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Abstract Scalar field cosmologies with a generalized har-
monic potential and a matter fluid with a barotropic Equation
of State (EoS) with barotropic index γ for locally rotationally
symmetric (LRS) Bianchi III metric and open Friedmann–
Lemaître–Robertson–Walker (FLRW) metric are investi-
gated. Methods from the theory of averaging of nonlinear
dynamical systems are used to prove that time-dependent
systems and their corresponding time-averaged versions
have the same late-time dynamics. Therefore, simple time-
averaged systems determine the future asymptotic behav-
ior. Depending on values of barotropic index γ late-time
attractors of physical interests for LRS Bianchi III metric are
Bianchi III flat spacetime, matter dominated FLRW universe
(mimicking de Sitter, quintessence or zero acceleration solu-
tions) and matter-curvature scaling solution. For open FLRW
metric late-time attractors are a matter dominated FLRW uni-
verse and Milne solution. With this approach, oscillations
entering nonlinear system through Klein–Gordon (KG) equa-
tion can be controlled and smoothed out as the Hubble factor
H – acting as a time-dependent perturbation parameter –
tends monotonically to zero. Numerical simulations are pre-
sented as evidence of such behaviour.

1 Introduction

Scalar fields have played important roles in the physical
description of the universe in inflationary scenario [1,2] as
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well as an explanation of late time acceleration of the uni-
verse. Examples of the latter are a quintessence scalar field
[3–6] (generalizing the cosmological constant), a phantom
scalar field (which, however, suffers ghosts instabilities [7]),
a quintom scalar field model [8–25], a chiral cosmology [25–
28], or multi-scalar field models (which describe various
epochs of the cosmological history [29–31]). Scalar field the-
ories like scalar tensor theories, and many others have been
exhaustively studied for example in [32–109] by means of
qualitative techniques of dynamical systems from [110–126].
Some works related to Einstein–Klein–Gordon, Maxwell,
Yang–Mills, Einstein–Vlasov systems, etc., are also studied
in [127–145]. Perturbation methods and averaging methods
were used in [127,128] with interest in early and late-time
dynamics. Slow-fast methods were used, for example, in the-
ories based on a generalized uncertainty principle (GUP), say
in [146,147]. The amplitude-angle transformation was used
in [148,149] to study scalar field’s oscillations driven by gen-
eralized harmonic potentials. In reference [150] interacting
scalar field cosmologies with generalized harmonic poten-
tials for flat and negatively curved FLRW metrics, and for
Bianchi I metrics were studied. Asymptotic and averaging
methods were used to obtain stability conditions for sev-
eral solutions of interest as H → 0, where H is the Hubble
parameter. These results suggest that the asymptotic behavior
of time-averaged model is independent of coupling function
and geometry. Averaging theory was used in reference [151]
to study periodic orbits of Hamiltonian systems describing a
universe filled with a scalar field; and in reference [152] to
study future asymptotics of LRS Bianchi type III cosmolo-
gies with a massive scalar field. In reference [153] a theorem
about large-time behaviour of solutions of Spatially Homo-
geneous (SH) cosmology with oscillatory behaviour (when
H is non negative and monotonic decreasing to zero) was
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presented. In references [149,154] scalar field cosmologies
with arbitrary potential and with arbitrary coupling to matter
were studied. In particular, generalized harmonic potentials
and exponential couplings to matter in the sense of [101–104]
were examined. This paper is a sequel of [149,154], where
asymptotic methods and averaging theory [155–161] were
used to obtain relevant information about solution’s space of
scalar field cosmologies with generalized harmonic poten-
tial: (i) in vacuum, (ii) in presence of matter. As in [152], we
construct averaged versions of original systems where oscil-
lations of solutions are smoothed out. Then, the analysis is
reduced to study late-time dynamics of a simpler averaged
system where oscillations entering the full system through
KG equation can be controlled.

This research program – named “Averaging Generalized
Scalar Field Cosmologies”– has three steps according to three
cases of study: (I) Bianchi III and open FLRW model, (II)
Bianchi I and flat FLRW model and (III) Kantowski–Sachs
(KS) and closed FLRW. This paper is devoted to case I, and
cases II and III will be studied in two companion papers
[164,165]. The main aspect in the present work is the interac-
tion of KG fields and field equations. The paper is organized
as follows. In Sect. 2 we discuss the class of generalized
harmonic potentials in which we are interested. In Sect. 3
we introduce the models. In Sect. 4 we apply averaging
methods to analyze periodic solutions of a scalar field with
self-interacting potentials within the class of generalized har-
monic potentials [148]. In particular, in Sect. 4.3 LRS Bianchi
III metric is studied. In Sect. 4.4 is investigated FLRW met-
rics with negative curvature. In Sect. 5 we study averaged
systems. Bianchi III metric is studied in Sects. 5.1, and 5.2
is devoted to FLRW metric with negative curvature (open
FLRW). Finally, in Sect. 6 our main results are discussed. In
Appendix A is proved our main Theorem. In Appendix B
center manifold calculations for nonhyperbolic equilibrium
points are presented. In Appendix C numerical evidences
supporting the results of Sect. 4 are presented.

2 Generalized harmonic potential

Chaotic inflation is a model of cosmic inflation which takes
the potential term V of a hypothetical inflaton field φ

as V (φ) = m2
φφ2

2 , the so-called harmonic potential (φ2-
interaction) [201–204]. Whereas other inflationary models
assume a monotonic decreasing potential with φ; assuming
in an ad hoc way that inflaton field has a large amplitude
“at Big Bang”, then slowly “roll down” the potential. The
idea of [201] is that instead of inflaton rolls down and sits
on its potential minimum at equilibrium, quantum fluctu-
ations stochastically (“chaotically”) drive it out of its mini-
mum back and forward. Wherever this happens cosmic infla-

tion sets in and blows up the region of ambient spacetime in
which inflaton happened to fluctuate out of its equilibrium.
Relevant experimental results disfavoring φ2-interaction are
due to [205,206]. These results state that chaotic inflation
generically predicts large values of tensor-to-scalar ratio r .
In contrast to recent measurements which show low upper
bounds on r . Notwithstanding, we investigate variations of
φ2-potential and we do not refer to tensor-to-scalar ratio issue
for the potential (4).

The action integral of interest is

∫
d4x

√|g|
[

1

2
R − 1

2
gμν∇μφ∇νφ − V (φ) + Lm

]
. (1)

It is expressed in a system of units in which 8πG = c =
� = 1 where Lm is the Lagrangian density of matter, R is
the curvature scalar, φ is the scalar field, ∇α is the covariant
derivative and the scalar field potential V (φ) of interest in
this research is given by

V (φ) = μ3
[
b f

(
1 − cos

(
φ

f

))
+ φ2

μ

]
, b > 0. (2)

It is related but not equal to monodromy potential of [162]
used in the context of loop-quantum gravity, which is a par-
ticular case of general monodromy potential [163]. In ref-
erences [148–150] were proved that potential of [162,163]

for p = 2, say V (φ) = μ3
[

φ2

μ
+ b f cos

(
φ
f

)]
, b �= 0 is

not good to describe the late-time FLRW universe driven by
a scalar field because it has two symmetric local negative
minimums which are related to Anti-de-Sitter solutions.

Therefore, in [148,149] we have studied the potential

V (φ) = φ2

2
+ f

[
1 − cos

(
φ

f

)]
(3)

obtained by setting μ =
√

2
2 and bμ = 2 in Eq. (2). The

potential (3) provides non-negative local minimums which
can be related to a late-time accelerated universe. In Sect.
2.4 of [149] a scalar field cosmology with potential (3) non–
minimally coupled to matter with coupling function χ =
χ0e

λφ
4−3γ was studied, where λ is a constant and the barotropic

index satisfies 0 ≤ γ ≤ 2, γ �= 4
3 for FLRW metrics with

k = −1, 0 and Bianchi I metric. The late time attractors are
associated to equilibrium points with φ = φ∗ whenever φ∗
is a local non zero minimum of V (φ). For FLRW metrics,
global minimum is unstable to curvature perturbations for
γ > 2

3 . Therefore, the result in [107] is confirmed, that for
γ > 2

3 the curvature has a dominant effect on late evolution
of the universe and it will eventually dominate both perfect
fluid and scalar field energy densities. For Bianchi I model,
the global minimum with V (0) = 0 is unstable to shear
perturbations.
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(a)

(b)

Fig. 1 Generalized harmonic potentials. Comparison with φ-squared
potentials

Additionally, potentials like V (φ) = Λ4
[
1 − cos

(
φ
f

)]
are of interest in context of axion models [207]. In [208]
axionic dark matter model with a modified periodic potential

for pseudoscalar field V (φ,Φ∗) = m2
AΦ∗2

2π2

[
1 − cos

(
2πφ
Φ∗

)]
in the framework of axionic extension of Einstein-aether
theory was studied. This periodic potential has minima at
φ = nΦ∗, n ∈ Z, whereas maxima when n → m + 1

2 are
found. Near the minimum when φ = nΦ∗ + ψ and |ψ | is

small, V → m2
Aψ2

2 where mA the axion rests mass.
The previous statements justify the study of potential (2),

which can be expressed as

V (φ) = μ2φ2 + f 2
(
ω2 − 2μ2

)(
1 − cos

(
φ

f

))
, (4)

by introducing an angular frequency ω ∈ R through condi-
tions bμ3 + 2 f μ2 − f ω2 = 0 and ω2 − 2μ2 > 0. Their
applicability will be revealed in Sect. 4.

The generalized harmonic potentials (3) and (4) belong to
the class of potentials studied by [127]. Potential (4) has the
following generic features:

1. V is a real-valued smooth function V ∈ C∞(R) with
limφ→±∞ V (φ) = +∞.

2. V is an even function V (φ) = V (−φ).
3. V (φ) has always a local minimum at φ = 0; V (0) =

0, V ′(0) = 0, V ′′(0) = ω2 > 0.
4. There is a finite number of values φc �= 0 satisfy-

ing 2μ2φc + f
(
ω2 − 2μ2

)
sin

(
φc
f

)
= 0, which are

extreme points of V (φ). They are local maximums or
local minimums depending on whether V ′′(φc) := 2μ2 +(
ω2 − 2μ2

)
cos

(
φc
f

)
< 0 or V ′′(φc) > 0. For |φc| >

f (ω2−2μ2)

2μ2 = φ∗ this set is empty.
5. There exist Vmax = maxφ∈[−φ∗,φ∗] V (φ) and Vmin =

minφ∈[−φ∗,φ∗] V (φ) = 0. The function V has no upper
bound but it has a lower bound equal to zero.

The asymptotic features of potential (4) are the follow-
ing. Near global minimum φ = 0, we have V (φ) ∼
ω2φ2

2 + O
(
φ3

)
, as φ → 0. That is, ω2 can be related

to the mass of the scalar field near its global minimum. As
φ → ±∞ cosine- correction is bounded, then, V (φ) ∼
μ2φ2 + O (1) as φ → ±∞. This makes it suitable to
describe oscillatory behavior in cosmology.

Setting μ =
√

2
2 , ω = √

2, we have

V (φ) = φ2

2
+ f 2

[
1 − cos

(
φ

f

)]
. (5)

Setting μ =
√

2
2 , ω =

√
f−1
f , the potential of [148–150]

(3) is recovered. Although (3) can be derived as a particular
case of our study, cases of interest with f � 1 leads to

complex frequency ω =
√

| f −1
f |i , in contradiction to ω ∈ R.

Therefore, potential (4) will not contain potential studied in

[148–150], unless we set f > 1 and ω =
√

f −1
f . In Fig. 1

potentials (5) and (3) are depicted.

3 Spatially homogeneous scalar field cosmologies

In general relativity (GR) the SH but anisotropic space-
times are known as either Bianchi or KS metrics. In Bianchi
models, the spacetime manifold is foliated along the time
axis with three dimensional homogeneous hypersurfaces.
Bianchi spacetimes contain many important cosmological
models that have been used to study anisotropies of pri-
mordial universe and its evolution towards current observed
isotropy [166–169]. The list includes standard FLRW model
in the limit of isotropization; Bianchi III isotropizing to open
FLRW models and Bianchi I isotropizing to flat FLRW mod-
els. Hubble parameter H is always monotonic for Bianchi I
and Bianchi III. For Bianchi I anisotropy decays on time for
H > 0 and isotropization occurs [170].

There is an interesting hierarchy in Bianchi models
[121,171–173]. In particular, LRS Bianchi I model naturally
appears as a boundary subset of LRS Bianchi III model. The
last one is an invariant boundary of the LRS Bianchi type
VIII model as well. Additionally, LRS Bianchi type VIII can
be viewed as an invariant boundary of LRS Bianchi type
IX model [174–180]. Bianchi spacetimes in presence of a
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scalar field were studied in [181]. It was proved that an ini-
tial anisotropic universe isotropizes into a FLRW universe
for specific initial conditions if the scalar field potential has a
large positive value. An exact solution of field equations for
an exponential potential in some particular Bianchi space-
times has been found in [182–184]. These exact solutions
lead to isotropic homogeneous spacetimes as it was found in
[185,186]. An anisotropic solution of special interest is Kas-
ner spacetime. Kasner solution is essential for the description
of BKL singularity when the contribution of Ricci scalar of
three-dimensional spatial hypersurface in the field equations
is negligible [187]. For other applications of Kasner universe
and Bianchi I spacetimes in gravitational physics see [188–
195] and references therein. In [196] the conformal algebra of
Bianchi III and Bianchi V spacetimes which admit a proper
conformal Killing vector were studied. In [197] method of
Lie symmetries was applied for the Wheeler–De Witt equa-
tion in Bianchi class A cosmologies for minimally coupled
scalar field gravity and hybrid gravity in GR. Using these
symmetries several invariant solutions were determined and
classified according to the form of scalar field potential.

3.1 LRS Bianchi III, Bianchi I and Kantowski–Sachs
models

Due to

lim
k→−1

k−1 sin2(
√
kϑ) = sinh2(ϑ), (6)

lim
k→0

k−1 sin2(
√
kϑ) = ϑ2, (7)

lim
k→1

k−1 sin2(
√
kϑ) = sin2(ϑ), (8)

the metric element for LRS Bianchi III, Bianchi I and KS
models can be written as [198]

ds2 = −dt2 +
[
e1

1(t)
]−2

dr2

+
[
e2

2(t)
]−2 [

dϑ2 + k−1 sin2(
√
kϑ)dζ 2

]
, (9)

where e1
1, e2

2 and e3
3 = √

ke2
2/ sin(

√
kϑ) are functions

of t which are components of the frame vectors [200]:
e0 = ∂t , e1 = e1

1∂r , e2 = e2
2∂ϑ , e3 = e3

3∂ζ . That
is, we obtain LRS Bianchi III for k = −1, Bianchi I for
k = 0 and KS for k = +1 [62]. Comparing with refer-
ence [198] we have settled parameters a = f = 0 and
e1

1(t) = D2(t)−1, e2
2(t) = D2(t)−1 in their metric and we

have used the identifications (ϑ, ζ ) = (y, z). The line ele-
ments for spatially selfsimilar LRS models have been given
by Wu in [199]. We only focus on SH but anisotropic class
with the exception of SH LRS Bianchi V, that is: LRS Bianchi
III, Bianchi I and KS.

