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Abstract The phase transition and thermodynamic geom-
etry of a 4-dimensional AdS topological charged black hole
in de Rham, Gabadadze and Tolley (dRGT) massive grav-
ity have been studied. After introducing a normalized ther-
modynamic scalar curvature, it is speculated that its value
is related to the interaction between the underlying black
hole molecules if the black hole molecules exist. We show
that there does exist a crucial parameter given in terms of
the topology, charge, and massive parameters of the black
hole, which characterizes the thermodynamic properties of
the black hole. It is found that when the parameter is posi-
tive, the singlet large black hole phase does not exist for suf-
ficient low temperature and there is a weak repulsive inter-
action dominating for the small black hole which is sim-
ilar to the Reissner–Nordström AdS black hole; when the
parameter is negative, an additional phase region describing
large black holes also implies a dominant repulsive interac-
tion. These constitute the distinguishable features of dRGT
massive topological black hole from those of the Reissner–
Nordström AdS black hole as well as the Van der Waals fluid
system.

1 Introduction

It hints a fascinating set of connections between black hole
physics and thermodynamics since the pioneering works of
Hawking and Bekenstein about the temperature and entropy
of black holes [1–4]. The thermodynamics theory, which is
widely used in ordinary systems, is now a useful tool for us to
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understand black hole systems. Inspired by the Anti-de Sit-
ter/conformal field theory (AdS/CFT) correspondence [5–7],
one can relate the Hawking–Page phase transition [8] with the
confinement/deconfinement phase transition of gauge field
[9]. Then particular attention has been paid to the phase tran-
sition of black holes in the AdS spacetime. Recently, the
introduction of variation of cosmological constant � in the
first law of black hole thermodynamics has been extensively
studied in literatures [10–15]. Such a variation seems to be
awkward, as we are considering black hole ensembles with
different theories, while the standard thermodynamics is con-
cerned with changes of the state of the system in a given the-
ory. However, there are some considerable reasons why the
variation of � is feasible. (i) At first, a number of researches
support for variable �, for example, the four-dimensional
cosmological constant represents the varying energy density
of a 4-form gauge field strength [16,17]. (ii) What’s more,
one may consider ‘more fundamental’ theories, and the gen-
eral gravity theory we considered could be regarded as the
effective field theory of supergravity theory. The cosmolog-
ical constant could be regarded as a parameter in a solution
of 10-dimensional supergravity, and is no more fundamental
to the theory than a black hole mass or any other param-
eter in the metric. The cosmological constant or the other
physical constants are not fixed a priori, but arise as vacuum
expectation values and hence can vary, so that we are always
referring to the same field theory in this sense. (iii) In the
presence of a cosmological constant, the scaling argument
is no longer valid and the Smarr relation would be incon-
sistent with the thermodynamic first law of black hole if the
� is fixed. Meanwhile, the pressure-volume term, which is
necessary to appear in everyday thermodynamics, would be
naturally introduced if the negative cosmological constant
is associated with the positive pressure as P = − �

8πG and
its conjugate quantity is the thermodynamic volume. This is
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also a practical reason for the Smarr relation to holding in the
case of asymptotically AdS black holes. Hence the thermo-
dynamics of the AdS black hole with varying cosmological
constant would be reasonable.

The introduction of the extended phase space enriches the
behaviors of the black hole thermodynamics, like that the
small/large phase transition of the charged AdS black hole is
found in analogy with the liquid/gas phase transition of Van
der Waals system [18]. In the line of this approach, many
efforts have been done to reveal the abundant phase structure
and critical phenomena of black holes in such an extended
phase space [19–30]. This intriguing subject is come to know
as black hole chemistry, which associates with each black
hole parameter a chemical equivalent in representations of
the first law of black hole thermodynamics [31,32].

Despite the immense conceptual and phenomenological
success of black hole thermodynamics, the description of
the microstructure of the black hole remains a huge chal-
lenge in current researches. In the literature [33], certain
unknown black hole micromolecules are proposed, which
provides some intuitions and new insights for the underlying
microstructure of black holes. In this significant approach,
the Ruppeiner geometry and the number density of the
microstates of the black hole are introduced. Originally, Rup-
peiner geometry is mainly to use the Hessian matrix struc-
ture to represent the thermodynamic fluctuation theory [34–
36]. A Ruppeiner metric (line element) measuring the dis-
tance between two neighboring fluctuation states is defined.
The sign of the Ruppeiner scalar curvature may qualitatively
imply the interaction between the modules of the fluid sys-
tem. Specifically, a positive (or negative) thermodynamic
scalar curvature maybe indicate a repulsive (or attractive)
interaction. Moreover, a noninteracting system such as the
ideal gas corresponds to the flat Ruppeiner metric. Besides,
it is found that the curvature divergent at the critical point of
phase transition [37].

For black hole systems, because there does not exist a
complete theory of quantum gravity, although the most likely
candidate theories – string theory and loop quantum grav-
ity theory – have achieved good results to some extent,
the exploration of the microscopic structure of black holes
is bound to some speculative assumptions. Because of the
development of black hole thermodynamics, we maybe spec-
ulate some micro-dynamics of the black hole from its ther-
modynamics. This is in some sense the reverse process of
statistical physics, in which the macroscopic quantities are
obtained from the microscopic state of the systems. The idea
of this process is reflected in the exploration of the underlying
microscopic behavior of black holes by the Ruppeiner ther-
modynamic geometry. Furthermore, it is still unclear about
the constituents of black holes, hence the abstract concept of
black hole molecule may be a good choice. Through anal-
ogy, we can imagine that there is an interaction among the

molecules that make up the black hole. And we speculate
that the empirical observation of the thermodynamic curva-
ture corresponding to the interaction among the constituent
molecules of the system also applies to black holes.

