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We study the phase diagram of strongly interacting matter with light quarks using a recently proposed,
small parameter approach to infrared QCD in the Landau gauge. This is based on an expansion with respect
to both the inverse number of colors and the pure Yang-Mills coupling in the presence of a Curci-Ferrari
mass term. At leading order, this leads to the well-known rainbow equation for the quark propagator with a
massive gluon propagator and a tree-level quark-gluon vertex. We solve the latter at nonzero temperature
and chemical potential using a simple semianalytic approximation known to capture the essence of chiral
symmetry breaking in the vacuum. In the chiral limit, we find a tricritical point which becomes a critical end
point in the presence of a nonzero bare quark mass, in agreement with the results of nonperturbative
functional methods and model calculations.
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I. INTRODUCTION

Hadronic matter is expected to present a rich phase
structure when submitted to sufficiently high energy
and baryonic densities, large magnetic fields, etc., as
encountered in various environments such as the early
Universe, ultradense astrophysical objects, or relativistic
heavy ion collisions in the laboratory [1–3]. Unraveling
the phase diagram of quantum chromodynamics (QCD)
at nonzero temperature T and baryonic chemical poten-
tial μB is a major challenge both experimentally and
theoretically. At vanishing chemical potential, first
principle lattice simulations unambiguously demonstrate
a smooth crossover from a mostly confined to a mostly
deconfined phase, accompanied by a restoration of
chiral symmetry [4,5]. The crossover region sharpens
for increasing quark masses and turns in a second-order
phase transition for critical values of the quarks masses,
above which the transition is first order. The same is
expected to happen with the chiral transition in the
opposite limit of decreasing quark masses: the transition
turns first order below a critical value of the quark
masses. Although not firmly established by lattice cal-
culations yet [6], this is the expected behavior of a theory
with at least three light quark flavors. The situation with

two light quarks is more subtle due to the possible role of
the axial anomaly [7].
The situation is even less clear at μB ≠ 0 in the low quark

mass region (including the physical point), where standard
Monte Carlo algorithms are plagued by the infamous sign
problem [8]. The typical expectation is that of a line of first-
order chiral transition at low temperatures ending at a
critical point [9]. Firmly establishing the existence of the
latter and studying its possible experimental signatures has
been the topic of intense theoretical work [10–16] and is
among the major physics goals of various present and
upcoming experiments [17–20]. Methods to circumvent the
sign problem on the lattice have been devised but remain,
so far, limited to μB=T ≲ 1, and no critical end point
(CEP) has been firmly established [21]. One strategy to go
beyond is to employ approximate nonperturbative con-
tinuum approaches, based on Dyson-Schwinger (DSE) or
functional renormalization group (FRG) equations, with
increasing level of refinement [22–25]. These typically find
a CEP at a relatively large μB=T ≳ 3, where systematic
errors are not completely under control [25]. A comple-
mentary approach uses phenomenological, Nambu-Jona-
Lasinio (NJL) or quark-meson models with various degrees
of sophistication [26–30]. These typically predict a CEP at
relatively large μB=T, whose precise location, however,
varies significantly from one study to another. One
common weakness of such approaches is that the employed
approximations lack a systematic ordering principle. One
typically explores the whole phase diagram with trunca-
tions adjusted against lattice data at μB ¼ 0, far from the
region where a critical point is found.
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In the present article, we undertake a study of this issue
using a recently proposed semiperturbative approach to the
infrared dynamics of QCD. This is based on the Curci-
Ferrari (CF) model [31,32], a simple massive extension of
the Faddeev-Popov (FP) Lagrangian in the Landau gauge,
where the gluon mass term is motivated both by the results
of lattice simulations [33] and by the necessity to modify
the FP Lagrangian in the infrared due to Gribov ambiguities
[34]. The CF model is the simplest renormalizable defor-
mation of the FP Lagrangian and remains under perturba-
tive control down to the deep infrared: The gluon mass
screens the standard perturbative Landau pole and the
(running) gauge coupling remains moderate at all scales
[32,35], as observed in lattice simulations. A series of
recent studies has shown that the perturbative CF model
gives an accurate description of the phase structure of
pure Yang-Mills theories and of QCD with heavy quarks
[36–38]. The case of light quarks is more delicate because,
unlike the couplings in the pure gauge sector, the quark-
gluon coupling becomes significant in the infrared [39].
A systematic approximation scheme, nonperturbative in
the quark-gluon vertex, has been proposed in Ref. [40],
based on a double expansion in powers of the pure gauge
coupling and of the inverse number of colors 1=Nc.
At leading order, this leads to the well-known rainbow
equation with a tree-level structure for the (massive) one-
gluon exchange. Higher-order corrections being controlled
by small parameters, one can treat renormalization group
effects in a consistent way, which permits a systematic
control of the ultraviolet momentum tails. The leading-
order approximation in this rainbow improved-loop expan-
sion has been successfully implemented to describe the
dynamics of chiral symmetry breaking in the vacuum
in Ref. [40].
It is of definite interest to extend this approach to

nonzero temperature and chemical potential and to study
the phase diagram of the CF model in this expansion
scheme. The present work aims at paving the way for such a
systematic investigation. In particular, before attempting a
full-fledged numerical solution of the relevant rainbow
equation for the in-medium quark propagator, we wish to
analyze the main qualitative features of the leading-order
approximation. For instance, it is interesting to have an idea
of the influence of the CF mass term on the phase structure
of the theory and, also, to investigate the typical ballpark
predictions of the model as compared to other approaches.
In this spirit, we study here a simplified version of the in-
medium rainbow equations, where we only retain the
essential aspects of the physics of chiral symmetry with
as much analytical control as possible.
In Sec. II, we briefly review the CF model and we derive

the leading-order, rainbow equations for the in-medium
quark propagator. We present two simplified versions of
these equations in Sec. III, which use a form of localization
in momentum space. Our results are detailed in Sec. IVand

we conclude in Sec. V. Some technical material is gathered
in the appendixes.

II. THE RAINBOW EQUATION IN THE
CURCI-FERRARI MODEL

For simplicity, we study a theory with Nf degenerate
quark flavors. At nonzero temperature T and quark chemi-
cal potential μ ¼ μB=3, the rainbow equation for the
(Euclidean) quark propagator S reads

S−1ðPÞ ¼ M0 − ðiω̂p − μÞγ0 − ip⃗ · γ⃗

þ g20

Z
T

Q̂
γμSðQÞγνGμνðKÞ; ð1Þ

where M0 and g0 denote the bare quark mass and quark-
gluon coupling, respectively. We have introduced Euclidean
momenta P ¼ ðω̂p; p⃗Þ, Q ¼ ðω̂q; q⃗Þ, and K ≡ P −Q ¼
ðωk; k⃗Þ, with ωn ¼ 2πnT and ω̂n ¼ 2πðnþ 1=2ÞT
(n ∈ Z) being the bosonic and fermionicMatsubara frequen-
cies, respectively. Correspondingly, the bosonic and fer-
mionic Matsubara sums are denotedZ

T

K
fðKÞ≡ T

X
k∈Z

Z
d3k
ð2πÞ3 fðωk; k⃗Þ; ð2Þ

Z
T

Q̂
fðQÞ≡ T

X
q∈Z

Z
d3q
ð2πÞ3 fðω̂q; q⃗Þ; ð3Þ

where it is implicitly understood that integrals over the
norm of three-dimensional momenta are cut off at a scale Λ.
The matrices γμ stand for the Euclidean Dirac matrices, with
fγμ; γνg ¼ 2δμν, which we choose in the Weyl basis, such
that γ�0;2 ¼ γt0;2 ¼ γ0;2 and γ�1;3 ¼ γt1;3 ¼ −γ1;3. Finally, the
tree-level gluon propagator is