It is useful to define a representative length along world-
lines of the 4-velocity vector u = ∂t describing the volume
expansion (contraction) of the congruence, denoted �(t) and
defined by

�̇(t)

�(t)
= H(t) := −1

3

d

dt
ln

[
e1

1(t)(e2
2(t))2

]
, (10)

where the Hubble parameter H(t) and the anisotropic param-
eter σ+(t) are given by

σ+ = 1

3

d

dt
ln

[
e1

1(t)(e2
2(t))−1

]
. (11)

Taking variation of (1) for the 1-parameter family of metrics
(9) leads to [62]:

3H2 + kK = 3σ+2 + ρm + 1

2
φ̇2 + V (φ), (12)

− 3(σ+ + H)2 − 2σ̇+ − 2Ḣ − kK

= (γ − 1)ρm + 1

2
φ̇2 − V (φ), (13)

− 3σ+2 + 3σ+H − 3H2 + σ̇+ − 2Ḣ

= (γ − 1)ρm + 1

2
φ̇2 − V (φ). (14)

For modeling matter in our model we use a perfect fluid with
a barotropic EoS pm = (γ − 1)ρm with pressure pm , energy
density ρm and barotropic index γ ∈ [0, 2].

The Gauss curvature of spatial 2-space and 3-curvature
scalar are

K = (e2
2(t))2, 3R = 2kK . (15)

Furthermore, evolution of K is

K̇ = −2(σ+ + H)K , (16)

while evolution for e1
1 is given by [200]:

˙e1
1 = −(H − 2σ+)e1

1. (17)

From Eqs. (13), (14) the shear equation is obtained:

σ̇+ = −3Hσ+ − kK

3
. (18)

Equations (12), (13), (14), (18) give the Raychaudhuri equa-
tion:

Ḣ = −H2 − 2σ+2 − 1

6
(3γ − 2)ρm − 1

3
φ̇2 + 1

3
V (φ). (19)

Finally, the matter and KG equations are:

ρ̇m = −3γ Hρm, (20)

φ̈ = −3H φ̇ − dV (φ)

dφ
. (21)
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In this paper we will study LRS Bianchi III model. By
convenience we write

ds2 = −dt2 + A(t)2dr2 + B(t)2gH2 . (22)

where gH2 = dϑ2 + sinh2(ϑ)dζ 2 denotes the 2-metric of
negative constant curvature on hyperbolic 2-space. The func-
tions A(t) and B(t), interpreted as scale factors, are defined
as A(t) = e1

1(t)−1 and B(t)2 = K (t)−1.

3.2 FLRW models

The general line element for spherically symmetric (SS)
models can be written as [200]

ds2 = −dt2 +
[
e1

1(t, r)
]−2

dr2

+
[
e2

2(t, r)
]−2

(dϑ2 + sin2 ϑ dζ 2). (23)

SH-SS models that are not Kantowski–Sachs are FLRW
models where the metric can be written as

ds2 = −dt2 + a2(t)
[
dr2 + f 2(r)(dϑ2 + sin2 ϑ dζ 2)

]
,

(24)

with f (r) = sin r, r, sinh r (25)

for closed, flat and open FLRW models, respectively. In com-
parison with metric (23), frame coefficients here are given
by e1

1 = a−1(t) and e2
2 = a−1(t) f −1(r) where a(t) is the

scale factor. Anisotropic parameter σ+ = 1
3

∂
∂t ln(e1

1/e2
2)

vanishes and Hubble parameter (10) can be written as H =
d
dt ln [a(t)].
Furthermore, 3R is

3R = 6k

a2 , k = 1, 0,−1, (26)

for closed, flat and open FLRW models, respectively. There-
fore, evolution/constraint equations are reduced to

φ̈ = −3H φ̇ − V ′(φ) (27a)

ρ̇m = −3γ Hρm, (27b)

ȧ = aH, (27c)

Ḣ = −1

2

(
γρm + φ̇2

)
+ k

a2 , (27d)

3H2 = ρm + 1

2
φ̇2 + V (φ) − 3k

a2 . (27e)

By setting φ̇ = ρm = 0 and V (φ) = Λ we obtain vacuum
cases (with or without cosmological constant Λ), which are
de Sitter model (Λ > 0, k = 0), the model with Λ > 0,
k = 1, the model with Λ > 0, k = −1, Milne model (Λ = 0,
k = −1) and Minkowski spacetime (Λ = 0, k = 0), which is

also static. The model with Λ > 0, k = 1 is past asymptotic
to de Sitter model with negative H, and, is future asympotic
to de Sitter model with positive H . The model with Λ > 0,
k = −1 (and positive H ) is past asymptotic to Milne model
and it is future asympotic to de Sitter model with positive H .

In this paper we will study open FLRW model. By con-
venience we write the metric (28) for k = −1 as

ds2 = −dt2 + a(t)2dr2 + a(t)2S−1(r)
2dΩ2. (28)

where S−1(r) = sinh(r), dΩ2 = dϑ2 + sin2 ϑ dζ 2.

4 Averaging scalar field cosmologies

Given the differential equation ẋ = f(t, x, ε) with f peri-
odic in t . One approximation scheme which can be used to
solve the full problem is solving the unperturbed problem
ẋ = f(t, x, 0) by setting ε = 0 and then use the approx-
imated unperturbed solution to formulate variational equa-
tions in standard form which can be averaged. The term aver-
aging is related to approximation of initial value problems in
ordinary differential equations which involves perturbations
[161, chapter 11].

4.1 Simple example

For example, consider this simple equation

φ̈ + ω2φ = ε(−2φ̇) (29)

with φ(0) and φ̇(0) given. The unperturbed problem φ̈ +
ω2φ = 0 admits solution φ̇(t) = r0ω cos(ωt −Φ0), φ(t) =
r0 sin(ωt − Φ0), where r0 and Φ0 are constants depending
on the initial conditions. Let be defined the amplitude-phase
transformation [161, chapter 11]:

φ̇(t) = r(t)ω cos(ωt − Φ(t)), φ(t) = r(t) sin(ωt − Φ(t)),

(30)

such that

r =
√

φ̇2(t) + ω2φ2(t)

ω
, Φ = ωt − tan−1

(
ωφ(t)

φ̇(t)

)
. (31)

Then, Eq. (29) becomes

ṙ = −2rε cos2(t − Φ), Φ̇ = −ε sin(2(t − Φ)). (32)

From (32) it follows that r and Φ are slowly varying with
time, and the system takes the form ẏ = ε f (y). The idea is
consider only nonzero average of right-hand-sides keeping
r and Φ fixed and leaving out terms with average zero and
ignoring slow-varying dependence of r and Φ on t through
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averaging process:

f̄(·) := 1

L

∫ L

0
f(·, t)dt, L = 2π

ω
. (33)

Replacing r and Φ by their averaged approximations r̄ and
Φ̄ we obtain the system

˙̄r = −εωr̄ , ˙̄Φ = 0. (34)

Solving (34) with initial conditions r̄(0) = r0 and Φ̄(0) =
Φ0, we obtain φ̄ = r0e−εωt sin(ωt−Φ0), which is an accurate
approximation of the exact solution

φ(t) = −r0e
−tε sin(Φ0) cos

(
t
√

ω2 − ε2
)

−
r0e−tε sin

(
t
√

ω2 − ε2
)

(ε sin(Φ0) − ω cos(Φ0))√
ω2 − ε2

,

due to

φ̄(t) − φ(t) = r0εe−tε sin(Φ0) sin(tω)

ω
+ O

(
εe−tε)

as ε → 0+.

4.2 General class of systems with a time-dependent
perturbation parameter

Generalizing (29), now let us consider the KG system

φ̈ + ω2φ = −3H φ̇, (35)

Ḣ = −1

2
φ̇2. (36)

The similarity between (29) and (35) suggests treating the
latter as a perturbed harmonic oscillator as well, and apply-
ing averaging in an analogous way; taking into consideration
that, in contrast to ε, H is time-dependent and itself is gov-
erned by evolution Eq. (36). If it is valid, then a surprising
feature of such approach is the possibility of exploiting the
fact that H is strictly decreasing and goes to zero, therefore, it
can be promoted to a time-dependent perturbation parameter
in (35); controlling the magnitude of the error between solu-
tions of full and time-averaged problems. Hence, with strictly
decreasing H the error should decrease as well. Therefore, it
is possible to obtain information about large-time behaviour
of more complicated full system via an analysis of simpler
averaged system equations.

With this in mind, in [153] the long-term behavior of solu-
tions of a general class of systems in standard form
(
Ḣ
ẋ

)
= H

(
0

f1(x, t)

)
+ H2

(
f [2](x, t)

0

)
, (37)

was studied; where H > 0 is strictly decreasing in t and
limt→∞ H(t) = 0.

The following Theorem by [153] gives local-in-time
asymptotics for system (37). Let the norm ‖ · ‖ denotes the
standard discrete �1- norm ‖u‖ := ∑n

i |ui | for u ∈ R
n . Let

also L∞
x,t denotes the standard L∞ space in both t and x

variables with norm defined as ‖f‖L∞
x,t

:= supx,t |f(x, t)|.
Theorem 1 (Theorem 3.1 of [153]) Suppose H(t) > 0 is
strictly decreasing in t and limt→∞ H(t) = 0.Fix any ε > 0
with ε < H(0) and define t∗ > 0 such that ε = H(t∗).
Suppose that ‖f1‖L∞

x,t
, ‖ f [2]‖L∞

x,t
< ∞ and that f1(x, t) is

Lipschitz continuous and f [2] is continuous with respect to x
for all t ≥ t∗.Also, assume that f1 and f [2] are T -periodic for
some T > 0. Then for all t > t∗ with t = t∗ + O

(
H(t∗)−δ

)
for any given δ ∈ (0, 1) we have

x(t) − z(t) = O
(
H(t∗)min{1,2−2δ}),

where x is the solution of system (37) with initial condition
x(0) = x0 and z(t) is the solutionof the time-averaged system

ż = H(t∗)f̄1(z), for t > t∗,

with initial condition z(t∗) = x(t∗) where the time-averaged
vector f̄1 is defined as

f̄1(z) = 1

T

∫ t∗+T

t∗
f1(z, s)ds.

Therefore, Hubble parameter H can be used as a time-
dependent perturbation parameter.

In this paper we study systems which are not in the stan-
dard form (37) but can be expressed as a series with center
in H = 0 according to the equation

(
Ḣ
ẋ

)
=

(
0

f0(x, t)

)
+ H

(
0

f1(x, t)

)

+ H2
(

f [2](x, t)
0

)
+ O(H3), (38)

depending on a parameter ω which is a free frequency that
can be tuned to make f0(x, t) = 0. Therefore, systems can
be expressed in the standard form (37).

4.3 LRS Bianchi III

Firstly, we consider LRS Bianchi III metrics for the gener-
alized harmonic potential (2) minimally coupled to matter
with field equations:

φ̈ = −3H φ̇ − V ′(φ), (39)

ρ̇m = −3γ Hρm, (40)

K̇ = −2(σ+ + H)K , (41)
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Ḣ = −H2 − 2σ+2 − 1

6
(3γ − 2)ρm − 1

3
φ̇2 + 1

3
V (φ),

(42)

σ̇+ = −3Hσ+ + K

3
, (43)

3H2 = 3σ+2 + ρm + 1

2
φ̇2 + V (φ) + K . (44)

Defining

Ω =
√

ω2φ2 + φ̇2

6H2 , Σ = σ+
H

, Ωk = K

3H2 ,

Φ = tω − tan−1
(

ωφ

φ̇

)
, (45)

we obtain the full system

Ω̇ = − bμ3
√

6H
cos(tω − Φ) sin

(√
6H sin(tω − Φ)Ω

f ω

)

− b f γΩμ3

H
sin2

⎛
⎝

√
3
2 H sin(tω − Φ)Ω

f ω

⎞
⎠

+
(
ω2 − 2μ2

)
Ω

2ω
sin(2tω − 2Φ)

+ 3H

((
γ

(
μ2

ω2 − 1

2

)
+ 1

)
Ω3 − Ω

)
cos2(tω − Φ)

+ 1

2
HΩ

(
− 3(γ − 2)Σ2 − 6γμ2Ω2

ω2 + 3γ + (2 − 3γ )Ωk

)
,

(46a)

Σ̇ = − b f γΣμ3

H
sin2

⎛
⎝

√
3
2 H sin(tω − Φ)Ω

f ω

⎞
⎠

− 3

2
(γ − 2)HΣΩ2 cos2(tω − Φ)

+ 1

4
H

(
4Ωk − 6(γ − 2)Σ3 + 2

(
− 6γμ2Ω2

ω2 sin2(tω − Φ)

+ 3γ − 3γΩk + 2Ωk − 6
)
Σ

)
, (46b)

Ω̇k = b f γΩkμ
3

H

(
−1 + cos

(√
6H sin(tω − Φ)Ω

f ω

))

− 3(γ − 2)HΩ2Ωk cos2(tω − Φ)

+ 1

2
H
(

− 6(γ − 2)Σ2 − 4Σ − 2(3γ − 2)(Ωk − 1)

− 12γμ2Ω2

ω2 sin2(tω − Φ)
)
Ωk , (46c)

Φ̇ = − bμ3
√

6HΩ
sin(tω − Φ) sin

(√
6H sin(tω − Φ)Ω

f ω

)

+
(
ω2 − 2μ2

)

ω
sin2(tω − Φ) − 3 cos(tω − Φ)H sin(tω − Φ),

(46d)

and the Raychauhuri equation is

Ḣ = −(1 + q)H2, (46e)

where the deceleration parameter is given by

q = −b f γμ3

H2 sin2
⎛
⎝
√

3
2 H sin(tω−Φ)Ω

f ω

⎞
⎠

− 3

2
(γ − 2) cos2(tω − Φ)Ω2 − 3

2
(γ − 2)Σ2

− 3γμ2Ω2

ω2 sin2(tω − Φ) − 1

2
(3γ − 2)(Ωk − 1). (47)

Defining x = (Ω,Σ,Ωk, Φ)T , the system (46) can be
symbolically written as a Taylor series of the form (38).
Notice that the term

f0(t, x) =

⎛
⎜⎜⎜⎜⎝

Ω(t)
(
f ω2−μ2(bμ+2 f )