So the application of the Ruppeiner geometry into black
hole thermodynamics makes it possible to glimpse the under-
lying microstructure of black holes from macroscopic ther-
modynamic quantities. With the help of Ruppeiner geometry,
interesting features are observed in other black hole systems
[38–57]. Especially, in some situations that the entropy and
thermodynamic volume of these black holes are not inde-
pendent, such as Schwarzchild-AdS black hole, Reissner–
Nordström AdS (RN-AdS) black hole and etc., the heat
capacity at constant volume of the black hole becomes zero.
A vanishing heat capacity brings about a divergent thermody-
namic curvature. Consequently, some micro information of
the associated black hole is missing from the thermodynamic
geometry approach. To cure this problem, either we can con-
sider other suitable thermodynamic characteristic function
as the fundamental starting point of Ruppenier geometry
[58,59], or introduce a normalized scalar curvature of ther-
modynamic geometry [60]. In this paper, we adopt the latter.
Novel thermodynamical features of black hole systems are
observed with the help of normalized thermodynamic curva-
ture, which shows the distinguishable behaviors from that of
Van der Waals fluid [61,62].

In light of these rich phenomenologies, we are in anticipa-
tion of things to be more intriguing when the massive gravity
model is considered. The first attempt to endow the graviton
with mass is the work of Fierz and Pauli in the context of
linear theory [63]. Unfortunately, the predictions of Fierz–
Pauli linear massive gravity theory in the massless limit do
not coincide with those of general gravity, which is called
van DamVeltman–Zakharov discontinuity [64,65]. Further-
more, the nonlinear level in a generic Fierz–Pauli theory will
suffer the so-called Boulware–Deser ghost [66]. These seem
to put an end to the massive gravity theory, until de Rham,
Gabadadze and Tolley (dRGT) [67] put out a special class of
nonlinear massive gravity that is “Boulware–Deser” ghost-
free [68]. It is found that in dRGT massive gravity theory, the
effective cosmological constant can emerge from the massive
parameters, rather than a fundamental quantity appearing in
the action of the theory. The value of the effective cosmologi-
cal constant is determined by the value of the massive param-
eters in the massive gravity model. In the case of the effective
cosmological constant is positive, the massive gravity theory
takes the advantage that provides a possible explanation for
the accelerated expansion of the universe without any dark
energy.

In addition, the dRGT massive gravity theory also admits
the black hole solution in the case of a negative effective cos-
mological constant. In the literature [69], Vegh developed a
nontrivial black hole solution in four dimensional massive
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gravity with a negative cosmological constant. He found that
the mass of graviton behaves like a lattice excitation and
exhibits a Drude peak in the dual field theory within the
framework of gauge/gravity duality. The feature that mas-
sive gravity in AdS background introducing the momentum
dissipation in the dual boundary field theory attract great
interests in the application of gauge/gravity duality, such as
the study on the temperature dependence of the shear vis-
cosity to entropy density ratio [70], the holographic plasmon
relaxation [71]. Later, it was generalized to study the corre-
sponding thermodynamical properties and phase structures
[72,73]. More black hole solutions and their thermodynami-
cal properties were addressed in arbitrary dimensional dRGT
massive gravity theory with diverse corrections [74–78]. One
of the most prominent features that the thermodynamical
behaviors of dRGT massive gravity have provided is that
the so-called small/large black hole phase transition for the
charged AdS black holes always exist, no matter the hori-
zon topology is spherical (k = 1), Ricci flat (k = 0) or
hyperbolic (k = −1) [79,80]. This is the significant differ-
ence that the Van der Waals-like phase transition was usually
only recovered in a variety of spherical horizon black hole
backgrounds. Subsequently, the abundant thermodynamical
behaviors of the black holes in dRGT massive gravity were
investigated, such as the reentrant phase transitions, tricritical
point [81–84]. It is also suggested that the phase transition of
the dRGT black holes could relate to the Quasinormal mode
[85,86] and the holographic entanglement entropy [87].

In the literature [88], the authors find that the singulari-
ties of scalar curvatures which are constructed from HPEM
metric and the Gibbs free energy metrics coincide with the
critical point of phase transition for the spherical black hole
in dRGT massive gravity.

Motivated by these interesting results, in this paper, our
aim is to investigate the Ruppeiner geometry with normalized
scalar curvature proposed in [60] and the phase transition of
topological black holes in dRGT massive gravity. The outline
of this paper is as follows. In Sect. 2, we briefly review the
Ruppeiner geometry, and derive the scalar curvature of black
holes in the temperature and volume phase space {T, V }. In
Sect. 3, we study the thermodynamic properties of the topo-
logical black hole in dRGT massive gravity. The normalized
scalar curvature and critical phenomena of these black holes
are investigated in Sect. 4. We end the paper with a summary
and discussion in Sect. 5. Throughout this paper, we adopt
the units h̄ = c = kB = G = 1.

2 Ruppeiner thermodynamic geometry

In this section, we are going to provide a brief introduc-
tion to the Ruppeiner thermodynamic geometry. Thermody-
namic geometry which originates from the fluctuation theory

of equilibrium thermodynamics provides a possible way to
explore the microscopic structure of black holes.

Consider an equilibrium isolated thermodynamic system
with total entropy S, and divide it into two subsystems of
different sizes. One of these two sub-systems is small SB ,
another one is a large subsystem SE and can be regarded as a
thermo-bath. We additionally require that SB � SE ∼ S. So
the total entropy of the system describing by two independent
thermodynamic parameters x0 and x1 have the form of

S(x0, x1) = SB(x0, x1) + SE (x0, x1).

For a system in an equilibrium state, the entropy S is at its
local maximum value. Expanding the total entropy at the
vicinity of the local maximum (xμ = xμ

0 ), we have
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here S0 is the local maximum at x0
μ. The entropy of the equi-

librium isolated system is conserved under the virtual change
which indicates that the first derivative of it is zero, so we
promptly arrive at
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Since the entropy SE of the bath as an extensive thermody-
namical quantity gets the same order as that of the whole
system, so its second derivatives with respect to the intensive
thermodynamical quantities xμ are much smaller than those
of SB and has been ignored in the second line.

