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Abstract We study the effect of an explicit interaction
between two scalar fields components describing dark matter
in the context of a recent proposal framework for interaction.
We find that, even assuming a very small coupling, it is suf-
ficient to explain the observational effects of a cosmological
constant, and also overcome the problems of the � CDM
model without assuming an exotic dark energy.

1 Introduction

In the context of the standard model of cosmology, the sim-
plest way we can describe the observations that type Ia super-
nova are dimmer than expected [1,2] is by introducing –
by hand – a cosmological constant, leading to the claimed
accelerated expansion and to establish the so far successful
Lambda Cold Dark Matter (LCDM) model.

Although this model agreed with almost every observa-
tional test, from a theoretical point of view the model can not
be taken seriously. First of all, assuming that this model is
valid requires us to accept that we live right in a very special
time in the history of the universe, something like (again)
positioning in the center of the universe (this time including
the temporal coordinate). It can be fortuitous, but then this
should be consider a huge “cosmic coincidence”. Another
worried around the LCDM model is lambda itself, �. What is
it? Why it has today this particular value of 1.19×10−52m−2

? Does � evolve with time? All these questions (and some
more) drives the quest for new ideas that replace � with
something else, to describe what we observe but without the
theoretical problems (or worries) we mentioned before. We
have named this “something else” component, dark energy
(DE) [3]. Proposals that try to shed light into this problem are
those assuming the existence of a quintessence field compo-
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nent [4], somehow a dynamical cosmological constant, and
also models where the gravitational theory is modified [5].

Among the tricks that have been proposed to alleviate the
cosmic coincidence problem is to assume that DE (what-
ever it is) is coupled to dark matter (DM). This is appealing
because both dark components are detected only by their
gravitational effects, and so they can be confused and is not
easy to discriminate each component [6]. The usual way to
express an interaction between DE and DM [7–13] is intro-
ducing a new term Q such that

ρ̇m + 3H(ρm + pm) = −Q , (1)

ρ̇de + 3H(ρde + pde) = Q , (2)

where a dot denotes differentiation with respect to time, H
is the Hubble rate, ρm and ρde are the energy densities, pm
and pde are the pressures. If Q > 0 DM releases energy
into DE, while for Q < 0 the energy flows in the opposite
direction. In the literature it is usual to take the function Q
be proportional to the energy densities, as Q = 3Hγρm for
example. Fixing Q enable us to completely solve the system
and find the solutions ρm(a) and ρde(a).

To the DE problem, we have to add the DM problem.
Although a puzzle, the DM problem is of a different nature
compared to the DE one. We have particle candidates that
are under search and there is a certain consensus that this
can be solved in the next years. This component, although of
a non-baryonic nature, is perfectly possible to exist, beyond
the standard model of particle physics. There are no weird
features (such as negative pressure, for example) that need
to be invoked to hold a model.

A huge effort has been made looking for evidence of non-
baryonic DM through basically three ways: indirect detec-
tion – when DM particles produce Standard Model particles
(photons, electron/positrons, neutrinos etc) – by direct detec-
tion methods – when Standard Model particles recoil from
collisions with invisible DM – and from colliders – where
collisions of Standard Model particles may produce missing
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energy or decay products [14]. Direct-detection experiments
rely on the scattering of dark-matter particles from the halo
of the Milky Way in a detector on Earth. The direct-detection
rate depends on the local dark-matter density, currently esti-
mated to be ρ = 0.39 ± 0.03 GeV cm3. Dark matter cannot
only be detected directly in dedicated experiments searching
for nuclear recoils from the scattering of dark-matter parti-
cles or produced in particle accelerators such as the LHC, but
it can also reveal its existence indirectly. The total number
of dark-matter particles does not change significantly after
freeze-out in the early universe, but their spatial distribution
changes considerably during structure formation. The very
selfannihilation that plays a central role in this freeze-out can
give rise to a significant flux of −rays, neutrinos, and even
antimatter such as antiprotons and positrons, especially in
regions with large dark-matter density.

For example, recently there is interest in exploring
the astrophysical consequences of an explicit interaction
between DM (whatever it is) with radiation. In [15–17] the
authors find that even a small interaction is sufficient to alle-
viate the small satellite problem, for example.

In this letter we want to explore the consequences of a
small interaction between two DM components (none of
them being exotic) at cosmological scale using a slight mod-
ification to the interaction framework we have described
above.

2 Coupling dark matter and analysis

If DM is a weakly interacting massive particle (WIMP), the
interactions are essential to obtain the relic abundance that
support the whole scenario, the so called “WIMP miracle”.
Also the interactions between DM particles with those of the
standard model (SM) are essential to the extended campaigns
of detection (direct and indirect) of DM using observatories
in the ground and in space. Further, as it was mentioned in
the previous section, there are increasing evidence for the
astrophysical consequences of the interaction between DM
and photons, not only as can be seen in the power spectrum
of the cosmic microwave background radiation [18,19], but
also in the context of the small scale problem such as the
small satellite problem [15–17]. Then it is natural to study
their consequences at cosmological level.