)
sin(2tω−2Φ(t))

2 f ω
0(−bμ3−2 f μ2+ f ω2

)
sin2(tω−Φ(t))

f ω
0

⎞
⎟⎟⎟⎟⎠ (48)

in expression (38) is eliminated imposing the conditionbμ3+
2 f μ2− f ω2 = 0, which defines an angular frequencyω ∈ R.
Then, order zero terms in the series expansion around H = 0

are eliminated assuming ω2 > 2μ2 and setting f = bμ3

ω2−2μ2 ,
which is equivalent to tune ω. Hence, we obtain:

ẋ = H f(t, x) + O(H2), (49)

Ḣ = −3

2
H2

(
γ (1 − Σ2 − Ωk − Ω2) + 2Σ2 + 2

3
Ωk

+ 2Ω2 cos2(tω − Φ)
)

+ O(H3), (50)

where

123



414 Page 8 of 41 Eur. Phys. J. C (2021) 81 :414

f(t, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2Ω

(
− 3(γ − 2)Σ2 + (2 − 3γ )Ωk + 3

(
Ω2 − 1

)
(−γ + 2 cos2(tω − Φ))

)

1
2

(
Ωk((2 − 3γ )Σ + 2) + 3Σ

(
− (γ − 2)Σ2 + γ + Ω2(−γ + 2 cos2(tω − Φ)) − 2

))

Ωk

(
− 3γ

(
Σ2 + Ω2 + Ωk − 1

) + 6Σ2 − 2Σ + 6Ω2 cos2(tω − Φ) + 2Ωk − 2
)

− 3
2 sin(2tω − 2Φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (51)

Replacing ẋ = H f(t, x) where f(t, x) is defined by (51)

with ẏ = H f̄(y), y = (
Ω̄, Σ̄, Ω̄k, Φ̄

)T
and f̄(y) given by

time-averaging (33) we obtain:

˙̄Ω = 1

2
HΩ̄

(
− 3γ

(
Σ̄2 + Ω̄2 + Ω̄k − 1

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k − 3
)
, (52)

˙̄Σ = 1

2
H

(
Σ̄
(

− 3γ
(
Σ̄2 + Ω̄2 + Ω̄k − 1

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k − 6
)

+ 2Ω̄k

)
, (53)

˙̄Ωk = −HΩ̄k

(
3γ

(
Σ̄2 + Ω̄2 + Ω̄k − 1

)

− 6Σ̄2 + 2Σ̄ − 3Ω̄2 − 2Ω̄k + 2
)
, (54)

˙̄Φ = 0, (55)

Ḣ = −1

2
H2

(
3γ

(
1 − Σ̄2 − Ω̄2 − Ω̄k

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k

)
. (56)

Proceeding in analogous way as in references [128,137] we
implement a local nonlinear transformation:

x0 := (Ω0,Σ0,Ωk0, Φ0)
T �→ x := (Ω,Σ,Ω,Φ)T

x = ψ(x0) := x0 + Hg(H, x0, t), (57)

g(H, x0, t) =

⎛
⎜⎜⎝
g1(H,Ω0,Σ0,Ωk0, Φ0, t)
g2(H,Ω0,Σ0,Ωk0, Φ0, t)
g3(H,Ω0,Σ0,Ωk0, Φ0, t)
g4(H,Ω0,Σ0,Ωk0, Φ0, t)

⎞
⎟⎟⎠ . (58)

Taking time derivative in both sides of (57) with respect to t
we obtain

ẋ0 + Ḣg(H, x0, t) + H

(
∂

∂t
g(H, x0, t)

+ Ḣ
∂

∂H
g(H, x0, t) + Dx0g(H, x0, t) · ẋ0

)
= ẋ, (59)

where

Dx0g(H, x0, t) =

⎛
⎜⎜⎜⎝

∂g1
∂Ω0

∂g1
∂Σ0

∂g1
∂Ωk

∂g1
∂Φ0

∂g2
∂Ω0

∂g2
∂Σ0

∂g2
∂Ωk

∂g2
∂Φ0

∂g3
∂Ω0

∂g3
∂Σ0

∂g3
∂Ωk

∂g3
∂Φ0

∂g4
∂Ω0

∂g4
∂Σ0

∂g4
∂Ωk

∂g4
∂Φ0

⎞
⎟⎟⎟⎠ (60)

is the Jacobian matrix of g(H, x0, t) for the vector x0. The
function g(H, x0, t) is conveniently chosen.

By substituting (49) and (57) in (59) we obtain

(
I4 + HDx0g(H, x0, t)

)
· ẋ0 = H f(x0 + Hg(H, x0, t), t)

− H
∂

∂t
g(H, x0, t) − Ḣg(H, x0, t) − H Ḣ

∂

∂H
g(H, x0, t),

(61)

where I4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ is the 4 × 4 identity matrix.

Then we obtain

ẋ0 =
(
I4+HDx0g(H, x0, t)

)−1

·
(
H f(x0+Hg(H, x0, t), t)

− H
∂

∂t
g(H, x0, t)−Ḣg(H, x0, t)−H Ḣ

∂

∂H
g(H, x0, t)

)
.

(62)

Using Eq. (50), we have Ḣ = O(H2). Hence,

ẋ0 =
(
I4 − HDx0g(0, x0, t) + O(H2)

)

︸ ︷︷ ︸
4×4 matrix

·
(
H f(x0, t) − H

∂

∂t
g(0, x0, t) + O(H2)

)

︸ ︷︷ ︸
4×1 vector

= H f(x0, t) − H
∂

∂t
g(0, x0, t) + O(H2)

︸ ︷︷ ︸
4×1 vector

. (63)

123



Eur. Phys. J. C (2021) 81 :414 Page 9 of 41 414

The strategy is to use Eq. (63) for choosing conveniently
∂
∂t g(0, x0, t) to prove that

˙Δx0 = −HG(x0, x̄) + O(H2), (64)

where x̄ = (Ω̄, Σ̄, Φ̄)T and Δx0 = x0 − x̄. The function
G(x0, x̄) is unknown at this stage.

By construction we neglect dependence of ∂gi/∂t and gi
on H , i.e., assume g = g(x0, t) because dependence of H
is dropped out along with higher order terms Eq. (63). Next,
we solve a partial differential equation for g(x0, t) given by:

∂

∂t
g(x0, t) = f(x0, t) − f̄(x̄) + G(x0, x̄). (65)

where we have considered x0, and t as independent variables.
The right hand side of (65) is almost periodic of period
L = 2π

ω
for large times. Then, implementing the average

process (33) on right hand side of (65), where slow-varying
dependence of quantities Ω0,Σ0,Ωk0, Φ0 and Ω̄, Σ̄, Ω̄k, Φ̄

on t are ignored through averaging process, we obtain

1

L

∫ L

0

[
f(x0, s) − f̄(x̄) + G(x0, x̄)

]
ds

= f̄(x0) − f̄(x̄) + G(x0, x̄). (66)

Defining

G(x0, x̄) := − (
f̄(x0) − f̄(x̄)

)
(67)

the average (66) is zero so that g(x0, t) is bounded.
Finally, Eq. (64) transforms to

˙Δx0 = H
(
f̄(x0) − f̄(x̄)

) + O(H2) (68)

and Eq. (65) is simplified to

∂

∂t
g(x0, t) = f(x0, t) − f̄(x0). (69)

Theorem 2 establish the existence of the vector (58).

Theorem 2 Let Ω̄, Σ̄, Ω̄k, Φ̄ and H be defined functions
that satisfy averaged Eqs. (52), (53), (54), (55), (56). Then,
there exist continuously differentiable functions g1, g2, g3

and g4, such that Ω,Σ,Ωk and Φ are locally given by (57),
where Ω0,Σ0,Ωk0, Φ0 are order zero approximations of
them as H → 0. Then, functionsΩ0,Σ0,Ωk0, Φ0 and aver-
aged solution Ω̄, Σ̄, Ω̄k, Φ̄ have the same limit as t → ∞.
Setting Σ = Σ0 = 0 are derived the analogous results for
negatively curved FLRW model.

4.4 FLRW metric with k = −1

Secondly, we consider FLRW metric (24) with k = −1
for generalized harmonic potential (2) minimally coupled to
matter with field equations (27) with the substitution k = −1.
Defining

Ω =
√

ω2φ2 + φ̇2

6H2 , Ωk = − k

a2H2 ,

Φ = tω − tan−1
(

ωφ

φ̇

)
, (70)

the full system is deduced from (46) by setting Σ = 0. Then,

Ω̇ = −bγ f μ3Ω

H
sin2

⎛
⎝
√

3
2 HΩ sin(tω − Φ)

f ω

⎞
⎠

− bμ3
√

6H
cos(tω − Φ) sin

(√
6HΩ sin(tω − Φ)

f ω

)

+ H cos2(tω − Φ)

(
Ω3

(
γ

(
3μ2

ω2 − 3

2

)
+ 3

)
− 3Ω

)

+ 1

2
HΩ

(
3γ − 6γμ2Ω2

ω2 + (2 − 3γ )Ωk

)

+
(
ω2 − 2μ2

)
Ω sin(2tω − 2Φ)

2ω
, (71a)

Ω̇k = bγ f μ3Ωk

H

(
−1 + cos

(√
6HΩ sin(tω − Φ)

f ω

))

− HΩk

(
6γμ2Ω2 sin2(tω − Φ)

ω2 + (3γ − 2)(Ωk − 1)

)

− 3(γ − 2)HΩ2Ωk cos2(tω − Φ), (71b)

Φ̇ = −3H sin(tω − Φ) cos(tω − Φ)

+
(
ω2 − 2μ2

)

ω
sin2(tω − Φ)

− bμ3
√

6HΩ
sin(tω − Φ) sin

(√
6HΩ sin(tω − Φ)

f ω

)
,

(71c)

Ḣ = −(1 + q)H2, (71d)

with deceleration parameter

q = −1 + 3γ

2
− 3γμ2Ω2 sin2(tω − Φ)

ω2

− 3

2
(γ − 2)Ω2 cos2(tω − Φ) − 3

2
γΩk + Ωk

− bγ f μ3

H2 sin2

⎛
⎝
√

3
2 HΩ sin(tω − Φ)

f ω

⎞
⎠ . (71e)
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Setting f = bμ3

ω2−2μ2 > 0, we obtain:

ẋ = H f(t, x) + O(H2),

x = (Ω,Ωk, Φ)T , (72)

Ḣ = −1

2

(
3γ

(
1 − Ω2 − Ωk

)
+ 2Ωk

)

− 3Ω2 cos2(tω − Φ) + O(H3), (73)

where

f (t, x)

=

⎛
⎜⎜⎜⎜⎜⎝

1
2 Ω

(
3γ − 3γ

(
Ω2 + Ωk

) + 2Ωk
) + 3Ω

(
Ω2 − 1

)
cos2(tω − Φ)

−Ωk
(
3γΩ2 + (3γ − 2)(Ωk − 1)

) + 6Ω2Ωk cos2(tω − Φ)

− 3
2 sin(2tω − 2Φ)

⎞
⎟⎟⎟⎟⎟⎠

.

(74)

Replacing ẋ = H f(t, x) with f(t, x) defined by (74) with

ẏ = H f̄ (y), y = (
Ω̄, Ω̄k, Φ̄

)T
and using the time averaging

(33) we obtain the time-averaged system:

˙̄Ω = −1

2
H Ω̄

(
3(γ − 1)

(
Ω̄2 − 1

)
+ (3γ − 2)Ω̄k

)
, (75)

˙̄Ωk = −H Ω̄k

(
3(γ − 1)Ω̄2 − 3γ + (3γ − 2)Ω̄k + 2

)
,

(76)

˙̄Φ = 0. (77)

Theorem 2 applies to Bianchi III, and the invariant set Σ = 0
corresponds to negatively curved FLRW models.

5 Qualitative analysis of averaged systems

Theorem 2 proved in Appendix A implies that Ω,Σ,Ωk and
Φ evolve according to time-averaged system (52), (53), (54),
(55) as H → 0. Hence, the full equations of time-dependent
system (46) and their corresponding time-averaged versions
have the same late-time dynamics as H → 0. Therefore, the
simplest time-averaged system determines the future asymp-
totic of full system. In particular, depending on values of
barotropic index γ , the generic late-time attractors of phys-
ical interests are found. With this approach, the oscillations
entering full system through KG equation can be controlled
and smoothed out as Hubble factor H – acting as a time-
dependent perturbation parameter – tends monotonically to
zero. These results are supported by numerical simulations
given in Appendix C.

5.1 LRS Bianchi III

From the averaged system (52), (53), (54) and (55) we obtain
Hubble normalized averaged system

dΩ̄

dτ
= 1

2
Ω̄
(

3γ
(

1 − Σ̄2 − Ω̄2 − Ω̄k

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k − 3
)
, (78a)

dΣ̄

dτ
= 1

2

(
Σ̄
(

3γ
(

1 − Σ̄2 − Ω̄2 − Ω̄k

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k − 6
)

+ 2Ω̄k

)
, (78b)

dΩ̄k

dτ
= Ω̄k

(
3γ

(
1 − Σ̄2 − Ω̄2 − Ω̄k

)

+ 6Σ̄2 − 2Σ̄ + 3Ω̄2 + 2Ω̄k − 2
)
, (78c)

dΦ̄

dτ
= 0, (78d)

dH

dτ
= −1

2
H
(

3γ
(

1 − Σ̄2 − Ω̄2 − Ω̄k

)

+ 6Σ̄2 + 3Ω̄2 + 2Ω̄k

)
, (78e)

where dt
dτ

= 1/H . We have Σ̄2 + Ω̄2 + Ω̄k + Ω̄m = 1.
Therefore, from energy condition Ω̄m ≥ 0 the phase space
is:
{
(Ω̄, Σ̄, Ω̄k) ∈ R

3 : Σ̄2 + Ω̄2 + Ω̄k ≤ 1, Ω̄k ≥ 0
}

. (79)

The equilibrium points of the guiding system (78a), (78b),
(78c) are:

1. T : (Ω̄, Σ̄, Ω̄k) = (0,−1, 0) with eigenvalues{
6, 3

2 , 6 − 3γ
}
.

(i) It is a source for 0 ≤ γ < 2.

(ii) It is nonhyperbolic for γ = 2.