In Ruppeiner geometry, the entropy is treated as the ther-
modynamical potential and its fluctuation �S is associated
with the line element �l2 with thermodynamical coordinates
{xμ}[36]. The Ruppeiner line element reads as

�l2 = 1

kB
gR
μν�xμ�xν, (2)

where kB is the Boltzmann constant and the Ruppeiner metric
gR
μν is

gR
μν = − ∂2SB

∂xμ∂xν
. (3)

Here �l2 measures the distance between two neighboring
fluctuation states. Thus thermodynamic metric gR

μν has a
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large potential to shine some lights on the information about
microstructure of systems.

Now we set the thermodynamical coordinates xμ as tem-
perature T and volume V , and take the Helmholtz free energy
as the thermodynamical potential. The line element �l2 is
given by [60]

�l2 = CV

T 2 �T 2 − (∂V P)T

T
�V 2, (4)

where CV = T (∂T S)V is the heat capacity at constant vol-
ume. Adopting the convention used in [36], the scalar cur-
vature of the above line element can be worked out directly,
and it yields

R = 1

2C2
V (∂V P)2

{

T (∂V P)
[

(∂T CV )(∂V P − T ∂T,V P) + (∂V CV )2
]

+ CV

[

(∂V P)2 + T ((∂V CV )(∂2
V P) − T (∂T,V P)2)

+ 2T (∂V P)(T (∂T,T,V P) − (∂2
V CV ))

]}

. (5)

It is believed that the sign of the scalar curvature encodes
the effective interaction between two microscopic molecules
of a given system, i.e., R > 0 and R < 0 are associated
with repulsive and attractive interaction, respectively. While
R = 0 implies that the repulsive and attractive interaction
are in balance [36]. Moreover, it is speculated that the diver-
gence of the scalar curvature occurs at the critical point of
phase transition. Although, because of the absence of a hith-
erto underlying theory of quantum gravity, there has been
a controversial discussion on whether the characterizations
of thermodynamic scalar curvature can be directly general-
ized to the black hole thermodynamics or not [89]. But the
well-established black hole thermodynamics makes the Rup-
peiner thermodynamic geometry be plausible to phenomeno-
logically or qualitatively provide the information about inter-
actions of black holes.

3 Thermodynamics of dRGT massive gravity

In this section, we would like to briefly review the topological
dRGT black hole, and discuss the thermodynamic properties
of it in extended phase space. The action describing a (n +
2)-dimensional charged topology AdS black hole in dRGT
massive gravity [69] is

I = 1

16πG

∫

dn+2x
√−g

(

R − 2� − 1

4
FμνF

μν + m2
4
∑

i=1

ciU i (g, f )

)

,

(6)

in which � is the cosmology constant, Fμν is the electromag-
netic field tensor defined as Fμν = ∂μAν −∂ν Aμ with vector
potential Aμ. Moreover, f is the reference metric coupled to

the metric gμν . The mass of the graviton is related to the
parameter m, ci ’s are dimensionless constants, and Ui ’s are
symmetric polynomials constructed from the (n+2)×(n+2)

matrix Kμ
ν = √

gμα fνα , they take the forms of

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4].

The square root in K represents (
√K)μν(

√K)νλ = Kμ
λ.

The topological black hole solution allows the following
form of metric

ds2 = − f (r)dt2 + g(r)dr2 + r2γi jdx
idx j , (7)

where γi j is the metric of a n-dimensional hypersurface with
constant scalar curvature n(n − 1)k. In general, the value of
k can be 1, 0 or −1 corresponding to spherical, planar and
hyperbolic topology, respectively. With a special choice of
reference metric in [69]

fμν = diag(0, 0, c2
0γi j ), (8)

Ui ’s can be obtained as

U1 = nc0/r,

U2 = n(n − 1)c2
0/r

2,

U3 = n(n − 1)(n − 2)c3
0/r

3,

U4 = n(n − 1)(n − 2)(n − 3)c4
0/r

4. (9)

In the four-dimensional spacetime (n = 2), it is easy to verify
that U3 = U4 = 0, which prevents c3 and c4 from appearing
in the spacetime metric. It indicates that these two parameters
have no effect on the phase structure of the four-dimensional
topological black hole in massive gravity. Then the metric
function has the form of [72]

f (r) = 1

g(r)
= k− �r2

3
− m0

r
+ q2

4r2 + c0c1m2

2
r+c2

0c2m
2.

(10)

Here the parameters m0 and q relates to the mass and charge
amount of the black hole

M = ω2

8π
m0, Q = ω2

16π
q. (11)
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in which ω2
1 is the volume of the two-dimensional hyper-

surface. Without loss of generality, we will set c0 = 1 and
m = 1 in our following discussions, but leave c1 and c2 as
free parameters. In the extended phase space, the negative
cosmological constant is treated as the pressure of the black
hole P = −�/8π , which leads to an interpretation of the
black hole mass as enthalpy. In terms of the definition of pres-
sure P and the radius of the horizon r0, the thermodynamics
quantities of the black hole, i.e., mass M , temperature T , and
electromagnetic potential � can be obtained as in [73]

M = ω2r0

8π

(

k + c2 + q2

4r2
0

+ 8π Pr2
0

3
+ c1r0

2

)

T = 2r0P + k + c2

4πr0
− q2

16πr3
0

+ c1

4π
,

S = ω2

4
r2

0 , � = q

r0
. (12)

We can also easily get the thermodynamic volume conjugated
to the pressure [18]

V =
(

∂M

∂P

)

S,Q
= 4π

3
r3

0 = π

6
v3. (13)

where a specific volume [18,19] is defined as v = 2r0. It is
notable that the “specific volume” is not the normal definition
of specific volume in normal thermodynamic (volume per
unit mass). In what following, we will see that the definition
of the specific volume v = 2r0 for the black hole is a natural
choice comparing to the equation of state of the Van der
Waals fluid.

