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The ΩΩ system in the 1S0 channel (the most strange dibaryon) is studied on the basis of the (2þ 1)-
flavor lattice QCD simulations with a large volume ð8.1 fmÞ3 and nearly physical pion mass
mπ ≃ 146 MeV at a lattice spacing of a ≃ 0.0846 fm. We show that lattice QCD data analysis by the
HAL QCD method leads to the scattering length a0 ¼ 4.6ð6Þðþ1.2

−0.5Þ fm, the effective range

reff ¼ 1.27ð3Þðþ0.06
−0.03 Þ fm, and the binding energy BΩΩ ¼ 1.6ð6Þðþ0.7

−0.6 Þ MeV. These results indicate that
the ΩΩ system has an overall attraction and is located near the unitary regime. Such a system can be best
searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.
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Introduction.—The dibaryon is defined as a baryon
number B ¼ 2 system (equivalently, a six-quark system)
in quantum chromodynamics [1–3]. So far, only one stable
dibaryon, the deuteron, has been observed: It is a loosely
bound system of the proton and the neutron in spin-triplet
and isospin-singlet channel. In recent years, there has
been renewed experimental interest in the dibaryons due
to exclusive measurements in hadron reactions [4] as well
as direct measurement in relativistic heavy-ion collisions
[5]. Also, from the theoretical side, (2þ 1)-flavor lattice
QCD simulations of the six-quark system in a large box
with nearly physical quark masses became possible
recently [6]. The main aim of this Letter is to report
the first result and physical implication of ΩΩ, the
strangeness S ¼ −6 dibaryon (“most strange dibaryon”),
in full QCD simulations with the lattice volume ð8.1 fmÞ3
and the pion mass mπ ≃ 146 MeV at a lattice spacing of
a ≃ 0.0846 fm [7].
Before entering the detailed discussions of our study,

we first introduce the reason why such an exotic channel
(S ¼ −6) is of interest in QCD. Let us consider octet 8 and

decuplet 10 baryons in the flavor-SU(3) classification. All
the members of 8 are stable under a strong decay. This is
why the forces between octet baryons in 8 ⊗ 8 are most
relevant in the physics of hypernuclei and of neutron stars.
Also, the elusive H dibaryon (a combination of ΛΛ, NΞ,
and ΣΣ) is in this representation [8–10] and does not suffer
from the Pauli exclusion principle in the flavor-SU(3) limit.
On the other hand, only Ω in 10 is stable under a strong

decay. Therefore, in the 8 ⊗ 10 representation, the most
promising candidate of a stable dibaryon is NΩ [11]. The
Pauli exclusion principle does not work in this case, either,
so that there is a possibility to have a bound state in the
S-wave and total-spin 2 channel [12]. Such a system is
indeed studied by the two-particle momentum correlation
in high-energy heavy-ion collisions both theoretically and
experimentally [13].
In the decuplet-decuplet channel, we have

10 ⊗ 10 ¼ ð28 ⊕ 27Þsym ⊕ ð35 ⊕ 10�Þantisym;

where “sym” and “antisym” stand for the flavor symmetry
under the exchange of two baryons. The only possible
stable state under a strong decay is the ΩΩ system in the
symmetric 28 representation. Again, the quark Pauli
principle does not operate in this channel [14]. Note that
the celebrated ABC resonance (ΔΔ in the spin-3 and
isospin-0 channel) [4,15] belongs to the antisymmetric
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10� representation, while ΔΔ in the spin-0 and isospin-3
channel is in the same multiplet with ΩΩ.
TheΩΩ interaction at low energies has been investigated

so far by using phenomenological quark models or by using
lattice QCD simulations with heavy quark masses. Very
recently, the chiral effective field theory has also been
applied to the scattering of the Ω baryons [16]. In some
quark models, a strong attraction is reported [17,18], while
other models show a weak repulsion [19,20]. A (2þ 1)-
flavor lattice QCD study with mπ ≃ 390 MeV by using the
finite volume method shows a weak repulsion [21], while a
study withmπ ≃ 700 MeV by using the HAL QCD method
shows a moderate attraction [22]. Under such a contro-
versial situation, it is most important to carry out first-
principles lattice QCD simulations in a large volume with
the pion mass close to the physical point.
HAL QCD method.—In the HAL QCD method [23–26],