Defining a representative length along worldlines of the
4-velocity field as

�(t)

�0
=

[
e1

1(t)(e2
2(t))2

]− 1
3
, τ = ln

(
�(t)

�0

)
, (80)

such that

H = �̇

�
. (81)

We denote by convention t = 0 the current time where(
�(0)
�0

)3 = 1
e1

1(0)(e2
2(0))2 = 1 and τ(0) = 0 and evaluating
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Raychaudhuri equation (46e) at T we obtain:

⎧⎨
⎩

Ḣ = −3H2

�̇ = �H
�⇒

⎧⎨
⎩

H(t) = H0
3H0t+1

�(t) = �0
3
√

3H0t + 1
. (82)

Σ = −1 implies σ+ = −H = − H0
3H0t+1 . This implies

that K is constant. Indeed, from

K̇ = −2(σ+ + H)K , (83)

it follows K = (e2
2(t))2 = c−1

2 . Substituting back in Eq.
(17) is obtained:

˙e1
1 = − 3H0

3H0t + 1
e1

1, e1
1(0) = c2. (84)

Hence,

e1
1(t) = c2

3H0t + 1
. (85)

That is, line element (22) becomes

ds2 = −dt2 + (3H0t + 1)2

c2
2

dr2 + c2gH2 . (86)

Therefore, the corresponding solution can be expressed in
form of Taub–Kasner solution (p1 = 1, p2 = 0, p3 = 0)
where the scale factors of Kasner solution are t pi , i =
1, 2, 3 with p1 + p2 + p3 = 1, p2

1 + p2
2 + p2

3 = 1 [173,
Sect 6.2.2 and p 193, Eq. (9.6)].

2. Q : (Ω̄, Σ̄, Ω̄k) = (0, 1, 0) with eigenvalues
{
2, 3

2 ,

6 − 3γ
}
.

(i) It is a source for 0 ≤ γ < 2.

(ii) It is nonhyperbolic for γ = 2.

Evaluating Raychaudhuri equation (46e) at Q and solving
it we obtain

H(t) = H0

3H0t + 1
. (87)

Σ = 1 implies σ+ = H = H0
3H0t+1 . Hence, Gauss equa-

tion (16) and evolution equation (17) become

K̇ = − 4H0K

3H0t + 1
, K (0) = c−1

1 (88)

and

˙e1
1 = H0

3H0t + 1
e1

1, e1
1(0) = c1. (89)

Then, by integration,

e1
1(t) = c1

3
√

3H0t + 1, (90)

K (t) = 1

c1 (3H0t + 1)4/3 . (91)

That is, line element (22) becomes

ds2 = −dt2 + c−2
1 (3H0t + 1)−

2
3 dr2

+ c−1
1 (3H0t + 1)4/3gH2 . (92)

Therefore, the corresponding solution can be expressed in
form of non-flat LRS Kasner (p1 = − 1

3 , p2 = 2
3 , p3 =

2
3 ) Bianchi I solution ( [173] Sect. 6.2.2 and Sect. 9.1.1
(2)).

3. D : (Ω̄, Σ̄, Ω̄k) = (0, 1
2 , 3

4 ) with eigenvalues{− 3
2 , 0, 3 − 3γ

}
. It is a nonhyperbolic saddle for 0 ≤

γ < 1.

(i) For γ = 1 the eigenvalues are {− 3
2 , 0, 0}

(ii) For γ > 1 two eigenvalues are negative.

Evaluating Raychaudhuri equation (46e) at D we obtain

⎧⎨
⎩

Ḣ = − 3
2 H

2

�̇ = �H
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3H0t+2

�(t) = �0

(
3H0t

2 + 1
)2/3

. (93)

Σ = 1/2 implies σ+ = 1
2 H = H0

3H0t+2 . Hence, Gauss
equation (16) and evolution equation (17) become

˙e1
1 = 0, e1

1(0) = c1, (94)

K̇ = − 6H0K

3H0t + 2
, K (0) = 1

c1
. (95)

Hence,

e1
1 = c1, K = 4

c1(3H0t + 2)2 . (96)

That is, line element (22) becomes

ds2 = −dt2 + c−2
1 dr2 + (3H0t + 2)2

4c1
gH2 . (97)

Therefore, the corresponding solution can be expressed in
form of Bianchi III form of flat spacetime ( [173] p 193,
Eq. (9.7)).

4. F : (Ω̄, Σ̄, Ω̄k) = (1, 0, 0) with eigenvalues
{ − 3

2 , 1,

3 − 3γ
}
. This point is always a saddle because it has

a negative and a positive eigenvalue. For γ = 1 it is a
nonhyperbolic saddle.
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Setting ψ(t) = tω − Φ(t) and evaluating Raychaudhuri
equation (46e) at F we obtain

Ḣ =
b2γμ6

(
cos

(√
6H

(
2μ2−ω2

)
sin(ψ)

bμ3ω

)
− 1

)

2(2μ2 − ω2)

+
3H2

(
2γμ2 sin2(ψ) + ω2

(
(γ − 2) cos2(ψ) − γ

))

2ω2 .

(98)

Therefore,

Ḣ ∼ −3H2 cos2(tω − Φ), (99)

for large t . In average, Φ is constant, setting for simplicity
Φ = 0 and integrating we obtain

H(t) = 4H0ω

6H0tω + 3H0 sin(2tω) + 4ω
, (100)

where H0 is the current value of H(t). Finally, H(t) ∼ 2
3t

for large t .
Gauss equation (16) and evolution equation (17) become

ė1
1 = −2e1

1

3t
, K̇ = −4K

3t
, (101)

with general solution

ė1
1(t) = c1

t2/3 , K (t) = c2

t4/3 . (102)

That is, line element (22) becomes

ds2 = −dt2 + c−2
1 t4/3dr2 + c−1

2 t4/3gH2 . (103)

Hence for large t the equilibrium point can be associated
with Einstein-de-Sitter solution ( [173], Sec 9.1.1 (1)) with
γ = 1.

5. F0 : (Ω̄, Σ̄, Ω̄k) = (0, 0, 0) with eigenvalues{
3(γ−2)

2 ,
3(γ−1)

2 , 3γ − 2
}

.

(i) It is a sink for 0 ≤ γ < 2
3 .

(ii) It is a saddle for 2
3 < γ < 1 or 1 < γ < 2.

(iii) It is nonhyperbolic for γ = 2
3 or γ = 1 or γ = 2.

Evaluating Raychaudhuri equation (46e) at F0 we obtain

⎧⎨
⎩

Ḣ = − 3
2γ H2

�̇ = �H
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3γ H0t+2

�(t) = �0

(
3γ H0t

2 + 1
) 2

3γ

.

(104)

That is, line element (22) becomes

ds2 = −dt2 + �2
0

(
3γ H0t

2
+ 1

) 4
3γ (

dr2 + gH2

)
.

(105)

The corresponding solution is a matter dominated FLRW
universe with Ω̄m = 1.

6. MC : (Ω̄, Σ̄, Ω̄k) = (0,
3γ
2 − 1,− 9γ 2

4 + 6γ − 3) with
eigenvalues{

3(γ−1)
2 , 3

4

(
γ + √

2 − γ
√

γ (24γ − 41) + 18 − 2
)
,

3
4

(
γ − √

2 − γ
√

γ (24γ − 41) + 18 − 2
)}

. By defini-
tion Ωk ≥ 0, therefore, we impose restriction 2

3 ≤ γ ≤ 2.

(i) It is a sink for 2
3 < γ < 1.

(ii) It is a saddle for 1 < γ < 2.

(iii) It is nonhyperbolic for γ = 2
3 or γ = 1 or γ = 2.

The corresponding solution is a matter-curvature scaling
solution with Ω̄m = 3(1−γ ). We obtain same expressions
in (104) for �, H and for ds2 we obtain the expression:

ds2 = −dt2 + �2
0

(
3γ H0t

2
+ 1

) 4
3γ (

dr2 + gH2

)
.

(106)

In Fig. 2a some orbits in the phase space of the guiding
system (78a), (78b), (78c) for γ = 0 corresponding to cos-
mological constant are presented. The attractor is F0 where
scalar field mimics a cosmological constant. The equilibrium
point D is a saddle.

In Fig. 2b some orbits of the phase space of the guiding
system (78a), (78b), (78c) for γ = 2

3 are presented. The point
F0 coincides with MC ; it is asymptotically stable as proved
in Appendix B.1 by means of Center Manifold theory. The
equilibrium point D is a saddle.

In Fig. 3a, b some orbits in the phase space of the guiding
system (78a), (78b), (78c) for γ = 0.8 and γ = 0.9 are
presented. In both cases MC is a stable node and D is a
saddle.

It is worth to notice that for γ = 1 the system admits the
lines of equilibrium points (Ω̄, Σ̄, Ω̄k) = (Ω̄∗, 0, 0) and
D∗ := (Ω̄, Σ̄, Ω̄k) = (Ω̄∗, 1

2 , 3
4 ), where Ω̄∗ is an arbitrary

number which satisfies Ω̄∗ ∈ [0, 1]. Therefore, the Bianchi
III flat spacetime D, and F0 are not isolated fixed points
anymore. Additionally, MC coincides with D. In Fig. 4 some
orbits in the phase space of the guiding system (78a), (78b),
(78c) for γ = 1 which corresponds to dust are presented. The
attractor on the invariant set Ω̄k = 0 is the line that contains
F0 and F .

According to the center manifold analysis in Appendix
B.2 and supported by Fig. 10 for γ = 1, it is shown that D is
unstable (saddle type) for 1

8 (4Σ̄ + 4Ω̄k − 5) �= 0. However,
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(a)

(b)

Fig. 2 Phase space of the guiding system (78a), (78b), (78c) for γ =
0, 2

3

if we restrict the analysis to 1
8 (4Σ̄ + 4Ω̄k − 5) < 0 which is

the physical region of the phase space, D is asymptotically
stable and behaves as a local attractor.

In Fig. 5a some orbits in the phase space of guiding sys-
tem (78a), (78b), (78c) for γ = 4

3 corresponding to radiation
are presented. In Fig. 5b some orbits in the phase space of
guiding system (78a), (78b), (78c) for γ = 2 which cor-
responds to stiff matter are presented. In both figures, the
attractor on the invariant set Ω̄k = 0 is F . For γ > 1, D is
locally asymptotically stable according to the center mani-

(a)

(b)

Fig. 3 Phase space of the guiding system (78a), (78b), (78c) for some
values of γ = 0.8, 0.9

fold analysis in Appendix B.2. For γ = 2 the line connecting
T, F0, Q is invariant and unstable.

In Table 1 exact solutions associated with the equilibrium
points of reduced averaged system (78a), (78b) and (78c) are
summarized. A(t) and B(t) denote scale factors of the metric
(22) where c1, c2, a0 ∈ R

+.
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Table 1 Exact solutions associated with equilibrium points of reduced averaged system (78a), (78b) and (78c). A(t) and B(t) denote scale factors
of metric (22). c1, c2, �0 ∈ R

+

Point A(t) B(t) Solution

T (3H0t+1)
c2

√
c2 Taub–Kasner solution (p1 = 1, p2 = 0, p3 = 0)

Q c−2
1 (3H0t + 1)−1/3 c−1

1 (3H0t + 1)2/3 Non-flat LRS Kasner (p1 = − 1
3 , p2 = 2

3 , p3 = 2
3 ) Bianchi I solution

D c−1
1

(3H0t+2)
2
√
c1

Bianchi III form of flat spacetime

F c−1
1 t2/3 c−1/2

2 t2/3 Einstein-de-Sitter solution

F0 �0

(
3γ H0t

2 + 1
) 2

3γ
�0

(
3γ H0t

2 + 1
) 2

3γ
Matter dominated FLRW universe

MC �0

(
3γ H0t

2 + 1
) 2

3γ
�0

(
3γ H0t

2 + 1
) 2

3γ
Matter-curvature scaling solution

Fig. 4 Phase space of the guiding system (78a), (78b), (78c) for γ = 1

Table 2 Exact solutions associated with equilibrium points of reduced
averaged system (107a)–(107b). a(t) denotes a scale factor of metric
(28) and a0 ∈ R

+

Point a(t) Solution

F a0

(
3H0t

2 + 1
) 2

3
Einstein-de-Sitter solution

F0 a0

(
3γ H0t

2 + 1
) 2

3γ
Matter dominated FLRW universe

C a0 (H0t + 1) Milne solution

5.1.1 Late-time behavior

The results from the linear stability analysis, the Center Man-
ifold calculations in Appendix B and combined with Theo-
rem 2 lead to:

Theorem 3 The late time attractors of full system (46) and
averaged system (78) for Bianchi III line element are:

(i) The matter dominated FLRW universe F0 with line ele-
ment (105) if 0 < γ ≤ 2

3 . F0 represents a quintessence
fluid for 0 < γ < 2

3 or a zero-acceleration model for
γ = 2

3 . In the limit γ = 0 we have de Sitter solution.
(ii) The matter-curvature scaling solution MC with Ω̄m =

3(1 − γ ) and line element (106) if 2
3 < γ < 1.

(iii) The Bianchi III flat spacetime D with metric (97) if 1 ≤
γ ≤ 2.

5.2 FLRW metric with k = −1

In this case the time-averaged system (75), (76), (77) trans-
forms to:

dΩ̄

dτ
= −1

2
Ω̄

(
3(γ − 1)

(
Ω̄2 − 1

)
+ (3γ − 2)Ω̄k

)
,

(107a)

dΩ̄k

dτ
= −Ω̄k

(
3(γ − 1)Ω̄2 − 3γ + (3γ − 2)Ω̄k + 2

)
,

(107b)

dΦ̄

dτ
= 0, (107c)

dH

dτ
= −1

2
H

[
3γ (1 − Ωk − Ω2) + 3Ω2 + 2Ωk

]
, (107d)

where dt
dτ

= 1/H. We have Ω̄2 + Ω̄k + Ω̄m = 1. Therefore,
from condition Ω̄m ≥ 0 the phase space is
{
(Ω̄, Ω̄k) ∈ R

2 : Ω̄2 + Ω̄k ≤ 1, Ω̄k ≥ 0
}

. (108)

For γ = 1, guiding system (107a)–(107b) is reduced to

dΩ̄

dτ
= −1

2
Ω̄ Ω̄k,

dΩ̄k

dτ
= Ω̄k

(
1 − Ω̄k

)
. (109)

The solution is

Ω̄(τ ) = Ω0√
eτΩk0 − Ωk0 + 1

,
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(a)

(b)

Fig. 5 Phase space of the guiding system (78a), (78b), (78c) for γ =
4
3 , 2

Ω̄k(τ ) = eτΩk0

eτΩk0 − Ωk0 + 1
. (110)

where Ω̄(0) = Ω0, Ω̄k(0) = Ωk0.
The equilibrium point C : (Ω̄, Ω̄k) = (0, 1) with eigen-

values {−1,− 1
2 } is the late-time attractor.