From Eqs. (12) and (13), the equation of state of dRGT
black holes turns to [73]

P = T

v
− c1

4πv
− k + c2

2πv2 + q2

2πv4 , (14)

which is analog to that of Van der Waals fluid. The thermody-
namics theory tells us that the critical point of second order
phase transition located at the inflection point of pressure,
the condition is

(
∂P

∂v

)

T
= 0,

(
∂2P

∂v2

)

T
= 0. (15)

It leads to the following critical quantities [73]

Tc = c1

4π
+ 2(k + c2)

3/2

3
√

6π |q| , Pc = (k + c2)
2

24π |q|2 , vc =
√

6|q|√
k + c2

.

(16)

1 For a spherical topology with k = 1, the volume of the two-
dimensional hypersurface is ω2 = 4π ; when k = 0 or −1, with the
different compaction methods, ω2 take different positive numbers [90].

The critical point of the black hole phase transition solved
from Eq. (15) contains the absolute value of charge |q|, which
implies that the result we obtained is symmetric to the sign of
the charge. For convenience, we use the symbol q to replace
|q| in the following discussion. It is worth noticing from
Eq. (16) that usually the critical phenomenon of black hole
only recovered in a variety of spherical topology (k = 1) in
previous works. However, from the above critical quantities,
we find that all values of k (0,±1) have the possibility to
admit Van der Waals- like behaviors provided k + c2 > 0.
This is the significant feature of dRGT massive gravity, that
a non-zero parameter m related to the gravity mass greatly
enriches the thermodynamics behaviors of topological black
holes.

One can easily verify that in the absence of massive param-
eters c1 and c2, i.e., c1 = 0 = c2, the critical coefficient
defined as the ratio of critical temperature Tc to the multi-
plier of critical pressure and volume Pcvc equals to

Tc
Pcvc

= 8

3
, (17)

which coincides with the case of the normal Van der Waals
fluid. However, in the presence of massive parameters c1 and
c2, the critical coefficient becomes

Tc
Pcvc

= 8

3
+

√
6c1q

(k + c2)3/2 , (18)

which receives a correction combined by the parameters
c1, q, k, c2. In the next subsection, we focus on the relation
between the Rupperiner geometry with normalized scalar
curvature and the phase transition of topological black holes
in dRGT massive gravity.

3.1 Phase transition of charged dRGT black hole

In this subsection, the thermodynamical characteristics of
charged dRGT black hole with k + c2 > 0 which undergoes
phase transition are described, and we further explore how
the metic parameters affect the thermodynamic properties
of black holes. We first introduce the reduced parameters
defined as

P̃ = P

Pc
, T̃ = T

Tc
, ṽ = v

vc
, S̃ = S

Sc
.

Then the equation of state Eq. (14) of the black hole arrives
at

P̃ = 8

3ṽ

{

T̃

[

1 + c1q

16

(
6

k + c2

) 3
2
]

− c1q

16

(
6

k + c2

) 3
2
}

− 2

ṽ2 + 1

3ṽ4 . (19)
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(a) (b)

Fig. 1 a Isotherms curves with x = 0.3, 0, −0.3 and T̃ = 0.8 from
bottom to top in reduced (P̃, ṽ) space. b The isobar curve in reduced
(T̃ , S̃) plane with P̃ = 0.7 and x = 0. Black solid curves describe
the small black holes and large black holes. The red curves represent

the superheated small black hole and the supercooled large black hole.
And the blue curve indicates the black hole is in an unstable phase.
The black dashed line implied by equal area law is the phase transition
temperature

A small/large black hole phase transition occurs when T̃ <

1, this first order phase transition can be identified from
Maxwell’s equal area law [26]. It will more suitable for us to
verify the equal area law in (T̃ , S̃) phase space. After consid-
ering the relation of S and v, the equation of state described
by the reduced parameters turns to

T̃

[

1 + c1q

16

(
6

k + c2

) 3
2
]

− c1q

16

(
6

k + c2

) 3
2

= 3

4
√
S̃

(
1

2
P̃ S̃ + 1 − 1

6S̃

)

. (20)

Here we notice that there is a combination of parameters
c1, q, k, c2, which takes a crucial role in the equation of state.
So it is necessary for us to introduce a combined parameter

x = c1q
16

(
6

k+c2

) 3
2

and investigate its effects on the phase

structure of the massive black hole.
With Eq. (19), the isothermal curves T̃ = 0.8 are plotted

in Fig. 1a in reduced (P̃, ṽ) phase space from bottom to top
with x = 0.3, 0 and −0.3. As shown in the figure, there
are two extreme points on the isotherms, and the curves are
divided into three parts. It can be seen that as x decreases,
the two extreme points keep approaching.With Eq. (20), we
construct an isobar curve in reduced (T̃ , S̃) phase space with
P̃ = 0.7 and x = 0 for example. The isobar curve shown
in Fig. 1b is correspondingly divided into three pieces by
two extreme points. Black solid curves represent small black
holes phase and large black holes phase. The red curves repre-
sent the superheated small black hole phase and supercooled
large black hole phase. And the blue curve whose slope is
negative indicates the black hole is in an unstable phase.
The extreme points separating the metastable phase from the
unstable phase are called spinodal points. The black horizon-

tal dashed line determined by the Maxwell equal area law is
the phase transition temperature T̃0, which indicates the area
under the T̃ (S̃) curve from S̃1 to S̃2 is the same as the area
enclosed by the black dashed line and coordinate axis. Thus
we get the following conditions

T̃0(S̃2 − S̃1) =
∫ S̃2

S̃1

T̃ (S̃)dS̃, T̃0 = T̃ (S̃1) = T̃ (S̃2), (21)

from which we get the solutions S̃1, S̃2, and T̃0, read as

√

S̃1,2 =
√

3 −
√
P̃ ∓

√

3 − 3
√
P̃√

2 P̃
, (22)

T̃0

⎡

⎣1 + c1q

16

(
6

k + c2

) 3
2

⎤

⎦− c1q

16

(
6

k + c2

) 3
2 =

√
√
√
√ P̃

(

3 −
√
P̃
)

2
.