Let us study the background cosmic evolution assuming an
explicit interaction between two species of DM particles, one
indicated by an m subscript and other by x . No cosmological
constant term or an exotic component is introduced. Gravity
is described by general relativity (GR). On general grounds
the system can be described by a Lagrangian of the type

Ltot = LGR + Lm + Lx + Lint , (3)

where LGR is the Einstein-Hilbert Lagrangian and the DM
Lagrangians Lm and Lx are assumed to be of the type used in
the LCDM model, i.e. the Lagrangian of the free DM with no
interaction. The interaction between both DM – the m and
the x components – is introduced as is well known in field
theory, through an explicit Lagrangian term Lint. From (3)
the field equations are

3H2 = ρm + ρx + ρint , (4)

2Ḣ + 3H2 = −pm − px − pint , (5)

ρ̇m + 3H(ρm + pm) = Qm , (6)

ρ̇x + 3H(ρx + px ) = Qx , (7)

Moreover the total energy conservation implies

ρ̇int + 3H(ρint + pint) + Qm + Qx = 0 , (8)

showing that the new functions are actually constrained. The
system (4–7) was written before in [20]. In the system (4–
7) the Qi functions are obtained from the variation of Lint

respect to the i th degrees of freedom, so they are in gen-
eral different functions. In the next section we study some
examples solutions.

The analysis of the theoretical predictions are also com-
plemented with a statistical study. In this work we concen-
trate in using data from Type Ia supernova to constraint the
values of the parameters in the models. In particular we use
the type Ia supernova data from the Pantheon set [23]. This
sample consist in 1048 spectroscopically confirmed SNIa in
the range 0.01 < z < 2.3. We compute the residuals μ−μth

an minimize the quantity

χ2 = (μ − μth)
TC−1(μ − μth), (9)

where μth = 5 log10 (dL(z)/10pc) gives the theoretical dis-
tance modulus, dL(z) is the luminosity distance, C is the
covariance matrix released in [23], and the observational dis-
tance modulus takes the form

μ = m − M + α1X − α2Y, (10)

where m is the maximum apparent magnitude in band B,
X is related to the widening of the light curves, and Y cor-
rects the color. usually, the cosmology – specified here by
μth – is constrained along with the parameters M , α1 and
α2. The analisys is performed using a public code known as
emcee [21]. This is a stable, well tested Python implemen-
tation of the affine-invariant ensemble sampler for Markov
chain Monte Carlo (MCMC) proposed by Goodman & Weare
[22].
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3 Some model examples

3.1 Symmetric model

Let us study first a simple model for the interaction between
two DM components that we shall denotate with subscriptsm
and x . Let say Qm = −3Hαρm and Qx = −3Hβρx , expres-
sions already used in the literature. Notice that these two fac-
tors do not need to be small, neither equals. We assume that
α and β are different from zero if some interaction operates
between these components.

From Eqs. (6) and (7) we obtain

ρm = ρ0
ma

−3(1+α), ρx = ρ0
x a

−3(1+β), (11)

where we have assumed that both species have freeLagrangian
of the dust type, i.e., with pm = 0 and px = 0 as equation of
state. From a variational point of view, as the one advocated
in the previous section, the stress energy density of the fluid
is obtained from

Tμν = −2
δ(

√−gL)√−gδgμν
= − 2δL

δgμν
+ gμνL. (12)

If we assume that Lint does not contains kinetic terms, then
δLint/δgμν = 0, and the stress energy tensor associated with
the interaction can be written as Tμ

ν = δ
μ
ν Lint , that inter-

preted in the context of a perfect fluid with energy density
ρint = Lint , give rises naturally to a component with EoS
pint = −ρint . Using together this relation and Eq. (11) into
Eq. (8) we get

ρint = ρ0
int + αρ0

m

1 + α

(
1 − a−3(1+α)

)

+ βρ0
x

1 + β

(
1 − a−3(1+β)

)
, (13)

where ρ0
int = ρint (a = 1). From here is evident that as inter-

actions turn off in this model, this implies that ρ0
int should

go to zero. In fact, from (13) replacing α = β = 0 leads to
ρ0
int = 0. Of course, this happens only when the parameters

are exactly zero α = β = 0.
Notice that replacing (13) in (4) we get for E(z) = H/H0

E2(z) = 1 + 
m

1 + α

(
(1 + z)3(1+α) − 1

)
+

+ 
x

1 + β

(
(1 + z)3(1+β) − 1

)
, (14)

where we have defined 
i = ρ0
i /3H2

0 . At this point we
would like to point out the following. Suppose that the param-
eters α, β � 1 are small (but not zero), then by expanding
(14) in series, we find that at zero order the Hubble function
approaches:

E2(z) � 1 − 
m − 
x + (
m + 
x )(1 + z)3, (15)

Fig. 1 Here we reconstruct both (14) (continuous line) and (15) (dahed
line) using the best fit values. As is evident, for z < 0.5 both functions
are almost identical, but they start to differs from z > 0.5

an expression that corresponds exactly to the LCDM flat
model. This means that it is enough to have two dust-like
constituents in interaction, no matter how small they are (but
non-zero), the resulting cosmological model is very similar to
a model without interaction between dust and a cosmological
constant.

