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Abstract Scalar field cosmologies with a generalized har-
monic potential and a matter fluid with a barotropic equa-
tion of state (EoS) with barotropic index γ for the locally
rotationally symmetric (LRS) Bianchi I and flat Friedmann–
Lemaître–Robertson–Walker (FLRW) metrics are investi-
gated. Methods from the theory of averaging of nonlinear
dynamical systems are used to prove that time-dependent
systems and their corresponding time-averaged versions have
the same late-time dynamics. Therefore, the simplest time-
averaged system determines the future asymptotic behavior.
Depending on the values of γ , the late-time attractors of phys-
ical interests are flat quintessence dominated FLRW universe
and Einstein-de Sitter solution. With this approach, the oscil-
lations entering the system through the Klein–Gordon (KG)
equation can be controlled and smoothed out as the Hubble
parameter H – acting as time-dependent perturbation param-
eter – tends monotonically to zero. Numerical simulations are
presented as evidence of such behavior.

1 Introduction

Mathematical methods have been widely used in cosmology.
For example, in reference [1] the method of Lie symmetries
was applied to Wheeler–De Witt equation in Bianchi class
A cosmologies for minimally coupled scalar field gravity
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and hybrid gravity in general relativity (GR). Several invari-
ant solutions were determined and classified. In reference
[2] a model-independent criterion based on first integrals of
motion was used; and in reference [3] dynamical symme-
tries of the field equations were used to classify dark energy
(DE) models in the context of scalar field (quintessence or
phantom) FLRW cosmologies. Using Noether symmetries in
[2] the system was simplified and its integrability was deter-
mined. For the exponential potential as well as some types of
hyperbolic potentials, extra Noether symmetries apart of the
conservation law were found; suggesting that these potentials
should be preferred along the hierarchy of scalar field poten-
tials. In [3] under the requirement that field equations admit
dynamical symmetries resulted in two potentials, one of them
is the well known unified dark matter (UDM) potential and
another hyperbolic model. In reference [4] a mathematical
approach to reconstruct the EoS and the inflationary poten-
tial of the inflaton field from observed spectral indices for the
density perturbations and the tensor-to-scalar ratio (based on
the constraints system) was implemented. In reference [5] an
algorithm to generate new solutions of the scalar field equa-
tions in FLRW universes was used. Solutions for pure scalar
fields with various potentials in absence and in presence of
spatial curvature and other perfect fluids were obtained. A
series of generalizations of Chaplygin gas and bulk viscous
cosmological solutions for inflationary universes were found.
In reference [6] the f (T ) cosmological scenario was stud-
ied. In particular, analytical solutions for isotropic, homo-
geneous universe containing dust fluid and radiation, and
for an empty anisotropic Bianchi I universe were found. The
method of movable singularities of differential equations was
used. For the isotropic universe, the solutions are expressed
in terms of Laurent expansion, while for anisotropic uni-
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verse a family of exact Kasner-like solutions in vacuum is
found. In reference [7] the symmetry classification of the KG
equation in Bianchi I spacetime was performed. A geometric
method which relates the Lie symmetries of the KG equa-
tion with the conformal algebra of the underlying geometry
was applied. Furthermore, by means of Lie symmetries that
follow from the conformal algebra (which are also Noether
symmetries for the KG equation) all the potentials in which
the KG equation admits Lie and Noether symmetries were
determined. The Lie admitted symmetries are useful to deter-
mine the corresponding invariant solution of the KG equation
for specific potentials. Additionally, the classification prob-
lem of Lie/Noether point symmetries of the wave equation
in Bianchi I spacetime was solved, and invariant solutions of
the wave equation were determined. In reference [8] a new
method to classify Bianchi I spacetimes which admits con-
formal killing vectors (CKV) was developed. The method is
useful to study the conformal algebra of Kasner spacetime
and other Bianchi type I matter solutions of GR.

Other useful mathematical methods are asymptotic meth-
ods and averaging theory [9–15]. These methods have been
applied in cosmology for example in [16–24] with inter-
est in early and late-time dynamics. Some works related
to Einstein-KG, Maxwell, Yang–Mills and Einstein–Vlasov
systems are [23–41]. In reference [42] LRS Bianchi type
III cosmologies with a massive scalar field were studied by
means of the theory of averaging of nonlinear dynamical sys-
tems. In reference [43] a theorem about large-time behavior
of solutions of a general class spatially homogeneous (SH)
cosmologies with oscillatory behavior was presented. The
results are based on a first order approximation of H , when
H is non-negative and monotonic decreasing to zero.

Inspired in [16–19] we have started the “Averaging gen-
eralized scalar field cosmologies” program which consists in
using asymptotic methods and averaging theory to obtain rel-
evant information about the solution’s space of scalar field
cosmologies with generalized harmonic potential in pres-
ence of matter (with a barotropic EoS with barotropic index
γ ) minimally coupled to a scalar field. This research pro-
gram has three steps according to the three cases of study: (I)
Bianchi III and open FLRW model [20], (II) Bianchi I and flat
FLRW model (the present case) and (III) Kantowski-Sachs
and closed FLRW [21]. In reference [19] relevant results
for the aforementioned program were presented. In particu-
lar, interacting scalar field cosmologies with generalized har-
monic potentials for flat and negatively curved FLRW, and
for Bianchi I metrics were studied. Using asymptotic and
averaging methods stability conditions for several solutions
of interest as H → 0 were obtained. This analysis suggests
that the asymptotic behavior of the time-averaged model is
independent of the coupling function and the geometry. Fol-
lowing analogous procedures in references [20,21] the cases
(I) and (III) of the program were studied.

For LRS Bianchi III metric in paper I [20] was proved
that the late-time attractors of full and time-averaged sys-
tems are: a matter dominated FLRW universe if 0 ≤ γ ≤ 2

3
(mimicking de Sitter, quintessence or zero acceleration solu-
tions), a matter-curvature scaling solution if 2

3 < γ < 1
and Bianchi III flat spacetime for 1 ≤ γ ≤ 2. For FLRW
metric with k = −1 late-time attractors are: a matter dom-
inated FLRW universe if 0 ≤ γ ≤ 2

3 (mimicking de Sitter,
quintessence or zero acceleration solutions) and the Milne
solution if 2

3 < γ < 2. For Kantowski–Sachs metric (see
references [44–49]) in paper III [21] was proved that late-
time attractors of full and time-averaged systems are: two
anisotropic contracting solutions if 0 ≤ γ < 2, a non-flat
LRS Kasner Bianchi I, a Taub (flat LRS Kasner) and a mat-
ter dominated FLRW universe if 0 ≤ γ < 2

3 (mimicking
de Sitter, quintessence or zero acceleration solutions). For
FLRW metric with k = +1 late-time attractors are: Einstein–
de Sitter solution if 0 < γ < 1, the matter dominated FLRW
universe for 0 ≤ γ ≤ 2

3 (mimicking de Sitter, quintessence or
zero acceleration solutions) and a matter dominated contract-
ing isotropic solution if 1 < γ < 2. In all the metrics, the
matter dominated FLRW universe represents quintessence
fluid if 0 < γ < 2

3 .
This paper is devoted to case (II). It is organized as fol-

lows: in Sect. 2 we motivate our choice of potential and
the topic of averaging in the context of differential equa-
tions. In Sect. 3 we introduce the model under study. In
Sect. 4 we apply averaging methods to analyze periodic
solutions of a scalar field with self-interacting potentials
within the class of generalized harmonic potentials [17]
where in particular, Sect. 4.1 is devoted to LRS Bianchi
I model and Sect. 4.2 is devoted to flat FLRW metric. In
Sect. 5 we study the resulting time-averaged systems where,
in particular, Sect. 5.1 is devoted to LRS Bianchi I mod-
els and Sect. 5.2 is devoted the flat FLRW metric. Finally,
in Sect. 6 our main results are discussed. In Appendix A
the proof of our main theorem is given and in Appendix B
numerical evidence supporting the results of Sect. 4 is pre-
sented.

2 Motivation

2.1 The generalized harmonic potential

Scalar fields are relevant in the physical description of the
universe, particularly, in inflationary scenario [50–55]. For
example, chaotic inflation is a model of cosmic inflation
in which the potential term takes the form of the harmonic

potential V (φ) = m2
φφ2

2 [52–55].
In this research we consider the generalized harmonic

potential which incorporates cosine-like corrections
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V (φ) = μ3
[
b f

(
1 − cos

(
φ

f

))
+ φ2

μ

]
, b > 0, (1)

with μ3b f � 1.
Introducing a new parameterω through the equationbμ3+

2 f μ2 − f ω2 = 0, potential (1) can be re-expressed as

V (φ) = μ2φ2 + f 2
(
ω2 − 2μ2

)(
1 − cos

(
φ

f

))
. (2)

The applicability of this re-parametrization will be discussed
at the end of Sect. 2.3.

Potential (2) has the following generic features:

1. V is a real-valued smooth function V ∈ C∞(R) with
limφ→±∞ V (φ) = +∞.

2. V is an even function V (φ) = V (−φ).
3. V (φ) has always a local minimum at φ = 0; V (0) =

0, V ′(0) = 0, V ′′(0) = ω2 > 0.
4. There is a finite number of values φc �= 0 satisfying

2μ2φc + f
(
ω2 − 2μ2

)
sin
(

φc
f

)
= 0, which are local

maximums or local minimums depending on whether

V ′′(φc) := 2μ2+(ω2 − 2μ2
)

cos
(

φc
f

)
< 0 or V ′′(φc) >

0. For |φc| >
f (ω2−2μ2)

2μ2 = φ∗, this set is empty.
5. There exist Vmax = maxφ∈[−φ∗,φ∗] V (φ) and Vmin =

minφ∈[−φ∗,φ∗] V (φ) = 0. The function V has no upper
bound but it has a lower bound equal to zero.

The asymptotic features of potential (2) are the follow-
ing. Near the global minimum φ = 0, we have V (φ) ∼
ω2φ2

2 + O
(
φ3
)
, as φ → 0. That is, ω2 can be related

to the mass of the scalar field near its global minimum. As
φ → ±∞ the cosine-correction is bounded, then V (φ) ∼
μ2φ2 + O (1) as φ → ±∞. This makes it suitable to
describe oscillatory behavior in cosmology.

Potential (1) or (2) is related but not equal to the mon-
odromy potential of [56] used in the context of loop-quantum
gravity, which is a particular case of the general mon-
odromy potential [57]. In references [17–19] it was proved
that the potential of [56,57] for p = 2, say V (φ) =
μ3
[

φ2

μ
+ b f cos

(
φ
f

)]
, b �= 0 is not good to describe the

late-time FLRW universe driven by a scalar field because
it has two symmetric local negative minimums which are
related to Anti-de Sitter solutions. Therefore, in [17,18] the
following potential was studied

V (φ) = φ2

2
+ f

[
1 − cos

(
φ

f

)]
, (3)

that is obtained by setting μ =
√

2
2 and bμ = 2 in Eq. (1).