(23)

The two particular points (T̃0, S̃1) and (T̃0, S̃2) in Fig. 1b
describe respectively the saturated small black hole and
the saturated large black hole. The Eq. (23) is served as
the small/large black hole coexistence curve, which can be
inversed to

√

P̃ = 1 − 2 sin

⎧

⎨

⎩

1

3
arcsin

⎧

⎨

⎩
1 −

⎧

⎨

⎩
T̃0

⎡

⎣1 + c1q

16

(
6

k + c2

) 3
2

⎤

⎦

− c1q

16

(
6

k + c2

) 3
2

⎫

⎬

⎭

2
⎫

⎪⎬

⎪⎭

⎫

⎪⎬

⎪⎭

. (24)

Substituting the equation of state Eq. (19) and the relation
Ṽ = ṽ3 into Eq. (23), the form of the coexistence curve can

123



Eur. Phys. J. C (2021) 81 :626 Page 7 of 15 626

(a) (b)

Fig. 2 a �Ṽ as a function of P̃ is independent of the parameter x . b �Ṽ as a function of T̃ with x = 0.3, 0 and −0.3 from top to bottom

be expressed as

T̃0 =
⎡

⎣
5 − 3

√

6Ṽ
2
3 + 3 + 6Ṽ

2
3

2Ṽ
+ c1q

16

(
6

k + c2

) 3
2

⎤

⎦

/

[

1 + c1q

16

(
6

k + c2

) 3
2
]

. (25)

According to the relation between V and S, we can get the
thermodynamic volumes of the black hole corresponding to
S̃1 and S̃2 on the isobar curve

Ṽ1 =
⎛

⎝

√

3 −
√
P̃ −

√

3 − 3
√
P̃√

2 P̃

⎞

⎠

3

, (26)

Ṽ2 =
⎛

⎝

√

3 −
√
P̃ +

√

3 − 3
√
P̃√

2 P̃

⎞

⎠

3

. (27)

The change �Ṽ = Ṽ2−Ṽ1 is an extremely interesting param-
eter in the phase transition which can be treated as an order
parameter. In the light of Eqs. (26) and (27), together with Eq.
(24), we plot the figures about the change �Ṽ as functions
of P̃ and T̃ respectively in Fig. 2.

These two figures indicate that �Ṽ decreases monotoni-
cally as P̃ and T̃ increase, and finally becomes zero at the
critical point. The situation of �Ṽ as a function of T̃ will
be more subtle. Figure 2b is the curve of �Ṽ as a function
of T̃ with x = 0.3, 0 and −0.3 from top to bottom. As
x decreases the corresponding �Ṽ decreases. The smaller
�Ṽ indicates the difference between the small black hole

phase and the large black hole phase is smaller, the coexis-
tence region in phase space is compressed. What’s more, for
positive parameter x = 0.3, we can see from the black curve
in Fig. 2b that the �Ṽ reaches infinity when the temperature
T̃ ≤ 3/13, which indicates that the difference between the
saturated small black hole and the saturated large black hole
is huge. It is an intriguing feature of dRGT black hole that we
will further discuss in what follows. After performing series
expansion on �Ṽ at the critical point, we have

�Ṽ = 3
√

3(1 − P̃)
1
2 + 51

√
3

8
(1 − P̃)

3
2 + O(1 − P̃)

5
2 ,

�Ṽ = 6

√
√
√
√

2 + c1q

8

(
6

k + c2

) 3
2
(1 − T̃ )

1
2 + 61

√
2

2

⎡

⎣1 + c1q

16

(
6

k + c2

) 3
2

⎤

⎦

3
2

(1 − T̃ )
3
2 + O(1 − T̃ )

5
2 .

Obviously, it can be seen that, like the RN-AdS black hole,
the critical exponent of the dRGT massive black hole also
takes the universal value of 1/2.

Now let’s turn our attention to the unstable phase describe
by the solid blue curve in Fig. 1b. The spinodal curve sep-
arating the unstable phase and metastable phase is obtained
from the condition (∂V P)T = 0, one gets

T̃sp =
[

3Ṽ− 1
3 − Ṽ−1

2
+ c1q

16

(
6

k + c2

) 3
2
]/

[

1 + c1q

16

(
6

k + c2

) 3
2
]

. (28)

Inversing it, we can obtain the expression of the spinodal
curves
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Ṽ
1
3

1 =
1 − 2 cos

{

1
3 arccos

{

1 − 2

{

T̃

[

1 + c1q
16

(
6

k+c2

) 3
2
]

− c1q
16

(
6

k+c2

) 3
2
}2
}

+ π
3

}

2T̃

[

1 + c1q
16

(
6

k+c2

) 3
2
]

− c1q
8

(
6

k+c2

) 3
2

, (29)

Ṽ
1
3

2 =
1 + 2 cos

{

1
3 arccos

{

1 − 2

{

T̃

[

1 + c1q
16

(
6

k+c2

) 3
2
]

− c1q
16

(
6

k+c2

) 3
2
}2
}}

2T̃

[

1 + c1q
16

(
6

k+c2

) 3
2
]

− c1q
8

(
6

k+c2

) 3
2

, (30)

where Ṽ1 < 1 is for the small black hole spinodal curve, while
Ṽ2 > 1 is for the large black hole spinodal curve.

We plot the coexistence curve and spinodal curve in Fig.
3 in the reduced (P̃, T̃ ) phase space with the red solid and
blue dashed curves, respectively.

The black dote is the critical point (P̃ = 1, T̃ = 1), and
the region at the conner marked as orange is the supercritical
black hole phase, in which the small black hole and the large
black hole are indistinguishable. As shown in the figure, there
are two spinodal curves separated by the coexistence curve,
and these three curves meet at the critical point. The purple
and yellow regions represent the small black holes phase and
large black holes phase, respectively. The shapes of these
four figures are similar, but there are some interesting things
because of the existence of massive parameters: the starting
point of the coexistence curve changes with x . The coexis-
tence curve is the separation between the singlet small black
hole and the singlet large black hole. For positive x = 0.3,
the coexistence curve starts at P̃ = 0 and T̃ = 3/13, which
implies the absence of the singlet large black hole at suffi-
ciently low temperature. While for negative x , the starting
point of the coexistence curve is T̃ = 0 with finite pres-
sure P̃ , which implies the absence of the singlet small black
hole at sufficiently low pressure. The results restore to RN-
AdS when x = 0 that the coexistence curve starts from the
origin of the phase space. Figure 4 is the plot of the coexis-
tence curve and spinodal curves in the reduced (T̃ , Ṽ ) phase
space with x = 0.3, 0 and −0.3. The two metastable phases
(superheated small black holes and supercooled large black
holes) regions and the coexistence phase region are clearly
displayed.