GμνðKÞ ¼ P⊥
μνðKÞ

K2 þm2
; ð4Þ

with P⊥
μνðKÞ ¼ δμν − KμKμ=K2 being the transverse pro-

jector and m the CF mass.
In Appendix A, see also [13], we recall that the quark

propagator decomposes as (we keep the μ-dependence
explicit)

Sðω̂p; p⃗; μÞ ¼ B̃þ ðiω̂p − μÞγ0Ã0 þ ip⃗ · γ⃗Ãv þ iγ0p⃗ · γ⃗ C̃;

ð5Þ
with any of the components X̃ ¼ Ã0; Ãv; B̃ or C̃ depending
on p⃗ only through its norm p≡ jp⃗j and such that

X̃ð−ω̂p; p;−μÞ ¼ X̃ðω̂p; p; μÞ; ð6Þ

X̃ð−ω̂p; p; μ�Þ� ¼ X̃ðω̂p; p; μÞ: ð7Þ
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These considerations apply also to the inverse propagator
S−1ðω̂p; p⃗; μÞ, which we parametrize as

S−1ðω̂p; p⃗; μÞ ¼ B − ðiω̂p − μÞγ0A0 − ip⃗ · γ⃗Av − iγ0p⃗ · γ⃗C:

ð8Þ

We have X ¼ X̃Δ, with

Δ ¼ B2 þ ðω̂p þ iμÞ2A2
0 þ p2ðA2

v − C2Þ: ð9Þ

Projecting Eq. (1) onto the various tensor components, one
arrives at the nonlinear system of integral equations

BðPÞ ¼ M0 þ 3g20CF

Z
T

Q̂

BðQÞ
ΔðQÞ

1

K2 þm2
; ð10Þ

Â0ðPÞ ¼ ω̂p þ iμþ g20CF

Z
T

Q̂

1

ΔðQÞ
1

K2 þm2

×

�
Â0ðQÞ

�
1þ 2

ω2
k

K2

�
þ 2ÂvðQÞ ωk

K2
k⃗ · q̂

�
;

ð11Þ

ÂvðPÞ ¼ pþ g20CF

Z
T

Q̂

1

ΔðQÞ
1

K2 þm2

×
�
2Â0ðQÞ ωk

K2
k⃗ · p̂þ ÂvðQÞ

×

�
p̂ · q̂þ 2

ðp̂ · k⃗Þðk⃗ · q̂Þ
K2

��
; ð12Þ

ĈðPÞ ¼ g20CF

Z
T

Q̂

ĈðQÞ
ΔðQÞ

1

K2 þm2

×

�
p̂ · q̂

�
1 − 2

ω2
k

K2
− 2

ðp̂ · k⃗Þðk⃗ · q̂Þ
K2

��
; ð13Þ

where Â0ðPÞ≡ ðω̂p þ iμÞA0ðPÞ, ÂvðPÞ≡ pAvðPÞ and
ĈðPÞ≡ pCðPÞ, as well as p̂≡ p⃗=p. We have also intro-
duced the quadratic Casimir in the fundamental represen-
tation CF ¼ 4=3.

III. LOCALIZATION

As emphasized in the introduction, we do not attempt a
direct solution of the above equations in the present article.
In preparation of such a calculation, it is of interest to gain
some insight into the main qualitative expectations con-
cerning the phase diagram of the CF model. To this aim, we
reduce the problem to its core technical simplicity, retaining
only the essential aspects of the physics at hand.
In the chiral limit, corresponding toM0 → 0, an unbroken

chiral symmetry impliesB ¼ C ¼ 0,whichobviously solves
the (homogeneous) equations (10) and (13). Conversely, a

solution with either B ≠ 0 or C ≠ 0 signals the spontaneous
breaking of chiral symmetry. In what follows, we use B as
our order parameter for chiral symmetry breaking since
C ¼ 0 remains an allowed solution (which we stick to) also
away from the chiral limit. In order to keep the discussion
as simple as possible, we also set the other functions to their
tree-level values, A0 ¼ 1, Av ¼ 1.
With this ansatz, the rainbow equation for the quark mass

function B, Eq. (10), reads

BðPÞ¼M0þ4g20

Z
T

Q̂

BðQÞ
Q2

iμþB2ðQÞ
1

ðP−QÞ2þm2
; ð14Þ

where we have defined Qiμ ≡ ðω̂q þ iμ; q⃗Þ and we recall
that, in the case of a real chemical potential,

B�ðω̂p; p; μÞ ¼ Bð−ω̂p; p; μÞ ¼ Bðω̂p; p;−μÞ; ð15Þ

as follows from Eqs. (6) and (7). In particular, B is real for
μ ¼ 0 but becomes a priori complex when μ is nonzero.1

Our next level of simplification is to devise a versatile
formulation of the problem that is both easily testable and
allows for a maximum amount of analytic control. We use
an approximation scheme called localization [41,42],
which we now recall and extend to the problem at hand.
The integral equation (14) couples the mass function at a
given momentum to itself at all other momenta. However,
there can be cases where, in some range of parameters and
to a reasonable level of accuracy, the value of the mass
function at a particular scale decouples from the rest and
obeys, therefore, a simpler, “localized” equation.
For instance, in Refs. [41,42], such a localization

procedure has been tested in the context of OðNÞ scalar
field theories at nonzero temperature. In that case, the
behavior of the mass function at zero momentum was
essentially controlled by the zero-momentum mass itself
and a self-consistent equation for this zero-momentum
mode could be obtained by expanding the mass function
about this zero-momentum value in the corresponding
integrals. The solution of the localized equations was
compared to actual solutions of the DSE equations for
the propagators obtained from various truncations of the
two-particle-irreducible effective action. In all the cases
studied there, the local approximation gave very good
(two-loop) to qualitatively good (three-loop) results as
compared to a full numerical solution. We also mention
that, even in the absence of a clear argument of why a
certain scale should decouple, the localized equations often
provide a good qualitative guide. In the present case, for

1An interesting exception that we exploit below is the zero-
temperature limit for fixed integer p in ω̂p. In this limit, ω̂p → 0
and B becomes real. We mention that it is also real in the case of
an imaginary chemical potential.
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instance, it correctly captures the phenomenology of chiral
symmetry breaking in the vacuum.
Here, we implement a similar localization procedure as

that of Refs. [41,42], with the important difference that we
deal here with fermion fields, which have no zero mode at
nonzero temperature. In what follows, we propose two
localization procedures to circumvent this issue, which also
allow us to test the robustness of the approach by comparing
the results in these two schemes.
Finally, we mention that the localization procedures

proposed here can also serve for future studies of the rainbow
equations in more intricate settings, such as the rainbow
equation in the presence of nontrivial gluonic background
(accounting for the interplay between chiral and center
symmetry), or the corrections beyond the rainbow approxi-
mation,within the systematic expansion schemealluded to in
the introduction.

