ¼ β2uþ β3 þ β2β3v;

X2 ¼ β2u6u9 þ β3u9 þ β2β3u1u2u3u9;

Y ¼ u8X2 þ β4u9 þ β2β4u2u3u9 þ β3β4u2u3u4u5u9

þ β5 þ β2β5u3 þ β3β5u3u5 þ β4β5u3u5u7;

Zi ¼ 1þ β2 þ β3 þ � � � þ βiþ1; ðC5Þ

with the cross ratios as defined in Appendix A. Note that
the above way of parametrizing the integrals makes the
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differential equation (86) fairly obvious. Indeed, by
noting that ∂u8Y ¼ X2, one readily concludes that for
D=2 − l ¼ 1 the following relations holds:

∂u8ϕ3;3ðDÞ ¼ −
πD=2−1

Γl
ϕ6ðDþ 2Þ: ðC6Þ

APPENDIX D: FUNCTIONAL IDENTITIES FOR
THE DOUBLE BOX

In addition to the invariance under the permutations (80),
the conformal function ϕ3;3 for the double box integral fulf-
ills the following functional identities corresponding to the
given transpositions of the six external legs of the integral:

ð12Þ∶ ϕ3;3

�
1

u1
;
1

u2
;
1

u3
; u2u4; u3u5;

u6
u1u2u3

; u7; u1u8; u2u9

�
¼ u1u2ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ðD1Þ

ð13Þ∶ ϕ3;3

�
u4u5u6;

1

u4
;
1

u5
;
1

u2
;
1

u3
; u1u2u3; u3u5u7;

u8
u2u3u4u5

; u2u4u9

�
¼ ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ðD2Þ

ð23Þ∶ ϕ3;3

�
u1

u4u5u6
; u2u4; u3u5;

1

u4
;
1

u5
;
1

u6
; u5u7; u6u8; u9

�
¼ u5u6ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ðD3Þ

ð46Þ∶ ϕ3;3

�
u1u2u3;

1

u3
;
1

u2
;
1

u5
;
1

u4
; u4u5u6; u2u4u9;

u8
u2u3u4u5

; u3u5u7

�
¼ ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ðD4Þ

ð45Þ∶ ϕ3;3

�
u1u2;

1

u2
; u2u3;

1

u4
; u4u5; u6;

u7
u2u4u9

; u8u9;
1

u9

�
¼ u2u9ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ; ðD5Þ

ð56Þ∶ ϕ3;3

�
u1; u2u3;

1

u3
; u4u5;

1

u5
; u5u6;

1

u7
; u7u8;

u9
u3u5u7

�
¼ u5u7ϕ3;3ðu1; u2; u3; u4; u5; u6; u7; u8; u9Þ: ðD6Þ

APPENDIX E: HEXAGON PDEs

We list the PDEs for the conformal hexagon function that follow from Yangian symmetry. We use the notation
θi1���in ¼ θi1 þ � � � þ θin , and we abbreviate the sum of all Euler operators by θΣ ¼ θ1 þ � � � þ θ9:

PDE12 ¼ w1w5w9½w4θ7 þ w7θ4 þ w4w7ðθΣ þ αÞ�ðθ1589 þ β1Þ − w1w4w6w9θ5θ7

− w3w5w7w9θ1θ4 − w2w4w5w9θ1θ7 þ w1w4w5w7θ9ðθ9 − β2 − β3 þ γ2 − 1Þ; ðE1Þ

PDE13 ¼ w2w7½w4ðθΣ þ αÞ − θ4�ðθ2678 þ β2Þ þ w3w7θ2θ4 − w2w4θ7ðθ789 − β3 þ γ2 − 1Þ; ðE2Þ

PDE14 ¼ −w4w8θ5θ7 − w5w7θ4ðθ45679 þ γ2 − 1Þ þ w4w5w7ðθ3456 þ β3ÞðθΣ þ αÞ; ðE3Þ

PDE15 ¼ w2w5w7θ1θ4 þ w1w6w7θ2θ4 þ w2w4w8θ1θ7 þ w1w2w4w7θ568ðθΣ þ αÞ; ðE4Þ

PDE16 ¼ ½w1w4w7ðθΣ þ αÞ − w5w7θ4 − w4w8θ7�ðθ1589 þ β1Þ þ w7½w2w4ðθΣ þ αÞ − w6θ4�ðθ2678 þ β2Þ
− w4w7ðθ123568 þ γ1 − 1Þθ123568 þ w3w4w7ðθ3456 þ β3ÞðθΣ þ αÞ; ðE5Þ