On the other hand, setting μ =
√

2
2 and ω = √

2, we have

V (φ) = φ2

2
+ f 2

[
1 − cos

(
φ

f

)]
. (4)

The potentials (3) and (4) provide non-negative local min-
imums which can be related to a late-time accelerated uni-
verse. The generalized harmonic potentials (2), (3) and (4)
belong to the class of potentials studied by [23]. Addition-

ally, potentials like V (φ) = Λ4
[
1 − cos

(
φ
f

)]
are of inter-

est in the context of axion models [58]. In [59] axionic
dark matter with modified periodic potential for the pseu-

doscalar field V (φ,Φ∗) = m2
AΦ∗2

2π2

[
1 − cos

(
2πφ
Φ∗

)]
has been

studied in the framework of the axionic extension of the
Einstein-aether theory. This periodic potential has minima
at φ = nΦ∗, n ∈ Z, whereas maxima are found when
n → m+ 1

2 . Near the minimum, i.e., φ = nΦ∗ +ψ with |ψ |
a small value, V → m2

Aψ2

2 where mA the axion rests mass.

2.2 Simple example

Given the ordinary differential equation ẋ = f(x, t, ε) with
ε ≥ 0 and f periodic in t . One approximation scheme which
can be used to solve the full problem is the resolution of
the unperturbed problem ẋ = f(x, t, 0) by setting ε = 0 at
first and then with the use of the approximated unperturbed
solution to formulate variational equations in standard form
which can be averaged. The term averaging is related to the
approximation of initial value problems involving perturba-
tions [15, chapter 11].

For example, consider the initial value problem:

φ̈ + ω2φ = ε(−2φ̇), (5)

with φ(0) and φ̇(0) prescribed. The unperturbed problem
φ̈ + ω2φ = 0 admits the solution φ̇(t) = r0ω cos(ωt −
Φ0), φ(t) = r0 sin(ωt−Φ0), where r0 and Φ0 are constants
depending on initial conditions.

Let be defined the amplitude-phase transformation [15,
chapter 11]:

φ̇(t) = r(t)ω cos(ωt − Φ(t)),

φ(t) = r(t) sin(ωt − Φ(t)), (6)

such that

r =
√

φ̇2(t) + ω2φ2(t)

ω
, Φ = ωt − tan−1

(
ωφ(t)

φ̇(t)

)
. (7)

Then, Eq. (5) becomes,

ṙ = −2rε cos2(t − Φ), Φ̇ = −ε sin(2(t − Φ)). (8)

From (8) it follows that r and Φ are slowly varying with time,
and the system takes the form ẏ = ε f (y). The idea is consider
only nonzero average of the right-hand-sides keeping r and Φ

fixed and leaving out the terms with average zero and ignoring
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the slow-varying dependence of r and Φ on t through the
averaging process

f̄(·) := 1

L

∫ L

0
f(·, t)dt, L = 2π

ω
. (9)

Replacing r and Φ by their averaged approximations r̄ and
Φ̄ we obtain the system

˙̄r = −εωr̄ , ˙̄Φ = 0. (10)

Solving (10) with r̄(0) = r0 and Φ̄(0) = Φ0, we obtain φ̄ =
r0e−εωt sin(ωt−Φ0), which is an accurate approximation of
the exact solution

φ(t) = −r0e
−tε sin(Φ0) cos

(
t
√

ω2 − ε2
)

−
r0e−tε sin

(
t
√

ω2 − ε2
)

(ε sin(Φ0) − ω cos(Φ0))√
ω2 − ε2

,

due to

φ̄(t) − φ(t) = r0εe−tε sin(Φ0) sin(tω)

ω
+ O

(
εe−tε) ,

as ε → 0+.

2.3 General class of systems with a time-dependent
perturbation parameter

Let us consider for example the KG system

φ̈ + ω2φ = −3H φ̇, (11)

Ḣ = −1

2
φ̇2. (12)

The similarity between (5) and (11) suggests to treat the latter
as a perturbed harmonic oscillator as well, and to apply aver-
aging in an analogous way. However, care has to be taken
because in contrast to ε, H is time-dependent and itself is
governed by the evolution equation (12). If it is valid, then
a surprising feature of such approach is the possibility of
exploiting the fact that it is strictly decreasing and goes to
zero by promoting Hubble parameter H to a time-dependent
perturbation parameter in (11) controlling the magnitude of
the error between solutions of the full and time-averaged
problems. Hence, with strictly decreasing H the error should
decrease as well. Therefore, it is possible to obtain the infor-
mation about the large-time behavior of the more compli-
cated full system via an analysis of the simpler averaged sys-
tem equations by means of dynamical systems techniques
[60–88]. With this in mind, in [43] the long-term behavior of
solutions of a general class of systems in standard form was
studied:

(
Ḣ
ẋ

)
= H

(
0

f1(x, t)

)
+ H2

(
f [2](x, t)

0

)
, (13)

where H is positive strictly decreasing in t and limt→∞ H(t) =
0.

In this paper we study systems which are not in the stan-
dard form (13) but can be expressed as a series with center
in H = 0 according to the equation

(
Ḣ
ẋ

)
=
(

0
f0(x, t)

)
+ H

(
0

f1(x, t)

)

+ H2
(

f [2](x, t)
0

)
+ O(H3), (14)

depending on a parameter ω which is a free frequency that
can be tuned to make f0(x, t) = 0. Therefore, systems can be
expressed in the standard form (13). In particular, assuming

ω2 > 2μ2 and setting f = bμ3

ω2−2μ2 (which is equivalent to
tune the angular frequency ω) the undesired terms evolving as
∝ H0 are eliminated in the series expansion around H = 0.

3 The model

It is well-known that there is an interesting hierarchy in
Bianchi models [88–91]. In particular, LRS Bianchi I model
naturally appears as a boundary subset of LRS Bianchi III
model. The last one is an invariant boundary of LRS Bianchi
type VIII model as well. Additionally, LRS Bianchi type
VIII can be viewed as an invariant boundary of LRS Bianchi
type IX models [92–97]. Bianchi spacetimes contain many
important cosmological models that have been used to study
anisotropies of primordial universe and its evolution towards
the observed isotropy of the present epoch [98–102]. The list
includes FLRW model in the limit of the isotropization.

In GR the Hubble parameter is always monotonic for
Bianchi I and anisotropies decay for H > 0. Therefore,
isotropization occurs [103,104]. The exact solutions of field
equations have been found in some particular Bianchi space-
times for an exponential potential [105–107]. These exact
solutions lead to isotropic homogeneous spacetimes as it was
found in references [108,109]. An anisotropic solution of
special interest is Kasner spacetime [110–117], essential for
the description of BKL singularity [118].

The action integral of interest given by

S =
∫

d4x
√|g|

[
1

2
R − 1

2
gμν∇μφ∇νφ − V (φ) + Lm

]
,

(15)

is expressed in a system of units in which 8πG = c = � = 1.
In Eq. (15) R is the scalar curvature of the spacetime, Lm is
the Lagrangian density of matter, φ is the scalar field, ∇α is
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the covariant derivative and V (φ) is the scalar field potential
defined by (1).

3.1 LRS Bianchi III, Bianchi I and Kantowski–Sachs
models

Considering that

lim
k→−1

k−1 sin2(
√
kϑ) = sinh2(ϑ), (16)

lim
k→0

k−1 sin2(
√
kϑ) = ϑ2, (17)

lim
k→+1

k−1 sin2(
√
kϑ) = sin2(ϑ), (18)

the metric element for LRS Bianchi III, Bianchi I and
Kantowski–Sachs models can be written as [119]

ds2 = −dt2 +
[
e1

1(t)
]−2

dr2

+
[
e2

2(t)
]−2 [

dϑ2 + k−1 sin2(
√
kϑ)dζ 2

]
, (19)

where e1
1, e2

2 and e3
3 = √

ke2
2/ sin(

√
kϑ) are functions

of t which are components of the frame vectors [120]:
e0 = ∂t , e1 = e1

1∂r , e2 = e2
2∂ϑ , e3 = e3

3∂ζ . Compar-
ing with reference [119] we have settled the parameters
a = f = 0 and e1

1(t) = D2(t)−1, e2
2(t) = D2(t)−1 and

we have used the identifications (ϑ, ζ ) = (y, z). The line
elements for spatially homogeneous self-similar LRS mod-
els have been given by Wu in [121]. We concentrate only
in the spatially homogeneous but anisotropic class with the
exception of spatially homogeneous LRS Bianchi V, that is:
LRS Bianchi III (k = −1), Bianchi I (k = 0) and Kantowski–
Sachs (k = +1) [122]. It is useful to define a representative
length �(t) along worldlines of u = ∂t for describing the
volume expansion (contraction) behavior of the congruence
completely by [123]

�̇(t)

�(t)
= H(t) := −1

3

d

dt
ln
[
e1

1(t)(e2
2(t))2

]
, (20)

where dots denote derivatives with respect to time t , H(t)
is the Hubble parameter in terms of �(t) its time derivative.
The anisotropic parameter σ+(t) is defined by

σ+ = 1

3

d

dt
ln
[
e1

1(t)(e2
2(t))−1

]
. (21)

The variation of (15) for the 1-parameter family of metrics
(19) leads to [122]:

3H2 + kK = 3σ+2 + ρm + 1

2
φ̇2 + V (φ), (22)

− 3(σ+ + H)2 − 2σ̇+ − 2Ḣ − kK

= (γ − 1)ρm + 1

2
φ̇2 − V (φ), (23)

− 3σ+2 + 3σ+H − 3H2 + σ̇+ − 2Ḣ

= (γ − 1)ρm + 1

2
φ̇2 − V (φ), (24)

where for the matter component we use barotropic EoS
pm = (γ − 1)ρm with pm the pressure of the fluid, ρm is
the energy density and the barotropic index is a constant γ

which satisfies 0 ≤ γ ≤ 2.
The Gauss curvature of the spatial 2-space and 3-curvature

scalar are [120]

K = (e2
2(t))2, 3R = 2kK . (25)

Furthermore, the evolution equation of the Gauss curvature
of the spatial 2-space is

K̇ = −2(σ+ + H)K , (26)

while the evolution for e1
1 is given by [120]

˙e1
1 = −(H − 2σ+)e1

1. (27)

From Eqs. (23) and (24) the shear equation

σ̇+ = −3Hσ+ − kK

3
, (28)

is obtained. Equations (22), (23), (24) and (28) give the Ray-
chaudhuri equation

Ḣ = −H2 − 2σ+2 − 1

6
(3γ − 2)ρm − 1

3
φ̇2 + 1

3
V (φ). (29)

Finally, the matter and KG equations are

ρ̇m = −3γ Hρm, (30)

φ̈ = −3H φ̇ − dV (φ)

dφ
. (31)

In this paper we will focus our study in LRS Bianchi I model.
Therefore, using Eq. (17) the metric (19) reduces to

ds2 = −dt2 + A2(t)dr2 + B2(t)
(
dϑ2 + ϑ2dζ 2

)
, (32)

where the functions A(t) and B(t) are interpreted as the scale
factors: A(t) = e1

1(t)−1 and B2(t) = K (t)−1.