The line of equilibrium points Ω̄(Ω0) = Ω0, Ω̄k(Ω0) =
0 where Ω0 ∈ R with eigenvalues {1, 0} is normally hyper-
bolic. Therefore, by considering eigenvalues with non zero
real parts, it is found that the line is unstable. This line con-
tains the points F0, F . In Fig. 6 the phase plane of system

Fig. 6 Phase plane of system (109) for γ = 1

(109) for γ = 1 where the unstable line is Ω̄k = 0 and the
attractor is C is presented.
For γ �= 1, the 2D guiding system (107a), (107b) has the
following equilibrium points:

1. F0 : (Ω̄, Ω̄k) = (0, 0) with eigenvalues{
3(γ−1)

2 , 3γ − 2
}

.

(i) It is a sink for 0 < γ < 2
3 .

(ii) It is nonhyperbolic for γ = 2
3 .

(iii) It is a saddle for 2
3 < γ < 1.

(iv) It is source for 1 < γ < 2.

Evaluating Eq. (107d) at F0 we obtain

⎧⎨
⎩

Ḣ = − 3
2γ H2

ȧ = aH
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3γ H0t+2

a(t) = a0

(
3γ H0t

2 + 1
) 2

3γ

.

(111)

That is, line element (28) becomes

ds2 = −dt2 + a2
0

(
3γ H0t

2
+ 1

) 4
3γ (

dr2 + sinh2 rdΩ2
)

,

(112)

where dΩ2 = dϑ2 + sin2 ϑ dζ 2 is the metric for a two-
sphere. The corresponding solution is a matter dominated
FLRW universe, i.e., Ω̄m = 1.

2. F : (Ω̄, Ω̄k) = (1, 0) with eigenvalues
{1,−3(γ − 1)}.

(i) It is a source for 0 < γ < 1,
(ii) It is a saddle for 1 < γ < 2.
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Fig. 7 Phase plane for system
(107a), (107b) for different
choices of γ

(a) (b)

(c) (d)

Evaluating Eq. (107d) at F1 we obtain

⎧⎨
⎩

Ḣ = − 3
2 H

2

ȧ = aH
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3H0t+2

a(t) = a0

(
3H0t

2 + 1
) 2

3

. (113)

Then, line element (28) becomes

ds2 = −dt2 + a2
0

(
3H0t

2
+ 1

) 4
3

dr2

+ a2
0

(
3H0t

2
+ 1

) 4
3 (

dr2 + sinh2 rdΩ2
)

. (114)

Hence for large t the equilibrium point can be associated
with Einstein-de-Sitter solution.

3. C : (Ω̄, Ω̄k) = (0, 1) with eigenvalues{− 1
2 , 2 − 3γ

}
.

(i) It is a saddle for 0 < γ < 2
3 .

(ii) It is nonhyperbolic for γ = 2
3 .

(iii) It is a sink for 2
3 < γ < 2.

Evaluating the deceleration parameter (71e) at C we have
q = 0. Then,

⎧⎨
⎩

Ḣ = −H2

ȧ = aH
�⇒

⎧⎨
⎩

H(t) = H0
H0t+1

a(t) = a0(H0t + 1)

. (115)

The line element (28) becomes

ds2 = −dt2 + a2
0 (H0t + 1)2

(
dr2 + sinh2 rdΩ2

)
(116)

This is a curvature dominated Milne solution (Ω = Ωm =
0,Ωk = 1, k = −1) [173, Sect. 9.1.6, Eq. (9.8)], [209–
212]).
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In Table 2 exact solutions associated with equilibrium points
of the reduced averaged system (107a)–(107b) where a(t)
denote scale factors of metric (28) and a0 ∈ R

+ are pre-
sented.

In Fig. 7 the phase plane of the system (107a), (107b) for
γ = 0, 2

3 , 0.8 and γ = 4
3 is portrayed.

5.2.1 Late-time behaviour

The results from the linear stability analysis combined with
Theorem 2 (for Σ = 0) lead to:

Theorem 4 The late time attractors of the full system (71)
and the averaged system (107) are:

(i) The matter dominated FLRW universe F0 with line ele-
ment (112) for 0 < γ ≤ 2

3 . F0 represents a quintessence
fluid or a zero-acceleration model for γ = 2

3 . In the limit
γ = 0 we have de Sitter solution.

(ii) The Milne solution C with Ω̄k = 1, k = −1 with line
element (116) for 2

3 < γ < 2.

6 Conclusions

In this paper we have used asymptotic methods and averag-
ing theory to explore the solution’s space of scalar field cos-
mologies with generalized harmonic potential (2) in vacuum
or minimally coupled to matter. We have studied systems that
can be expressed in the standard form (37), where H is the
Hubble parameter and is positive strictly decreasing in t and
limt→∞ H(t) = 0. Defining Z = 1 −Σ2 −Ω2 −Ωk which
is monotonic as H → 0, due to there is a continuous function
α such that Ż = −HZα +O

(
H2

)
it was proved that sign of

1−Σ2−Ω2−Ωk is invariant as H → 0. Then, from Eq. (50)
it was proved that H is a monotonic decreasing function of t
if 0 < Ω2 + Σ2 + Ωk < 1. This implies limt→∞ H(t) = 0
based on the invariance of initial surface for large t . Hence,
from Theorem 2 was deduced that Ω,Σ,Ωk , and Φ evolve
according to the time-averaged system (52), (53), (54), (55)
as H → 0. Then, the stability of a periodic solution can be
established as it matches exactly the stability of stationary
solution of time-averaged system. We have given a rigorous
demonstration of Theorem 2 in Appendix A based on the
construction of a smooth local near-identity nonlinear trans-
formation, well-defined as H tends to zero. We have used
properties of the sup norm, and the theorem of the mean val-
ues for a vector function f̄ : R

3 −→ R
3. We have explained

preliminaries of the method in Sect. 4.3.
In particular, in LRS Bianchi III late time attractors of full

system (46) and averaged system (78) for Bianchi III line
element are:

(i) The matter dominated FLRW universe F0 with line ele-
ment (105) if 0 < γ ≤ 2

3 . F0 represents a quintessence
fluid or a zero-acceleration model for γ = 2

3 . In the limit
γ = 0 we have de Sitter solution.

(ii) The matter-curvature scaling solution CS with Ω̄m =
3(1 − γ ) and line element (106) if 2

3 < γ < 1.

(iii) The Bianchi III flat spacetime D with line element (97)
if 1 < γ ≤ 2.

For FLRW metric with k = −1, late time attractors of full
system (71) and averaged system are:

(i) The matter dominated FLRW universe F0 with line ele-
ment (112) for 0 < γ ≤ 2

3 . F0 represents a quintessence
fluid or a zero-acceleration model for γ = 2

3 . In the limit
γ = 0 we have de Sitter solution.

(ii) The Milne solution C with line element (116) for 2
3 <

γ < 2.

Summarizing, in LRS Bianchi III late-time attractors are: a
matter dominated flat FLRW universe if 0 ≤ γ ≤ 2

3 (mimick-
ing de Sitter, quintessence or zero acceleration solutions), a
matter-curvature scaling solution if 2

3 < γ < 1 and Bianchi
III flat spacetime for 1 ≤ γ ≤ 2. For FLRW metric with
k = −1 late time attractors are: the matter dominated FLRW
universe if 0 ≤ γ ≤ 2

3 (mimicking de Sitter, quintessence or
zero acceleration solutions) and Milne solution if 2

3 < γ < 2.
In all metrics, matter dominated flat FLRW universe repre-
sents quintessence fluid if 0 < γ < 2

3 .
Continuing the program “Averaging generalized scalar

field cosmologies”, the cases: (II) Bianchi I and flat FLRW
model and (III) KS and closed FLRW are studied in two
companion papers [164,165], respectively. In [164] using the
same approach used here we found the oscillations entering
the full system through KG equation can be controlled and
smoothed out when the Hubble factor H is used as a time-
dependent parameter since it tends monotonically to zero
and preserves its sign during the evolution. However, in case
(III) this approach is not valid given that H is not necessar-
ily monotonically decreasing to zero, and it can change its
sign. Therefore, we have developed an alternative procedure
in [165]. For LRS Bianchi I and flat FLRW metrics as well as
for LRS Bianchi III and open FLRW, we use Taylor expan-
sion with respect to H near H = 0 such that the resulting
system can be expressed in standard form (37) after selecting
a convenient angular frequency ω in the transformation (31).
Next, we have taken the time-averaged of previous system,
obtaining a system that can be easily studied using dynamical
systems tools. Using the last approach, we have formulated
Theorems 3 and 4 about late-time behavior of our model,
whose proofs are based on Theorem 2 center manifold cal-
culations and linear stability analysis.
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As in paper [152], our analytical results were strongly sup-
ported by numerics in Appendix C as well. We showed that
asymptotic methods and averaging theory are powerful tools
to investigate scalar field cosmologies with generalized har-
monic potential, which have evident advantages, e.g., it is
not needed to analyze the full dynamics to determine the sta-
bility of the full oscillation, but only the late-time behavior
of the time-averaged (simpler) system has to be analyzed.
Interestingly, for LRS Bianchi III and open FLRW model,
when matter fluid corresponds to a cosmological constant,
H tends asymptotically to constant values depending on the
initial conditions which is consistent to de Sitter expansion
(see Figs. 13a, 21a). In addition, for open FLRW and any
γ < 2

3 and Ωk > 0, Ωk → 0. On the other hand, when
γ > 2

3 and Ωk > 0 the universe becomes curvature domi-
nated asymptotically (Ωk → 1). In Appendix C, evidences
that the main theorem of Sect. 4 is valid for LRS Bianchi III
and for FLRW metrics with negative curvature are presented.
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Appendix A: Proof of Theorem 2

Lemma 5 (Gronwall’s Lemma (Integral form)) Let be ξ(t)
a nonnegative function, summable over [0, T ]which satisfies

almost everywhere the integral inequality

ξ(t) ≤ C1

∫ t

0
ξ(s)ds + C2, C1,C2 ≥ 0.

Then,

ξ(t) ≤ C2e
C1t ,

almost everywhere for t in 0 ≤ t ≤ T . In particular, if

ξ(t) ≤ C1

∫ t

0
ξ(s)ds, C1 ≥ 0

almost everywhere for t in 0 ≤ t ≤ T . Then, ξ ≡ 0 almost
everywhere for t in 0 ≤ t ≤ T .

Lemma 6 (Mean value theorem) Let U ⊂ R
n be open, f :

U → R
m continuously differentiable, and x ∈ U, h ∈ R

m

vectors such that the line segment x+z h, 0 ≤ z ≤ 1 remains
in U. Then we have:

f(x + h) − f(x) =
(∫ 1

0
Df(x + z h) dz

)
· h, (A.1)

where Df denotes the Jacobian matrix of f and the integral
of a matrix is understood as componentwise.

Proof of Theorem 2 Defining Z = 1 − Σ2 − Ω2 − Ωk it
follows from

Ż = −HZ
(

3(γ − 2)Σ2 + 3(γ − 1)Ω2 + (3γ − 2)Ωk

− 3Ω2 cos(2(Φ − tω))
)

+ O
(
H2

)

that the sign of 1 − Σ2 − Ω2 − Ωk is invariant as H → 0.
From Eq. (50) it follows that H is a monotonic decreasing
function of t if 0 < Ω2 + Σ2 + Ωk < 1. These allow to
define recursively bootstrapping sequences

⎧⎨
⎩

t0 = t∗

H0 = H(t∗)
,

⎧⎨
⎩

tn+1 = tn + 1
Hn

Hn+1 = H(tn+1)

, (A.2)

such that limn→∞ Hn = 0 y limn→∞ tn = ∞. ��
Given expansions (57), Eq. (63) become

Ω̇0 = 1

2

(
Ω0

(
6Σ0

2 + 3Ω0
2 + 2Ωk0

− 3γ
(
Σ0

2 + Ω0
2 + Ωk0 − 1

)

+ 3
(
Ω0

2 − 1
)

cos(2(tω − Φ0)) − 3
))

H

− ∂g1

∂t
H + O

(
H2

)
,

123
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Σ̇0 = 1

2

(
3Σ0 cos(2(tω − Φ0))Ω0

2 + 2Ωk0

+ Σ0

(
6Σ0

2 + 3Ω0
2 + 2Ωk0 − 6

− 3γ
(
Σ0

2 + Ω0
2 + Ωk0 − 1

) ))
H

− ∂g2

∂t
H + O

(
H2

)
,

Ω̇k0 =
(

Ωk0

(
6Σ0

2 − 2Σ0 + 3Ω0
2 + 2Ωk0

− 3γ
(
Σ0

2 + Ω0
2 + Ωk0 − 1

)

+ 3Ω0
2 cos(2(tω − Φ0)) − 2

))
H

− ∂g3

∂t
H + O

(
H2

)
,

Φ̇0 = −
(

3

2
sin(2(tω − Φ0)) + ∂g4

∂t

)
H + O

(
H2

)
.

Furthermore, Eq. (69) becomes

∂g1

∂t
= 3

2
Ω0

(
Ω0

2 − 1
)

cos(2(Φ0 − tω)), (A.3a)

∂g2

∂t
= 3

2
Σ0Ω0

2 cos(2(Φ0 − tω)), (A.3b)

∂g3

∂t
= 3Ω0

2Ωk0 cos(2(Φ0 − tω)), (A.3c)

∂g4

∂t
= −3

2
sin(2(Φ0 − tω)). (A.3d)

Then, explicit expressions of the gi , i = 1, . . . , 4 are
straightforwardly found by integration of (A.3):

g1(H,Ω0,Σ0,Ωk0, Φ0, t) = 3Ω0
(
1 − Ω0

2
)

sin(2(Φ0 − tω))

4ω

+ C1(Ω0,Σ0,Ωk0, Φ0),

(A.4)

g2(H,Ω0,Σ0,Ωk0, Φ0, t) = −3Σ0Ω0
2 sin(2(Φ0 − tω))

4ω

+ C2(Ω0,Σ0,Ωk0, Φ0),

(A.5)

g3(H,Ω0,Σ0,Ωk0, Φ0, t) = −3Ω0
2Ωk0 sin(2(Φ0 − tω))

2ω

+ C3(Ω0,Σ0,Ωk0, Φ0),

(A.6)

g4(H,Ω0,Σ0,Ωk0, Φ0, t) = 3 cos(2(Φ0 − tω))

4ω

+ C4(Ω0,Σ0,Ωk0, Φ0),

(A.7)

where we can set four integration functionsCi (Ω0,Σ0,Ωk0,

Φ0), i = 1, 2, 3, 4 to zero. Functions gi , i = 1, . . . , 4 are
continuously differentiable, such that their partial derivatives
are bounded on t ∈ [tn, tn+1].