A. Euclidean localization

At finite temperature, it is important to stress that the
Euclidean mass function B is defined a priori on the
fermionic Matsubara frequencies, which never vanish.
We therefore localize the mass function at the smallest
momentum available, that is, Bðω̂1Þ≡ Bðω̂1; 0; μÞ. Since
Bðω̂1Þ ¼ Bð−ω̂1Þ�, it is natural—and in fact crucial, as we
illustrate below—to localize Bðω̂1Þ together with Bð−ω̂1Þ.
This means that we should consider two regions in the
integrals, the one where it makes sense to expand the mass
function about ω̂1 and the one where it makes sense to
expand it about −ω̂1. Therefore, we approximate (14), with
P ¼ ðω̂1; 0⃗Þ or P ¼ ð−ω̂1; 0⃗Þ by

Bðω̂1Þ ¼ M0 þ 2g20

Z
T

Q̂

1

ðω̂1 − ω̂qÞ2 þ q2 þm2

×

�
Bðω̂1Þ

ðω̂q þ iμÞ2 þ q2 þ Bðω̂1Þ2

þ Bð−ω̂1Þ
ðω̂q þ iμÞ2 þ q2 þ Bð−ω̂1Þ2

�
; ð16Þ

and

Bð−ω̂1Þ ¼ M0 þ 2g20

Z
T

Q̂

1

ðω̂1 þ ω̂qÞ2 þ q2 þm2

×

�
Bðω̂1Þ

ðω̂q þ iμÞ2 þ q2 þ Bðω̂1Þ2

þ Bð−ω̂1Þ
ðω̂q þ iμÞ2 þ q2 þ Bð−ω̂1Þ2

�
; ð17Þ

which are easily checked to be compatible with
Bðω̂1Þ ¼ Bð−ω̂1Þ�. It is convenient to work with the real
quantities

Br ≡ Bðω̂1Þ þ Bð−ω̂1Þ
2

; ð18Þ

Bi ≡ Bðω̂1Þ − Bð−ω̂1Þ
2i

: ð19Þ

In terms of Br and Bi, the rainbow equations for Bð�ω̂1Þ
read

Br ¼ M0 þ 2g20

Z
T

Q

1

ðω̂1 − ω̂qÞ2 þ q2 þm2

× Re

�
Br þ iBi

ðω̂q þ iμÞ2 þ q2 þ ðBr þ iBiÞ2

þ Br − iBi

ðω̂q þ iμÞ2 þ q2 þ ðBr − iBiÞ2
�
; ð20Þ

and

Bi ¼ 2g20

Z
T

Q

1

ðω̂1 − ω̂qÞ2 þ q2 þm2

× Im

�
Br þ iBi

ðω̂q þ iμÞ2 þ q2 þ ðBr þ iBiÞ2

þ Br − iBi

ðω̂q þ iμÞ2 þ q2 þ ðBr − iBiÞ2
�
: ð21Þ

After performing the Matsubara sums and the angular
integrals, Eqs. (20) and (21) rewrite in the simple form

M0 ¼ Br −
g20
2π2

Re½ðBr þ iBiÞFðBr þ iBiÞ
þ ðBr − iBiÞFðBr − iBiÞ�; ð22Þ

0 ¼ Bi −
g20
2π2

Im½ðBr þ iBiÞFðBr þ iBiÞ
þ ðBr − iBiÞFðBr − iBiÞ�; ð23Þ

where, for notational convenience, we have defined

FðBÞ≡ FvacðBÞ þ FthðBÞ; ð24Þ

with

FvacðBÞ≡
Z

Λ

0

dq
q2

εmq ε
B
q

1

εBq þ εmq
; ð25Þ
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FthðBÞ≡
Z

Λ

0

dq
q2

εmq ε
B
q

� ðμ − iω̂1Þ2=ðεBq þ εmq Þ
ðεBq þ εmq Þ2 − ðμ − iω̂1Þ2

þ
εBqn

ð−Þ
εmq

ðεBq Þ2 − ðεmq − μþ iω̂1Þ2

þ
εBqn

ð−Þ
εmq

ðεBq Þ2 − ðεmq þ μ − iω̂1Þ2

−
εmq n

ðþÞ
εBq−μ

ðεmq Þ2 − ðεBq − μþ iω̂1Þ2

−
εmq n

ðþÞ
εBqþμ

ðεmq Þ2 − ðεBq þ μ − iω̂1Þ2
�
; ð26Þ

with εxy ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and where nð�Þ

x ¼ ðex � 1Þ−1 denote
the Bose-Einstein and Fermi-Dirac distributions. We note
that FðB�Þ is not the complex conjugate of FðBÞ, due to the
dependence on iω̂1, which we leave, however, implicit in
what follows.

B. Physical localization

One inconvenient aspect of the Euclidean localization is
that one has to deal with two variables, Br and Bi. This
prevents the definition of a potential associated to the
localized equations, due to the fact that the latter do not
comply with the Schwarz conditions. Although many
features of the phase diagram do not require the existence
of an underlying potential, it is convenient to find a setting
where one deals with only one variable instead of two.2

Another drawback of the Euclidean localization is that it
involves the first Matsubara frequency πT. Therefore, we
expect its quality to decrease as the temperature is
increased.
One way to cope with these limitations is to consider a

localization based on the retarded mass function

BRðp0; pÞ ¼ Bðω̂p → −iðp0 þ μÞ þ 0þ; pÞ; ð27Þ

evaluated for p0 ¼ 0 and p ¼ 0. The reason for the
presence of μ in the prescription to obtain the physical
retarded Green’s function is recalled in Appendix B; see
also Ref. [43]. We find that, for B real and smaller than m,
the corresponding analytic continuation of FðBÞ in Eq. (24)
is real in the limit p0 → 0.3 Therefore, the equation for Bi
becomes compatible with the solution Bi ¼ 0, which we
assume from now on, and the equation for Br ≡ B reduces
down to

M0 ¼
�
1 −

g20
π2

½FvacðBÞ þ FthðBÞ�
�
B; ð28Þ

where FðBÞ is to be evaluated with ω̂1 → 0 and μ → 0

everywhere but in the Fermi-Dirac factors nðþÞ
εBq�μ

. While

FvacðBÞ remains the same as above, we now have

FthðBÞ ¼
2

B2 −m2

Z
∞

0

dq q2
�nð−Þεmq

εmq
þ
nðþÞ
εBq−μ

þ nðþÞ
εBqþμ

2εBq

�
:

ð29Þ
One price to pay for this choice of localization is the
singularity at B ¼ m, which is regulated in the retarded
self-energy through B2 −m2 → B2 −m2 þ i0þ. We ignore
this issue and restrict our analysis to cases where B < m.
This is justified both because the physically relevant values
in the vacuum fall in this range (see below) and because
most of our discussions below concern the vicinity of the
symmetric point B ¼ 0.4 We note finally that, interestingly
(although not surprisingly), the localized equation (28)
reduces to the corresponding mean-field gap equation of a
NJL-type model with an effective nonlocal four-fermion
vertex corresponding to a massive gluon exchange.

IV. RESULTS

We now investigate our predictions for the phase dia-
gram using the two types of localizations, starting with the
physical localization.

A. Physical localization

Consider first the chiral limit, corresponding toM0 → 0.
For large enough values of the coupling, Eq. (28) admits
nontrivial, symmetry-breaking solutions on top of the
chirally symmetric solution B ¼ 0. It is convenient to
parametrize the equation in terms of the dynamical mass
in the vacuum, B0 ≡ BðT ¼ 0; μ ¼ 0Þ, given by

FvacðB0Þ ¼ π2=g20; ð30Þ

where, because FvacðBÞ is a decreasing function of B,
we see that symmetry-breaking solutions exist only if
g20 > π2=Fvacð0Þ. We use Eq. (30) to trade the bare
quark-gluon coupling g0 for the (ultraviolet finite) quark
mass B0. The rainbow equation rewrites as

0 ¼ B½FvacðB0Þ − FvacðBÞ − FthðBÞ�≡ 2BRðB2Þ; ð31Þ

where we note that the cutoff can now be sent to infinity,2We see below that, after renormalization, there is one
particular way to achieve this within the Euclidean localization.
There are also certain limits, such as T → 0 or μ → 0, where this
becomes possible due to the fact that Bi → 0.