PDE23 ¼ w2w7w8½w1θ5 þ w5θ1�ðθ2678 þ β2Þ þ w1w2w5½w8θ7ðθ1589 þ β1Þ þ w7θ8ðθ8 − α − β3 þ γ1 þ γ2 − 2Þ�
− w1w3w7w8θ2θ5 − w1w2w4w8θ5θ7 − w2w5w8θ1θ7; ðE6Þ

PDE24 ¼ w1w4ðθ568 − 2 − αþ γ1 þ γ2Þθ5 þ w1w5ðθ1589 þ β1Þθ4 þ w4w5ðθ3456 þ β3Þθ1 − w5θ1θ4; ðE7Þ

PDE25 ¼ w1w2w5ðθ1589 þ β1ÞðθΣ þ αÞ − w2w5ðθ12358 − 1þ γ1Þθ1 − w1w6θ2θ5; ðE8Þ

PDE26 ¼ w1w5ðθ1589 þ β1Þθ236 − ½w2w5θ1 þ w1w6θ5�ðθ2678 þ β2Þ − w3w5ðθ3456 þ β3Þθ1; ðE9Þ
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PDE34 ¼ w2w6w7½w5θ4 þ w4θ5�ðθ2678 þ β2Þ þ w4w5w6w7ðθ3456 þ β3Þθ2 − w5w6w7θ2θ4

þ w2w4w5w7ðθ6 − 2 − α − β1 þ γ1 þ γ2Þθ6 − w1w4w6w7θ2θ5 − w2w4w6w9θ5θ7; ðE10Þ

PDE35 ¼ w2w7½w1ðθΣ þ αÞ − θ1�ðθ2678 þ β2Þ − w1w7ðθ236 − 1 − β1 þ γ1Þθ2 þ w2w9θ1θ7; ðE11Þ

PDE36 ¼ w2w9ðθ1589 þ β1Þθ7 þ w2w7ðθ2678 þ β2Þðθ3 − θ9Þ − w3w7ðθ3456 þ β3Þθ2; ðE12Þ

PDE45 ¼ w3w4w5½w1w2ðθΣ þ αÞ − w2θ1 − w1θ2�ðθ3456 þ β3Þ − w1w2w4w5ðθ3 − 1 − β1 − β2 þ γ1Þθ3
þ w2w3w5w9θ1θ4 þ w1w3w5w7θ2θ4 þ w1w3w4w8θ2θ5; ðE13Þ

PDE46 ¼ w5w9ðθ1589 þ β1Þθ4 þ ½w5w7θ4 þ w4w8θ5�ðθ2678 þ β2Þ − w4w5ðθ3456 þ β3Þθ789; ðE14Þ

PDE56 ¼ ½w1w2w4ðθΣ þ αÞ − w2w5θ1 − w1w6θ2�ðθ3456 þ β3Þ þ w2½w1w7ðθΣ þ αÞ − θ1w2w8�ðθ2678 þ β2Þ
þ w1w2w9ðθ1589 þ β1ÞðθΣ þ αÞ − w1w2θ456789ðθ456789 − 1þ γ2Þ: ðE15Þ

APPENDIX F: HEXAGON RECURRENCES

We introduce the shift operator rm1;…;m9
with mk ¼ �k or mk absent otherwise, which acts on the coefficient function

fn1���n9 and shifts the respective index k by �1 or 0, respectively, e.g.,

r1;−3fn1n2n3n4n5n6n7n8n9 ¼ fn1þ1;n2;n3−1;n4n5n6n7n8n9 : ðF1Þ

With this notation and the shorthands Mj defined in (95), the recurrence equations for the hexagon function f read

REjkfn1���n9 ¼ 0; 1 ≤ j < k ≤ 6; ðF2Þ

with the recurrence operators

RE12 ¼ −n3r1;−3;4 − n2r1;−2;7 − n6r5;−6;7 − ð2αþM1Þð2β1 þM2Þ þ ðr4 þ r7Þð2β1 þM2Þ
þ r9ð−β2 − β3 þ γ2 þ n9Þ; ðF3Þ