The red solid and blue dashed curves represent the coexis-
tence curve and spinodal curve, respectively. The black holes
in different phases are identified with different colors in the
figure. We can see that the asymptotic behavior of the coex-
istence curve at large thermodynamical volume Ṽ is greatly
changed by x . For x = 0.3, the coexistence curve asymp-
totically reaches a finite constant temperature T̃ = 3/13 at

infinite Ṽ , leading to the absence of singlet large black hole

at sufficiently low temperature. It implies that there is a crit-
ical temperature T̃ = 3/13 with positive combined param-
eter x = 0.3. Below the critical temperature, there are only
two phases (singlet small black hole phase and coexistence
phase) with different volume. However, above the critical
temperature, three phases (singlet small black hole phase,
coexistence phase, and also singlet large black hole phase)
of the system with different volumes exist. So that the differ-
ence between the small black hole and the large black hole
becomes infinite when the temperature T̃ ≤ 3/13, which is
consistent with the results indicated by Fig. 2b. For x = 0,
the asymptotic value is zero. While for negative x , there is
an intersection point of the coexistence curve with T̃ = 0
horizontal line at finite volume. So that the area of the region
under the coexistence curve, becomes small and small as x
decreases. We speculate that, as the combined parameter x
decreases, a smaller change in thermodynamical volume at a
fixed phase transition temperature would cause the transition
from singlet small black hole phase to singlet large black
hole phase.

4 Ruppenier geometry of the black hole

In this section, we concentrate our attention on the thermo-
dynamic geometry of the system and attempt to reveal some
information about the microstructure of the black holes. As
the situation of RN-AdS black hole, S and V of dRGT black
hole are dependent, the heat capacity at constant volume
CV = T (∂T S)V vanishes, which results in a singularity of
the thermodynamical metric Eq. (4). Introducing a normal-
ized scalar curvature could be a way for us to explore the
thermodynamical properties of the black hole [60], which is
defined as

RN = RCV = (∂V P)2 − T 2
(

∂V,T P
)2 + 2T 2 (∂V P)

(

∂V,T,T P
)

2 (∂V P)2 .

(31)

After a straightforward calculation, the normalized scalar
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(a) (b) (c)

Fig. 3 Phase structure of dRGT black hole in reduced (P̃, T̃ ) space with x = 0.3, 0 and −0.3. The solid red and blue dashed curves represent the
small/large black hole coexistence curve and spinodal curves, respectively

(a) (b) (c)

Fig. 4 Phase structure of dRGT black hole in reduced (T̃ , Ṽ ) space
with x = 0.3, 0 and −0.3. The solid red curve represents the coexis-
tence curve of the small/large black hole, and the blue dashed curve
represents the spinodal curve. The regions marked as orange, purple,

yellow, green and pink describe the supercritical black hole, small black
hole, large black hole, metastable phases (superheated small black hole
and supercooled large black hole), small/large black hole coexistence
phase, respectively

curvature of dRGT black hole in terms of reduced param-
eters with k + c2 > 0 is

RN =

[

c1q
8

(
6

k+c2

) 3
2
Ṽ + 3Ṽ

2
3 − 1

]{

−4T̃ Ṽ

[

1 + c1q
16

(
6

k+c2

) 3
2
]

+ c1q
8

(
6

k+c2

) 3
2
Ṽ + 3Ṽ

2
3 − 1

}

2

{

−2T̃ Ṽ

[

1 + c1q
16

(
6

k+c2

) 3
2
]

+ c1q
8

(
6

k+c2

) 3
2
Ṽ + 3Ṽ

2
3 − 1

}2 . (32)

In order to better understand the effect of parameter x on the
black holes, we employ Eq. (32) and set T̃ = 0.4 to show the
behavior of normalized scalar curvature RN as the function of
Ṽ with x = 0.3 and −0.3 in Fig. 5. We can see that RN has
two negative divergent points determined by the condition
∂V P = 0, which corresponds to the spinodal curve. These
two divergent points get close as x decreases. In addition, it
is easy to verify from Eq. (32) that these two divergent points
coincide at Ṽ = 1 when T̃ = 1. Figure 5 shows us that the
scalar curvature is mostly negative in the region of parameter
space Ṽ , but also has the possibility to be positive.

The parameter space Ṽ for a positive curvature with fixed
temperature T̃ and x can be worked out directly by setting
RN > 0, however, it should be careful to examine where

the parameter space is physically allowed. We can check this
with sign-changing curves, whose expression are

T̃sc =
[

3Ṽ
2
3 − 1

4Ṽ
+ c1q

32

(
6

k + c2

) 3
2
]/[

1 + c1q

16

(
6

k + c2

) 3
2
]

,

(33)

and Ṽsc determined by the equation

c̃1q

8

(
6

k + c̃2

) 3
2

Ṽsc + 3Ṽ
2
3

sc − 1 = 0. (34)

Before we proceed with plotting the sign-changing curves,
we take an analysis of the roots of the above equation. At
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(a) (b)