Although we know this model is a very simple one, we
want to test it against observational data, to see to what extend
the data adjust the values of the parameters (here α and β)
away from the LCDM model.

Because both contributions have the same form (see (14)),
there is no point in use two set of different parameters to
confront the data. Then we assume that 
m = 
x = 
 will
be the density parameter of both contributions, and that α =
β = γ will be the interaction constant for both contributions
too. We know that this choice clearly select a very special
type of solution of the system, but we just want to explore
how the model behaves once we constraint against the data.

The best fit values obtained in this way are 
 = 0.11 ±
0.03 and γ = 0.25 ± 0.15. Because the “effective” density
parameter is the sum 
m+
x = 2
 then our model predicts
a density parameter for dark matter of 2
 = 0.22 ± 0.06. In
Fig. 1 we display both (14) and (15) using the best fit values.
For small redshift, z < 0.5 both curves are almost identical,
but they differs appreciably for larger ones (Fig. 2).

Let us discuss some points on ρint . Based on the solution
(13) and assuming that 1 + γ > 0 we get

ρint (z → −1) → ρ0
int + γ

1 + γ

(
ρ0
m + ρ0

x

)
, (16)

so if we want to keep ρint ≥ 0 at any moment in the future,
we have to ensure that the right hand side of (16) must be
≥ 0. For small values of α and β (or γ in this special case)
this means that ρ0

int + αρ0
m + βρ0

x ≥ 0.
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Fig. 2 Here we display the confidence contours – at one and two sigmas
– for the two free parameters in the fit: 
 and γ defined in the text. Notice
that the data suggest a non zero γ at 1σ but at 2σ does not exclude the
zero value

Into the past, we would like to have ρint (z → ∞) > 0,
so from (13) we find that

ρint → ρ0
int − αz3(1+α)ρ0

m

1 + α
− βz3(1+β)ρ0

x

1 + β
, (17)

a result that seems difficult to achieve unless one of the
parameters would be small but negative.

3.2 Asymmetric model

Let us assume the asymmetric interaction functions as

Qm = −3Hαρm, Qx = −3Hβ(ρm + ρx ) (18)

Replacing the first one in Eq.(6) we obtain

ρm(a) = ρ0
ma

−3(1+α). (19)

From (7) and the second one in (18) we get

ρx (a) = ρ0
x a

−3(1+β) + βρ0
m

(
a−3(1+β) − a−3(1+α)

)

β − α
(20)

Following the previous case, we now write and solve the
equation for ρint . From (8)

dρint
dt

= 3Hαρm + 3Hβ(ρm + ρx ). (21)

Using the expressions (19) and (20) we find

ρint = ρ0
int + F(a) + G(a), (22)

where

F =
[
− α2ρ0

m

β − α

]
(1 − a−3(1+α))

1 + α
, (23)

and

G =
[
βρ0

x + β2ρ0
m

β − α

]
(1 − a−3(1+β))

1 + β
. (24)

Let us discuss this solution. Notice that as z → −1 (or
a → ∞) we get

ρint → ρ0
int − α2ρ0

m

(β − α) (1 + α)
(25)

+ β

1 + β

[
ρ0
x + βρ0

m

β − α

]
. (26)

Notice that within this limit and assuming small α, β � 1
we can write

ρint → ρ0
int + (α + β) ρ0

m + ρ0
x > ρ0

int , (27)

which certainly implies the condition (α + β)ρ0
m + ρ0

x ≥ 0,
that seems easily to achieve.

On the other hand, the limit z → ∞ of (23) and (24) tells
us that

F → α2ρ0
m

(β − α) (1 + α)
(1 + z)3(1+α), (28)

G → − β

1 + β

[
ρ0
x + βρ0

m

β − α

]
(1 + z)3(1+β) , (29)

and then

ρint → ρ0
int + α2ρ0

m

(β − α) (1 + α)
(1 + z)3(1+α)+

− β

1 + β

[
ρ0
x + βρ0

m

β − α

]
(1 + z)3(1+β) . (30)

An expression that reduces to the following after considering
up to first order terms assuming α, β � 1

ρint → ρ0
int −

[(
β + α

)
ρ0
m + βρ0

x

]
(1 + z)3 , (31)

which may implies that the term in square parenthesis should
be [...] ≤ 0 in order to get a ρint (z → ∞) ≥ 0. If we
emphasize this point, we can express the condition even more
explicitly, (β + α) ρ0

m + βρ0
x = 0 or

ρ0
m

ρ0
x

= − β

α + β
. (32)