3.2 FLRW models

The general line element for spherically symmetric models
can be written as [120]

ds2 = −dt2 +
[
e1

1(t, r)
]−2

dr2

+
[
e2

2(t, r)
]−2

(dϑ2 + sin2 ϑ dζ 2). (33)
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Spatially homogeneous spherically symmetric models, that
are not Kantowski–Sachs, are the FLRW models where the
metric can be written as

ds2 = −dt2 + a2(t)
[
dr2 + f 2(r)(dϑ2 + sin2 ϑ dζ 2)

]
,

(34)

with f (r) = sin r, r, sinh r, (35)

for closed, flat and open FLRW models, respectively. In
comparison with metric (33), the frame coefficients are
given by e1

1 = a−1(t) and e2
2 = a−1(t) f −1(r) where

a(t) is the scale factor. The anisotropic parameter σ+ =
1
3

∂
∂t ln(e1

1/e2
2) vanishes and the Hubble parameter (20) can

be written as H = d
dt ln [a(t)]. Furthermore, by calculating

3R we obtain

3R = 6k

a2 , k = 1, 0,−1, (36)

for closed, flat and open FLRW, respectively. Therefore, evo-
lution/constraint equations reduce to

φ̈ = −3H φ̇ − V ′(φ), (37a)

ρ̇m = −3γ Hρm, (37b)

ȧ = aH, (37c)

Ḣ = −1

2

(
γρm + φ̇2

)
+ k

a2 , (37d)

3H2 = ρm + 1

2
φ̇2 + V (φ) − 3k

a2 . (37e)

4 Averaging scalar field cosmologies

As in reference [42] we construct a time-averaged version of
the original system and prove that it shares the same late-time
dynamics of the original system.

4.1 Bianchi I metric

In this section averaging methods are applied for Bianchi I
metrics for the generalized harmonic potential (1) minimally
coupled to matter.

Setting k = 0 in Eqs. (22), (28) and (29) we obtain

Ḣ = −H2 − 2σ+2 − 1

6
(3γ − 2)ρm

− 1

3
φ̇2 + 1

3
V (φ), (38)

σ̇+ = −3Hσ+, (39)

3H2 = 3σ+2 + ρm + 1

2
φ̇2 + V (φ). (40)

Using the characteristic length scale � along worldlines of
the 4-velocity field such that H = �̇

�
, defining �0 the current

value of � such that

�(t)

�0
=
[
e1

1(t)(e2
2(t))2

]− 1
3
, τ = ln

(
�(t)

�0

)
, (41)

and denoting by convention t = 0 the current time, then(
�(0)
�0

)3 = 1
e1

1(0)(e2
2(0))2 = 1 and τ(0) = 0. Using the def-

inition (20) and integrating (39) we obtain σ+ = σ0�
3
0/�

3,
where σ0 is an integration constant, which is the value of
σ+ when � = �0. The term G0(�) = σ 2

0 �6
0/�

6, which cor-
responds to anisotropies in Bianchi I metric, does not corre-
spond to a fluid component in the model. However, it can be
interpreted as a stiff-matter fluid for flat FLRW metric with
scale factor a(t) = �(t). The term σ 2+ dilutes very fast with
expansion, isotropizing if H > 0.

The evolution equation for matter and the KG equation do
not depend on k. Therefore, the field equations are deduced:

φ̈ = −3H φ̇ − V ′(φ), (42a)

ρ̇m = −3γ Hρm, (42b)

�̇ = �H, (42c)

Ḣ = −1

2

(
γρm + φ̇2

)
− 3σ 2

0 �6
0

�6 , (42d)

3H2 = ρm + 1

2
φ̇2 + V (φ) + 3σ 2

0 �6
0

�6 . (42e)

Now, we define Hubble normalized variables

Ω = ωr√
6H

, Σ = σ+
H

, (43)

along with r and Φ which are defined in (7) and σ+ =
σ0�

3
0/�

3 is obtained by integrating (39). Then, we obtain the
system

Ω̇ = −bγ f μ3Ω

H
sin 2

⎛
⎝
√

3
2 HΩ sin(tω−Φ)

f ω

⎞
⎠

− bμ3

√
6H

cos(tω − Φ) sin
(√

6HΩ sin(tω−Φ)
f ω

)

+ 3

2
HΩ

(
−(γ − 2)Σ2 + γ − 2γμ2Ω2

ω2

)

+ H cos2(tω − Φ)
(

Ω3
(

γ

(
3μ2

ω2 − 3
2

)
+3

)
−3Ω

)

+
(
ω2 − 2μ2

)
Ω sin(2tω − 2Φ)

2ω
, (44a)

Σ̇ = −bγ f μ3Σ

H
sin2

⎛
⎝
√

3
2 HΩ sin(tω−Φ)

f ω

⎞
⎠

+ H

(
− 3

2
(γ − 2)Σ

(
Σ2 − 1

)

− 3γμ2ΣΩ2 sin2(tω − Φ)

ω2

)

− 3

2
(γ − 2)ΣHΩ2 cos2(tω − Φ), (44b)
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Φ̇ = −bμ3 sin(tω − Φ)√
6HΩ

sin
(√

6HΩ sin(tω−Φ)
f ω

)

− 3

2
H sin(2(tω − Φ))

+
(
ω2 − 2μ2

)
sin2(tω − Φ)

ω
, (44c)

Ḣ = −(1 + q)H2, (44d)

where the deceleration parameter q is given by

q = −1 − bγ f μ3

H2 sin2
⎛
⎝
√

3
2 HΩ sin(tω−Φ)

f ω

⎞
⎠

+ 3

2

(
−(γ − 2)Σ2 + γ − 2γμ2Ω2 sin2(tω − Φ)

ω2

)

− 3

2
(γ − 2)Ω2 cos2(tω − Φ). (45)

Denoting x = (Ω,Σ,Φ)T system (44) can be symbolically
written in form (14). Notice that using the condition bμ3 +
2 f μ2 − f ω2 = 0, the function

f0(x, t) =

⎛
⎜⎜⎜⎝

Ω
(
f ω2−μ2(bμ+2 f )

)
sin(2tω−2Φ)

2 f ω
0(

− bμ3

f −2μ2+ω2
)

sin2(tω−Φ)

ω

⎞
⎟⎟⎟⎠ , (46)

in the Eq. (14) becomes trivial. Hence, we obtain:

ẋ = H f(x, t) + O(H2), (47)

Ḣ = −3

2
H2
(

γ
(

1 − Σ2 − Ω2
)

+ 2Σ2 + 2Ω2 cos2(Φ − tω)

)

+ O(H3), (48)

where (48) is Raychaudhuri equation and

f(x, t)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2 Ω

(
γ
(

1 − Σ2 − Ω2
)

+ 2Σ2 + 2
(
Ω2 − 1

)
cos2(Φ − tω)

)

3
2 Σ

(
− γ

(
Σ2 + Ω2 − 1

)
+ 2Σ2 + 2Ω2 cos2(Φ − tω) − 2

)

− 3
2 sin(2tω − 2Φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)

Replacing ẋ = H f(x, t) with f(x, t) as defined in (49) by

ẏ = H f̄(y) with y = (Ω̄, Σ̄, Φ̄
)T

and f̄ as defined by (9),
we obtain the averaged system:

˙̄Ω = 3

2
HΩ̄

(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2 − 1
)

, (50)

˙̄Σ = 3

2
HΣ̄

(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2 − 2
)

, (51)

˙̄Φ = 0, (52)

Ḣ = −3

2
H2
(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2
)

. (53)

Proceeding in analogous way as in references [24,33] but for
3 dimensional systems instead of a 1-dimensional one, we
implement a local nonlinear transformation

Ω = Ω0 + Hg1(H,Ω0,Σ0, Φ0, t),

Σ = Σ0 + Hg2(H,Ω0,Σ0, Φ0, t),

Φ = Φ0 + Hg3(H,Ω0,Σ0, Φ0, t), (54)

which in vector form can be written as

x = ψ(x0) := x0 + Hg(H, x0, t), (55)

where x0 = (Ω0,Σ0, Φ0)
T and

g(H, x0, t) =
⎛
⎝ g1(H,Ω0,Σ0, Φ0, t)
g2(H,Ω0,Σ0, Φ0, t)
g3(H,Ω0,Σ0, Φ0, t)

⎞
⎠ . (56)

Taking derivative of (55) with respect to t, we obtain

ẋ0 + Ḣg(H, x0, t)

+ H

(
∂

∂t
g(H, x0, t) + Ḣ

∂

∂H
g(H, x0, t)

+ Dx0g(H, x0, t) · ẋ0

)

= ẋ, (57)

where

Dx0g(H, x0, t) =
⎛
⎜⎝

∂g1
∂Ω0

∂g1
∂Σ0

∂g1
∂Φ0

∂g2
∂Ω0

∂g2
∂Σ0

∂g2
∂Φ0

∂g3
∂Ω0

∂g3
∂Σ0

∂g3
∂Φ0

⎞
⎟⎠ , (58)

is the Jacobian matrix of g(H, x0, t) for the vector x0. The
function g(H, x0, t) is conveniently chosen.

By substituting (47) and (55) in (57) we obtain

(
I3 + HDx0g(H, x0, t)

)
· ẋ0 = H f(x0 + Hg(H, x0, t), t)

− H
∂

∂t
g(H, x0, t) − Ḣg(H, x0, t) − H Ḣ

∂

∂H
g(H, x0, t),

(59)

where I3 =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ is the 3 × 3 identity matrix.

Then we obtain

ẋ0 =
(
I3 + HDx0g(H, x0, t)

)−1
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·
(
H f(x0 + Hg(H, x0, t), t) − H

∂

∂t
g(H, x0, t)

− Ḣg(H, x0, t) − H Ḣ
∂

∂H
g(H, x0, t)

)
. (60)

Using Eq. (48), we have Ḣ = O(H2). Hence,

ẋ0 =
(
I3 − HDx0g(0, x0, t) + O(H2)

)
︸ ︷︷ ︸

3×3 matrix

·
(
H f(x0, t) − H

∂

∂t
g(0, x0, t) + O(H2)

)
︸ ︷︷ ︸

3×1 vector

= H f(x0, t) − H
∂

∂t
g(0, x0, t) + O(H2)︸ ︷︷ ︸

3×1 vector

. (61)

The strategy is to use Eq. (61) for choosing conveniently
∂
∂t g(0, x0, t) in order to prove that

˙Δx0 = −HG(x0, x̄) + O(H2), (62)

where x̄ = (Ω̄, Σ̄, Φ̄)T and Δx0 = x0 − x̄. The function
G(x0, x̄) is unknown at this stage.