Fig. 5 The normalized scalar curvature of dRGT black hole as function Ṽ with x = 0.3, −0.3, and T̃ = 0.4

first, we inversely solve the equation to the form

x = 1 − 3Ṽ
2
3

2Ṽ
,

where the combined parameter x is introduced. Taking the
first order derivative of the above equation, we have

dx

dṼ
= Ṽ

2
3 − 1

2Ṽ 2
,

which indicates that x is monotonically increasing for Ṽ > 1
and monotonically decreasing for 0 < Ṽ < 1. With the
asymptotic behaviors

x(Ṽ = 0) → ∞, x(Ṽ → ∞) → 0, (35)

we know that for a fixed positive x , the Eq. (34) admits one
solution Ṽsc, while for a fixed negative x , it admits two solu-
tions Ṽsc; when the parameter x = 0, we can easily obtain

the solution Ṽ = 3− 3
2 , which is the result of RN-AdS black

hole. In Fig. 6, we plot the solid red curve describing the
coexistence curve, the blue dashed curve representing the
spinodal curve, and dashed black curves representing the
sign-changing curves of the normalized scalar curvature RN

with x = 0.3, 0 and −0.3. The region painted in yellow indi-
cates that the normalized scalar curvature is positive, while
in the white region is negative. As we have already known
from Van der Waals fluid system that the equation of state
should be inapplicable in the region under the coexistence
curve. So that the divergent and sign-changing behaviors of
scalar curvature in the coexistence phase are excluded from
the thermodynamical viewpoint. Only attractive interactions
between the molecules of Van der Waals fluid are allowed
in the hard-core model [91]. However, as depicted in Fig. 6,
when the combined parameter x ≥ 0, there is a weak repul-
sive interaction dominating for small black holes which are
in the situation that similar to the RN-AdS black hole, and

the singlet large black hole phase disappears for sufficient
low temperature for positive x . The interesting things hap-
pen in the case when x < 0, which shows us another positive
curvature region III since the Eq. (34) has two solutions with
x < 0. According to the discussion in the previous section,
compared with RN-AdS black holes, in addition to small
black holes, the interaction between underlying ‘molecules’
of large black holes also behave as repulsion. What’s more,
as x decreases, the area of the region acting as an attraction
between the ‘molecules’ also decreases.

The critical behaviors of normalized scalar curvature can
be studied to take the series expansion of RN along the satu-
rated small and large black hole curves near the critical point.
With the help of Eqs. (24), (26), (27), the normalized scalar
curvature along the coexistence curve with different value of
x are plotted in Fig. 7.

The blue (red) curve is RN along the coexistence curve
for saturated small (large) black hole. We can see that the
values of the scalar curvature of the large black holes are
always smaller than those of the small black holes with fixed
temperature, and at the critical point, they all go to negative
infinity. Similar to RN-AdS black hole when the combined
parameter x ≥ 0, only for the small black hole that RN

can be positive at low temperature. Moreover, for positive
combined parameter x = 0.3, Fig. 7a shows us that RN along
the saturated large black hole curve (solid red line) seems
to become negative infinity as the temperature approaching
T̃ → 0. In fact, there is a truncation of the horizontal axis for
the solid red line, the divergent point of RN for the large black
hole (solid red curve) is located at T̃ = 3/13. The intriguing
behavior of the solid red curve at low temperature in Fig.
7a is consistent with the behavior of the solid red curve in
Fig. 4a. From the figure of phase structure Fig. 4a, we can
see that the saturated large black hole curve (solid red line)
and spinodal curve (where the thermodynamic curvature RN

diverges) coincide at the truncated temperature T̃ = 3/13.
The same as Fig. 4a, the behaviors of Fig. 7a implies that there
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(a) (b) (c)

Fig. 6 Characteristic curves of the normalized scalar curvature. The red solid curve is the coexistence curve, and the black and blue dashed curves
correspond to the sign-changing curve and divergence curve, respectively. The region painted in yellow represent that RN > 0

(a) (c)(b)

Fig. 7 The behavior of the normalized scalar curvature along the coex-
istence curvature RN with x = 0.3, 0 and −0.3. The solid blue curve
represents a saturated small black hole and the red solid curve represents
saturated large black hole. The solid red curve in a tends to be negative

infinity at sufficiently low temperature. This behavior is consistent with
that of Fig. 4a, where the saturated black hole curve asymptotically
approaches to the spinodal curve (where the thermodynamic curvature
RN diverges) at T̃ = 3/13

is a critical temperature T̃ = 3/13 with positive x = 0.3.
With a fixed temperature below the critical value T̃ < 3/13,
no singlet large black hole phase exists in the system. When
the temperature of the system is larger than the critical one,
three phases (the singlet small black hole phase, coexistence
phase, and also singlet large black hole phase) exist with
different volume.

When x < 0, there would be a vanishing point for RN

of the saturated large black hole, and it moves to a higher
temperature as x decreases. Hence the interaction between
the ‘molecules’ behaving as repulsion not only dominates
in the small black hole at low temperature but also exists in
the large black hole with a negative combined parameter x .
These behaviors are consistent with the analysis from Fig. 6.

Finally, we discuss the behavior of curvature towards the
critical point along the coexistence curve. For this purpose,
we write RN as a function of T̃ by using equations Eqs. (24),
(26), and (27), and the series expansions of it at T̃ = 1 along
the coexistence curves have the following forms

RN (SSBH) = −1

8
(1 − T̃ )−2 +

√
1 + x

2
√

2
(1 − T̃ )−

3
2 + O(1 − T̃ )−1,

RN (SLBH) = −1

8
(1 − T̃ )−2 −

√
1 + x

2
√

2
(1 − T̃ )−

3
2 + O(1 − T̃ )−1,

in which SSBH and SLBH represent saturated small black
holes and saturated large black holes, respectively. The series
expansions of RN indicate that the critical exponent is 2. The
results can also be checked numerically. Near the critical
point, the normalized scalar curvature is assumed to take the
form of [91]

ln|RN | = −a ln(1 − T̃ ) + b. (36)

We numerically calculate the curvature along the coexistence
curve and list the fitting results in Table 1. We find that the
coefficient a always fluctuates in a small range of around 2.
In the case of the error caused by calculation, we believe that
the critical exponent is 2, which is the same as that of the
RN-AdS black hole.