According to our best fit values for α and β both sides are
numbers close to one, and within the errors it is satisfied.
Notice that both limits points to consistent condition (see
(27) and (32)).
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Adding (19), (20) and (22) in (4) we find the Hubble func-
tion H(a). Evaluating it today we get

3H2
0 = ρ0

m + ρ0
x + ρ0

int , (33)

as it can be. Using this relation to replace ρ0
int , we can write

E = H/H0 and find

E2 = 1 + 
m

(
−1 + a−3(1+α) + S(a) + R(a)

)

+ 
x

(
−1 + a−3(1+β) + T (a)

)
, (34)

where

S = β
a−3(1+β) − a−3(1+α)

β − α
, (35)

R = β2

β − α

1 − a−3(1+β)

1 + β
− α2

β − α

1 − a−3(1+α)

1 + α
, (36)

T = β
1 − a−3(1+β)

1 + β
, (37)

In the limit for small α, and β we find at first order in the
parameters that the function S(z) goes like

S(z) � −3β(1 + z)3 log(1 + z) + O(α2, αβ, β2) (38)

the R(z) function evolves as

R(z) � (α + β)
(

1 − (1 + z)3
)

+ O(α2, αβ, β2) (39)

and finally the T (z) behaves as

T (z) � (α + β)
(

1 − (1 + z)3
)

+ O(α2, αβ, β2), (40)

this means that at order zero we get the same result as the
previous section: the LCDM limit.

Let us study the behavior of the solution in two limits: the
future at z → −1 and also into the distant past to z → ∞.
Taking the expressions (35), (36), and (37) and looking for
the limit z → −1 we get

S = β(1 + z)3

β − α

[(
1 + z

)3β − (
1 + z

)3α
]

→ 0, (41)

R = 1

β − α

(
β2

1 + β
− α2

1 + α

)
, (42)

T = β

1 + β
(43)

and if α, β << 1 which then implies that

E2 → 1 − 
m

[
1 −

(
1

β − α

) (
β2

1 + β
+

− α2

1 + α

)]
− 
x

[
1 − β

1 + β

]
, (44)

that after assuming α, β � 1 reduces

E2 (z → −1) → 1 − (
m + 
x ) , (45)

Fig. 3 Here we show the result of the statistical analysis using the
Pantheon sample of type Ia supernovae

as we have anticipated.
Further, as we have obtained above, for small α, β � 1

we get (38), (39) and (40), and then we can write up to first
order

E2 = 1 + 
m

[
[(α + β) − 1]

(
1 − (1 + z)3

)
+

− 3β (1 + z)3 log (1 + z)
]

+ 
x [(α + β) − 1]
(

1 − (1 + z)3
)

, (46)

in this way we get in the limit z → −1

E2 → 1 − (
m + 
x ) − 3β
m

[(
1 + z

)3 log
(
1 + z

)]
,

(47)

where the term in square brackets goes to zero as z → −1.
This means that independent of the value of β the �CDM
limit (for z → −1) is restored.

It is then interesting to see what the analysis using obser-
vational data can gives us about this model. Using the lat-
est supernova data [23] as we did in Sect. 3, we find the
following values as the best fit for the parameters: 
m =
0.14 ± 0.09, 
x = 0.146 ± 0.085, α = 0.09 ± 0.17,
and β = −0.01 ± 0.17. The result of 5000 chains using
the emcee code [21] is shown in Fig. 3). In order to test
the convergence of our chains we follow the autocorrela-
tion time. The integrated autocorrelation time quantifies the
Monte Carlo error and with it the efficiency of the sampler.
Here we get τ f � 100, so a run with 5000 chains are suffi-
cient to be confident of the quality of our fit.
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Fig. 4 Here we display the deceleration parameter for our asymmet-
ric model (dashed line) together with that from the flat LCDM model
(continuous line)

The data then implies small values for the parameters α

and β that controls the interaction between these dark matter
components. The small values of these values are in agree-
ment with our statement of getting close to the �CDM model
in this limit.

The total dark matter density parameter gives us 
m +

x � 0.28 a value that is in agreement with other astrophys-
ical tests. From Fig. 3 it is clear the degeneracy between these
two dark matter component, but keeping the sum essentially
constant.

Using these best fit values we can plot the reconstructed
deceleration parameter as a function of redshift z. We display
it in Fig. 4 together with the deceleration parameter for the
flat LCDM model with 
m = 0.27. As we can see, both
curves essentially follows the same trend with a very small
difference in amplitude (of our model compared to that from
the LCDM model). The redshift for the transition between
deceleration to acceleration is around z � 0.7 − 0.8 for the
models.