By construction we neglect dependence of ∂gi/∂t and gi
on H , i.e., assume g = g(x0, t) because dependence of H is
dropped out along with higher order terms in Eq. (61). Next,
we solve the differential equation for g(x0, t):

∂

∂t
g(x0, t) = f(x0, t) − f̄(x̄) + G(x0, x̄). (63)

where we have considered x0 and t as independent variables.
The right hand side of (63) is almost periodic of period

L = 2π
ω

for large times. Then, implementing the average
process (9) on right hand side of (63), where the slow-
varying dependence of quantities x0 = (Ω0,Σ0, Φ0)

T and
x̄ = (Ω̄, Σ̄, Φ̄)T on t are ignored through the averaging
process, we obtain

1

L

∫ L

0

[
f(x0, s) − f̄(x̄) + G(x0, x̄)

]
ds

= f̄(x0) − f̄(x̄) + G(x0, x̄). (64)

Defining

G(x0, x̄) := − (f̄(x0) − f̄(x̄)
)
, (65)

the average (64) is zero so that g(x0, t) is bounded.
Finally, Eq. (62) transforms to

˙Δx0 = H
(
f̄(x0) − f̄(x̄)

)+ O(H2), (66)

and Eq. (63) is simplified to

∂

∂t
g(x0, t) = f(x0, t) − f̄(x0). (67)

Theorem 1 establishes the existence of the vector (56).

Theorem 1 Let the functions Ω̄, Σ̄, Φ̄ and H be defined as
solutions of the averaged equations (50), (51), (52) and (53).
Then, there exist continuously differentiable functions g1, g2

and g3 such that Ω,Σ,Φ are locally given by (54) where
Ω0,Σ0, Φ0 are zero order approximations of Ω,Σ,Φ as
H → 0. Then, functions Ω0,Σ0, Φ0 and averaged solution
Ω̄, Σ̄, Φ̄ have the same limit as t → ∞. Setting Σ = Σ0 =
0 analogous results for flat FLRW model are derived.

Proof The proof is given in Appendix A. ��
Theorem 1 implies that Ω,Σ and Φ evolve according to

the averaged equations (50), (51), (52) as H → 0 because
(54) is a formal near-identity (this means that Dx0ψ |H=0 =
I ) nonlinear change of coordinates, the first order solutions
Ω0,Σ0, Φ0 and averaged solutions Ω̄, Σ̄, Φ̄ have the same
limit when t → ∞ by monotony and non-negativity of H
and the limit H → 0.

4.2 Flat FLRW metric.

In this case the field equations are obtained from (37) by
setting k = 0. We obtain Ω̇ , Φ̇ and Ḣ by substituting Σ = 0
in (44) and (45). Finally, we obtain the Taylor expansion:

ẋ = H f(t, x) + O(H2), x = (Ω,Φ)T ,

Ḣ = −H2
(

3

2
γ
(

1 − Ω2
)

+ 3Ω2 cos2(tω − Φ)

)

+ O(H3), (68)

f(x, t) =
⎛
⎝

3
2γ
(
1 − Ω2

)+ 3Ω
(
Ω2 − 1

)
cos2(tω − Φ)

− 3
2 sin(2tω − 2Φ)

⎞
⎠ .

(69)

Replacing ẋ = H f(x, t) and f(x, t) as defined by (69) with

ẏ = H f̄ (y) where y = (
Ω̄, Φ̄

)T
with the time averaging

(9), we obtain the following time-averaged system:

˙̄Ω = −3

2
H Ω̄(γ − 1)

(
Ω̄2 − 1

)
, (70)

˙̄Φ = 0. (71)

The time-averaged Raychaudhuri equation for flat FLRW
metric is obtained by setting Σ̄ = 0 in Eq. (53).

Theorem 1 applies for Bianchi I and the invariant set Σ =
0 corresponds to flat FLRW models.
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5 Qualitative analysis of averaged systems

According to Theorem 1 for Bianchi I and flat FLRW, Hubble
parameter H plays the role of a time-dependent perturbation
parameter controlling the magnitude of the error between
solutions of full and time-averaged problems. Thus, oscilla-
tions are viewed as perturbations. In time-averaged system
Raychaudhuri equation (53) decouples by using a new time
variable τ through d f

dτ
= 1

H
d f
dt . Therefore, the analysis of

the original system is reduced to study the corresponding
averaged equations.

5.1 Bianchi I metric

The averaged system (50), (51), (52) and (53) is transformed
to

dΩ̄

dτ
= 3

2
Ω̄
(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2 − 1
)

,

(72a)

dΣ̄

dτ
= 3

2
Σ̄
(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2 − 2
)

,

(72b)

dΦ̄

dτ
= 0, (72c)

dH

dτ
= −3

2
H
(
γ
(

1 − Σ̄2 − Ω̄2
)

+ 2Σ̄2 + Ω̄2
)

, (72d)

by defining the logarithmic time τ through dt
dτ

= 1/H .
We investigate the 2D guiding system (72a)–(72b).
The function Ω̄m = 1 − Σ̄2 − Ω̄2 is interpreted as an

averaged Hubble-normalized density parameter for the mat-
ter component. Therefore, imposing the energy condition
Ω̄m ≥ 0 the phase space is{

(Ω̄, Σ̄) ∈ R
2 : Ω̄2 + Σ̄2 ≤ 1, Ω̄ ≥ 0

}
. (73)

Before the discussion we introduce the following concept.
A set of non-isolated singular points is said to be normally
hyperbolic if the only eigenvalues with zero real parts are
those whose corresponding eigenvectors are tangent to the
set.

Since by definition any point on a set of non-isolated sin-
gular points will have at least one eigenvalue which is zero,
all points in the set are non-hyperbolic. However, a set which
is normally hyperbolic can be completely classified as per
its stability by considering the signs of eigenvalues in the
remaining directions (i.e., for a curve, in the remaining n−1
directions) (see [69, pp. 36]).

The resulting 2D guiding system (72a)–(72b) has the fol-
lowing equilibrium points:

1. T : (Ω̄, Σ̄) = (0,−1) with eigenvalues
{ 3

2 , 3(2 − γ )
}
.

(i) It is a source for 0 ≤ γ < 2,

(ii) It is nonhyperbolic for γ = 2.

For γ = 2 the point T is contained in the unstable nor-
mally hyperbolic line of equilibrium points [69, pp. 36]
L1 : (Ω̄, Σ̄) = (0, Σ̄∗).
Using a representative length scale � which is defined in
(41) and denoting by convention t = 0, the current time

then
(

�(0)
�0

)3 = 1
e1

1(0)(e2
2(0))2 = 1 and τ(0) = 0.

Starting with Raychaudhuri equation (44d) and evaluating
it at T we obtain:

⎧⎨
⎩

Ḣ = −3H2

�̇ = �H
�⇒

⎧⎨
⎩

H(t) = H0
3H0t+1

�(t) = �0
3
√

3H0t + 1
. (74)

Σ̄ = −1 implies σ+ = −H = − H0
3H0t+1 . From Eq.

(26) it follows that K = (e2
2(t))2 = c−1

2 is a constant.
Substituting back K in Eq. (27) is obtained:

˙e1
1 = − 3H0

3H0t + 1
e1

1, e1
1(0) = c2. (75)

Hence,

e1
1(t) = c2

3H0t + 1
. (76)

Finally, line element (32) becomes

ds2 = −dt2 + (3H0t + 1)2

c2
2

dr2

+ c2

[
dϑ2 + ϑ2dζ 2

]
. (77)

Therefore, the corresponding solution can be expressed as
Taub-Kasner solution (p1 = 1, p2 = 0, p3 = 0) where
the scale factors of Kasner solution are t pi , i = 1, 2, 3
with p1 + p2 + p3 = 1, p2

1 + p2
2 + p2

3 = 1 [91, Sect 6.2.2
and p. 193, Eq. (9.6)].

2. Q : (Ω̄, Σ̄) = (0, 1) with eigenvalues
{ 3

2 , 3(2 − γ )
}
.

(i) It is a source for 0 ≤ γ < 2.

(ii) It is nonhyperbolic for γ = 2. In this case, Q is
included in a normally hyperbolic line of equilib-
rium points L1 : (Ω̄, Σ̄) = (0, Σ̄∗).

Evaluating Raychaudhuri equation (44d) at Q and inte-
grating H, we obtain

H(t) = H0

3H0t + 1
. (78)

123



489 Page 10 of 26 Eur. Phys. J. C (2021) 81 :489

Σ̄ = 1 implies σ+ = H = H0
3H0t+1 . Hence, Eqs. (26) and

(27) become

K̇ = − 4H0K

3H0t + 1
, K (0) = c−1

1 , (79)

and

˙e1
1 = H0

3H0t + 1
e1

1, e1
1(0) = c1. (80)

Then, by integration

e1
1(t) = c1

3
√

3H0t + 1, (81)

K (t) = 1

c1 (3H0t + 1)4/3 . (82)

Then, line element (32) becomes

ds2 = −dt2 + c−2
1 (3H0t + 1)−

2
3 dr2

+ c−1
1 (3H0t + 1)4/3

[
dϑ2 + ϑ2dζ 2

]
. (83)

Therefore, the corresponding solution can be expressed
as non-flat LRS Kasner (p1 = − 1

3 , p2 = 2
3 , p3 = 2

3 )
Bianchi I solution [91, Sect. 6.2.2 and Sect. 9.1.1 (2)].

3. F0 : (Ω̄, Σ̄) = (0, 0) with eigenvalues{
3(γ−1)

2 ,
3(γ−2)

2

}
.

(i) It is a sink for 0 ≤ γ < 1.
(ii) It is a saddle for 1 < γ < 2.

(iii) It is nonhyperbolic for γ = 1, 2.

If γ = 1, F0 is included in a normally hyperbolic line of
equilibrium points L2 : (Ω̄, Σ̄) = (Ω̄∗, 0). If γ = 2,

F0 is included in normally hyperbolic line of equilibrium
points L1 : (Ω̄, Σ̄) = (0, Σ̄∗).
Evaluating Eq. (44d) at F0 we obtain

⎧⎨
⎩

Ḣ = − 3
2γ H2

�̇ = �H
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3γ H0t+2

�(t) = �0

(
3γ H0t

2 + 1
) 2

3γ

., (84)

That is, the line element (32) becomes

ds2 = −dt2 + �2
0

(
3γ H0t

2
+ 1

) 4
3γ

dr2

+ �2
0

(
3γ H0t

2
+ 1

) 4
3γ [

dϑ2 + ϑ2dζ 2
]
. (85)

The corresponding solution is a matter dominated FLRW
Universe with Ω̄m = 1 (mimicking de Sitter, quintessence
or zero acceleration solutions).

4. F : (Ω̄, Σ̄) = (1, 0), with eigenvalues{− 3
2 ,−3(γ − 1)

}
.

(i) It is a saddle 0 ≤ γ < 1.
(ii) It is a sink for 1 < γ ≤ 2.

(iii) It is nonhyperbolic for γ = 1.