Let ΔΩ0 = Ω0 − Ω̄, ΔΣ0 = Σ0 − Σ̄, ΔΩk0 =
Ωk0 − Ω̄k, ΔΦ0 = Φ0 − Φ̄ be defined such that Ω0(tn) =
Ω̄(tn) = Ωn, Σ0(tn) = Σ̄(tn) = Σn, Ωk0(tn) = Ω̄k(tn) =
Ωkn, Φ0(tn) = Φ̄(tn) = Φn, with 0 < Ω(tn) + Σ(tn)2 +
Ωk(tn)2 < 1.

Keeping the terms of second order in H , system (68)
becomes

˙ΔΩ0 = 1

2
H

(
Ω̄

(
3(γ − 2)Σ̄2 + 3(γ − 1)

(
Ω̄2 − 1

) + (3γ − 2)Ω̄k
)

+Ω0
(
3γ

(
1 − Σ2

0 − Ω2
0 − Ωk0

) + 6Σ2
0 + 3Ω2

0 + 2Ωk0 − 3
))

+ H2 sin(2(Φ0 − tω))

(
Ω3

0

(
2μ2 − ω2

)3

4b2μ6ω3

+
Ω0

(
9b2μ6ω2

(−4Ω4
0 + 3Ω2

0 + 1
) − 2Ω2

0

(
2μ2 − ω2

)3
)

cos(2(Φ0 − tω))

8b2μ6ω3

+ 3
(
Ω2

0 − 1
)
Ω0

(
3γ

(
Σ2

0 + Ω2
0 +Ωk0 − 1

)− 6Σ2
0 −3Ω2

0 − 2Ωk0
)

8ω

)
,

(A.8a)

˙ΔΣ0 = 1

2
H

(
3Σ̄

(
(γ − 2)

(
Σ̄2 − 1

) + (γ − 1)Ω̄2) + Ω̄k
(
(3γ − 2)Σ̄ − 2

)

+Σ0
(−3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

) + 6Σ2
0 + 3Ω2

0 + 2Ωk0 − 6
) + 2Ωk0

)
+ H2 sin(2(Φ0 − tω))(

3Ω2
0

(
3γΣ0

(
Σ2

0 + Ω2
0 + Ωk0 − 1

) − 3Σ0
(
2Σ2

0 + Ω2
0

) − 2(Σ0 + 1)Ωk0
)

8ω

− 9Σ0Ω
4
0 cos(2(Φ0 − tω))

2ω

)
, (A.8b)

˙ΔΩk0 = H
(
Ω̄k

(
3(γ − 2)Σ̄2 + 3(γ − 1)Ω̄2 + (3γ − 2)

(
Ω̄k − 1

) + 2Σ̄
)

+Ωk0
(−3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

) + 6Σ2
0 − 2Σ0 + 3Ω2

0 + 2Ωk0 − 2
))

+ H2 sin(2(Φ0 − tω))(
3Ω2

0 Ωk0
(
3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

) − 6Σ2
0 + 2Σ0 − 3Ω2

0 − 2Ωk0
)

4ω

− 45Ω4
0 Ωk0 cos(2(Φ0 − tω))

4ω

)
, (A.8c)

˙ΔΦ0 = H2
(

3Ω̄2
(
2μ2 − ω2

)3

8b2μ6ω3

− Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

b2μ6ω3

+ 3 cos(2(Φ0 − tω))

8ω

(−3γ
(
Σ2

0 + Ω2
0 + Ωk0 − 1

)

+6Σ2
0 + 3Ω2

0 + 2Ωk0 + 3
(
Ω2

0 + 2
)

cos(2(Φ0 − tω))
) )

. (A.8d)

Denoting x0 = (Ω0,Σ0,Ωk0)
T , x̄ = (Ω̄, Σ̄, Ω̄k)

T the sys-
tem (A.8) can be written as a 3-dimensional system:

˙Δx0 = H
(
f̄(x0) − f̄(x̄)

) + O(H2),

plus Eq. (A.8d), where the vector function f̄ is explicitly given
(last row corresponding to Δ̇Φ0 was omitted) by:

f̄(y1, y2, y3)

123
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=
⎛
⎜⎝

− 1
2 y1

(−3γ + 3(γ − 1)y2
1 + 3(γ − 2)y2

2 + 3γ y3 − 2y3 + 3
)

1
2

(
y2

(
3γ − 3(γ − 1)y2

1 − 3γ y3 + 2y3 − 6
) − 3(γ − 2)y3

2 + 2y3
)

y3
(−3(γ − 1)y2

1 − 3(γ − 2)y2
2 − 2y2 − (3γ − 2)(y3 − 1)

)

⎞
⎟⎠ .

It is a vector function with polynomial components in vari-
ables (y1, y2, y3). Therefore, it is continuously differentiable
in all its components.

Let be Δx0(t) = (Ω0−Ω̄,Σ0−Σ̄, Ω̄k−Ωk0)
T with 0 ≤

|Δx0| := max
{|Ω0 − Ω̄|, |Σ0 − Σ̄ |, |Ωk0 − Ω̄k |

}
finite in

the closed interval [tn, t]. Using same initial conditions for
x0 and x̄ we obtain by integration:

Δx0(t) =
∫ t

tn

˙Δx0ds

=
∫ t

tn

(
H

(
f̄(x0) − f̄(x̄)

) + O(H2)
)
ds.

Using Lemma 6 we have

f̄(x0(s)) − f̄(x̄(s))

=
(∫ 1

0
Df̄ (x̄(s) + z (x0(s) − x̄(s))) dz

)

︸ ︷︷ ︸
A(s)

· (x0(s) − x̄(s)) ,

(A.9)

where Df̄ denotes the Jacobian matrix of f̄ and the integral
of a matrix is understood as componentwise. Omitting the
dependence on s we calculate the components of

A =
⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ , (A.10)

which are

a11 = 1

4

(
− 2(γ − 2)Σ̄2 − 2(γ − 2)Σ0Σ̄

− 6(γ − 1)Ω̄2 + 6Ω2
0 − 6(γ − 1)Ω̄Ω0

+ 2
(

2Σ2
0 + 3γ + Ω̄k + Ωk0 − 3

)

− γ
(

2Σ2
0 + 6Ω2

0 + 3Ω̄k + 3Ωk0

))
, (A.11a)

a12 = − 1

2
(γ − 2)

(
Σ̄

(
2Ω̄ + Ω0

) + Σ0
(
Ω̄ + 2Ω0

))
, (A.11b)

a13 = − 1

4
(3γ − 2)

(
Ω̄ + Ω0

)
, (A.11c)

a21 = − 1

2
(γ − 1)

(
Σ̄

(
2Ω̄ + Ω0

) + Σ0
(
Ω̄ + 2Ω0

))
, (A.11d)

a22 = 1

2

(
− γ Ω̄2 + Ω̄2 − γΩ0Ω̄

+ Ω0Ω̄ − γΩ2
0 + Ω2

0 + 3γ − 3γ Ω̄k

2
+ Ω̄k

− 3(γ − 2)
(
Σ̄2 + Σ0Σ̄ + Σ2

0

)
− 3γΩk0

2
+ Ωk0 − 6

)
,

(A.11e)

a23 = 1

4

(
(2 − 3γ )Σ̄ + (2 − 3γ )Σ0 + 4

)
, (A.11f)

a31 = −(γ − 1)
(
Ω̄

(
2Ω̄k + Ωk0

) + Ω0
(
Ω̄k + 2Ωk0

))
, (A.11g)

a32 = −Ω̄k
(
(γ − 2)

(
2Σ̄ + Σ0

) + 1
)

− (
(γ − 2)

(
Σ̄ + 2Σ0

) + 1
)
Ωk0, (A.11h)

a33 = −(γ − 2)Σ̄2 − ((γ − 2)Σ0 + 1) Σ̄ − (γ − 1)Ω̄2 + Ω2
0

+ 3γ + 2Ω̄k + Σ0 (2Σ0 − 1) − (γ − 1)Ω̄Ω0 + 2Ωk0

− γ
(
Σ2

0 + Ω2
0 + 3Ω̄k + 3Ωk0

)
− 2. (A.11i)

Taking sup norm |Δx0| = max
{|Ω0 − Ω̄|, |Σ0 − Σ̄ |, |Ωk0

−Ω̄k |
}

and the sup norm of a matrix |A| defined by
max{|ai j | : i = 1, 2, 3, j = 1, 2, 3}, where ai j are given
in (A.11) we have

|A(s) · Δx0(s)| ≤ 3|A(s)||Δx0(s)|, ∀s ∈ [tn, tn+1].
By continuity of polynomials ai j

(
Ω0,Σ0,Ωk0, Φ0, Ω̄, Σ̄,

Ω̄k, Φ̄
)

given in (A.11) and by continuity of functions
Ω0,Σ0,Ωk0, Φ0 and Ω̄, Σ̄, Ω̄k, Φ̄ in [tn, tn+1] the follow-
ing finite constants are found:

L1 = 3 max
t∈[tn ,tn+1] |A(t)|,

M1 = max
t∈[tn ,tn+1]

{∣∣∣∣
Ω3

0

(
2μ2 − ω2

)3

4b2μ6ω3

+
Ω0

(
9b2μ6ω2

(
−4Ω4

0 + 3Ω2
0 + 1

)
− 2Ω2

0

(
2μ2 − ω2

)3
)

cos(2(Φ0 − tω))

8b2μ6ω3

+
3
(
Ω2

0 − 1
)

Ω0

(
3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

)
− 6Σ2

0 − 3Ω2
0 − 2Ωk0

)

8ω

∣∣∣∣,
∣∣∣∣

3Ω2
0

(
3γΣ0

(
Σ2

0 + Ω2
0 + Ωk0 − 1

)
− 3Σ0

(
2Σ2

0 + Ω2
0

)
− 2(Σ0 + 1)Ωk0

)

8ω

− 9Σ0Ω4
0 cos(2(Φ0 − tω))

2ω

∣∣∣∣,
∣∣∣∣

3Ω2
0 Ωk0

(
3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

)
− 6Σ2

0 + 2Σ0 − 3Ω2
0 − 2Ωk0

)

4ω

− 45Ω4
0 Ωk0 cos(2(Φ0 − tω))

4ω

∣∣∣∣
}
,

and

M2 = max
t∈[tn ,tn+1]

∣∣∣∣3Ω̄2
(
2μ2 − ω2

)3

8b2μ6ω3

− Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

b2μ6ω3

+ 3 cos(2(Φ0 − tω))

8ω

(
−3γ

(
Σ2

0 + Ω2
0 + Ωk0 − 1

)

+6Σ2
0 + 3Ω2

0 + 2Ωk0

+3
(
Ω2

0 + 2
)

cos(2(Φ0 − tω))
) ∣∣∣∣

such that for all t ∈ [tn, tn+1]:

|Δx0(t)| =
∣∣∣∣
∫ t

tn

˙Δx0ds

∣∣∣∣
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=
∣∣∣∣
∫ t

tn

(
H

(
f̄(x0) − f̄(x̄)

) + O(H2)

)
ds

∣∣∣∣
≤ Hn

∫ t

tn
|f̄(x0) − f̄(x̄)|ds + M1H

2
n (t − tn)

≤ Hn

∫ t

tn
|A(s) · Δx0(s)|ds + M1H

2
n (t − tn)

≤ L1Hn

∫ t

tn
|Δx0(s)|ds + M1H

2
n (t − tn)

≤ L1Hn

∫ t

tn
|Δx0(s)|ds + M1Hn

due to t − tn ≤ tn+1 − tn = 1

Hn
.

Using Gronwall’s Lemma 5, we have for t ∈ [tn, tn+1]:
∣∣∣Δx0(t)

∣∣∣ ≤ M1Hne
L1Hn(t−tn) ≤ M1Hne

L1 ,

due to t − tn ≤ tn+1 − tn = 1
Hn

.
Then,

∣∣∣ΔΩ0(t)
∣∣∣ ≤ M1e

L1 Hn,∣∣∣ΔΣ0(t)
∣∣∣ ≤ M1e

L1 Hn,

∣∣∣ΔΩk0(t)
∣∣∣ ≤ M1e

L1 Hn .

Furthermore, from eq. (A.8d) we have

|ΔΦ0(t)| = |Φ0(t) − Φ̄(t)| =
∣∣∣∣
∫ t

tn

(
Φ̇0(s) − ˙̄Φ(s)

)
ds

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

∫
t

tn

H2
{3Ω̄2

(
2μ2 − ω2

)3

8b2μ6ω3

−
Ω2

0

(
2μ2 − ω2

)3
sin4(Φ0 − sω)

b2μ6ω3

+ 3 cos(2(Φ0 − sω))

8ω

(
3γ

(
1 − Σ2

0 − Ω2
0 − Ωk0

)

+6Σ2
0 + 3Ω2

0 + 2Ωk0

+3
(
Ω2

0 + 2
)

cos(2(Φ0 − sω))
)}

ds

∣∣∣∣∣∣∣∣∣∣

≤ M2H
2
n (t − tn) + |O(Hn

3)| ≤ M2Hn ,

due to t − tn ≤ tn+1 − tn = 1

Hn
.

Fig. 8 One dimensional flow for (B.27) for z ∈ [−1, 1] the origin is
stable if z ≥ 0. Note that z ≥ 0 corresponds to Ω̄k ≥ 0

Fig. 9 One dimensional flow for (B.67) for z ∈ [−2, 2]. The origin is
stable

Fig. 10 Two dimensional flow for (B.82), (B.83). The physical region
of the phase space is y := 1

8 (4Σ̄ + 4Ω̄k − 5) < 0, z := Ω̄ > 0

Finally, taking limit as n → ∞, we obtain Hn → 0. Then,
as Hn → 0, functions Ω0,Σ0,Ωk0, Φ0 and Ω̄, Σ̄, Ω̄k, Φ̄

have the same limit as τ → ∞.
Setting Σ = Σ0 = 0 are derived analogous results for

negatively curved FLRW model. ��

Appendix B: center manifold calculations

Appendix B.1: center manifold of F0 for γ = 2
3

Letting γ = 2
3 and defining new variables

x = Σ̄ − Ω̄k

2
, y = Ω̄, z = Ω̄k, (B.12)
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Fig. 11 Two dimensional flow for (B.101), (B.102). The origin is
unstable

we obtain new equations

x ′ = Ax + f1(x, y, z), (B.13)

y′ = By + f2(x, y, z), (B.14)

z′ = Cz + f3(x, y, z), (B.15)

with

A = −2, B = −1

2
, C = 0, (B.16)

f1(x, y, z) = 2x3 + x2z + xy2

2
− xz2

2

+ xz − y2z

4
− z3

4
+ z2

2
, (B.17)

f2(x, y, z) = 2x2y + 2xyz + y3

2
+ yz2

2
, (B.18)

f3(x, y, z) = 4x2z + 4xz2 − 2xz + y2z + z3 − z2. (B.19)

Note that if J1 is the linearization matrix of system (B.13),
(B.14), (B.15) then the eigensystem of J1(0, 0, 0) is( −2 − 1

2 0
{1, 0, 0} {0, 1, 0} {0, 0, 1}

)
.