3One should pay attention to the fact that what is really
continued are not Br and Bi, but rather BðωÞ.

4On the other hand, the constraint B < m does not allow for a
smooth continuation from the chiral limit to the heavy quark limit
since B is always constrained to be less than m. This is one of the
reasons why we also develop the Euclidean localization.
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FvacðB0Þ − FvacðBÞ ¼
B2 lnðB=mÞ
2ðB2 −m2Þ −

B2
0 lnðB0=mÞ
2ðB2

0 −m2Þ : ð32Þ

It is useful to interpret Eq. (31) as deriving from a
chirally symmetric potential WðB2Þ, with ∂BWðB2Þ ¼
2BRðB2Þ, that is W0ðB2Þ ¼ RðB2Þ. The absolute minima
of WðB2Þ then determine the state of the system. At μ ¼ 0,
one easily checks that the nontrivial minimum, equal to B0

in the vacuum, decreases with increasing temperature and
continuously reaches B ¼ 0 at a critical temperature. This
extends in a critical line of second-order phase transitions
TcðμÞ in the (μ; T) plane, defined by the condition
W0ð0Þ ¼ 0, as shown in Fig. 1. Depending on the param-
eters, this critical line can turn into a line of first-order
transitions at a tricritical point, defined by the conditions

∂ð2nÞ
B WðB2ÞjB¼0 ¼ 0 for n ¼ 1, 2 or, equivalently,

W0ð0Þ ¼ W00ð0Þ ¼ 0: ð33Þ

The first-order line is then determined from

W0ðB2
minÞ ¼ WðB2

minÞ −Wð0Þ ¼ 0; ð34Þ

where Bmin is the nontrivial minimum at the transition. The
associated lower and upper spinodals are respectively
defined by

W0ð0Þ ¼ 0 and W0ðB2
spÞ ¼ W00ðB2

spÞ ¼ 0; ð35Þ

with Bsp being the location of the nontrivial metastable state
at the upper spinodal. The two spinodals flank the first-
order line and merge at the tricritical point, beyond which

the lower spinodal becomes the critical line. The equation
governing the critical and lower spinodal lines is easily
obtained as

μ2ðTÞ ¼ m2
B2
0 lnðB0=mÞ
B2
0 −m2

− 4

Z
∞

0

dq q2
nð−Þεmq

εmq
−
π2

3
T2;

ð36Þ

which is a strictly concave line. For low enough temper-
atures T=m ≪ 1, the gluonic thermal contribution (second
term) in Eq. (36) is negligible and one obtains the
approximate expression

μ2ðTÞ ≈m2
B2
0 lnðB0=mÞ
B2
0 −m2

−
π2

3
T2: ð37Þ

This is similar to the result obtained in the quark-meson
model with a large-Nf approximation [26].
We note that there is an ambiguity in the definition of the

potential WðB2Þ since neither the solutions of Eq. (31) nor
their convexity are altered by the replacement W0ðB2Þ →
fþðB2ÞRðB2Þ with fþðB2Þ being a differentiable and
strictly positive function. Interestingly, because the con-
ditions (33) and (35) only involve W0 and its derivatives,
they are, in fact, independent of the function fþ and so are,
thus, the spinodal lines, the line of second-order transition,
and, of course, the tricritical point where these lines meet.
Only the line of first-order transition explicitly depends on
fþ through the second condition in Eq. (34). However, it
always lies in between the two spinodals.
In Fig. 1, we show our results for the phase diagram in

the chiral limit. We use the typical values m ¼ 500 MeV
and B0 ¼ 300 MeV, motivated by the study of dyna-
mical chiral symmetry breaking in the CF model in the
vacuum [40]. We find a tricritical point located at ðμ; TÞ≈
ð237 MeV; 69 MeVÞ. The transition at zero chemical
potential occurs at Tcðμ ¼ 0Þ ≈ 141 MeV and the two
spinodals meet the T ¼ 0 axis for μ ≈ 268 MeV, and
μ ≈ 305 MeV, respectively. This gives an estimate of the
first-order transition line at most at the 10% level, inde-
pendently of the function fþ (the estimate improves as
one approaches the tricritical point). For the choice fþ ¼ 1,
the T ¼ 0 transition point is at μ ≈ 287 MeV.
In fact, Eq. (31) greatly simplifies at T ¼ 0, where

FthðBÞ ¼
B2=2

B2 −m2

"
μ

B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2

B2
− 1

r
− cosh−1

�
μ

B

��
; ð38Þ

if μ ≥ B and FthðBÞ ¼ 0 otherwise. In particular, we see
that the value of the order parameter below the transition
point is independent of μ, BðT ¼ 0; μÞ ¼ B0, until it jumps
to B ¼ 0 in the symmetric phase. This is known as the

FIG. 1. Phase diagram in the chiral limit (all scales in GeV), as
obtained from the physical localization of the rainbow equation,
with B0 ¼ 0.3 GeV and m ¼ 0.5 GeV. The line of second-order
transitions (solid red) turns into a line of first-order transitions
(solid blue) at the tricritical point (red dot). The dashed curves are
the corresponding spinodal lines. The orange line shows the
location of the tricritical point as a function of the gluon mass (as
described in the main text). Away from the chiral limit, the
tricritical point turns into a CEP, whose position follows the pink
line as the bare quark mass is increased.

J. MAELGER, U. REINOSA, and J. SERREAU PHYS. REV. D 101, 014028 (2020)

014028-6



silver-blaze property [44,45], which we illustrate in Fig. 2.5

Also, using Eqs. (32) and (38), we can determine the values
of the gluon mass for which there exists a tricritical point.
The latter reaches the T ¼ 0 axis for some values of the
ratio x ¼ m=B0. Defining u ¼ ðln x2Þ=ðx2 − 1Þ, we get the
condition u ¼ 1þ lnð2uÞ, which has two solutions in Rþ,
u� ¼ uðx�Þ, with xþx− ¼ 1. One finds x− ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ=u−
p

≈
0.294 and xþ ≈ 3.398. The corresponding values of y ¼
μ=B0 are given by Eq. (36) at T ¼ 0, y2 ¼ x2u=2, yielding
y− ¼ ffiffiffiffiffiffiffiffiffiffiffi

uþ=2
p

≈ 0.340 and yþ ¼ y−=x− ≈ 1.157. There
exists a tricritical point iff x ∈ ½x−; xþ� as shown in Fig. 1.
Let us now move away from the chiral limit.

Equation (31) now reads 2BRðB2Þ ¼ H, where H ≡
π2M0=g20 needs to be seen as a finite parameter controlling
the departure from the chiral limit. For H ≠ 0, the second-
order transitions turn into crossovers and the tricritical
point becomes a CEP terminating a first-order line. Writing
the potential VðBÞ ¼ −HBþWðB2Þ, the conditions for a
critical point are

V 0ðBcÞ ¼ V 00ðBcÞ ¼ V 000ðBcÞ ¼ 0; ð39Þ

from which one extracts Bc, Tc, and μc for each H. To this
aim, it is convenient to vary B, and determine TcðBÞ and

μcðBÞ from the last two conditions in Eq. (39)—that do not
involveH—and then deduceHðBÞ from the first condition.
Inverting this relation, one then gains access to TcðHÞ and
μcðHÞ. In particular, we find that the approach to tricriti-
cality is governed by mean-field exponents; see Fig. 3.
This is expected because the potential is regular around
B ¼ 0. The trajectory of the CEP in the phase diagram,
shown in Fig. 1, exhibits a nonmonotonous behavior of Tc
as a function of μ, similar to that observed in Ref. [12] using
an approach based on the Cornwall-Jackiw-Tomboulis
effective potential. Finally, Fig. 4 shows the interval
½x−ðHÞ; xþðHÞ� compatible with a critical point for each
value of H. Interestingly, in the physical localization
considered here, the CF mass should be neither too large
nor too small for a CEP to exist.