The best fit values obtained for the free parameters α and
β are then small enough to obtain a model very close to the
LCDM at small redshift. It is then logic to ask for the perfor-
mance of this model for large redshifts. To answer appropri-
ately this question it necessarily take us beyond the scope of
this work. However, we can try to answer some of the main
questions. In this case is imperative to add the contributions
for both baryons and radiation that are negligible at small
redshift but which are increasingly important as we move to
large z. However, we can not use the best fit values for α and
β obtained from the test using SNIa because these are valid
for the range where data is available, this is 0.01 < z < 2.3.
Necessarily the extension of our model beyond redshift 2 is
an extrapolation that can not be taken seriously. We need then
to test a modified model – with baryons and radiation – and
test it as we go back in time.

In order to check this, we need an observational probe
that constrain the model at large z as the cosmic background
radiation (CMB). Following [24] we use the three CMB dis-
tance priors, the shift parameter R, the acoustic scale la and
the baryon density parameter 
bh2. The details of the com-
putation of the constraints from CMB follows [25] and is
explained in the Appendix, however is relevant to explain
certain points here. First of all, we have to add baryons
and radiation explicitly in the Friedman equation Eq. (4).
Because these two components conserved separately, Eq. (8)
is not modified. The best fit values obtained are α = 0.07,
β = −0.05 with 
m = 0.142 and 
x = 0.16. These values
were obtained in a joint analysis with SNIa and CMB pri-
ors. A detailed study of this model at large redshift model
is underway, but we can conclude from these preliminary
results that: first, having inserted baryons and radiation, the
model is able to fit the data at large redshift with small inter-
action parameters in agreement with that implied by the SNIa
data (at low redshift data). This means that our model is capa-
ble to fit simultaneously both small and large redshift data
keeping α, β small, and with a DM density 
m + 
x � 0.3.
This conclusion is reinforced from a explicit computation of
the age of the universe in this model. By using the Hubble
function H(z), with baryons and radiation added, and mak-
ing use the best fit values for the parameters α, β, 
m and

x , we get

t0H0 =
∫ ∞

0

dz

(1 + z)E(z)
� 0.9743, (48)

which gives us an age of the Universe similar to that inferred
from the LCDM model.

Another concern would be if the interaction functions here
defined growth with redshift spoiling the matter formation
era. A simple way to check this, following [29], is consid-
ering the relative strength of the coupling f for each DM
component: fm = Qm/3Hρm and fx = Qx/3Hρx . In the
case of the symmetric model we obtain fm = α and fx = β.
This also is obtained in the asymmetric model where fm = α

and fx � α. Because the strength parameters does not grow
with redshift, but reach constant small values, we can expect
to obtain a similar behavior that those in [9] where a small
interaction parameters not only is possible, but it seems to
be needed to obtain a better fit of the process of the structure
formation.

It is also interesting to see the evolution of each energy
density component as a function of redshift. This is display
in Fig. 5.

Although ρint seems to keep a constant value, its value
actually is decreasing with redshift until reaching a zero value
at z � 7 after which it becomes negative. However, we must
be cautious with these results, since our physical system is
of interaction between two components and therefore the
analysis of each one separately, and especially the interaction
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Fig. 5 Here we display each energy density component using the best
fit values obtained using type Ia supernovae + CMB priors constraints

Fig. 6 Here we plot the total equation of state for our model (continuos
line) in comparison to that of the LCDM model (dashed line)

component, do not make much sense. Physically only the
total density makes sense.

We can also compute the total equation of state of our
model using (4) and (5). Explicitly we just need to compute

ωtot (z) = ptot
ρtot

= − ρint

ρm + ρx + ρint
, (49)

which can be plotted using the best fit values recently
obtained. The results is display in Fig. 6 together with the
equivalent to the LCDM model. We notice a very small dif-
ference between them.

As we see in the plot, at small redshifts, the effective EoS
of our model is slightly larger than that of the LCDM model,
however this trends change around redshift z � 2.1 after that
the we f f of our model remains larger for a while until z � 4
where again turns out to be larger. We have explore these
changes for large redshift and always their difference (in the
total EoS parameter) is minor than 0.03.

Another point of interest is if this model allows for enough
growth of structure, given the interaction between these DM
components. Although this issue is beyond the scope of this
work, let us make some points on it. As a preliminary step

let us comeback to the Eqs. (4)–(8) of Sect. 2. Defining the
total DM contribution ρM = ρm + ρx , assuming both free
pressures as zero, the system of equations can be re-written
as

3H2 = ρM + ρint , (50)

Ḣ + 3H2 = −pint , (51)

ρ̇M + 3HρM = Q , (52)

ρ̇int = −Q , (53)

where we have defined Q = Qm + Qx . These equations are
exactly those of the inhomogeneous vacuum model iVCDM
proposed in [35]. In particular, and for the purpose of this
paragraph, the linear perturbations of the model have been
also studied [36]. The idea is the following: to consider
presureless matter with pM = 0 and vacuum energy given
by ρV with EoS pV = −ρV such that

Tμν = TMμν + TVμν = ρMuμuν − ρV gμν, (54)

where uμ is the matter 4-velocity. The stress-energy tensor
conservation reads then as

∇μTVμν = Qν, ∇μTmμν = −Qν, (55)

where the interaction function is Qν = −∇νρV . By choos-
ing Qμ = Quμ, two things occurs, first the matter 4-velocity
is a potential flow and thus became irrotational, and second
the vacuum is homogeneous on hypersurfaces orthogonal to
the matter 4-velocity, which means that there are not pressure
gradients in the frame comoving with matter, implying a mat-
ter sound speed equals to zero (as in LCDM). Although the
behavior of the perturbations may or may not take the exact
form of the iVCDM model, it is essentially this similarity
that can be considered a good indication even before calcu-
lating anything. We are working on this topic for a future
publication.