This implies that the local center manifold of the origin
for (B.13), (B.14), (B.15) is given by the graph

Wc
loc(0) =

{
(x, y, z) ∈ R

3 : x = h1(z), y = h2(z),

h1(0) = h2(0) = 0,

h′
1(0) = h′

2(0) = 0, |z| < δ

}
(B.20)

for some δ > 0.
Therefore, we can use Taylor series to define

h1(z) = a1z
2 + a2z

3 + a3z
4 + a4z

5 + a5z
6 + O

(
z7
)

,

(B.21)

h2(z) = b1z
2 + b2z

3 + b3z
4 + b4z

5 + b5z
6 + O

(
z7
)

.

(B.22)

The following quasilinear differential equations

N (h1(z)) ≡ h′
1(z)(Cz + f3(h1(z), h2(z), z))

− Ah1(z) − f1(h1(z), h2(z), z), (B.23)

N (h2(z)) ≡ h′
2(z)(Cz + f3(h1(z), h2(z), z))

− Bh2(z) − f2(h1(z), h2(z), z), (B.24)

must be solved for ai , bi , i = 1, . . . 5 up to order six to
approximate the center manifold. We notice that bi , i =
1, . . . 5 are zero and a1 = 1

4 , a2 = 1
4 , a3 = 5

16 , a4 = 7
16 .

Hence, we obtain

h1(z) = z2

4
+ z3

4
+ 5z4

16
+ 7z5

16
+ 21z6

32
+ O(z7), (B.25)

h2(z) = O(z7), (B.26)

and the dynamics on the center manifold is given by:

z′ = −z2 + z3

2
+ z4

2
+ 5z5

8
+ 7z6

8
+ O

(
z7
)

. (B.27)

Then, F0 is locally asymptotically stable for z ≥ 0. Note that
z ≥ 0 corresponds to Ω̄k ≥ 0 given that z = Ω̄k .

In Fig. 8 a one dimensional flow of (B.27) for z ∈ [−1, 1]
is represented. The origin is locally asymptotically stable if
z ≥ 0.

Appendix B.2: center manifold of D for γ ≥ 1

Letting γ /∈ { 4
3 , 3

2

}
and defining new variables

x = γ (12Σ̄ − 4Ω̄k − 3) − 16Σ̄ + 8Ω̄k + 2

24 − 16γ
, (B.28)

y = (3γ − 4)(4Σ̄ + 4Ω̄k − 5)

8(2γ − 3)
, (B.29)

z = Ω̄, (B.30)

we obtain new equations

x ′ = Ax + f1(x, y, z, γ ), (B.31)

y′ = By + f2(x, y, z, γ ), (B.32)

z′ = Cz + f3(x, y, z, γ ), (B.33)

with

A = − 3

2
, B = 3(1 − γ ), C = 0, (B.34)

f1(x, y, z, γ ) = 3(5γ − 8)(γ − 2)x3

12 − 8γ
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+ x2

(
18 − 13γ

8γ − 12
+ 3(7γ − 12)(γ − 2)2y

4(2γ − 3)(3γ − 4)

)

+ x

(
3γ (γ − 2)3y2

4(4 − 3γ )2(2γ − 3)

+ 1

4

(
−10γ + 3

3 − 2γ
+ 8

3γ − 4
+ 11

)
y

)

+ z2
(

3(γ − 1)

8γ − 12
+ 3(5γ − 8)(γ − 1)x

12 − 8γ

+ 3(γ − 2)(γ − 1)y

12 − 8γ

)
− 3(γ − 2)4y3

4(4 − 3γ )2(2γ − 3)

− (γ (3γ (12γ − 43) + 152) − 60)(γ − 2)y2

4(4 − 3γ )2(2γ − 3)
, (B.35)

f2(x, y, z, γ ) = 3(γ − 2)(3γ − 4)x3

12 − 8γ

+ x2
(

3

8

(
−6γ + 1

2γ − 3
+ 11

)

+ 3(γ − 2)(5γ − 6)y

12 − 8γ

)

+ x

(
3(13γ − 18)(γ − 2)2y2

4(2γ − 3)(3γ − 4)

+ (30 − 19γ )y

4γ − 6

)

+ z2
(

3(γ − 1)(3γ − 4)

6 − 4γ

+ 3(γ − 1)(3γ − 4)x

12 − 8γ

+ 3(γ − 1)(7γ − 10)y

12 − 8γ

)

− 3(γ − 2)3(7γ − 10)y3

4(4 − 3γ )2(2γ − 3)

+ 1

8

(
−30γ + 16

4 − 3γ

+ 3

2γ − 3
+ 33

)
y2 − 6γ y, (B.36)

f3(x, y, z, γ ) = z

((
3 − 3γ

2

)
x2

+ x

(
3(γ − 2)2y

3γ − 4
− 2

)

− 3(γ − 2)3y2

2(4 − 3γ )2

+
(

−2γ + 2

12 − 9γ
+ 7

3

)
y

)

− 3

2
(γ − 1)z3. (B.37)

Note that if J1 is the linearization matrix of system (B.31),
(B.32), (B.33) then the eigensystem of J1(0, 0, 0) is

( − 3
2 3 − 3γ 0

(1, 0, 0) (0, 1, 0) (0, 0, 1)

)
.

Table 3 Seven initial data sets for simulation of full system (46) and
time-averaged system (78). All initial conditions are chosen in order to
fulfill equality Σ̄2(0) + Ω̄2(0) + Ω̄k(0) + Ω̄m(0) = 1

Sol. H(0) Σ̄(0) Ω̄2(0) Ω̄k(0) Ω̄m(0) Φ̄(0) t (0)

i 0.1 0.1 0.9 0.09 0 0 0

ii 0.1 0.4 0.1 0.74 0 0 0

iii 0.1 0.6 0.1 0.54 0 0 0

iv 0.02 0.48 0.02 0.7496 0 0 0

v 0.1 0.48 0.02 0.7496 0 0 0

vi 0.1 0.5 0.01 0.74 0 0 0

vii 0.1 0 0.684 0.001 0.315 0 0

Table 4 Seven initial data sets for simulation of full system (71) and
time-averaged system (107). All the conditions are chosen in order to
fulfill equality Ω̄2(0) + Ω̄k(0) + Ω̄m(0) = 1

Sol. H(0) Ω̄2(0) Ω̄k(0) Ω̄m(0) Φ̄(0) t (0)

i 0.1 0.9 0.09 0.01 0 0

ii 0.1 0.1 0.74 0.16 0 0

iii 0.1 0.1 0.54 0.36 0 0

iv 0.02 0.02 0.7496 0.2304 0 0

v 0.1 0.02 0.7496 0.2304 0 0

vi 0.1 0.01 0.3 0.69 0 0

vii 0.1 0.684 0.001 0.315 0 0

This implies that the local center manifold of the origin for
(B.31), (B.32), (B.33) is given by the graph

Wc
loc(0) =

{
(x, y, z) ∈ R

3 : x = h1(z), y = h2(z),

h1(0) = h2(0) = 0,

h′
1(0) = h′

2(0) = 0, |z| < δ

}
(B.38)

for some δ > 0.
Therefore, we can use Taylor series to define

h1(z) = a1z
2 + a2z

3 + a3z
4 + a4z

5 + a5z
6 + O(z7),

(B.39)

h2(z) = b1z
2 + b2z

3 + b3b
4 + b4z

5 + b5z
6 + O(z7).

(B.40)

The following quasilinear differential equations

N (h1(z)) ≡ h′
1(z)(Cz + f3(h1(z), h2(z), z, γ ))

− Ah1(z) − f1(h1(z), h2(z), z, γ ), (B.41)

N (h2(z)) ≡ h′
2(z)(Cz + f3(h1(z), h2(z), z, γ ))

− Bh2(z) − f2(h1(z), h2(z), z, γ ), (B.42)
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Fig. 12 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange), corresponding to LRS
Bianchi III metric, when
γ = b = f = 0, ω2 = 2,
μ = 1, Ωm = 0 and
Ωk = 1 − Σ2 − Ω2, with the
identification Ω2 �→ Ω , for
which the results of [152] are
recovered. We have used initial
data sets presented in the Table 3

(a)

(b)

must be solved for ai , bi up to order six to approximate
the center manifold. We notice that the even terms are zero
and a1 = γ−1

4γ−6 , a3 = 5γ−6
48γ−72 , a5 = 5γ−6

72γ−108 , b1 =
4−3γ

2(2γ−3)
, b3 = 4−3γ

8(2γ−3)
, b5 = 4−3γ

12(2γ−3)
. Hence, we obtain

h1(z) = (5γ − 6)z6

72γ − 108
+ (5γ − 6)z4

48γ − 72
+ (γ − 1)z2

4γ − 6
, (B.43)

h2(z) = (4 − 3γ )z6

12(2γ − 3)
+ (4 − 3γ )z4

8(2γ − 3)
+ (4 − 3γ )z2

2(2γ − 3)
. (B.44)

Letting γ = 4
3 and defining new variables

x = Ω̄k − 3

4
, y = Σ̄ + Ω̄k − 5

4
, z = Ω̄, (B.45)

we obtain new equations

x ′ = Ax + f1(x, y, z), (B.46)

y′ = By + f2(x, y, z), (B.47)

z′ = Cz + f3(x, y, z), (B.48)

where

A = −3

2
, B = −1, C = 0, (B.49)
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Fig. 13 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 0, in the
projection Ωk = 0. We have
used for both systems initial
data sets presented in the Table 3

(a)

(b)

f1(x, y, z) = 2x3 − 4x2y − x2

2
+ 2xy2 − 3xy

− xz2 + 3y2

2
− 3z2

4
, (B.50)

f2(x, y, z) = x3 − x2y + 2x2 − xy2 − 7xy

− xz2

2
+ y3 + 3y2 − yz2

2
− z2, (B.51)

f3(x, y, z) = x2z − 2xyz − 2xz + y2z + yz − z3

2
. (B.52)

Note that if J1 is the linearization matrix of system (B.46),
(B.47), (B.48) then the eigensystem of J1(0, 0, 0) is

( − 3
2 −1 0

{1, 0, 0} {0, 1, 0} {0, 0, 1}
)

.

Then, using Taylor series, the local center manifold of the
origin for (B.46), (B.47), (B.48) is given by the graph (B.38)
where

h1(z) = − z6

18
− z4

12
− z2

2
, (B.53)
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Fig. 14 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 0, in the
projection Σ = 0. We have used
for both systems initial data sets
presented in the Table 3

(a)

(b)

h2(z) = − z6

6
− z4

4
− z2. (B.54)

Letting γ = 3
2 and defining new variables

x = Ω̄k − 3

4
, (B.55)

y = − 3

32
(4Σ̄ + 4Ω̄k − 5), (B.56)

z = Ω̄, (B.57)

we obtain new equations

x ′ = A1x + A2y + f1(x, y, z), (B.58)

y′ = By + f2(x, y, z), (B.59)

z′ = Cz + f3(x, y, z), (B.60)

where

A1 = −3

2
, A2 = 1, B = −3

2
, C = 0, (B.61)
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Fig. 15 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 1, in the
projection Ωk = 0. We have
used for both systems initial
data sets presented in the Table 3

(a)

(b)

f1(x, y, z) = 3x3

2
+ 8x2y − 7x2

8
+ 32xy2

3

+ 22xy

3
− 3xz2

2
+ 8y2 − 9z2

8
, (B.62)

f2(x, y, z) = −9x3

32
− 3x2y

4
− 9x2

16
+ 2xy2 − 25xy

4

+ 9xz2

32
+ 16y3

3
− 6y2 − 3yz2

4
+ 9z2

16
,

(B.63)

f3(x, y, z) = 3x2z

4
+ 4xyz − 2xz + 16y2z

3
− 2yz − 3z3

4
.

(B.64)

Note that if J1 is the linearization matrix of system (B.58),
(B.59), (B.60) then the eigensystem of J1(0, 0, 0) is

( − 3
2 − 3

2 0
{1, 0, 0} {0, 0, 0} {0, 0, 1}

)
.

Then, using Taylor series, the local center manifold of the
origin of (B.58), (B.59), (B.60) is given by the graph (B.38)
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Fig. 16 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 1, in the
projection Σ = 0. We have used
for both systems initial data sets
presented in the Table 3

(a)

(b)

where

h1(z) = − z6

18
− z4

12
− z2

2
, (B.65)

h2(z) = z6

16
+ 3z4

32
+ 3z2

8
. (B.66)

Finally, in these three cases (which correspond to γ > 1), the
dynamics on the center manifold is given by the following

equation

z′ = − z3

2
+ z5

6
+ O(z7). (B.67)

This is a gradient-like equation

z′ = −∇U (z), U (z) = z4

8
− z6

36
, (B.68)

for which the origin is a degenerate minimum of second order,
i.e., U ′(0) = U ′′(0) = U ′′′(0) = 0,U (iv)(0) = 3 > 0.
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Fig. 17 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 4/3, in the
projection Ωk = 0. We have
used for both systems initial
data sets presented in the Table 3

(a)

(b)

Therefore, the origin is locally asymptotically stable as
shown in Fig. 9.

Letting γ = 1, we deduce that the center manifold of D
is 2-dimensional. On the other hand, the system admits the
lines of equilibrium points (Ω̄, Σ̄, Ω̄k) = (Ω̄∗, 0, 0) and
(Ω̄, Σ̄, Ω̄k) = (Ω̄∗, 1

2 , 3
4 ) where Ω̄∗ is an arbitrary number

which satisfies Ω̄∗ ∈ [0, 1]. Therefore, D as well as F0 are
not isolated fixed points anymore.