B. Euclidean localization

Let us now investigate the Euclidean localization that
allows us to test the robustness of the previous features.

FIG. 3. The approach of the critical quantities μcðHÞ, TcðHÞ,
and BcðHÞ to the chiral limit shows mean-field tricritical scaling.
The solid lines are power law fits of the form AcðHÞ − Atric ∝
HωA for A ¼ μ, T, B with mean-field exponents ωT ¼ ωμ ¼ 2=5
and ωB ¼ 1=5.

FIG. 2. Illustration of the silver-blaze property: as long as μ is
below the first-order transition, the minimum of the potential
sits at B ¼ B0 ¼ 0.3 GeV. For μfirst < μ < B0, there is still an
extremum at B ¼ B0, but it is not the absolute minimum any-
more. For μ > B0, this local minimum moves away from B0 and
disappears at the upper spinodal μus (slightly above μ ¼ B0,
not shown).

FIG. 4. Allowed values of the gluon mass m for a (tri)critical
point to exist as a function ofH (blue area). All scales are in GeV
and m� ≡ B0x�.

5We mention that the silver-blaze property should, in principle,
extend only up to the first singularity on the T ¼ 0 axis, namely,
the nuclear liquid-gas transition. Here, however, our level of
description does not capture the corresponding dynamics, and
the silver-blaze property extends further. We also mention that
the μ-independence below the first singularity applies in principle
only to 0-point functions. For higher n-point functions, it takes a
more general form as shown in [45]. However, due to the
presence of μ in the retarded prescription (27), it can be argued
that the silver-blaze property applies to retarded Green functions
as it does for 0-point functions.
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To renormalize the equations in this case, we proceed as
follows. First, we note that the function FvacðBÞ possesses a
logarithmic UV divergence that however does not depend
on B. It is then readily checked that the equation for Br has
a divergence proportional to Br. This divergence can be
absorbed into a redefinition of the bare coupling as follows.
We divide the corresponding equation by g20 and set

1

g20
¼ 1

g2
þ 1

π2
FvacðB⋆Þ; ð40Þ

where the renormalized coupling g should be interpreted
as being defined at the (real) renormalization scale B⋆.
Introducing H ≡ π2M0=g20 as before, the renormalized
equation for Br takes the form

H ¼ π2

g2
Br −

1

2
Re½ðBr þ iBiÞF̃ðBr þ iBiÞ

þ ðBr − iBiÞF̃ðBr − iBiÞ�; ð41Þ

with F̃ðBÞ ¼ FvacðBÞ − FvacðB⋆Þ þ FthðBÞ.
As far as the equation for Bi is concerned, it is easily

checked that it is finite, for any fixed g0. Therefore, using
the redefinition (40) or the bare coupling is problematic
here since it leads to a spurious cutoff dependence. This
problem is rooted in the localization procedure that does
not commute with the renormalization procedure; see [42]
for more details. However, we can always define a renor-
malized localized schemeby replacing g0 byg in the equation
for Bi,

0 ¼ π2

g2
Bi −

1

2
Im½ðBr þ iBiÞF̃ðBr þ iBiÞ

þ ðBr − iBiÞF̃ðBr − iBiÞ�: ð42Þ

We note that, in this equation, one can interchangeably use
F or F̃.
With this choice of renormalization, we can eventually

express the equations in terms of the vacuum mass in the
chiral limit, B0; see Eq. (30). It is related to g and B⋆ by

FvacðB0Þ − FvacðB⋆Þ ¼ π2=g2: ð43Þ

Replacing g2 in that form, one checks that the first term in
the rhs of (41) disappears while the scale B⋆ in F̃ðBÞ is
replaced by B0. Thus, Eq. (41) does not depend on B⋆.
However a scale dependence remains in Eq. (42), as
expected at a given order of approximation. Below, we
test the dependence of our results on the renormalization
scale B⋆.
Let us also mention that, because of the localization

procedure, the coupled gap equations (41) and (42), which
we denote formally asH ¼ RrðBr; BiÞ and 0 ¼ RiðBr; BiÞ
in what follows, cannot be seen as deriving from a

potential, because, in general the Schwarz condition
∂Rr=∂Bi ¼ ∂Ri=∂Br is not satisfied. However, certain
features of the phase diagram can be defined without the
need of a potential because they correspond to the merging
of different solutions of the gap equations. For instance,
suppose that we want to investigate whether Br becomes
critical. To this purpose, we solve for Bi as a function of Br
from its gap equation,

0 ¼ RiðBr; BiðBrÞÞ; ð44Þ

and construct a potential for Br by integrating

V 0ðBrÞ ¼ RrðBr; BiðBrÞÞ: ð45Þ

In the chiral limit, the criticality condition reads 0 ¼ V 00ð0Þ.
Simple algebra using (44) and (45) leads to the condition

0 ¼ ∂Rr

∂Br
−
∂Rr

∂Bi

�∂Ri

∂Bi

�
−1 ∂Ri

∂Br

				
Br¼Bi¼0

: ð46Þ

Now, it is easily verified that RrðBr; BiÞ ¼ RrðBr;−BiÞ,
from which it follows that ∂Rr=∂BijBi¼0 ¼ 0. Similarly,

writing RiðBr; BiÞ ≡ Biπ
2=g2 þ R̃iðBr; BiÞ, we have

R̃iðBr;−BiÞ¼R̃iðBr;BiÞ and therefore ∂Ri=∂BijBi¼0 ¼
π2=g2. From these remarks, it follows that the condition
for a critical point in the chiral limit simplifies to

0 ¼ ∂Rr

∂Br

				
Br¼Bi¼0

: ð47Þ

The same equation defines the lower spinodal in the
case of a first-order phase transition. The upper spinodal
is also determined from (46) but without evaluating it for
Br ¼ Bi ¼ 0 and coupling it to the gap equation for Br.
Finally, the tricritical point is determined from conditions
0 ¼ V00ð0Þ ¼ Vð4Þð0Þ. We find

0 ¼
X
u;v;w

∂3Rr

∂Bu∂Bv∂Bw

				
B¼0

ΔBrΔBuΔBvΔBw; ð48Þ

where the indices u, v, and w take the values r or i, and
ΔB ¼ ð∂Ri=∂Bi;−∂Ri=∂BrÞBr¼Bi¼0. We have again
made use of ∂Rr=∂BijBi¼0 ¼ 0. This formula simplifies
further because ∂3Rr=∂B2

r∂BijBi¼0¼∂3Rr=∂B3
i jBi¼0¼0.