4 Thermodynamics

Let us discuss the thermodynamics of the models proposed
in previous section. We want to explore to what extend these
new models for dark energy are consistent with the laws of
thermodynamics.

4.1 Symmetric case

The fluid ρint behaves as � does in the sense that this contri-
bution satisfy pint = −ρint . The fluid ρm behaves as one per-
ceiving an effective small pressure pef fm = αρm and also the
fluid ρx as a fluid with pef fx = βρx , where we have defined
the effective EoS parameters ω

e f f
m = α and ω

e f f
x = β. In
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this way, the coupled system reduce to

ρ̇m + 3H (1 + α) ρm = 0, (56)

ρ̇x + 3H (1 + β) ρx = 0, (57)

that can be studied along the discussion in [30] (see also [31]).
In this context, the temperature of the fluid can be written as

T (z) = T 0 exp

(
3
∫ z

0

dz

1 + z
ωe f f (z)

)
, (58)

then we can write for each component

Tm (z) = T 0
m (1 + z)3α , Tx (z) = T 0

x (1 + z)3β , (59)

in this way and according to [30] if α 
= β 
= 0 there is no
adiabaticity. This is recovered for α = β = 0.

In general, without assuming an explicit EoS parameter
for the fluids, and according to the first law

TdS = d[(+p)V ] − Vdp, (60)

we can write for each component

Tm
dSm
dt

= d

dt

[(
1 + ωm

)
mV

] − ωmV
dm
dt

, (61)

Tx
dSx
dt

= d

dt

[(
1 + ωx

)
x V

] − ωx V
dx
dt

, (62)

which can be rewritten as

Tm
V

dSm
dt

= dm
dt

+ 3H(1 + ωm)m = Qm, (63)

Tx
V

dSx
dt

= dx
dt

+ 3H(1 + ωx )x = Qx (64)

where we have set dV/Vdt = 3H . In this way

Tm
V

dSm
dt

= Qm,
Tx
V

dSx
dt

= Qx (65)

�⇒ Tm
Qm

dSm = Tx
Qx

dSx . (66)

So we can write

d (Sm + Sx ) =
(

1 + Qm

Qx

Tx
Tm

)
dSx , (67)

and then if

d (Sm + Sx ) =
(

1 + α

β

ρmTx
ρx Tm

)
dSx 
= 0, (68)

we know there is no adiabaticity. Replacing what we have
found previously for temperatures we get

ρmTx
ρx Tm

= ρ0
mT

0
m

ρ0
x T

0
x

(1 + z)6(α−β) . (69)

In particular we observe that

ρmTx
ρx Tm

(z → −1) → 0 (70)

which implies that

dSm (z → −1) + dSx (z → −1) → dSx (z → −1) , (71)

then its clear that dSm (z → −1) → 0, and then also
dSx (z → −1) → 0, so we restore the adiabaticitcy in this
limit (the �CDM limit). Notice that it seems relevant if
α > β for this conclusion to be correct. However, as we will
discuss in brief, there is no real meaning to this inequality due
to the symmetry of the model. Now if we assume α, β � 1
then ρm (z) � ρ0

m (1 + z)3, and ρx (z) � ρ0
x (1 + z)3 , so we

find

d (Sm + Sx ) =
(

1 + ρ0
mT

0
x

ρ0
x T

0
m

α

β
(1 + z)6(α−β)

)
dSx (72)

which implies there is no adiabaticity. So only when z → −1
it is possible to restore the adiabaticity. However, this is not
completely correct, because once we assume that α > β or
α < β, we are making a choice about the future evolution
of the system. Further, since in this context 
m and 
x are
also interchangeable contributions, there is no need to worry
about a particular hierarchy choice.

Let us discuss now the case for ρint . From the combination
of the first and second law

TintdSint = d [(ρint + pint ) V ] − Vdpint . (73)

Using the EoS for the compnent pint = −ρint we find

Tint
dSint
dt

= V
dρint
dt

, (74)

then, using the conservation equation for ρint we find

Tint
V

= − (Qm + Qx ) = 3H (αρm + βρx ) , (75)

from which we conclude

dSint
dt

> 0, (76)

and then, according to the relation,

Ṫint
Tint

= −3H

(
∂pint
∂ρint

)
= 3H, (77)

the temperature evolves as Tint (z) = Tint (0) (1 + z)−3 , so
in the future limit Tint (z → −1) → ∞, a result typical of
models of DE.