To analyze the stability of D : (Ω̄, Σ̄, Ω̄k) = (0, 1
2 , 3

4 )

we define new variables

x = 1

8
(4Σ̄ − 4Ω̄k + 1), y = 1

8
(4Σ̄ + 4Ω̄k − 5),

z = Ω̄, (B.69)

to obtain new equations

x ′ = Ax + f1(x, y, z), (B.70)

y′ = C1y + f2(x, y, z), (B.71)
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Fig. 18 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 4/3, in the
projection Σ = 0. We have used
for both systems initial data sets
presented in the Table 3

(a)

(b)

z′ = C2z + f3(x, y, z), (B.72)

where

A = −3

2
, C1 = 0, C2 = 0, (B.73)

f1(x, y, z) = 9x3

4
+ x2

(
15y

4
+ 5

4

)

+ x

(
3y2

4
− y

)
− 3y3

4
− y2

4
, (B.74)

f2(x, y, z) = −3x3

4
+ x2

(
3y

4
+ 3

2

)

+ x

(
15y2

4
+ 11y

2

)
+ 9y3

4
+ 2y2, (B.75)

f3(x, y, z) = z

(
3x2

2
+ x(3y + 2) + 3y2

2
+ y

)
. (B.76)
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Fig. 19 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 2, in the
projection Ωk = 0. We have
used for both systems initial
data sets presented in the Table 3

(a)

(b)

The local center manifold of the origin for (B.70), (B.71),
(B.72) is given by the graph

Wc
loc(0) =

{
(x, y, z) ∈ R

3 : x = h(y, z), h(0, 0) = 0,

∂h

∂y
(0, 0) = ∂h

∂z
(0, 0) = 0, |(y, z)T | < δ

}
, (B.77)

for some δ > 0.

h(y, z) satisfies the quasilinear partial differential equation

(
3

4
h3 − 3

4
(y + 2)h2 − 1

4
y(15y + 22)h

− 1

4
y2(9y + 8)

)
∂h

∂y

+
(

−3

2
zh2 − (3y + 2)zh − 1

2
y(3y + 2)z

)
∂h

∂z

+ 9

4
h3 + 5

4
(3y + 1)h2 + 1

4
(y(3y − 4) − 6)h
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Fig. 20 Some solutions of the
full system (46) (blue) and
time-averaged system (78)
(orange) for the LRS Bianchi III
metric when γ = 2, in the
projection Σ = 0. We have used
for both systems initial data sets
presented in the Table 3

(a)

(b)

− 1

4
y2(3y + 1) = 0. (B.78)

We propose the Taylor expansion

h(y, z) = a1y
2 + a2yz + a3z

2

+ b1y
3 + b2y

2z + b3yz
2 + b4z

3 + O(4), (B.79)

where O(4) denotes terms of fourth order in the vector norm.
Therefore, Eq. (B.78) can be expressed as

1

4
(−6a1 − 1)y2 + y2z

(
−4a2 − 3b2

2

)

− 3a2yz

2
− 3

2
yz2(2a3 + b3) − 3a3z2

2
− 3b4z3

2
= O(4).

(B.80)

Equating the terms of the same power in y, z we have a
solution a1 = − 1

6 , a2 = 0, a3 = 0, b1 arbitrary, b2 =
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Fig. 21 Some solutions of the
full system (71) (blue) and
time-averaged system (107)
(orange) for the FLRW metric
with negative curvature
(k = −1) when γ = 0. We have
used for both systems initial
data sets presented in the Table 4

(a)

(b)

0, b3 = 0, b4 = 0. Then, we obtain

h(y, z) = − y2

6
+ b1y

3 + O(4). (B.81)

The dynamics at the center manifold is given by

y′ = 2y2 + 4y3

3
, (B.82)

z′ = yz + 7y2z

6
. (B.83)

In Fig. 10 a two dimensional flow for (B.82) and (B.83) where
is shown that the origin is unstable (saddle type) for y �= 0 is
presented. However, if we restrict the analysis to y < 0, D
is asymptotically stable and behaves as a local attractor.

To analyze the stability of an arbitrary point D∗ :
(Ω̄, Σ̄, Ω̄k) = (Ω̄∗, 1

2 , 3
4 ) with Ω̄∗ �= 0 we define new vari-

ables

x = 1

8
(4Σ̄ − 4Ω̄k + 1) (B.84)

y = 1

6
(Ω̄∗(−4Σ̄ + 4Ω̄k − 7) + 6Ω̄) (B.85)
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Fig. 22 Some solutions of the
full system (71) (blue) and
time-averaged system (107)
(orange) for the FLRW metric
with negative curvature
(k = −1) when γ = 1. We have
used for both systems initial
data sets presented in the Table 4

(a)

(b)

z = 1

8
Ω̄∗(4Σ̄ + 4Ω̄k − 5), (B.86)

to obtain new equations

x ′ = Ax + f1(x, y, z), (B.87)

y′ = C1y + B1x + B2z + f2(x, y, z), (B.88)

z′ = C2z + f3(x, y, z), (B.89)

where

A = −3

2
, B1 = 4Ω̄∗, B2 = 1, C1 = 0, C2 = 0, (B.90)

f1(x, y, z) = 9x3

4
+ z

(
15x2

4Ω̄∗ − x

Ω̄∗

)
+ 5x2

4

+ z2
(

3x

4Ω̄∗2
− 1

4Ω̄∗2

)
− 3z3

4Ω̄∗3
, (B.91)

f2(x, y, z) = −x3Ω̄∗ + x2
(

3y

2
+ 5Ω̄∗

2

)

+ z

(
−x2 + x

(
3y

Ω̄∗ + 17

3

)
+ y

Ω̄∗

)

+ z2
(

x

Ω̄∗ + 3y

2Ω̄∗2
+ 11

6Ω̄∗

)
+ 2xy + z3

Ω̄∗2
, (B.92)

f3(x, y, z) = −3x3Ω̄∗

4
+ 3x2Ω̄∗

2
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Fig. 23 Some solutions of the
full system (71) (blue) and
time-averaged system (107)
(orange) for the FLRW metric
with negative curvature
(k = −1) when γ = 4/3. We
have used for both systems
initial data sets presented in the
Table 4

(a)

(b)

+
(

3x2

4
+ 11x

2

)
z + z2

(
15x

4Ω̄∗ + 2

Ω̄∗

)
+ 9z3

4Ω̄∗2
.

(B.93)

The local center manifold of the origin for (B.87), (B.88),
(B.89) is given by the graph

Wc
loc(0) =

{
(x, y, z) ∈ R

3 : x = h(y, z), h(0, 0) = 0,

∂h

∂y
(0, 0) = ∂h

∂z
(0, 0) = 0, |(y, z)T | < δ

}
, (B.94)

for some δ > 0.
h(y, z) satisfies the quasilinear partial differential equation

∂h

∂z

(
3

4
Ω̄∗h3 − 3

4

(
2Ω̄∗ + z

)
h2

− z
(
22Ω̄∗ + 15z

)
h

4Ω̄∗ − z2
(
8Ω̄∗ + 9z

)
4Ω̄∗2

)

+ ∂h

∂y

(
Ω̄∗h3 +

(
−5Ω̃

2
− 3y

2
+ z

)
h2
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Fig. 24 Some solutions of the
full system (71) (blue) and
time-averaged system (107)
(orange) for the FLRW metric
with negative curvature
(k = −1) when γ = 2. We have
used for both systems initial
data sets presented in the Table 4

(a)

(b)

−
(
6yΩ̄∗ + 12Ω̄∗2 + 17zΩ̄∗ + 9yz + 3z2

)
h

3Ω̃

− z
(
6yΩ̄∗ + 6Ω̄∗2 + 11zΩ̄∗ + 9yz + 6z2

)
6Ω̄∗2

)

+ 5
(
Ω̄∗ + 3z

)
h2

4Ω̄∗ + 1

4

⎛
⎝ z

(
3z − 4Ω̃

)

Ω̄∗2
− 6

⎞
⎠ h

− z2
(
Ω̄∗ + 3z

)
4Ω̄∗3

+ 9

4
h3 = 0. (B.95)

We propose the Taylor expansion

h(y, z) = a1y
2 + a2yz + a3z

2

+ b1y
3 + b2y

2z + b3yz
2 + b4z

3 + O(4), (B.96)

where O(4) denotes terms of fourth order in the vector norm.
Therefore, Eq. (B.95) can be expressed as

yz2
(

−4Ω̄∗ (
2a1a3 + a2

2
)

− 11a1 + 12a2

3Ω̄∗ − 2b2 − 3b3

2

)

+ y2z

(
−12a1a2Ω̄∗ − 3a1

Ω̄∗ − 3b1 − 3b2

2

)
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+ yz

(
−2a1 − 3a2

2

)
− 3a1y

2

2

−
z3

(
2Ω̄∗2

(
a2

(
24a3Ω̄∗2 + 11

)
+ 30a3 + 6b3Ω̄∗ + 9b4Ω̄∗) + 9

)

12Ω̄∗3

+ z2
(

−a2 − 3a3

2
− 1

4Ω12

)
= O(4). (B.97)

Equating the terms of the same power in y, z we have a
solution a1 = 0, a2 = 0, a3 = − 1

6Ω̄∗2 , b1 = 3b3
8 , b2 =

− 3b3
4 , b4 = 1

18

(
1

Ω̄∗3 − 12b3

)
. For simplicity, we set b3 =

1
12Ω̄∗3 , b4 = 0. Then, we obtain

h(y, z) = y3

32Ω̄∗3
− y2z

16Ω̄∗3
+ yz2

12Ω̄∗3
− z2

6Ω̄∗2
+ O(4).

(B.98)

The dynamics at the center manifold is given by

y′ = z + yz

Ω̄∗ + 7z2

6Ω̄∗ + y3

8Ω̄∗2
− y2z

4Ω̄∗2

+ 3yz2

2Ω̄∗2
+ z3

18Ω̄∗2
, (B.99)

z′ = 4z3

3Ω̄∗2
+ 2z2

Ω̄∗ . (B.100)

Using a re-scaling (T,Y, Z) = (Ω̄∗τ, y
Ω̄∗ , z

Ω̄∗ ), Ω̄∗ > 0,
we obtain a topologically equivalent system

dY

dT
= Z + Y Z + 7Z2

6
+ Y 3

8
− Y 2Z

4
+ 3Y Z2

2
+ Z3

18
,

(B.101)

dZ

dT
= 2Z2 + 4Z3

3
. (B.102)

In Fig. 11 a two dimensional flow of (B.101), (B.102) where
it is shown that the origin is unstable (saddle type) for Z �= 0
is presented.

Appendix C: Numerical simulation

In this section we present numerical evidence that sup-
ports the main Theorem of Sect. 4 by solving numerically
full and time-averaged systems obtained for each metric,
namely LRS Bianchi III and open FLRW. For this purpose an
algorithm in the programming language Python was imple-
mented. The systems of differential equations were solved
using the solve_ivp code provided by the SciPy open-source
Python-based ecosystem. The integration method used was
Radau that is an implicit Runge–Kutta method of the Radau
IIa family of order 5 with a relative and absolute tolerances
of 10−4 and 10−7, respectively. All systems of differential
equations were integrated with respect to τ , instead of t ,

with the range of integration −40 ≤ τ ≤ 10 for original
systems and −40 ≤ τ ≤ 100 for averaged systems. All of
them partitioned in 10000 data points. Furthermore, each full
and time-averaged systems were solved considering only one
matter component, these are cosmological constant (γ = 0),
non relativistic matter or dust (γ = 1), radiation (γ = 4/3)
and stiff fluid (γ = 2). Thereby the vacuum solutions cor-
responds to those where Ω = Ωm ≡ 0 and the solutions
without matter component corresponds to Ωm ≡ 0. Finally
we have considered fixed constants μ = √

2/2, b = √
2/5

and ω = √
2, that leads to a value of f = bμ3

ω2−2μ2 = 1/10,
that fulfills condition f ≥ 0. With these values a generalized
harmonic potential of the form

V (φ) = φ2

2
+ 1

100
(1 − cos(10φ)) (C.103)

is obtained.

Appendix C.1: LRS Bianchi III

For the LRS Bianchi III metric we integrate:

1. The full system given by (46).
2. The time-averaged system (78).

As initial conditions we use seven data set presented in
Table 3 as initial conditions for a better comparison of both
systems. For data set vi i current values of Ωm(0) = 0.315
and Ωk(0) = 0.001 according to [213] were considered.

It is important to mention that the first six initial condi-
tions correspond to initial conditions presented in Table 2 of
[152] and the additional data set vi i is obtained consider-
ing current values of Ωm(0) = 0.315 and Ωk(0) = 0.001
according to [213]. Even more, the model presented in [152]
is contained in our model when γ = b = f = 0, ω2 = 2,
μ = 1, Ωm = 0 and Ωk = 1 − Σ2 − Ω2 (then γ does not
appear in the model presented in [152]) with the identifica-
tion Ω2 �→ Ω . As can be seen in Fig. 12a, b where some
solutions of the full system (46) and time-averaged system
(78) are presented, showing that our results are in complete
agreement with results presented in [152] for the limiting
case.

In Figs. 13, 14, 15, 16, 17, 18, 19, 20 projections of
some solutions of the full system (46) and time-averaged
system (78) in the (Σ, H,Ω2) and (Ωk, H,Ω2) space with
their respective projection when H = 0 considering for
both systems the same initial data sets from Table 3 are
presented. Figures 13, 14 shows solutions for matter fluid
corresponding to cosmological constant (γ = 0). Fig-
ures 15, 16 shows solutions for matter fluid corresponding
to dust (γ = 1). Figures 17, 18 shows solutions for mat-
ter fluid corresponding to radiation (γ = 4

3 ). Figures 19,
20 shows solutions for matter fluid corresponding to a stiff

123
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fluid (γ = 2). These figures are evidence that the main The-
orem presented in Sect. 4 is fulfilled for LRS Bianchi III
metric.

Appendix C.2: FLRW k = −1

For the FLRW metric with negative curvature (k = −1,Ωk >

0) we integrate:

1. The full system given by (71).
2. The time-averaged system (107).

Seven data set presented in Table 4 were used as initial
conditions. For data set vi i current values of Ωm(0) = 0.315
and Ωk(0) = 0.001 according to [213] were considered.

In Figs. 21, 22, 23 and 24 projections of some solutions
of the full system (71) and time-averaged system (107) for
the FLRW metric with negative curvature (k = −1) in the
(Ωk, H,Ω2) space with their respective projection when
H = 0 and considering in both systems the same initial data
sets from Table 4 are presented. Figure 21 show solutions for
matter fluid corresponding to cosmological constant (γ = 0).
Figure 22 show solutions for matter fluid corresponding to
dust (γ = 1). Figure 23 show solutions for matter fluid cor-
responding to radiation (γ = 4/3). Figure 24 show solutions
for matter fluid corresponding to stiff fluid (γ = 2). It is inter-
esting to note that in the FLRW with negative curvature case,
when the matter fluid corresponds to a cosmological constant,
H tends asymptotically to constant values depending on the
initial conditions which is consistent to de Sitter expansion.
In addition, for any γ < 2

3 and Ωk > 0, Ωk → 0. On the
other hand, when γ > 2

3 and Ωk > 0 the universe becomes
curvature dominated asymptotically (Ωk → 1). These fig-
ures are evidence that the main Theorem presented in Sect. 4
is fulfilled for FLRW metric with negative curvature.
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