For γ = 1 point F is contained in a stable normally
hyperbolic line [69, pp. 36] of equilibrium points L2 :
(Ω̄, Σ̄) = (Ω̄∗, 0).
Evaluating Raychaudhuri equation (44d) at equilibrium
point F we have

Ḣ = b2γμ6

ω2 − 2μ2 sin2
⎛
⎝
√

3
2 H(ω2−2μ2) sin(Φ−tω)

bμ3ω

⎞
⎠

+ 1

2
H2
(

− 3γ + 6γμ2 sin2(Φ − tω)

ω2

+ 3(γ − 2) cos2(Φ − tω)
)
. (86)

Therefore,

Ḣ ∼ −3H2 cos2(tω − Φ), (87)

for large t . In average, Φ is a constant, setting Φ = 0 for
simplicity and integrating we obtain

H(t) = 4H0ω

6H0tω + 3H0 sin(2tω) + 4ω
, (88)

where H0 is the current value of H(t). Finally, H(t) ∼ 2
3t

for large t . Equations (26) and (27) become

ė1
1 = −2e1

1

3t
, K̇ = −4K

3t
, (89)

with general solution

ė1
1(t) = c1

t2/3 , K (t) = c2

t4/3 . (90)

Then, line element (32) becomes

ds2 = −dt2 + c−2
1 t4/3dr2

+ c−1
2 t4/3

[
dϑ2 + ϑ2dζ 2

]
. (91)

For large t , F can be associated with Einstein- de Sitter
solution [91, Sec 9.1.1 (1)] with γ = 1).

In Fig. 1 a phase plane for system (72a), (72b) for different
choices of γ is presented.

System (72a), (72b) when γ = 1 reduces to

dΩ̄

dτ
= 3

2
Σ̄2Ω̄,

dΣ̄

dτ
= −3

2
Σ̄
(

1 − Σ̄2
)

. (92)
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Fig. 1 Phase plane for system
(72a), (72b) for different choices
of γ. For γ = 1 the dashed
vertical line
L2 : (Ω̄, Σ̄) = (Ω̄∗, 0) is
stable. For γ = 2 the dashed
horizontal unstable line
L1 : (Ω̄, Σ̄) = (0, Σ̄∗)

(a) (b)

(c) (d)
Table 1 Exact solutions associated with equilibrium points of the reduced averaged system (72a), (72b). A(t) and B(t) denote the scale factors of
metric (32) and c1, c2, �0 ∈ R

+

Point A(t) B(t) Solution

T (3H0t+1)
c2

√
c2 Taub–Kasner solution (p1 = 1, p2 = 0, p3 = 0)

Q c−2
1 (3H0t + 1)−1/3 c−1

1 (3H0t + 1)2/3 Non-flat LRS Kasner (p1 = − 1
3 , p2 = 2

3 , p3 = 2
3 ) Bianchi I solution

F c−1
1 t2/3 c−1/2

2 t2/3 Einstein-de Sitter solution

F0 a0

(
3γ H0t

2 + 1
) 2

3γ
a0

(
3γ H0t

2 + 1
) 2

3γ
Flat matter dominated FLRW universe

From the above system we obtain

d

dτ
ln

(
Σ̄2

Ω̄2

)
= −3 �⇒ Σ̄2

Σ̄2
0

= Ω̄2

Ω̄2
0

e−3τ . (93)

We have assumed that the orbit passes by (Ω̄, Σ̄) =
(Ω̄0, Σ̄0) at time τ0 = 0. These values are identified with
the current epoch. Using Eq. (92) and the chain rule we have

dΣ̄2

dΩ̄
= 2Σ̄

dΣ̄

dτ

/dΩ̄

dτ
= −2

(1 − Σ̄2)

Ω̄
. (94)

Then,

d(1 − Σ̄2)

dΩ̄
= 2

(1 − Σ̄2)

Ω̄
. (95)

Due to (Ω̄, Σ̄) = (Ω̄0, Σ̄0) at the time τ0 = 0 by solving
(95) with the variables separation method it follows that

1 − Σ2

1 − Σ2
0

= Ω2

Ω2
0

. (96)
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Finally, the orbits of system (92) are given by

Σ̄2 = 1 −
(
1 − Σ̄2

0

)
Ω̄2

Ω̄2
0

. (97)

In Table 1 exact solutions are associated with equilibrium
points of the reduced averaged system (72a), (72b) are sum-
marized, where A(t) and B(t) denote the scale factors of the
metric (32) and c1, c2, �0 ∈ R

+ are integration constants.

5.1.1 Late-time behavior

Results from the linear stability analysis which are combined
with Theorem 1 lead to:

Theorem 2 The late-time attractors of full system (44) and
time-averaged system (72) for LRS Bianchi I line element
are:

(i) The flat matter dominated FLRW Universe F0 with the
line element (85) if 0 < γ < 1. F0 represents a
quintessence fluid if 0 < γ < 2

3 or a zero-acceleration
model if γ = 2

3 . Taking limit γ = 0 we have �(t) =
�0

(
3γ H0t

2 + 1
) 2

3γ → �0eH0t , i.e., a de Sitter solution.

(ii) The scalar field dominated solution F with line element
(91) if 1 < γ ≤ 2. For large t the equilibrium point can
be associated with Einstein-de Sitter solution.

For γ = 1, F0 and F are stable because they belong to stable
normally hyperbolic line of equilibrium points. For γ = 2,
F is asymptotically stable (see Fig. 1b, d).

5.2 Flat FLRW metric

For flat FLRW universe (k = 0) and for γ �= 1, we obtain
the following time-averaged system in the new logarithmic
time variable τ :

dΩ̄

dτ
= −3

2
Ω̄(γ − 1)

(
Ω̄2 − 1

)
, (98a)

dΦ̄

dτ
= 0, (98b)

dH

dτ
= −3

2
H
[
γ (1 − Ω̄2) + Ω̄2

]
. (98c)

Equation (98a) has solution

Ω̄(τ ) = Ω0e
3γ τ

2√
Ω2

0 e
3γ τ + e3τ

(
1 − Ω2

0

) , (99)

where Ω̄(0) = Ω0.
Equation (98a) has the following equilibrium points

1. F0 : Ω̄ = 0 with eigenvalue − 3
2 (1 − γ ). It is a sink for

0 < γ < 1 or a source for 1 < γ ≤ 2.
2. F : Ω̄ = 1 with eigenvalue 3(1 − γ ). It is a source for

0 < γ < 1 or a sink for 1 < γ ≤ 2.

Evaluating averaged Raychaudhuri equation (98c) at F0 we
obtain Eq. (84). Then, metric (34) in flat case becomes

ds2 = −dt2 + a2
0

(
3γ H0t

2
+ 1

) 4
3γ

dr2

+ a2
0

(
3γ H0t

2
+ 1

) 4
3γ

r2
[
dϑ2 + ϑ2dζ 2

]
. (100)

Evaluating averaged Raychaudhuri equation (98c) at F1 we
obtain

⎧⎨
⎩

Ḣ = − 3
2 H

2

ȧ = aH
�⇒

⎧⎪⎪⎨
⎪⎪⎩

H(t) = 2H0
3H0t+2

a(t) = a0

(
3H0t

2 + 1
) 2

3

. (101)

Then, metric (34) in flat FLRW case becomes

ds2 = −dt2 + a2
0

(
3H0t

2
+ 1

) 4
3

dr2

a2
0

(
3H0t

2
+ 1

) 4
3

r2
[
dϑ2 + ϑ2dζ 2

]
. (102)

In Table 2 exact solutions which are associated with equi-
librium points of the reduced averaged equation (98a) are
presented.

For γ = 1, the time-averaged system truncated at order
O(H4) is given by

dΩ̄

dτ
= 9H2Ω̄5

(
ω2 − 2μ2

)3
32b2μ6ω4 , (103a)

dΦ̄

dτ
= 3HΩ̄2

(
ω2 − 2μ2

)3
8b2μ6ω3 − 3H3Ω̄4

(
ω2 − 2μ2

)5
32b4μ12ω5

,

(103b)

dH

dτ
= −3H

2
− 9H3Ω̄4

(
ω2 − 2μ2

)3
32b2μ6ω4 . (103c)

Assuming that H is an explicit function of Ω and using the

chain rule, we obtain H ′(Ω̄) = dH
dτ

/
dΩ̄
dτ

. From the first and

third equations of (103) we obtain

H ′(Ω̄) = 16b2μ6ω4

3Ω̄5H(Ω̄)
(
2μ2 − ω2

)3 − H(Ω̄)

Ω̄
. (104)

Given H0 and Ω̄0, the initial values of H and Ω̄ when τ = 0,
i.e., H(Ω̄0) = H0 we obtain the solution
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Table 2 Exact solutions
associated with equilibrium
points of the reduced averaged
equation (98a). a(t) denotes the
scale factor of metric (34) in flat
case and a0 ∈ R

+

Point a(t) Solution

F a0

(
3H0t

2 + 1
) 2

3
Einstein-de Sitter solution

F0 a0

(
3γ H0t

2 + 1
) 2

3γ
Flat matter dominated FLRW universe

H(Ω̄) =

√
16b2μ6ω4

3(ω2−2μ2)
3

(
1 − Ω̄2

Ω̄2
0

)
+ H2

0 Ω2Ω̄2
0

Ω̄2
. (105)

Then, Eq. (103) can be expressed as

dΩ̄

dτ
= 3Ω̄

2
−

3Ω̄3
(

16b2μ6ω4 + 3H2
0 Ω̄4

0

(
2μ2 − ω2

)3)
32b2μ6ω4Ω̄2

0

,

(106a)

dΦ̄

dτ
=

3
(
ω2 − 2μ2

)3
√√√√ 16b2μ6ω4

(
1− Ω̄2

Ω̄2
0

)

3(ω2−2μ2)
3 + H2

0 Ω̄2
0 Ω̄2

8b2μ6ω3

−
3
(
ω2 − 2μ2

)5
⎛
⎝ 16b2μ6ω4

(
1− Ω̄2

Ω̄2
0

)

3(ω2−2μ2)
3 + H2

0 Ω̄2
0 Ω̄2

⎞
⎠

3/2

32b4μ12ω5Ω̄2
.

(106b)

By integration we obtain

Ω̄(τ ) = 4bμ3e3τ/2ω2Ω̄0√
16b2μ6e3τω4 + 3H2

0

(
1 − e3τ

)
Ω̄4

0

(
ω2 − 2μ2

)3 ,

which satisfies limτ→−∞ Ω̄(τ ) = 0 and limτ→+∞ Ω̄(τ ) =
4bμ3ω2Ω̄0√

16b2μ6ω4+3H2
0 Ω̄4

0 (2μ2−ω2)
3
. Furthermore,

H(τ ) = H0e−3τ

√
16b2μ6e3τ ω4 + 3H2

0

(
e3τ − 1

)
Ω̄4

0

(
2μ2 − ω2

)3
4bμ3ω2 ,

satisfies limτ→−∞ H(τ ) = ∞ and limτ→+∞ H(τ ) = 0.
Finally,

dΦ̄

dτ
=−

3H0e−3τ Ω̄2
0

(
ω2−2μ2

)3 (
H2

0 Ω̄2
0

(
ω2−2μ2

)2 − 4b2μ6e3τ ω2
)

8b3μ9ω3
√

16b2μ6e3τ ω4 + 3H2
0

(
e3τ − 1

)
Ω̄4

0

(
2μ2 − ω2

)3 ,

is integrable leading to Φ̄(τ ).
In Fig. 2 the phase plot of equation (98a) for different

choices of γ is presented. The arrows indicate the direction
of the flow for a 1-dimensional dynamical system (see, e.g.
[124, pages 16-17, Figure 2.2.1]).