the observables such as the binding energy and phase shifts
are obtained from the equal-time Nambu-Bethe-Salpeter
(NBS) wave function ψðrÞ and associated two-baryon
irreducible kernel Uðr; r0Þ. The traditional finite volume
method with the plateau fitting [27] is challenging in practice
for B ¼ 2 systems in large volumes because of the difficulty
in differentiating each scattering state [28–31]. On the other
hand, the time-dependent HAL QCD method [25] can avoid
such a problem, since all the elastic scattering states are
dictated by the same kernel Uðr; r0Þ and there is no need to
identify each scattering state in a finite box.
The equal-time NBS wave function ψðrÞ has the prop-

erty that its asymptotic behavior at a large distance
reproduces the phase shifts, which can be proven from
the unitarity of the S matrix in quantum field theories [23].
Moreover, it is related to the following reduced four-point
(4-pt) function:

Rðr; t > 0Þ ¼ h0jΩðr; tÞΩð0; tÞJ ð0Þj0i=e−2mΩt

¼
X

n

anψnðrÞe−ðδWnÞt þOðe−ðΔE�ÞtÞ: ð1Þ

Here J ð0Þ is a source operator creating the ðB; SÞ ¼
ð2;−6Þ system at Euclidean time 0, and an is the matrix
element defined by hnjJ ð0Þj0i with jni representing the
elastic states in a finite volume. The energy is represented
as δWn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ω þ k2n
p

− 2mΩ with the Ω baryon mass mΩ
and the relative momentum kn. The typical excitation
energy of a single Ω baryon is denoted by ΔE�, so that
the last term in Eq. (1) is exponentially suppressed as long
as t ≫ ðΔE�Þ−1 ∼ Λ−1

QCD [25] with ΛQCD ∼ 200–300 MeV
being the QCD scale parameter. A local interpolating
operator for the Ω baryon has the general form

ΩðxÞ≡ εabc½sTaðxÞCγksbðxÞ�sc;αðxÞ; ð2Þ

with a, b, and c being color indices, γk being the Dirac
matrix, α being the spinor index, and C≡ γ4γ2 being the

charge conjugation. An appropriate spin projection is
necessary from this operator to single out a particular spin
state as mentioned later.
The reduced 4-pt function R has been shown to satisfy

the following master equation [25]:

�∇2

mΩ
−
∂
∂tþ

1

4mΩ

∂2

∂t2
�
Rðr;tÞ¼

Z
dr0Uðr;r0ÞRðr0;tÞ; ð3Þ

which is valid as long as t ≫ ðΔE�Þ−1. We emphasize
that we do not need to isolate each scattering state with
the energy δWn, so that only the moderate values of t up to
1.5–2 fm are sufficient for a reliable extraction of the kernel
U. This is a crucial difference from the finite volume
method, which requires t ≫ ðδW1Þ−1 ∼ 10 fm (for a lattice
volume as large as 8 fm) to identify each δWn. (See a recent
summary [31] and references therein.) At low energies, one
can make the derivative expansion with respect to the
nonlocality of the kernel [24,32]:Uðr;r0Þ¼V0ðrÞδðr−r0ÞþP

n¼1V2nðrÞ∇2nδðr−r0Þ. Then, we introduce an “effective"
leading-order potential VðrÞ:

VðrÞ ¼ R−1ðr; tÞ
�∇2

mΩ
−

∂
∂tþ

1

4mΩ

∂2

∂t2
�
Rðr; tÞ; ð4Þ

which provides a good leading-order approximation of
Uðr; r0Þ to obtain physical observables at low energies, as
long as its t dependence is sufficiently small.
Interpolating operator.—The interpolating operator

ΩszðxÞ for the Ω baryon with spin 3
2
and the z component

sz ¼ � 3
2
;� 1

2
can be readily constructed by the appropriate

spin projection of the upper two components of Eq. (2) as
shown in Ref. [22]. The asymptotic ΩΩ system can now be
characterized by 2sþ1LJ with the total spin (s), the orbital
angular momentum (L), and the total angular momentum
(J). We consider L ¼ 0 where the maximum attraction is
expected at low energies. Then, the Fermi statistics leads s
to be even (either s ¼ 0 or 2). Here we consider an s ¼ 0
system with the interpolating operator