RE13 ¼ n3r2;−3;4 þ ð2αþM1Þð2β2 þM3Þ − r4ð2β2 þM3Þ − r7ð−β3 þ γ2 þ n7 þ n8 þ n9Þ; ðF4Þ

RE14 ¼ −n8r5;7;−8 þ ð2αþM1Þð2β3 þM4Þ − r4ðγ2 þ n4 þ n5 þ n6 þ n7 þ n9Þ; ðF5Þ

RE15 ¼ n5r1;4;−5 þ n8r1;7;−8 þ n6r2;4;−6 þ ðn5 þ n6 þ n8Þð2αþM1Þ; ðF6Þ

RE16 ¼ −n5r4;−5ð2β1 þM2 − 1Þ − n8r7;−8ð2β1 þM2 − 1Þ − n6r4;−6ð2β2 þM3 − 1Þ
− ðγ1 þM5Þð2γ1 þM5 − 1Þ þ n1r−1ð2αþM1 − 1Þð2β1 þM2 − 1Þ
þ n2r−2ð2αþM1 − 1Þð2β2 þM3 − 1Þ þ n3r−3ð2αþM1 − 1Þð2β3 þM4 − 1Þ; ðF7Þ

RE23 ¼ −n4r−4;5;7 − n3r2;−3;5 − r1;7 þ r7ð2β1 þM2Þ þ ðr1 þ r5Þð2β2 þM3Þ
þ r8ð−α − β3 þ γ1 þ γ2 þ n8 − 1Þ; ðF8Þ

RE24 ¼ −r1;4 þ r4ð2β1 þM2Þ þ r1ð2β3 þM4Þ þ r5ð−αþ γ1 þ γ2 þ n5 þ n6 þ n8 − 1Þ; ðF9Þ

RE25 ¼ −n6r2;5;−6 þ ð2αþM1Þð2β1 þM2Þ − r1ðγ1 þ n1 þ n2 þ n3 þ n5 þ n8Þ; ðF10Þ

RE26 ¼ −n3r1;−3ð2β3 þM4 − 1Þ − ð2β2 þM3 − 1Þðn2r1;−2 þ n6r5;−6Þ þ ðn2 þ n3 þ n6Þð2β1 þM2Þ; ðF11Þ
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RE34 ¼ −n1r−1;2;5 − n9r5;7;−9 − r2;4 þ ðr4 þ r5Þð2β2 þM3Þ þ r6ð−α − β1 þ γ1 þ γ2 þ n6 − 1Þ
þ r2ðβ3 þ n6Þ þ ðn3 þ n4 þ n5Þr2; ðF12Þ

RE35 ¼ n9r1;7;−9 þ ð2αþM1Þð2β2 þM3Þ − r1ð2β2 þM3Þ − r2ð−β1 þ γ1 þ n2 þ n3 þ n6Þ; ðF13Þ

RE36 ¼ −n3r2;−3ð2β3 þM4 − 1Þ þ n9r7;−9ð2β1 þM2 − 1Þ þ ðn3 − n9Þð2β2 þM3Þ; ðF14Þ

RE45 ¼ n9r1;4;−9 þ n7r2;4;−7 þ n8r2;5;−8 þ ð2αþM1Þð2β3 þM4Þ − ðr1 þ r2Þð2β3 þM4Þ
þ r3ðβ1 þ β2 − γ1 − n3Þ; ðF15Þ

RE46 ¼ n9r4;−9ð2β1 þM2 − 1Þ þ ð2β2 þM3 − 1Þðn7r4;−7 þ n8r5;−8Þ − ðn7 þ n8 þ n9Þð2β3 þM4Þ; ðF16Þ

RE56 ¼ −n8r1;−8ð2β2 þM3 − 1Þ − n5r1;−5ð2β3 þM4 − 1Þ − n6r2;−6ð2β3 þM4 − 1Þ
− ðγ2 þM6Þð2γ2 þM6 − 1Þ þ n9r−9ð2αþM1 − 1Þð2β1 þM2 − 1Þ
þ n7r−7ð2αþM1 − 1Þð2β2 þM3 − 1Þ þ n4r−4ð2αþM1 − 1Þð2β3 þM4 − 1Þ: ðF17Þ