We have to stress here that in the case of � we have p =
−ρ = −� and obviously ρ̇ = 0 so in this case we can not
use the relation Ṫ /T = −3H (∂p/∂ρ). As we know [30]
the temperature associated to � is zero, while in the present
case pint = −ρint y ρ̇int 
= 0, making evident an important
difference between these two contributions.

As we mentioned, the previous statement about the tem-
perature Tint (z → −1) → ∞ should not be a surprise for us.
In fact, for a generic dark energy component pde = ωdeρde
with ωde < 0 we have Ṫde/Tde = 3 |ωde| H, then the tem-
perature evolves as Tde (z) = Tde (0) (1 + z)−3|ωde| , so in
the future limit we get Tde (z → −1) → ∞. In this sense
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ρint (z) plays a better role (a more physically stronger role)
as dark energy than those played by �.

It is interesting also to notice that in the context of �CDM,
the transition redshift between deceleration/acceleration
occurs usually around z � 0.5 which is also the redshift
from which our exact solution (14) start to differs from the
�CDM limit solution (15).

As a summary, we have a very simple model far more
physically sound than the cosmological constant, where
a very small coupling between dark matter components
behaves as �CDM. This is the case for the symmetric model,
where the change α ⇐⇒ β and 
m ⇐⇒ 
x left the Hubble
function unchanged. In the next sub section we discuss the
asymmetric case.

4.2 Asymmetric case

Here we discuss the thermodynamics consequences of the
asymmetric model previously presented. Let us start rewrit-
ing the system of conservation equations for both compo-
nents. From (18) we have

ρ̇m + 3H (1 + α) ρm = 0, (78)

ρ̇x + 3H

(
1 + β

[
1 + ρm

ρx

])
ρx = 0. (79)

where ω
e f f
m = α and ω

e f f
x (z) = β [1 + ρm(z)/ρx (z)].

Explicitly the quotient ρm/ρx takes the form

ρm

ρx
= ρ0

m

ρ0
x

(1 + z)3(α−β)

1 +
(

β
β−α

)
ρ0
m

ρ0
x

[
1 − (1 + z)3(α−β)

] , (80)

then assuming α > β we can take the future limit
z −→ −1 we find that ρm/ρx → 0 which implies that
ω
e f f
x (z → −1) → β. On the other hand, in the limit of the

far past z −→ ∞ we get that ω
e f f
x (z → ∞) → α = ω

e f f
m .

Now, let us compute explicitly the temperatures. Using
the formula (58) this leads to

Tm = T 0
m (1 + z)3α , (81)

Tx = T 0
x (1 + z)3β exp

(
3β

∫ z

0

dz

1 + z

ρm (z)

ρx (z)

)
(82)

Following the same steps described in the analysis of the
symmetrical case, we have

d (Sm + Sx ) =
[

1 + Qm

Qx

Tx
Tm

]
dSx ,

=
[

1 + α

β

ρm

ρx

(
1

1 + ρm/ρx

)
Tx
Tm

]
dSx , (83)

which implies no-adiabaticity. However, as we take the limit
z → −1, then ρm/ρx → 0, then we obtain that both dSm →
0 and dSx → 0, and the adiabaticity is restore in this limit.

5 Towards a field model

In this section we describe a possible implementation of
the model presented in Sect. 3. For this, we will use two
scalar fields whose free behavior, that is, ignoring interac-
tion between them, behave like dark matter, that is, a dust-like
evolution.

It is well known [32] that coherent scalar field oscillations
with a self interacting potential � φn , behaves as a contri-
bution whose energy density decay as a−6n/(n+2). For a pure
DM contribution, the energy density goes as a−3 then the
potential would be V (φ) = V0φ

2. This is an exact result
assuming that no other constituent than the scalar field is
present.

Another way to build up a scalar field behaving as DM,
is by using the reconstruction scheme. From [33] the scalar
field potential and kinetic term can be written in terms of the
scale factor through the parametric equations

U (t) = 3

8πG

(
H2 + Ḣ

3

)
, ˙χ(t)

2 = − Ḣ

4πG
. (84)

Then by using a(t) = (t/t0)2/3 typically of a dust like con-
tribution, we get H = 2/(3t) and Ḣ = −2/(3t2), then from
the field equation we get

χ̇ = 1√
6πGt

, �⇒ ln t = √
6πGχ(t), (85)

then after we write the scalar field potential

U (t) = 3

8πG

(
2

9t2

)
�⇒ U (χ) = e

√
6πGχ

12πG
, (86)

Then for the case of a dust evolution – a(t) � t2/3 –
the equations leads us to an exponential potential U (χ) =
U0 exp(−αχ), in which α = √

6πG. This is a well know
result [34].