½ΩΩ�0 ¼
1

2
ðΩ3=2Ω−3=2 − Ω1=2Ω−1=2 þ Ω−1=2Ω1=2

−Ω−3=2Ω3=2Þ: ð5Þ

For J ð0Þ, we use the wall-type quark source with the
s ¼ 0 projection given above. With this source, the total
momentum of the system is automatically zero. Also, it has
good overlap with the scattering states where jrj in Eq. (3)
is larger than the typical baryon size. To extract the L ¼ 0
and s ¼ 0 states at t on the lattice, we employ Eq. (5) for
the sink operator together with the projection to the A1

representation of the cubic group,
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PðA1ÞRðr; tÞ ¼ 1

24

X24

i¼1

RðRi½r�; tÞ; ð6Þ

where Ri is an element of the cubic group acting on the
relative distance r.
Note here that Rðr; tÞ and Uðr; r0Þ depend on the choice

of interpolating operators, while observables calculated
from these quantities are independent of the choice thanks
to the Nishijima-Zimmermann-Haag theorem [24].
Lattice setup.—By using the 11 PF supercomputer K at

RIKEN Center for Computational Science, (2þ 1)-flavor
gauge configurations on the 964 lattice are generated with
the Iwasaki gauge action at β ¼ 1.82 and nonperturbatively
OðaÞ-improved Wilson quark action with stout smearing.
The lattice spacing is a≃0.0846 fm (a−1 ≃ 2.333 GeV) [7],
and the pion mass, the kaon mass, and the nucleon masses
are mπ≃146MeV, mK≃525MeV, and mN ≃ 964 MeV,
respectively. (These masses are higher than the physical
values by about 8%, 6%, and 3%, respectively, due to
slightly larger quark masses at the simulation point.) The
lattice size La ≃ 8.1 fm is sufficiently large to accommo-
date two baryons in a box.
We employ the wall quark source with the Coulomb

gauge fixing, and the periodic (Dirichlet) boundary con-
dition is used for spatial (temporal) directions. Forward and
backward propagations are averaged to reduce the statis-
tical fluctuations. We pick one configuration per each five
trajectories and make use of the rotation symmetry and the
translational invariance for the source position to increase
the statistics. The total statistics in this Letter amounts to
400 configurations ×2 (forward and backward) ×4 rota-
tions ×48 source positions. The quark propagators are
obtained by the domain-decomposed solver [33–36], and
the correlation functions are calculated using the unified
contraction algorithm [37].
The Ω-baryon mass extracted from the effective mass

meffðtÞ≡ lnGðtÞ=Gðtþ aÞ with GðtÞ being the baryonic
two-point function is mΩ ¼ 1712� 1 MeV (from the
plateau in t=a ¼ 17–22) and mΩ ¼ 1713� 1 MeV (from
t=a ¼ 18–25) with the statistical errors. These numbers are
about 2% higher than the physical value of 1672 MeV. We
take the former number in the following analysis.
Numerical results.—The 1S0 potential VðrÞ obtained

from Eq. (4) with the lattice measurement of Rðr; tÞ
is shown in Fig. 1 for t=a ¼ 16, 17, and 18. Here the
Laplacian and the time derivative in Eq. (4) are approxi-
mated by the central (symmetric) difference. The statistical
errors for VðrÞ at each r are estimated by the jackknife
method with a bin size of 40 configurations. A comparison
with the bin size of 20 configurations shows that the
bin size dependence is small. The particular region t=a ¼
17� 1 in Fig. 1 is chosen to suppress contamination from
excited states in the single Ω propagator at smaller t and
simultaneously to avoid large statistical errors at larger t.
We observe that the potentials at t=a ¼ 16, 17, and 18 are

nearly identical within statistical errors as expected from
the time-dependent HAL QCD method [25].
The ΩΩ potential VðrÞ has qualitative features similar to

the central potential of the nucleon-nucleon (NN) inter-
action, i.e., the short-range repulsion and the intermediate-
range attraction [6]. There are, however, two quantitative
differences: (i) The short-range repulsion is much weaker in
the ΩΩ case, possibly due to the absence of quark Pauli
exclusion effect, and (ii) the attractive part is very short-
ranged due to the absence of pion exchanges.
For the purpose of converting the potential to physical

observables such as the scattering phase shifts and the
binding energy, we fit VðrÞ in Fig. 1 in the range r¼0–6 fm
by three Gaussians: VfitðrÞ ¼

P
j¼1;2;3cj exp½−ðr=djÞ2�.