We note however that we are not able to fully eliminate Bi,
contrary to what happened for the critical point (see below
for a particular limit where this becomes possible).
Our results in the chiral limit (with B⋆ ¼ 1 GeV) are

summarized in Table I and compared to the results in the
physical localization as well as to the results in other
approaches. The last column shows the values of μ at which
the lower and upper spinodals (μls and μus) and the first-
order transition (μfirst) are reached for T ¼ 0. As already
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discussed in the previous section, the value of μfirst has the
largest uncertainty since it depends on the potential that
is not uniquely defined in our approach. Also, it may look
surprising that we could obtain a value μfirst in the
Euclidean localization case since there is no potential in
this case compatible with the gap equations. However, in
the T → 0 limit, it is readily checked using (15) that Bi
vanishes. We note also that, along the T ¼ 0 axis, B≡ Br is
not constant below the transition. This is of course not in
contradiction with the silver-blaze property since only
0-point functions should be constant. The case of the
physical localization is a bit peculiar since the retarded
prescription (27) with μ included makes the retarded
function behave like a 0-point function as far as the
silver-blaze property is concerned.
We mentioned above that it was crucial to localize

simultaneously in Bðω̂1Þ and Bð−ω̂1Þ. Let us illustrate
this point here. In Fig. 5, we show the curvesRrðBr;BiÞ¼0
andRiðBr; BiÞ ¼ 0 for decreasing temperatures and a large
enough chemical potential. The crossings correspond to the
various possible solutions in the chiral limit and, because
the chemical potential is chosen large enough, we should
observe a first-order transition pattern. Let us now see
how this comes about. The first plot is at a temperature
right above the upper spinodal, that is, the appearance of
a new crossing between the curves RrðBr; BiÞ ¼ 0 and
RiðBr; BiÞ ¼ 0, at which two new extrema are about to
appear.6 Below this temperature, the various branches
making the curve RrðBr; BiÞ ¼ 0 fuse and reorganize, in
such a way that, at an even lower temperature, a second
spinodal occurs at B ¼ 0 where two extrema merge. We
observe that the proper realization of this scenario requires
not only the various branches to fuse at some temperatures,
but also that the number of intersections of the curves
RrðBr; BiÞ ¼ 0 and RiðBr; BiÞ ¼ 0 changes from 1 to 5,
and then to 3, as the temperature is decreased. Had we

performed the localization only with respect to Bðω̂1Þ, that
is by writing only the first term in Eq. (16) and taking the
real and imaginary part of the corresponding equation,
this second requirement would not be fulfilled, as we have
checked explicitly.
Regarding the renormalization scale dependence of our

results, we observe numerically that the critical/lower
spinodal line does not depend on the scale B⋆. This is no
surprise since the corresponding equation (46) depends
only on RrðBr; 0Þ, which, as we have already argued
above is B⋆ independent. In contrast, the position of the
tricritical point along (46), or even the other spinodal
emerging from this point, does depend on B⋆. We note,
however, that the inverse coupling 1=g2 diverges posi-
tively as the renormalization scale is taken to infinity; see
Eq. (43). Since there is no other dependence with respect
to B⋆ in Eq. (42), it follows that Bi should approach 0 in
this limit and all relevant features (boundary lines, tri/
critical points, …) should converge to a certain limit,
obtained by considering a single gap equation (41) in which
one sets Bi ¼ 0 from the start.7 Take for instance the
tricritical point. Because ΔBr ¼ −π2=g2 ≫ ΔBi in the limit
B⋆ → ∞, Eq. (48) becomes

0 ¼ ∂3Rr

∂B3
r

				
B¼0

; ð49Þ

which is indeed the condition for a tricritical point if one
restricts from the beginning to Eq. (41) with Bi ¼ 0.
The relative difference between the tricritical values

for B⋆ ¼ 1 GeV and B⋆ → ∞ is found to be about a few
percent. This indicates a controlled renormalization
scale dependence and allows us from now on to work
in a simplified picture in the B⋆ → ∞ limit. In particular,
in this limit, we can associate a potential to the Euclidean
localization, such that V 0ðBÞ ¼ RrðB; 0Þ. We now employ
this simpler setting to move away from the chiral limit.8

For a nonzero bare mass, chiral symmetry is explicitly
broken. As already mentioned, the second-order transition
line turns into a crossover and the tricritical point into a
critical point. Unlike the CEP, the crossover line has no

TABLE I. Results in the chiral limit for the two considered
localizations, in comparison to benchmark literature findings. All
values are given in MeV. For the Euclidean localization, we have
chosen a renormalization scale B⋆ ¼ 1 GeV.

Chiral limit (H ¼ 0) μtric T tric Tc μls μfirst μus

Physical localization 237 69 141 268 287 305
Euclidean localization 318 64 150 346 365 376
Hatta et al. [12] 209 107 –
Qin et al. [46] A 140 110 124
Qin et al. [46] B 130 120 133
Schaefer et al. [47] 251 52 142
Jakovac et al. [26] 280 60 140
Costa et al. [48] 286 112 215

6In fact, there are four such extrema since, in the chiral limit,
the problem is symmetric under ðBr; BiÞ → ð−Br;−BiÞ. But it is
then enough to restrict to Br > 0.

7This equation does not become trivial in the limit B⋆ → ∞
because, in this case, the B⋆-dependence of 1=g2 is canceled by
the corresponding B⋆-dependence hidden in F̃. We also mention
that the equation obtained in the B⋆ → ∞ limit is nothing but the
one we would have obtained by applying the naïve renormaliza-
tion and sending the cutoff to infinity. Indeed the remaining cutoff
dependence in the equation for Bi, only present in the term
containing 1=g20, would enforce Bi → 0 as Λ → ∞.

8We mention that, were we not to consider the simplifying
limit B⋆ → ∞, certain properties would remain B⋆-independent,
such as any property along the T ¼ 0 or μ ¼ 0 axes. This includes
the crossover temperature at μ ¼ 0 or the values for μls, μfirst
and μus for any H, as well as the function mþðHÞ discussed
below.
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unique definition. Moreover, there exist as many crossover
lines as there are order parameters. In what follows, we
define the crossover temperature by the inflection of B as a
function of the temperature. With this choice, we can
determine for which value of H the crossover temperature
of the quark mass function becomes Tχ ¼ 170 MeV in the
limit of vanishing chemical potential, which is the value
found by lattice simulations at the physical point for two
flavors [49]. Within our approach, we treat this particular
value of H to correspond to the physical point, Hphys. We
can determine it conveniently as follows. Denoting byH ¼
RðBÞ the gap equation in both localization schemes and
taking two T-derivatives, we have

0 ¼ ∂R
∂B

dB
dT

þ ∂R
∂T ; ð50Þ

0 ¼ ∂2R
∂B2

�
dB
dT

�
2

þ 2
∂2R
∂B∂T

dB
dT

þ ∂2R
∂T2

þ ∂R
∂B

d2B
dT2

: ð51Þ

Imposing the inflection condition d2B=dT2 ¼ 0 and upon
plugging (50) into (51), we arrive at the following
condition,

0 ¼ ∂2R
∂B2

�∂R
∂T

�
2

− 2
∂2R
∂B∂T

∂R
∂B

∂R
∂T þ ∂2R

∂T2

�∂R
∂B

�
2

;

ð52Þ

which we can solve for B, given the expected crossover
temperature. Knowing the crossover value ofB, we can then
determine Hphys from the gap equation. For the physical
localization, we find Hphys ¼ 33 MeV whereas for the