Analyzing the dynamics on the extended phase space
(Ω̄, H) for γ = 1 (see phase plot 7b), the solutions tend
to finite Ω and H = 0. The equilibrium point F : (Ω̄, H) =

(b)

(a)

Fig. 2 Phase plot of Eq. (98a) for different choices of γ

(1, 0) is the attractor of the horizontal line with Ω̄ = 1.
F0 : (Ω̄, H) = (0, 0) is the attractor of the horizontal line
with Ω̄ = 0. The solution of the full system with same initial
conditions is affected by boundary effects at Ω̄ = 1 and has
large oscillations for large values of H , but they are damped
as H → 0. For γ = 2 (see phase plot 7d) the attractor is F .
Only the solution with initial value Ω̄0 = 0 tends to F0.

5.2.1 Late-time behavior

The results from the linear stability analysis are combined
with Theorem 1 (for Σ = 0) and lead to:

Theorem 3 The late-time attractors of full system (44) with
Σ = 0 and averaged system (98a) are:
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(i) The flat matter dominated FLRW Universe F0 with line
element (100) if 0≤γ <1. F0 represents a quintessence
fluid if 1 < γ < 2

3 or a zero-accelerationmodel if γ = 2
3 .

We have a(t) = a0

(
3γ H0t

2 + 1
) 2

3γ → a0eH0t as γ → 0,

i.e., a de Sitter solution is recovered.
(ii) The scalar field dominated solution F with line element

(102) if 1 < γ ≤ 2. For large t the equilibrium point can
be associated with Einstein-de Sitter solution.

Observe in Fig. 7b that as H → 0 the values of Ω̄ lying on the
orange line (solution of time-averaged system at fourth order)
give an upper bound to the value Ω of the original system.
Therefore, by controlling the error of averaged higher order
system, one can also control the error in the original one.

6 Conclusions

This is the second paper of the “Averaging generalized scalar
field cosmologies” program that was initiated in reference
[20]. This program consists in using asymptotic methods and
averaging theory to obtain relevant information about solu-
tion’s space of scalar field cosmologies in presence of a matter
fluid with EoS with barotropic index γ minimally coupled to
a scalar field with generalized harmonic potential (1).

According to this research program, in paper I [20] was
proved that late-time attractors in LRS Bianchi III model are:
a matter dominated flat FLRW universe if 0 ≤ γ ≤ 2

3 (mim-
icking de Sitter, quintessence or zero acceleration solutions),
a matter-curvature scaling solution if 2

3 < γ < 1 and Bianchi
III flat spacetime if 1 ≤ γ ≤ 2. Late-time attractors in FLRW
metric with k = −1 are: a matter dominated FLRW universe
if 0 ≤ γ ≤ 2

3 (mimicking de Sitter, quintessence or zero
acceleration solutions) and Milne solution if 2

3 < γ < 2. In
all metrics, the matter dominated flat FLRW universe repre-
sents quintessence fluid if 0 < γ < 2

3 . For LRS Bianchi I
and flat FLRW metrics as well as for LRS Bianchi III and
open FLRW, we can use Taylor expansion with respect to H
near H = 0. Hence, the resulting system can be expressed
in standard form (13) after selecting a convenient angular
frequency ω in the transformation (7). Next, we have taken
the time-averaged of previous system obtaining a system that
can be easily studied using dynamical system’s tools.

In particular, we have proved in Theorem 1 that late-time
attractors of full and time-averaged systems are the same for
some homogeneous metrics. Theorem 1 implies that Ω,Σ

and Φ evolve according to time-averaged equations (50), (51)
and (52) as H → 0. Therefore, we can establish the stability
of a periodic solution as it matches exactly the stability of a
stationary solution of averaged equation.

We have given a rigorous demonstration of Theorem 1
in Appendix A based on the construction of a smooth local

near-identity nonlinear transformation, well-defined as H
tends to zero. We have used properties of the sup norm and
the theorem of the mean values for a vector function f̄ :
R

2 −→ R
2. We have explained preliminaries of the method

of proof in Sect. 4.1. As in paper [42], our analytical results
were strongly supported by numerics in Appendix B as well.

More specific, according to Theorem 1 for Bianchi I and
flat FLRW metrics, Hubble parameter H plays the role of a
time-dependent perturbation parameter controlling the mag-
nitude of error between solutions of full and time-averaged
systems. Therefore, analysis of system is reduced to study
time-averaged equations. In this regard, we have formulated
theorems 2 and 3 concerning to the late-time behavior of our
model.

For LRS Bianchi I late-time attractors of full system (44)
and averaged system (72) are:

(i) The matter dominated FLRW Universe F0 with line ele-
ment (85) if 0 < γ < 1. F0 represents a quintessence
fluid or a zero-acceleration model for γ = 2

3 . In the limit
γ = 0 we have a de Sitter solution.

(ii) The scalar field dominated solution F with line element
(91) if 1 < γ ≤ 2. For large t the equilibrium point can
be associated with Einstein-de Sitter solution.

For flat FLRW metric late-time attractors of full system
(44) with Σ = 0 and averaged system are:

(i) The matter dominated FLRW Universe F0 with line ele-
ment (100) if 0 ≤ γ < 1. F0 represents a quintessence
fluid or a zero-acceleration model for γ = 2

3 . In the limit
γ = 0 we have a de Sitter solution.

(ii) The scalar field dominated solution F with line element
(102) if 1 < γ ≤ 2. For large t the equilibrium point can
be associated with Einstein-de Sitter solution.

It is interesting to note that for LRS Bianchi I and flat FLRW
cases when matter fluid is a cosmological constant, H tends
asymptotically to constant values depending on initial condi-
tions which is consistent to de Sitter expansion (see Figs. 3(a)
and 7(a)). For dust γ = 1 in flat FLRW metric, we have from
qualitative analysis in Section 5.2 that Ω̄(τ ) tends to a con-
stant and H(τ ) tends to zero as τ → +∞. Observe in Fig. 7a
that as H → 0 the values of Ω̄ lying on the orange line (solu-
tion of time-averaged system at fourth order) give an upper
bound to values of Ω in the original system. Therefore, by
controlling the error of averaged higher order system, one
can also control the error of the original one.

We have illustrated that asymptotic methods and averag-
ing theory are powerful tools to investigate scalar field cos-
mologies with generalized harmonic potential. One evident
advantage is that to determine stability of full oscillation it
is not needed to analyze the full dynamics, but only the late-
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time behavior of time-averaged (simpler) system has to be
analyzed. Interestingly, we have examined in detail sub-case
Ωk = 0 of LRS Bianchi III and open FLRW, i.e., flat limits
LRS Bianchi I and zero-curvature FLRW. We have obtained
for LRS Bianchi I that late-time attractors of full and time-
averaged systems are: a flat matter dominated FLRW Uni-
verse if 0 ≤ γ < 1 or an equilibrium solution if 1 < γ ≤ 2
which for large t can be associated with Einstein-de Sitter
solution. For flat FLRW metric, late-time attractors of full
system and time-averaged system are: a flat matter dominated
FLRW (mimicking de Sitter, quintessence or zero accelera-
tion solutions) if 0 < γ < 1 and Einstein-de Sitter solution
if 1 < γ < 2. In all metrics, the matter dominated flat FLRW
universe represents quintessence fluid if 0 < γ < 2

3 .
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Appendix A: Proof of Theorem 1

Lemma 4 (Gronwall’s Lemma (integral form)) Let be ξ(t)
a nonnegative function, summable over [0, T ]which satisfies
almost everywhere the integral inequality

ξ(t) ≤ C1

∫ t

0
ξ(s)ds + C2, C1,C2 ≥ 0.

Then,

ξ(t) ≤ C2e
C1t ,

almost everywhere for t in 0 ≤ t ≤ T . In particular, if

ξ(t) ≤ C1

∫ t

0
ξ(s)ds, C1 ≥ 0,

almost everywhere for t in 0 ≤ t ≤ T , then ξ ≡ 0, almost
everywhere for t in 0 ≤ t ≤ T .

Lemma 5 Let U ⊂ R
n be open, f : U → R

m continuously
differentiable and x ∈ U, h ∈ R

m vectors such that the line
segment x + z h, 0 ≤ z ≤ 1 remains in U. Then, we have:

f(x + h) − f(x) =
(∫ 1

0
Df(x + z h) dz

)
· h, (A.1)

where Df denotes the Jacobian matrix of f and the integral
of a matrix is understood as componentwise.

Proof of Theorem 1 Step 1: From Eq. (48) it follows that H
is a monotonic decreasing function of t if 0 < Ω2 +Σ2 < 1.
This allows to define recursively the bootstrapping sequences

⎧⎨
⎩

t0 = t∗

H0 = H(t∗)
,

⎧⎨
⎩

tn+1 = tn + 1
Hn

Hn+1 = H(tn+1)

, (A.2)

such that limn→∞ Hn = 0 y limn→∞ tn = ∞. ��
Given expansions (54) from (61) we have

Ω̇0 = 3

2
HΩ0

(
γ
(

1 − Σ0
2 − Ω0

2
)

+ 2Σ0
2 + 2

(
Ω0

2 − 1
)

cos2(Φ0 − tω)

)

− ∂g1

∂t
H + O

(
H2
)

,

Σ̇0 = 3

2
HΣ0

(
− (γ − 2)

(
Σ0

2 − 1
)

− (γ − 1)Ω2
0

+ Ω0
2 cos(2(Φ0 − tω))

)

− ∂g2

∂t
H + O

(
H2
)

,

Φ̇0 = −(3 cos(Φ0 − tω) sin(Φ0 − tω)) H

− ∂g3

∂t
H + O

(
H2
)

.

Let define ΔΩ0 = Ω0 − Ω̄, ΔΣ0 = Σ0 − Σ̄, ΔΦ0 =
Φ0 − Φ̄ and take same initial conditions at t = tn , such that
Ω0(tn) = Ω̄(tn) = Ωn, Σ0(tn) = Σ̄(tn) = Σn, Φ0(tn) =
Φ̄(tn) = Φn, 0 < Ωn < 1, −1 < Σn < 1. The system
(67) becomes

∂g1

∂t
= 3

2
Ω0

(
Ω2

0 − 1
)

cos(2(Φ0 − tω)),

∂g2

∂t
= 3

2
Σ0Ω

2
0 cos(2(Φ0 − tω)),

∂g3

∂t
= 3

2
sin(2(Φ0 − tω)). (A.3)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


489 Page 16 of 26 Eur. Phys. J. C (2021) 81 :489

Explicit expressions for gi are obtained straightforwardly by
integration of (A.3):

g1(Ω0,Σ0, Φ0, t) = 3Ω0
(
1 − Ω2

0

)
sin(2(Φ0 − tω))

4ω
,

(A.4)

g2(Ω0,Σ0, Φ0, t) = −3Σ0Ω
2
0 sin(2(Φ0 − tω))

4ω
, (A.5)

g3(Ω0,Σ0, Φ0, t) = 3 cos(2(Φ0 − tω))

4ω
, (A.6)

where we set three integration functionsCi (Ω0,Σ0, Φ0), i =
1, 2, 3 to zero. The gi , i = 1, 2, 3 are continuously differ-
entiable, such that their partial derivatives are bounded on
t ∈ [tn, tn+1].