For example, the uncorrelated fit in the case of t=a ¼ 17
gives the following parameters: ðc1; c2; c3Þ ¼ (914ð52Þ;
305ð44Þ;−112ð13Þ) in MeV and ðd1; d2; d3Þ ¼ (0.143ð5Þ;
0.305ð29Þ; 0.949ð58Þ) in fm with χ2=d:o:f: ∼ 1.3.
Another functional form such as two Gaussiansþ
ðYukawa functionÞ2 provides an equally good fit, and
the results are not affected within errors. The finite volume
effect on the potential is expected to be small due to the
large lattice size. The naive order estimate of the finite a
effect for the physical observables is also small
[ðΛaÞ2 ≤ 1%] thanks to the nonperturbativeOðaÞ improve-
ment, but an explicit confirmation would be desirable in
the future.
The ΩΩ scattering phase shifts δðkÞ in the 1S0 channel

obtained from VfitðrÞ are shown in Fig. 2 for t=a ¼ 16, 17,
and 18 as a function of the kinetic energy in the center of
mass frame, ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Ω

p
− 2mΩ. The error bands

reflect the statistical uncertainty of the potential in Fig. 1.
All three cases show that δð0Þ starts from 180°, which
indicates the existence of a bound ΩΩ system.
The scattering length a0 and the effective range reff in the

1S0 channel are extracted from δðkÞ through the effective
range expansion, k cot δðkÞ ¼ −ð1=a0Þ þ 1

2
reffk2 þ � � �,

with the sign convention of nuclear and atomic physics:

FIG. 1. The ΩΩ potential VðrÞ in the 1S0 channel at Euclidean
time t=a ¼ 16, 17, and 18.

PHYSICAL REVIEW LETTERS 120, 212001 (2018)

212001-3



aðΩΩÞ0 ¼ 4.6ð6Þðþ1.2
−0.5Þ fm; ð7Þ

rðΩΩÞeff ¼ 1.27ð3Þðþ0.06
−0.03Þ fm: ð8Þ

The central values and the statistical errors in the first
parentheses are extracted from δðkÞ at t=a ¼ 17, and the
systematic errors in the second parentheses are estimated
from the results at t=a ¼ 16 and 18. The origin of this
systematic error is the truncation of the higher derivatives
of the nonlocal potential as well as the contaminations
from inelastic states. To get a feel for the magnitude of
these values, we recapitulate here the experimental values
of a0 and reff in the NN systems: ða0; reffÞspin-triplet ¼
(5.4112ð15Þ fm; 1.7436ð19Þ fm) and ða0; reffÞspin-singlet ¼
( − 23.7148ð43Þ fm; 2.750ð18Þ fm) [38]. There exists no
symmetry reason that the scattering parameters in the NN
systems and those in the ΩΩ system should be similar.
Nevertheless, it is remarkable that they are all close to the
unitary region where reff=a0 is substantially smaller than 1
as shown in Fig. 3.
Shown in Fig. 4 are the bound state energy given by the

opposite sign of the binding energy, −BΩΩ, and the root-
mean-square distance (

ffiffiffiffiffiffiffiffi
hr2i

p
) of the ΩΩ bound state

obtained from the potential. The blue diamond is taken
from the data at t=a ¼ 17 without the Coulomb repulsion.
The blue solid and dashed lines are the statistical error at
t=a ¼ 17 and the systematic error estimated from the data
at t=a ¼ 17� 1, respectively:

BðQCDÞ
ΩΩ ¼ 1.6ð6Þðþ0.7

−0.6Þ MeV: ð9Þ

As an alternative estimate, the truncation error of the
derivative expansion on the binding energy is evaluated
perturbatively and is found to be less than 20% even if
the magnitude of the dimensionless next-to-leading-order
potential is the same order as that of the effective leading-
order potential. It is an important future subject to deter-
mine higher-order potentials explicitly by using the method

of multiple quark sources [39]. The binding energy is
consistent with the value obtained from the general formula
for loosely bound states [40] with (7) and (8): BΩΩ ¼
ð1=mΩr2effÞð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2reff=a0Þ

p Þ2 ≃ 1.5 MeV. Associated

with this small binding energy,
ffiffiffiffiffiffiffiffi
hr2i

p
is as large as 3–4 fm,

which is consistent with the expectation
ffiffiffiffiffiffiffiffi
hr2i

p
∼ a0 for

loosely bound states. The Coulomb repulsion can be
evaluated by adding α=r with α ¼ e2=4π to the potential
obtained from lattice QCD, i.e., VðQCDþCoulombÞ≡
VðQCDÞ þ α=r. This reduces the above binding energy by

a factor of 2: BðQCDþCoulombÞ
ΩΩ ¼ 0.7ð5Þð5Þ MeV as shown in

Fig. 4 by the red triangle.
It is in order here to remark that there are three energy

scales in the present problem: 2mΩ ≃ 3400 MeV ≫
jVðr ≃ 0.5 fmÞj ∼ 50 MeV ≫ BΩΩ ∼ 1 MeV. Since only

FIG. 2. The ΩΩ phase shift δðkÞ in the 1S0 channel for
t=a ¼ 16, 17, and 18 as a function of the center of mass kinetic
energy ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Ω

p
− 2mΩ.