In our model then, we consider these two scalar fields φ(t)
and χ(t) interacting through

L = 1

2
φ̇2 − V (φ) + 1

2
χ̇2 −U (χ) − 1

2
g2φ2χ2. (87)

The stress energy tensor for the homogeneous free fields φ(t)
and χ(t) can be written as those of a perfect fluid with energy
density and pressure given by

ρφ = 1

2
φ̇2 + V (φ), pφ = 1

2
φ̇2 − V (φ) (88)

The interaction Lagrangian can also be written in a perfect
fluid form, but this time the energy density and pressure are

ρφχ = 1

2
g2φ2χ2, pφχ = −1

2
g2φ2χ2, (89)

which – as we have anticipated – automatically satisfies the
cosmological constant equation of state, although the energy
density is not constant.
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The field equations are: the Friedman equation (4) and
(5) with pressures and densities defined by (88) and (89)
before (where the notation ρint = ρφχ ), and the well known

φ̈ + 3H φ̇ + V ′(φ) = −g2χ2φ, (90)

and

χ̈ + 3H χ̇ +U ′(χ) = −g2φ2χ, (91)

which are the equivalent to (6) and (7), where we can identify

Qm = −g2χ2φφ̇, Qx = −g2φ2χχ̇. (92)

From (92) and (89) is clear that (8) is automatically satisfied.
This model clearly show the way we can built a field model

of two DM component in interaction with an evolution sim-
ilar to the �CDM model. A work in progress in underway
where we focus on this specific model.

6 Discussion

In this paper we have proposed a family of models for DE
consisting in two DM species interacting each other, whose
interaction although small, enable us to describe a typical
evolution of the �CDM model. The key element is the role
accomplished by the energy density associated to the interac-
tion Lagrangian, ρint . Assuming the interaction Lagrangian
does not have derivative couplings, the automatic equation of
state that this component satisfy is pint = −ρint i.e., that of
the cosmological constant. However, although this compo-
nent satisfy this EoS, the energy density evolves (in contrast
to � that keep its value constant), making it a more sound
component physically speaking. For example, this does not
suffer from the “coincidence problem” because the interac-
tion energy density – which is interpreted here as the equiv-
alent to � – emerges from a Lagrangian that connects both
DM species from the beginning. This connection also answer
our question about the order of magnitude of �. Here the
response is in essence because both DM contribution are tied
through the interaction which established the order of mag-
nitude of their contributions. Although obvious, it is also
necessary to highlight the fact that we do not need an exotic
(negative pressure) component to describe the observations.

In fact, from a thermodynamic point of view, this com-
ponent behaves more naturally than �, showing a tempera-
ture that increases in the future, a behavior typical to other
DE models where the EoS parameter varies with redshift,
in contrast to the � behavior where the temperature associ-
ated is zero. Furthermore, we have discussed how the non-
adiabaticity emerges from the model, clearly due to the mani-
fest interaction, and its future evolution towards adiabaticity.
Certainly, a much more physical behavior than the discon-
nected evolution between � and the rest of the constituents
of the universe that is evident in the �CDM model.

We have also performed a statistical analysis using the lat-
est data set for type Ia supernova (the Pantheon sample [23])
consisting in 1048 data points and its covariance. Although
very simplistic – because we have not added a explicit cur-
vature or a baryonic term or radiation term in the Hubble
function – our models are able to describe successfully the
data, with small best fit values for the parameters, being in
agreement with the hypothesis of the model. Although the
errors are big, the contrast with observational data implies
the existence of a large family of models with small α and β

parameters, that describe an evolution that mimic the �CDM
model without the necessity to add an exotic dark component.
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Appendix

Here we describe the formulae to use CMB priors to con-
straint our model. This analysis follows [24] and [25]. We
use CMB information by using the Planck data [26] extracted
from the analysis performed by [24] to probe expansion his-
tory up to the last scattering surface. The χ2 for the CMB
data is constructed as

χ2
CMB = XTC−1

CMB X, (A.1)

where, for a flat universe the data vector to consider is
(R, lA,
bh2) with

X =
⎛
⎝

1.74963
301.80845
0.02237

⎞
⎠ . (A.2)

Here lA is the “acoustic scale” defined as

lA = πdL(z∗)
(1 + z)rs(z∗)

, (A.3)
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where dL(z) is the proper luminosity distance and the redshift
of decoupling z∗ is given by [27],

z∗ = 1048

[
1 + 0.00124

(

bh

2
)−0.738

] [
1 + g1

(

mh

2
)g2

]
,(A.4)

g1 = 0.0783
(

bh2

)−0.238

1 + 39.5
(

bh2

)0.763 , g2 = 0.560

1 + 21.1
(

bh2

)1.81 ,

(A.5)

The “shift parameter” R defined as [28]

R =
√


m

c(1 + z∗)
DL(z). (A.6)

C−1
CMB in Eq. (A.1) is the inverse covariance matrix,

C−1
CMB = 10−8

⎛
⎝

1598.9554 17112.007 −36.311179
17112.007 811208.45 −494.79813

−36.311179 −494.79813 2.1242182

⎞
⎠ .

(A.7)
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