The second order expansion around H = 0 of system (66)
is written as:

˙ΔΩ0 = 1

2
H
(

3Ω̄
(
(γ − 2)Σ̄2 + (γ − 1)

(
Ω̄2 − 1

))
−3Ω0

(
γ
(
Σ2

0 + Ω2
0 − 1

)
− 2Σ2

0 − Ω2
0 + 1

))

+ H2

8b2μ6ω3

[
8Ω3

0

(
2μ2 − ω2

)3
sin3(Φ0 − tω) cos(Φ0 − tω)

− 9b2μ6ω2Ω0

(
Ω2

0 − 1
)

sin(2(Φ0 − tω))
(
γ
(

1 − Σ2
0 − Ω2

0

)

+2Σ2
0 +

(
4Ω2

0 + 1
)

cos(2(Φ0 − tω)) + Ω2
0

) ]
, (A.7a)

˙ΔΣ0 = 3

2
H
(
Σ̄
(
(γ − 2)

(
Σ̄2 − 1

)
+ (γ − 1)Ω̄2

)
−(γ − 2)Σ0

(
Σ2

0 − 1
)

− (γ − 1)Σ0Ω2
0

)

−
9H2Σ0Ω2

0 sin(2(Φ0 − tω))
(
γ
(

1 − Σ2
0 − Ω2

0

)
+ 2Σ2

0 + 4Ω2
0 cos(2(Φ0 − tω)) + Ω2

0

)
8ω

, (A.7b)

˙ΔΦ0 = 3H2

8ω3

[(2μ2 − ω2
)3

Ω̄2

b2μ6 −
8Ω2

0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

3b2μ6

+ 3ω2 cos(2(Φ0 − tω))

(
γ
(

1 − Σ2
0 − Ω2

0

)
+ 2Σ2

0 +
(
Ω2

0 + 2
)

cos(2(Φ0 − tω)) + Ω2
0

)]
. (A.7c)

Denoting x0 = (Ω0,Σ0)
T , x̄ = (Ω̄, Σ̄)T Eqs. (A.7a) and

(A.7b) are reduced to:

˙Δx0 = H
(
f̄(x0) − f̄(x̄)

)+ O(H2),

where the vector function f̄ is explicitly given (the last row
corresponding to Eq. (A.7c) was omitted) by:

f̄(y1, y2) =
(− 3

2 y1
(−γ + (γ − 1)y2

1 + (γ − 2)y2
2 + 1

)
− 3

2 y2
(
(γ − 1)y2

1 + (γ − 2)
(
y2

2 − 1
))

)
.

It is a vector function with polynomial components in vari-
ables (y1, y2). Therefore, it is continuously differentiable in
all its components.

Let be Δx0(t) = (Ω0 − Ω̄,Σ0 − Σ̄)T with 0 ≤ |Δx0| :=
max

{|Ω0 − Ω̄|, |Σ0 − Σ̄ |} < ∞ in the closed interval
[tn, tn+1]. Using same initial conditions for x0 and x̄ we
obtain by integration:

Δx0(t) =
∫ t

tn

˙Δx0ds

=
∫ t

tn

(
H
(
f̄(x0) − f̄(x̄)

)+ O(H2)
)
ds. (A.8)

The terms of orderO(H2) under the integral sign in Eq. (A.8)
come from the second order terms in the series expansion
centered in H = 0 of Δ̇Ω0 and Δ̇Σ0 in (A.7a) and (A.7b).
These terms are bounded in the interval [tn, tn+1] by M1H2

n ,
where

M1 = max
t∈[tn ,tn+1]

{∣∣∣∣ 1

8b2μ6ω3

[
8Ω3

0

(
2μ2 − ω2

)3
sin3(Φ0 − tω) cos(Φ0 − tω),

− 9b2μ6ω2Ω0

(
Ω2

0 − 1
)

sin(2(Φ0 − tω))
(
γ
(

1 − Σ2
0 − Ω2

0

)
+ 2Σ2

0 +
(

4Ω2
0 + 1

)
cos(2(Φ0 − tω)) + Ω2

0

) ]∣∣∣∣,
∣∣∣∣9Σ0Ω

2
0 sin(2(Φ0 − tω))

(
γ
(
1 − Σ2

0 − Ω2
0

)+ 2Σ2
0 + 4Ω2

0 cos(2(Φ0 − tω)) + Ω2
0

)
8ω

∣∣∣∣
}
,
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is finite by continuity of Ω̄,Ω0, Σ̄,Σ0, Φ0 in the closed
interval [tn, tn+1].

Using Lemma 5 we have

f̄(x0(s)) − f̄(x̄(s))

=
(∫ 1

0
Df̄ (x̄(s) + z (x0(s) − x̄(s))) dz

)
︸ ︷︷ ︸

A(s)

· (x0(s) − x̄(s)) , (A.9)

where Df̄ denotes the Jacobian matrix of f̄ and the integral
of a matrix is understood as componentwise.

Omitting the dependence on s we calculate the matrix
elements of A as

A =
(
a b
c d

)
, (A.10)

where

a = −3

2

(
1

3
(γ − 2)

(
Σ0Σ̄ + Σ̄2 + Σ2

0

)

+(γ − 1)
(
Ω0Ω̄ + Ω̄2 + Ω2

0 − 1
))

, (A.11)

b = −1

2
(γ − 2)

(
Σ̄
(
2Ω̄ + Ω0

)+ Σ0
(
Ω̄ + 2Ω0

))
,

(A.12)

c = −1

2
(γ − 1)

(
Σ̄
(
2Ω̄ + Ω0

)+ Σ0
(
Ω̄ + 2Ω0

))
,

(A.13)

d = −3

2

(
(γ − 2)

(
Σ0Σ̄ + Σ̄2 + Σ2

0 − 1
)

+1

3
(γ − 1)

(
Ω0Ω̄ + Ω̄2 + Ω2

0

))
. (A.14)

Taking the sup norm |Δx0| = max
{|Ω0 − Ω̄|, |Σ0 − Σ̄ |}

we have for all t ∈ [tn, tn+1]:
∣∣∣Δx0(t)

∣∣∣ = ∣∣∣
∫ t

tn

˙Δx0ds
∣∣∣

=
∣∣∣∣
∫ t

tn

(
H
(
f̄(x0(s)) − f̄(x̄(s))

)+ O(H2)
)
ds

∣∣∣∣
≤
∣∣∣∣
∫ t

tn
H
(
f̄(x0(s)) − f̄(x̄(s))

)
ds

∣∣∣∣+ M1H
2
n (t − tn)

=
∣∣∣∣
∫ t

tn
HA(s) · Δx0(s)ds

∣∣∣∣+ M1H
2
n (t − tn)

≤ Hn

∫ t

tn

∣∣∣∣
(
a b
c d

)
Δx0(s)

∣∣∣∣ds + M1H
2
n (t − tn),

On the other hand∣∣∣∣
(
a b
c d

)
· Δx0(s)

∣∣∣∣ ≤ 2

∣∣∣∣
(
a b
c d

) ∣∣∣∣
∣∣∣Δx0(s)

∣∣∣

where the sup norm of a matrix

∣∣∣∣
(
a b
c d

) ∣∣∣∣ is defined by

max{|a|, |c|, |b|, |d|}.
By continuity of Ω̄,Ω0, Σ̄,Σ0 in [tn, tn+1]

L1 = 2 max
s∈[tn ,tn+1]

∣∣∣∣
(
a(s) b(s)
c(s) d(s)

) ∣∣∣∣
is finite. Hence, for all t ∈ [tn, tn+1] we have:

∣∣∣Δx0(t)
∣∣∣ ≤ L1Hn

∫ t

tn

∣∣∣Δx0(s)
∣∣∣ds + M1H

2
n (t − tn)

≤ L1Hn

∫ t

tn

∣∣∣Δx0(s)
∣∣∣ds + M1Hn

due to t − tn ≤ tn+1 − tn = 1
Hn

.
Using Gronwall’s Lemma 4, we have for t ∈ [tn, tn+1]:

∣∣∣Δx0(t)
∣∣∣ ≤ M1Hne

L1Hn(t−tn) ≤ M1Hne
L1 .

Then,

∣∣∣ΔΩ0(t)
∣∣∣ ≤ M1e

L1 Hn,

∣∣∣ΔΣ0(t)
∣∣∣ ≤ M1e

L1 Hn .

Furthermore, defining

M2 = max
t∈[tn ,tn+1]

∣∣∣∣ 3

8ω3

[(
2μ2 − ω2

)3
Ω̄2

b2μ6

− 8Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

3b2μ6

+ 3ω2 cos(2(Φ0 − sω))
(
γ
(

1 − Σ0
2 − Ω0

2
)

+ 2Σ0
2 +
(
Ω0

2 + 2
)

cos(2(Φ0 − sω)) + Ω0
2
)]∣∣∣∣,
(A.15)

which is finite by continuity of Ω̄,Ω0, Σ̄,Σ0, Φ0 in the
closed interval [tn, tn+1], we obtain from Eq. (A.7c) that

|ΔΦ0(t)| =
∣∣∣∣
∫ t

tn

˙ΔΦ0(s)ds

∣∣∣∣
≤ M2H

2
n (t − tn) +

∣∣∣O(Hn
3)

∣∣∣
≤ M2Hn +

∣∣∣O(Hn
3)

∣∣∣,
due to t − tn ≤ tn+1 − tn = 1

Hn
. Finally, taking limit n → ∞

we obtain Hn → 0. Then, as Hn → 0 functions Ω0,Σ0, Φ0

and Ω̄, Σ̄, Φ̄ have same limit as t → ∞.
Step 2: For FLRW the second order expansion around

H = 0 of system (66) is written as:
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˙ΔΩ0 = −3

2
(γ − 1)HΔΩ0

(
1 − Ω2

0 − Ω0Ω̄ − Ω̄2
)

− 9H2Ω0
(
Ω2

0 − 1
)

sin(2(Φ0 − tω))
(−γΩ2

0 + γ + (4Ω2
0 + 1

)
cos(2(Φ0 − tω)) + Ω2

0

)
8ω

− H2Ω3
0

(
ω2 − 2μ2

)3
sin3(Φ0 − tω) cos(Φ0 − tω)

b2μ6ω3 . (A.16a)

˙ΔΦ0 = 3H2

8ω3

[(
2μ2 − ω2

)3
Ω̄2

b2μ6 − 8Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

3b2μ6

+ 3ω2 cos(2(Φ0 − tω))
(
γ
(

1 − Ω0
2
)

+
(
Ω0

2 + 2
)

cos(2(Φ0 − tω)) + Ω0
2
)]

. (A.16b)

Then,

|ΔΩ0(t)| =
∣∣∣∣
∫ t

tn

(
Ω̇0(s) − ˙̄Ω(s)

)
ds

∣∣∣∣ =
∣∣∣∣
∫ t

tn

[
−3

2
(γ − 1)HΔΩ0

(
1 − Ω2

0 − Ω0Ω̄ − Ω̄2
)

+O(H2)
]
ds

∣∣∣∣.

and

|ΔΦ0(t)| =
∣∣∣∣
∫ t

tn

(
Φ̇0(s) − ˙̄Φ(s)

)
ds

∣∣∣∣
=
∣∣∣∣
∫ t

tn

{
3H2

8ω3

[(
2μ2 − ω2

)3
Ω̄2

b2μ6

− 8Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

3b2μ6

+ 3ω2 cos(2(Φ0 − sω))
(
γ
(

1 − Ω0
2
)

+
(
Ω0

2 + 2
)

cos(2(Φ0 − sω)) + Ω0
2
)]

+ O(H3)

}
ds

∣∣∣∣.