FIG. 3. The dimensionless ratio of the effective range reff and
the scattering length a0 as a function of reff for the ΩΩ system in
the 1S0 channel as well as for the spin-triplet NN system (the
deuteron channel) and for the spin-singlet NN system (the
neutron-neutron channel). The error bar for ΩΩ is the quadrature
of the statistical and systematic errors in Eqs. (7) and (8).

FIG. 4. Bound state energy of the ΩΩ system and the root-
mean-square distance between Ω’s obtained from the potential.
The filled diamond (triangle) corresponds to the result at
t=a ¼ 17 without (with) the Coulomb repulsion. The statistical
errors are shown by the solid lines, while the systematic errors
estimated from the difference between the data at t=a ¼ 17 and
those at t=a ¼ 16, 18 are shown by the dashed lines.
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the relative difference between the interacting and non-
interacting two-Ω systems matters, the absolute magnitude
of the uncertainty of 2mΩ is not reflected directly in VðrÞ.
This is why we could extract VðrÞ rather accurately as
shown in Fig. 1 despite the large scale difference between
2mΩ and VðrÞ. Then the small binding energy B as well as
the large scattering length a0 are the natural consequences
of the large cancellation between the long-range attraction
and the short-range repulsion of VðrÞ, a situation common
in nuclear and atomic physics. Although VðrÞ is not a direct
observable, it provides an important intermediate step to
link the QCD scale (GeV) to the nuclear physics scale
(MeV), since it is difficult to measure the binding energy
directly from lattice QCD using the finite volume method
for large lattice volumes and physical quark masses (see the
critical review [31]).
Finally, let us estimate the effect of slightly heavy quark

masses in our simulation. First of all, the attractive part of
the ΩΩ potential would be slightly long-ranged at the

physical point due to the kaon mass mðpresentÞ
K ≃525MeV→

mðphysÞ
K ≃495MeV. On the other hand, the effect of the Ω

massmðpresentÞ
Ω ≃ 1712 MeV → mðphysÞ

Ω ≃ 1672 MeVwould
lead to less binding due to the larger kinetic energy.
Therefore, a conservative estimate is obtained by keeping

the same VðrÞ in Fig. 1 and adopting mðphys:Þ
Ω to calculate

the phase shifts and the binding energy. This results in

ða0;reffÞ¼ (4.9ð8Þ fm;1.29ð3Þ fm) and ðBðQCDþCoulombÞ
ΩΩ Þ ¼

(1.3ð5Þ MeV; 0.5ð5Þ MeV) for the potential at t=a ¼ 17.
These numbers are well within errors of the results of the
present simulation shown in Figs. 3 and 4.
Summary and discussions.—In this Letter, we presented

a first realistic calculation on the most strange dibaryon,
ΩΩ, in the 1S0 channel on the basis of the (2þ 1)-flavor
lattice QCD simulations with a large volume and nearly
physical quark masses. The scattering length, effective
range, and the binding energy obtained by the HAL QCD
method strongly indicate that the ΩΩ system in the 1S0
channel has an overall attraction and is located in the
vicinity of the unitary regime. From the phenomenological
point of view, such a system can be best searched by the
measurement of pair-momentum correlation CðQÞ with Q
being the relative momentum between two baryons
produced in relativistic heavy-ion collisions [5].
Experimentally, each Ω can be identified through a suc-
cessive weak decay Ω− → Λþ K− → pþ π− þ K−.
Note that a large scattering length (not the existence of a
bound state) is the important element for CðQÞ to have
characteristic enhancement at small relative momentum Q.
Moreover, the effect of the Coulomb interaction can be
effectively eliminated by taking a ratio of CðQÞ between
small and large collision systems [13].
We are currently underway to increase the statistics of

the lattice data with the same lattice setup. These results
together with the detailed examination of the spectrum

analysis in a finite lattice volume and the effective range
expansion will be reported.
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