APPENDIX G: USEFUL IDENTITIES

Wenote Euler’s reflection identity for the Gamma function

Γ1−zΓz ¼
π

sin πz
; for z ∉ Z; ðG1Þ

and the resulting relation

Γz−n ¼ ð−1Þn−1 Γ−zΓzþ1

Γn−zþ1

; for n ∈ Z; z ∉ Z: ðG2Þ

The Appell hypergeometric function F4 obeys the useful
identity

F4

�
α; β
γ; γ0

; u; v
�

¼ Γγ0Γβ−α

ΓβΓγ0−α
ð−vÞ−αF4

�
α; 1þ α − γ0

γ; 1þ α − β
; u=v; 1=v

�

þ Γγ0Γα−β

ΓαΓγ0−β
ð−vÞ−βF4

�
1þ β − γ0; β
γ; 1þ β − α

;u=v; 1=v

�
: ðG3Þ

Gauß’s hypergeometric function 2F1ða; b; c; zÞ evaluated at
z ¼ 1 obeys

2F1ða; b; c; 1Þ ¼
Γ1þa−bΓ1þa=2

Γ1þaΓ1þa=2−b
: ðG4Þ

APPENDIX H: EVALUATION PARAMETERS

In this appendix we list the evaluation parameters
entering the definition (9) of the Yangian level-one gen-
erators for the different integrals considered.
The evaluation parameters for the D-dimensional box

integral (27) with j ¼ 1;…; 4 read

sj ¼
1

2
ðbþ cþD; bþ 2cþ d; cþ d; 0Þj: ðH1Þ

The double box PDEs given in (78) are obtained by using
the evaluation parameters (cf. [1])

sj ¼ −ð0; 1; 2; 2; 3; 4Þj: ðH2Þ

Finally, the hexagon PDEs given in (E1)–(E15) are
obtained with the evaluation parameters

sj ¼
1

2
ða −D; 2aþ b −D; 2aþ 2bþ c −D;

D − d − 2e − 2f;D − e − 2f;D − fÞj; ðH3Þ

where j ¼ 1;…; 6.
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integral symbol Î denotes the integral with undeformed
propagator powers as opposed to the symbol I used later for
generic propagator powers.

[6] J. L. Bourjaily, A. J. McLeod, M. Spradlin, M. von Hippel,
and M. Wilhelm, Phys. Rev. Lett. 120, 121603 (2018).

[7] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett.
121, 142001 (2018).

[8] S. Caron-Huot and K. J. Larsen, J. High Energy Phys. 10
(2012) 026.

[9] M. F. Paulos, M. Spradlin, and A. Volovich, J. High Energy
Phys. 08 (2012) 072.

[10] L. J. Dixon, J. M. Drummond, and J. M. Henn, J. High
Energy Phys. 06 (2011) 100.

[11] V. Del Duca, L. J. Dixon, J. M. Drummond, C. Duhr, J. M.
Henn, and V. A. Smirnov, Phys. Rev. D 84, 045017 (2011).

[12] F. Loebbert and A. Spiering, J. Phys. A 51, 485202 (2018).
[13] Note that by inclusion of a non-trivial numerator factor we

could make the integrals conformally invariant.
[14] D. Chicherin, S. Derkachov, and A. P. Isaev, J. High Energy

Phys. 04 (2013) 020.
[15] In addition the definition requires the so-called Serre

relations, see e.g., [16] for more details. Invariance under
the full level-zero (conformal) algebra and a single level-one
generator guarantees invariance under the full Yangian
algebra.

[16] F. Loebbert, J. Phys. A 49, 323002 (2016).
[17] Here one may wonder how the 15 degrees of freedom of the

conformal group can lead to 15 invariance conditions, when
it is clear that translations and dilatations do not contribute.
The point is that the conformal group acts non-linearly on
the xμij=x

2
ij such that the linear counting of degrees of

freedom does not work out.
[18] N. I. Usyukina and A. I. Davydychev, Phys. Lett. B 298, 363

(1993).
[19] Note that the Appell function F4 is symmetric in α and β.
[20] P. Appell and J. K. De Fériet, Fonctions hypergéométriques
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