By continuity of Ω̄,Ω0 and Φ0 in [tn, tn+1] the following
finite constants are found:

L2 = max
t∈[tn ,tn+1]

∣∣∣∣32 (1 − γ )
(

1 − Ω2
0 − Ω0Ω̄ − Ω̄2

) ∣∣∣∣,

M3 = max
t∈[tn ,tn+1]

∣∣∣∣9Ω0
(
Ω2

0 − 1
)

sin(2(Φ0 − tω))
(−γΩ2

0 + γ + (4Ω2
0 + 1

)
cos(2(Φ0 − tω)) + Ω2

0

)
8ω

+Ω3
0

(
ω2 − 2μ2

)3
sin3(Φ0 − tω) cos(Φ0 − tω)

b2μ6ω3

∣∣∣∣.

and

M4 = max
t∈[tn ,tn+1]

∣∣∣∣ 3

8ω3

[(
2μ2 − ω2

)3
Ω̄2

b2μ6

− 8Ω2
0

(
2μ2 − ω2

)3
sin4(Φ0 − tω)

3b2μ6

+ 3ω2 cos(2(Φ0 − sω))
(
γ
(

1 − Ω0
2
)

+
(
Ω0

2 + 2
)

cos(2(Φ0 − sω)) + Ω0
2
)]∣∣∣∣,

such that the terms proportional to H2 in Eq. (A.16a) are
bounded in absolute value by M3H2

n and the terms propor-
tional to H2 in Eq. (A.16b) are bounded in absolute value by
M4H2

n in the interval [tn, tn+1]. Then,
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|ΔΩ0(t)| ≤
∫ t

tn

∣∣∣∣32 (1 − γ )
(

1 − Ω2
0 − Ω0Ω̄ − Ω̄2

) ∣∣∣∣︸ ︷︷ ︸
≤L2

· H︸︷︷︸
≤Hn

|ΔΩ0(s)|ds + M3Hn
2(t − tn)

≤ L2Hn

∫ t

tn
|ΔΩ0(s)|ds + M3H

2
n (t − tn)

≤ L2Hn

∫ t

tn
|ΔΩ0(s)|ds + M3Hn,

due to t − tn ≤ tn+1 − tn = 1
Hn

. Using Gronwall’s Lemma 4,
we have for t ∈ [tn, tn+1]:
∣∣∣ΔΩ0(t)

∣∣∣ ≤ M3Hne
L2Hn(t−tn) ≤ M3Hne

L2 .

Furthermore, from Eq. (A.16b) we have

|ΔΦ0(t)| =
∣∣∣∣
∫ t

tn

˙ΔΦ0(s)ds

∣∣∣∣ ≤ M4H
2
n (t − tn) +

∣∣∣O(Hn
3)

∣∣∣
≤ M4Hn +

∣∣∣O(Hn
3)

∣∣∣,
due to t − tn ≤ tn+1 − tn = 1

Hn
. Finally, taking limit n → ∞

we obtain Hn → 0. Then, as Hn → 0 functions Ω0, Φ0 and
Ω̄, Φ̄ have same limit as t → ∞. ��

Summarizing, according to Theorem 1 for Bianchi I and
flat FLRW metrics, Hubble parameter H plays the role
of a time-dependent perturbation parameter controlling the
magnitude of the error between solutions of full and time-
averaged systems. Therefore, the analysis is reduced to study
time-averaged equations.

Appendix B: Numerical simulation

In this section we present numerical evidence that supports
the main results in Sect. 4 by solving numerically full and
averaged systems for each metric, namely LRS Bianchi I and
flat FLRW.

For this purpose, an algorithm in the programming lan-
guage Python was elaborated where systems of differential
equations were solved using the solve_ivp code that is pro-
vided by the SciPy open-source Python-based ecosystem.
The integration method is an implicit Runge-Kutta method
of the Radau IIa family of order 5 with relative and abso-
lute tolerances of 10−4 and 10−7, respectively. All systems
of differential equations were integrated with respect to τ

in an integration range of −40 ≤ τ ≤ 10 for the original
systems and in an integration range of −40 ≤ τ ≤ 100
for the averaged systems. All of them are partitioned in

Table 3 Seven initial data sets for the simulation of full system (44)
and averaged system (72) for Bianchi I metric are displayed. All initial
conditions satisfy Σ̄2(0) + Ω̄2(0) + Ω̄m(0)=1

Sol. H(0) Σ̄(0) Ω̄2(0) Ω̄m(0) Φ̄(0) t (0)

i 0.1 0.1 0.9 0.09 0 0

ii 0.1 0.4 0.1 0.74 0 0

iii 0.1 0.6 0.1 0.54 0 0

iv 0.02 0.48 0.02 0.7496 0 0

v 0.1 0.48 0.02 0.7496 0 0

vi 0.1 0.5 0.01 0.74 0 0

vii 0.1 0 0.685 0.315 0 0

10,000 data points. Furthermore, each full and time-averaged
systems were solved considering only one matter compo-
nent. These are cosmological constant (γ = 0), non rel-
ativistic matter or dust (γ = 1), radiation (γ = 4/3)
and stiff fluid (γ = 2). Vacuum solutions correspond to
Ω = Ωm ≡ 0 and solutions without matter fluid corre-
spond to Ωm ≡ 0. Finally, we have considered these con-
stants: μ = √

2/2, b = √
2/5 and ω = √

2, that lead to

the value of f = bμ3

ω2−2μ2 = 1/10 which fulfills the condi-
tion f ≥ 0. These values are translated into a generalized
harmonic potential:

V (φ) = φ2

2
+ 1

100
(1 − cos(10φ)). (B.17)

Appendix B.1: LRS Bianchi I model

For LRS Bianchi I metric we integrate:

1. The full system (44).
2. The time-averaged system (72).

As initial conditions we use seven data sets which are pre-
sented in Table 3.

In Figs. 3, 4, 5 and 6 projections of some solutions in
the (Σ, H,Ω2) space of full system (44) and time-averaged
system (72) along with their respective projection in the sub-
space H = 0 are presented. Both systems were integrated
using the same initial data sets from Table 3. Figure 3a, b
show solutions for a matter fluid which corresponds to cos-
mological constant (γ = 0). Figure 4a, b show solutions for a
matter fluid which corresponds to dust (γ = 1). Figure 5a, b
show solutions for a matter fluid which corresponds to radi-
ation (γ = 4/3). Figure 6a, b show solutions for a matter
fluid which corresponds to stiff fluid (γ = 2). These figures
numerically support the main theorem that is presented in
Sect. 4 for Bianchi I metric. As an interesting point, in this
example, for γ = 0 when the matter fluid corresponds to a
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(a)

(b)

Fig. 3 Some solutions of the full system (44) (blue) and time-averaged system (72) (orange) for Bianchi I metric when γ = 0. We have used for
both systems the initial data sets that are presented in Table 3
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(a)

(b)

Fig. 4 Some solutions of the full system (44) (blue) and time-averaged system (72) (orange) for Bianchi I metric when γ = 1. The line denoted
by red diamonds corresponds to the attracting line of equilibrium points. We have used for both systems the initial data sets that are presented in
Table 3
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(a)

(b)

Fig. 5 Some solutions of the full system (44) (blue) and time-averaged system (72) (orange) for Bianchi I metric when γ = 4/3. We have used
for both systems the initial data sets that are presented in Table 3
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(a)

(b)

Fig. 6 Some solutions of the full system (44) (blue) and time-averaged system (72) (orange) for Bianchi I metric when γ = 2. We have used for
both systems the initial data sets that are presented in Table 3
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(a)

(c) (d)

(b)

Fig. 7 Some solutions of full system (44) with Σ = 0 (blue) and time-
averaged system (98) or (103) if γ = 1 (orange) for flat FLRW metric
(k = 0) when the matter fluid correspond to: a cosmological constant,
b dust, c radiation and d stiff fluid. The black line represents the con-

straint Ω2 = 1. In a the line denoted by red diamonds corresponds to
the attracting line of equilibrium points (de Sitter solutions). We have
used for both systems initial data sets that are presented in Table 4

cosmological constant, H tends asymptotically to a constant,
which is consistent to de Sitter expansion.

Appendix B.2: Flat FLRW model

For flat FLRW model we integrate:

1. The full system given by (44) with Σ = 0.
2. The time-averaged system (98) if γ �= 1 or the system

(103) truncated at fourth order if γ = 1.

As initial conditions we use eight data sets that are presented
in Table 4.

In Fig. 7a–d projections of some solutions in the (H,Ω2)

space of full system (44) with Σ = 0 and time-averaged
system (98) for flat FLRW metric (k = 0) are presented.
Both systems were integrated using the same initial data sets
from Table 4. Figure 7b shows solutions for a matter fluid
which corresponds to cosmological constant (γ = 0). Fig-
ure 7a shows solutions for a matter fluid which corresponds
to dust (γ = 1). Observe that as H → 0 the values of Ω̄

Table 4 Eight initial data sets for the simulation of full system (44)
with Σ̄ = 0 and time-averaged system (98) if γ �= 1 or (103) if γ = 1
for flat FLRW metric (k = 0) are displayed. All initial conditions satisfy
Ω̄2(0) + Ω̄m(0) = 1

Sol. H(0) Ω̄2(0) Ω̄m(0) Φ̄(0) t (0)

i 0.1 0.4 0.6 0 0

ii 0.1 0.5 0.5 0 0

iii 0.1 0.6 0.4 0 0

iv 0.1 0.7 0.3 0 0

v 0.1 0.8 0.2 0 0

vi 0.1 0.9 0.1 0 0

vii 0.1 1.0 0.0 0 0

viii 0.1 0.0 1.0 0 0

lying on the orange line (solution of time-averaged system
at fourth order) give an upper bound to the value of Ω of
the original system. Figure 7c shows solutions for a matter
fluid which corresponds to radiation (γ = 4/3). Figure 7d
shows solutions for a matter fluid which corresponds to stiff
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fluid (γ = 2). These figures support numerically the main
theorem that is presented in Sect. 4 for flat FLRW metric.
It is interesting to note that in the flat FLRW case when the
matter fluid corresponds to a cosmological constant, H tends
asymptotically to constant values depending on initial condi-
tions which is consistent to de Sitter expansion (see Fig. 7a).
With our approach, the oscillations which enter the system
through the KG equation can be controlled and smoothed out
as the Hubble parameter H tends monotonically to zero. This
fact was analytically proved in Appendix A and we have pre-
sented numerical simulations as evidence of such behavior
in Appendix B.
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