FIG. 5. 0-level plots of the gap equations in the chiral limit in the plane ðBr; BiÞ for decreasing temperatures, with m ¼ 0.5, B0 ¼ 0.3,
and B⋆ ¼ 1 (all units in GeV). We have also chosen μ ¼ 0.33 and T takes the values 0.055, 0.053, 0.050, and 0.048. The wiggling in the
curves is due to the presence of singularities of the gap equations in the plane ðBr; BiÞ that lead to additional 0’s ofRr orRi (not visible).
Fortunately, the actual solutions of the gap equations, corresponding to simultaneous 0’s of Rr and Ri, are located far from these
regions.
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Euclidean localization, we find Hphys ¼ 10 MeV. Once
Hphys is determined, we can then locate the critical point in
the associated phase diagram; see Table II.
As can be seen, the community has not yet reached a

ballpark consensus on the location of the CEP in the QCD
phase diagram and a wide range of results seem permissible
at this point. Our numbers do certainly fall within the group
of lower temperatures and larger chemical potentials.
Finally, one can study how our findings for the phase

diagram depend on the gluon mass of the CF model. While
m ¼ 500 MeV is the value that globally works best in both
the pure Yang-Mills as well as the unquenched sector, it is
nonetheless insightful to vary it as a free parameter.
Thereby, for each value of m, we always insist on fixing
the coupling such that we keep the T ¼ μ ¼ 0 solution B0

fixed at 300 MeV, in the chiral limit. Away from the chiral
limit, we only vary H, without further changing g.
In Fig. 6, we display the position of the tricritical point in

the chiral limit as the CF mass parameter is varied. As can
be seen, the obtained trajectories are qualitatively quite
different depending on the considered localization scheme,
although for m ¼ 500 MeV, the tricritical points are not so
far apart, in particular, in temperature values. Interestingly,
while in all localization schemes considered, the gluon
mass can never exceed an upper limit mþ, in the Euclidean
localization, one might take m → 0 without losing the
tricritical point, so m− ¼ 0 in this case.
As before the definition ofm� is trivially extended to the

case of nonzero H, where the tricritical point is replaced
by a CEP. We then show our results for these values in
dependence of the symmetry-breaking parameter H in
Fig. 7 and in comparison with the findings in the physical
localization. Here, we iterate our observation that the

existence of a CEP puts an upper bound on the allowed
for values for the gluon mass in both localization schemes
considered, whereas a lower bound only exists for the
physical one.

C. Chiral condensate

As mentioned previously, the mostly used order param-
eter for the chiral transition is not the constituent quark
mass but the chiral condensate. Within the localized
schemes considered here, it is natural to approximate the
chiral condensate as

σ ¼ −4NcNfBJB; ð53Þ
with

JB ≡
Z

T

Q̂

1

Q2
iμ þ B2

: ð54Þ

TABLE II. Coordinates of the critical point in the phase
diagram at the physical point, Hphys. All values for m ¼ 500
and in MeV. We compare our findings with various literature
model computations of the QCD CEP.

Models for CEP μphysc Tphys
c

Physical localization 389 35
Euclidean localization 427 22
Fischer et al. [50] 168 115
Fu et al. [25] 210 117
Hatta et al. [12] 279 95
Tripolt et al. [51] 293 10
Ayala et al. [52] 315–349 18–45
Cui et al. [53] 245 38
Yokota et al. [54] 287 5
Contrera et al. [55] 319 70
Knaute et al. [56] 204 112
Antoniou et al. [57] 256 150
Scavenius et al. [58] LσM 207 99
Scavenius et al. [58] NJL 332 46
Costa et al. [48] 332 80
Kovacs et al. [59] 320 63

FIG. 6. Position of the tricritical points upon varying the gluon
mass in the two considered localizations (physical in blue,
Euclidean in orange). The various points correspond to m ¼
x × 500 MeV, with x ¼ 1, 1.25, 1.5 and 1.75. The diamond point
on the Euclidean localization curve corresponds to m ¼ 0 and
its coordinates are μ ¼ 222 MeV and T ¼ 112 MeV. At the
other end of the curve, we have μ ¼ 410 MeV attained for
m ¼ 937 MeV.

m H

m H

m H

0 0.04 0.08 0.12
0

0.4

0.8
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FIG. 7. Comparison of the functionsm�ðHÞ in the physical and
Euclidean localizations. The respective shaded areas denote the
parameter values compatible with the existence of a CEP.
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At this level of description, we can adopt an ad hoc
renormalization of the condensate by removing the diver-
gence in JB, up to the scale in the logarithm of the vacuum
contribution of JB which makes the renormalized con-
densate σ̄ a scale-dependent quantity,

σ̄ ¼ −4NcNfBJ̄B; ð55Þ

with

J̄B ≡−
B2

16π2

�
ln
μ̄2

B2
þ 1

�
þ 1

4π2

Z
∞

0

dq
q2

εBq

h
nðþÞ
εBq−μ

þ nðþÞ
εBqþμ

i
:

ð56Þ

The condensate (55) is plotted, together with the quark
mass, as functions of the temperature in Fig. 8. To get some
intuition on the behavior of σ̄, consider the physically
localized gap equation that we rewrite identically as

H ¼ 4π2B

�
J̄m − J̄B
m2 − B2

−
J̄vacm − J̄vacB0

m2 − B2
0

�
: ð57Þ

In the limit T → ∞, the tadpole sum-integral J̄m grows
like ∼T2=12, which is only counterbalanced provided B
vanishes as 1=T2, in which case we also have J̄B ∼
−T2=24. Putting all the pieces together, we find

B ∼
2

π2
m2H
T2

ð58Þ

and thus

σ̄ →
NcNf

3π2
m2H: ð59Þ

In the Euclidean localization the condensate is found to
grow with T2 at large T, which is clearly an artefact.9

Despite this feature, in both cases, we can define a
crossover temperature associated to the inflexion point
of the chiral condensate as a function of the temperature. It
is found to be lower than the corresponding crossover
temperature for B. We can also try to fine-tune the value of
H to bring the crossover temperature for the condensate to
the lattice value of 170 MeV. To this purpose, consider the
equation d2σ̄=dT2 ¼ 0. Seeing σ̄ as a function of B and T,
this equation rewrites

0 ¼
�∂R
∂T

�
2
�∂2R
∂B2

∂σ
∂B −

∂2σ

∂B2

∂R
∂B

�

− 2
∂R
∂T

∂R
∂B

� ∂2R
∂B∂T

∂σ
∂B −

∂2σ

∂B∂T
∂R
∂B

�

þ
�∂R
∂B

�
2
�∂2R
∂T2

∂σ
∂B −

∂2σ

∂T2

∂R
∂B

�
; ð60Þ

which we use again to determine the crossover value for
B, assuming a crossover temperature Tχ ¼ 170 MeV.
The corresponding value of H is then obtained from the
gap equation. In the physical localization, we find Hphys ¼
117 MeV, and a CEP located at (504 MeV, 11 MeV), but
the value of B gets suspiciously close to the bound B ¼ m.
In the Euclidean localization, it seems not to be possible to
reach these transition temperatures, at least at this level
of approximation.

V. CONCLUSION

We have investigated the phase diagram of QCD with
light quarks in the context of an effective approach
proposed in Ref. [40], based on the CF model, using a
double expansion in the pure gauge coupling and in 1=Nc.
At leading order, this amounts to solving a rainbow
equation for the quark propagator with definite (tree-level)
expression for the one-gluon exchange. Similar rainbow

FIG. 8. Mass and renormalized chiral condensate (top plot,
physical localization; bottom plot, Euclidean localization) as
functions of the temperature and at μ ¼ 0. The band for the
renormalized chiral condensate is obtained by varying the
renormalization scale μ̄ in J̄B by �20% around 1 GeV. Both
plots are obtained by adjusting H such that the crossover
temperature associated to B is 170 MeV.