5 Summary and discussion

In this paper, we studied the phase transition and thermody-
namic geometry of a four-dimensional charged topological
black hole in massive gravity. Unlike the RN-AdS black hole
that only the spherical topology exhibiting Van der Waals-
like phase transition, the so-called small/large black hole
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Table 1 Coefficients a and b of the fitting formulation along the saturated small black hole (SSBH) and saturated large black hole (SLBH) with
x = 0.3, 0 and −0.3

x = 0.3 x = 0 x = −0.3

a (SSBH) 1.98695 2.03720 2.03242

-b (SSBH) 1.91910 2.52126 2.45151

a (SLBH) 2.07444 2.04285 2.03545

-b (SLBH) 2.85544 2.51507 2.41169

phase transition for the charged AdS black holes always exist,
no matter the horizon topology is spherical (k = 1), Ricci
flat (k = 0) or hyperbolic (k = −1). So that the phase
structure of the topological black hole in massive gravity is
significantly different from that of the RN-AdS black hole.
Specificity, the critical behaviors of topological black hole
exhibit provided k + c2 > 0. We find that there does exist
a combined parameter in terms of the topology, charge, and
massive parameter of the massive black hole, which char-
acterizes the thermodynamic properties of the black hole.
The coexistence curve and spinodal curve (the curve sepa-
rate the metastable phase and unstable phase) are obtained
analytically and plotted in the reduced phase space (P̃, T̃ )

and (T̃ , Ṽ ), respectively. The supercritical phase region,
metastable phase (superheated small black holes and super-
cooled large black holes) regions, and coexistence phase
region are clearly displayed. We considered the effect of the
crucial combined parameter on the phase structure of the
massive black hole. It is found that as the combined parame-
ter x decreasing, the area of the coexistence phase region in
the phase space decreases. What’s more, we calculated the
change of thermodynamical volume of the saturated small
black hole and saturated large black hole, the change with
a fixed temperature also decreases as the combined param-
eter x decreasing. It indicates the difference between small
black hole phase and large black hole phase is smaller, thus a
smaller change in thermodynamical volume at a fixed phase
transition temperature would cause the transition from sin-
glet small black hole phase to singlet large black hole phase.
In the case of x = 0, the results reduce to that of RN-AdS
black hole.

Furthermore, we studied the Ruppeiner thermodynamical
geometry of the topological black hole in massive gravity
at the phase transition. Since the thermodynamical metric
degenerates because of the non-independence of the entropy
and thermodynamical volume of the massive black hole, the
normalized scalar curvature was introduced to reveal some
information about the microstructure of the black hole. As
we have shown in Fig. 5, the curvature goes to infinity at the
critical points, and divergent points (corresponding to the
spinodal points) get close as x decreases. One of the most
prominent results of the topological massive black hole is
that the sign-changing curves of the Ruppeiner curvature are

subtle. When the combined parameter is non-negative, the
situation is similar to the RN-AdS black hole, i.e., the cur-
vature changes its sign at sufficiently low temperature only
for small black holes, that the microstructure interactions
could be attractive or repulsive. While for the large black
hole, the scalar curvature is always negative, which indicates
that among the microstructures for the large black hole there
are only attractive interactions. However, when the combined
parameter is negative, it is intriguing that both for the small
and large black hole there are phase regions admitting pos-
itive curvature (see Figs. 6, 7). Also, we found that there is
no singlet large black hole at sufficiently low temperature
with positive x , and a phase transition between the coexis-
tence phase and singlet large black hole occurs at T̃ = 3/13
with x = 0.3. These constitute the distinguishable features
of dRGT massive topological black hole from that of RN-
AdS black hole as well as the Van der Waals fluid system. It
would be interesting to extend our discussion to the higher
dimensional dRGT massive gravity that reentrant phase tran-
sition, the tricritical point can appear, we leave these issues
for future work.

At last, we talk about since in the AdS/CFT correspon-
dence the cosmological constant is normally considered to
be a fixed parameter that does not vary, it is natural to ask
the interpretation once � is treated as a thermodynamic vari-
able. It is suggested [92,93] that varying cosmological con-
stant could be viewed as varying the number of colors N of
the CFT. Thus the behaviors of the chemical potential of the
boundary field theory can reflect the behaviors of the black
holes, such as Hawking-Page transition [93] and thermody-
namics phase transition of the bulk gravity [94]. Alterna-
tively, interpretation suggested that the number of colors N
should be keep fixed, so that one can consider that varying �

corresponds to varying the volume on which the field theory
resides [95], the ‘holographic Smarr relation’ and also the
p − V criticality of boundary CFT [96] is studied. In Ref.
[97], the authors argued that varying the cosmological con-
stant provides an alternative notion of changing an energy
scale of the dual theory. So that the associated phase struc-
ture (PV phase space) of the black hole thermodynamics in
the extended phase space is conjectured to be dual to an RG-
flow on the space of field theories. They also investigated the
behaviors of the entanglement entropy and two-point corre-
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lation function of the boundary field theory, which might be
good indicators of Van de Waals phase transitions in the bulk
black hole thermodynamics. In Ref. [98] the authors also
attempted to characterize the shear viscosity to entropy den-
sity ratio of dual QFT through Van der Waals-like behaviors
of AdS black hole.

However, unlike the Hawking-Page transition for the
AdS-black hole, which was later understood as a confine-
ment/deconfinement phase transition in the boundary CFT
via AdS/CFT correspondence, the Van der Waals like phase
transition (small/large phase transition) behaviors of AdS-
black hole, is lack of a suitable holographic interpretation
at present. It is worth emphasizing that the details of the
field theory interpretation are still, to a large extent, open
questions. Furthermore, since the thermodynamic variables
of the black hole correspond clearly to the thermodynamic
variables of the dual CFT, we believe that the Ruppeiner
thermodynamics geometry of AdS-black hole of the Einstein
gravity theory or the modified gravity theory may also have
its counterpart of the dual QFT, which is an intriguing and
meaningful topic worthing to investigate.

Note added

Some of the results presented in this paper have also been
independently obtained in Ref. [99], which appeared in par-
allel on arXiv.org.
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