9The coefficient is proportional to H however in such a way
that the condensate vanishes in the chiral limit, in the high-
temperature region.
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equations have been considered in the past. The key point of
the present work is to systematically justify the employed
approximation on the basis of identified small parameters
in QCD.
To allow for a semianalytic grasp of the corresponding

equations and since our first aim is a qualitative survey of
what to expect when the equations are solved in full glory,
we have used some simplifying approximations, in par-
ticular, the localization scheme discussed in [41,42], which
we have extended to the present context. For the parameters
used here, the leading-order results agree well with those of
effective quark-meson models when the chiral anomaly is
neglected [26,30]. Although subleading in 1=Nc, the latter
and meson fluctuations are important to correctly determine
the phase structure in the Columbia plot [7,30,60]. In
principle, they can be systematically included at next-to-
leading order in the present expansion scheme.
Although we used here simplified versions of the

complete rainbow equation (1), we expect, inspired by
the vacuum case, that our main results are robust against a
more complete treatment of the original equation. In
particular, we have tested that our results do not depend
much on the type of localization we use. One notable
exception is the fate of the (tri)critical point as the gluon
mass is taken to 0. In some scenarios, the existence of a
CEP seems to require a nonzero gluon mass. It is interesting
to investigate this point further by solving the original set of
equations (10)–(13), which can be done with existing
technology; see, e.g., Refs. [13,14].
Yet another interesting extension of the present work is to

include the order parameter of the deconfinement transition,
the Polyakov loop, in the spirit of Refs. [36–38], which
would allow one to study the interplay between the chiral and
deconfinement phase transition across the Columbia plot
[27,61,62].
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APPENDIX A: SYMMETRIES OF THE
QUARK PROPAGATOR

The full propagator S is a function of the external
momentum variables ω and p⃗ as well as μ and T.
Dropping the explicit T-dependence for notational sim-
plicity, and assuming isotropy, its tensor structure can
decomposed as

Sðω; p⃗; μÞ ¼ S11þ S2γ5 þ S3γ0 þ S4γ0γ5

þ S5p̂ · γ⃗ þ S6p̂ · γ⃗γ5 þ S7γ0p̂ · γ⃗; ðA1Þ

where Si ¼ Siðω; p; μÞ, p≡ jp⃗j, and p̂≡ p⃗=p. Under a
parity transformation

Sðω; p⃗; μÞ → γ0Sðω;−p⃗; μÞγ0
¼ S11 − S2γ5 þ S3γ0 − S4γ0γ5

þ S5p̂ · γ⃗ − S6p̂ · γ⃗γ5 þ S7γ0p̂ · γ⃗; ðA2Þ

and thus parity invariance implies S2 ¼ S4 ¼ S6 ¼ 0. In
fact, in what follows, it is convenient to use the para-
metrization

Sðω; p⃗; μÞ ¼ B̃1þ ðiω − μÞγ0Ã0 þ ip⃗ · γ⃗Ãv þ iγ0p⃗ · γ⃗ C̃ :

ðA3Þ

Under charge conjugation

Sðω; p⃗; μÞ → γ2γ0Sð−ω;−p⃗;−μÞtγ0γ2
¼ B̃ð−ω; p;−μÞ1þ ðiω − μÞγ0Ã0ð−ω; p;−μÞ
þ ip⃗ · γ⃗Ãvð−ω; p;−μÞ þ iγ0p⃗ · γ⃗ C̃ð−ω; p;−μÞ;

ðA4Þ

where we have used γ2γ0γ
t
μγ0γ2 ¼ −γμ, valid in the

particular (Weyl) representation of the γμ matrices consid-
ered here. Charge conjugation invariance then implies

X̃ð−ω; p;−μÞ ¼ X̃ðω; p; μÞ; ðA5Þ

for any of the components X̃ ¼ Ã0; Ãv; B̃; C̃. Similarly,
under complex conjugation

Sðω; p⃗; μÞ → γ3γ1Sð−ω;−p⃗; μ�Þ�γ1γ3
¼ B̃ð−ω; p; μ�Þ�1þ ðiω − μÞγ0Ã0ð−ω; p; μ�Þ�
þ ip⃗ · γ⃗Ãvð−ω; p; μ�Þ� þ iγ0p⃗ · γ⃗ C̃ð−ω; p; μ�Þ�;

ðA6Þ

where we have used γ3γ1γ
�
μγ1γ3 ¼ γμ, valid, again, in the

Weyl representation. It follows that

X̃ð−ω; p; μ�Þ� ¼ X̃ðω; p; μÞ; ðA7Þ

for any of the components X̃ ¼ Ã0; Ãv; B̃; C̃. Combining
(A5) and (A7), we also obtain

X̃ðω; p;−μ�Þ� ¼ X̃ðω; p; μÞ: ðA8Þ

In particular, all components are real in the case of an
imaginary chemical potential. In the case of a real chemical
potential, these components become complex, the real
and imaginary parts, corresponding to the frequency
even and odd parts, ðX̃ðω; p; μÞ þ X̃ð−ω; p; μÞÞ=2 and
ðX̃ðω; p; μÞ − X̃ð−ω; p; μÞÞ=2i, respectively.

LOCALIZED RAINBOWS IN THE QCD PHASE DIAGRAM PHYS. REV. D 101, 014028 (2020)

014028-13



APPENDIX B: RETARDED GREEN’S
FUNCTION AT FINITE μ

We briefly recall the origin of Eq. (27), considering, for
simplicity, the case of a charged scalar field. The physical
retarded propagator is defined as

Gphys
ret ðtÞ≡ −i

ΘðtÞ
Z

tr e−βðHþμQÞ½φHðtÞ;φ†ð0Þ�; ðB1Þ

where Z≡ tr e−βðHþμQÞ denotes the grand-canonical parti-
tion function, and φHðtÞ ¼ eiHtφð0Þe−iHt is the Heisenberg
field, evolving according toH and notH þ μQ. Let us note
that we use an unconventional sign for the chemical
potential (to be consistent with our choice in [37,38])
while keeping the usual convention for the charge, such that
½Q;φ� ¼ −φ and ½Q;φ†� ¼ φ†.
Now, we relate the physical retarded propagator to the

Matsubara propagator defined as (0 < τ < β)

GMatðτÞ≡ 1

Z
tr e−βðHþμQÞφHþμQð−iτÞφ†ð0Þ; ðB2Þ

where now the Heisenberg field evolves in imaginary time,
according to H þ μQ, not H. The reason for defining the
Matsubara propagator in this way is that it possesses a
simple functional integral representation.

The relation between the two propagators Gphys
ret ðtÞ and

GMatðτÞ is now most easily derived by introducing an
auxiliary retarded propagator

GretðtÞ≡ −i
ΘðtÞ
Z

tr e−βðHþμQÞ½φHþμQðtÞ;φ†ð0Þ�: ðB3Þ

Inserting a complete basis of states under the trace, this
relation in Fourier space is found to be

GretðωÞ ¼ GMatðωn → −iωþ 0þÞ: ðB4Þ

Moreover, from the commutators of Q with φ or φ†, one
obtains

Gphys
ret ðtÞ ¼ eiμtGretðtÞ; ðB5Þ

and thus

Gphys
ret ðωÞ ¼ Gretðωþ μÞ: ðB6Þ

Combining (B4) and (B6), we arrive at the desired
result,

Gphys
ret ðωÞ ¼ GMatðωn → −iðωþ μÞ þ 0þÞ: ðB7Þ
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