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Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding
traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely
investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these
wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct
a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge 𝑄, magnetic charge 𝑃, and dilaton
charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste
method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses
by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable
parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole
solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge,
magnetic charge, and dilaton charge.

1. Introduction

Wormholes are exotic objects predicted by Einstein’s theory
of gravity which act as a space-time tunnel by connecting
two different regions of the universe. Though the idea of
wormholes is not new [1, 2], the interest in wormholes was
recently reborn by the seminal work of Morris and Thorne
[3] who studied traversable wormholes. There are, however,
several problematic issues related to the possible existence
of wormholes; in particular, it was shown that the existence
of wormholes requires the violation of energy conditions
[4, 5]. Another major problem is related to the stability
analysis of wormholes. On the other hand, Visser attempted
tominimize the existence of the exoticmatter by constructing
infinitesimally small thin-shell wormholes [6–9]. Visser’s
method is based on the cut-and-paste technique by joining

together two identical space-time solutions and making use
of the Darmois-Israel formalism [10] to compute the surface
stress-energy tensor components. Finally, these results can
be used to study the wormhole dynamics with the help of
Lanczos equations.

This method was applied to construct a number of thin-
shell wormholes (TSW), including charged TSW [11, 12],
TSW with a cosmological constant [13], TSW in dilaton
gravity [14], TSW from the regular Hayward black hole
[15], TSW in higher-dimensional Einstein-Maxwell theory
[16, 17], rotating TSW [18, 19], quantum corrected TSW in
Bohmian quantum mechanics [20], primordial wormholes
induced from Grand Unified Theories (GUTs) [21, 22],
canonical acoustic TSW, charged TSW with dilaton field,
TSW with a Chaplygin gas, traversable wormholes in the
anti-de Sitter space-time, TSW with a negative cosmological

Hindawi
Advances in High Energy Physics
Volume 2017, Article ID 1215254, 9 pages
https://doi.org/10.1155/2017/1215254

https://doi.org/10.1155/2017/1215254


2 Advances in High Energy Physics

constant, wormholes in mimetic gravity, TSW from charged
black string, cylindrical TSW, and many other interesting
papers [23–58], while the stability analysis is investigated by
different models, for example, linear perturbations [9] and
specific equations of state (EoS) such as linear barotropic gas
(LBG), Chaplygin gas (CG), and logarithmic gas (LogG) for
the exotic matter [14, 59–62].

Recently, Goulart found a four-dimensional, spherically
symmetric, dyonic black hole and charged wormhole solu-
tion in the low-energy effective actions of string theory or
supergravity theory [63, 64]. Furthermore, in [65], a time-
dependent spherically symmetric black hole solution in the
context of low-energy string theory was investigated. The
solution found by Goulart is of particular interest since it
can be written in terms of five independent parameters:
the electric charge 𝑄, the magnetic charge Σ, the value of
the dilation of infinity 𝜙0, and two integration constants, 𝑟1
and 𝑟2. Inspired by this work, we aim to use this solution
and construct a four-dimensional TSW wormhole in the
context of Einstein-Maxwell-dilaton (EMD) theory and then
investigate the role of electric charge 𝑄, magnetic charge 𝑃,
and dilaton chargeΣ on the stability domain of thewormhole.

The structure of this paper is as follows. In Section 2, we
review briefly the dyonic black hole solutions. In Section 3,
using Visser’s cut-and-paste technique, we construct a dyonic
thin-shell wormhole (DTSW). In Section 4, we check the
stability conditions for different types of gases such as
LBG, CG, and LogG for the exotic matter. In Section 5, we
comment on our results.

2. Dyonic Black Holes in the EMD Theory

In this part, we use the dyonic black hole solutions in the
EMD theory found by Goulart [63]. Firstly, we consider the
action of the EMDwithout a dilaton potential and without an
axion:

𝑆 = ∫𝑑4𝑥√−𝑔 (𝑅 − 2𝜕𝜇𝜙𝜕𝜇𝜙 −𝑊(𝜙) 𝐹𝜇]𝐹𝜇]) , (1)

where the field strength is given by

𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇. (2)

Furthermore, for constant axion field, the bosonic sector of𝑆𝑈(4) version of N = 4 supergravity theory is𝑊(𝜙) = 𝑒−2𝜙
[41]. It is noted that there are five independent parameters,
that is, 𝑄, 𝑃, 𝜙0, 𝑟1, and 𝑟2. Accordingly, the space-time of
the general spherically symmetric solution is given by the line
element [63]

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 1𝑓 (𝑟)𝑑𝑟2
+ ℎ (𝑟) (𝑑𝜃2 + sin2𝜃 𝑑𝜑2) ,

(3)

where

𝑓 (𝑟) = (𝑟 − 𝑟1) (𝑟 − 𝑟2)(𝑟 + 𝑑0) (𝑟 + 𝑑1) ,
ℎ (𝑟) = (𝑟 + 𝑑0) (𝑟 + 𝑑1) ,

𝑒2𝜙 = 𝑒2𝜙0 𝑟 + 𝑑1𝑟 + 𝑑0 ,
𝐹𝑟𝑡 = 𝑒2𝜙0𝑄

(𝑟 + 𝑑0)2 ,
𝐹𝜃𝜑 = 𝑃 sin 𝜃,

(4)

with

𝑑0 = − (𝑟1 + 𝑟2) ± √(𝑟1 − 𝑟2)
2 + 8𝑒2𝜙0𝑄2

2 ,

𝑑1 = − (𝑟1 + 𝑟2) ± √(𝑟1 − 𝑟2)
2 + 8𝑒−2𝜙0𝑃2

2 .
(5)

Note that the corresponding electric and magnetic charges
are𝑄 and𝑃, respectively. 𝜙0 stands for the value of the dilaton
at infinity. Furthermore, there are two integration constants,
that is, 𝑟1 and 𝑟2. On the other hand, 𝑑0 and 𝑑1 are dependent
constants inasmuch as they transform into each other under
S-duality (i.e., 𝑄 ↔ 𝑃 and 𝜙 → −𝜙). It is noted that 𝑒−2𝜙,
which is the dilaton coupling, is also invariant. Here, 𝑟1 and𝑟2 are the inner and outer horizons, respectively [63].

The Hawking temperature is calculated by

𝑇 = 14𝜋
(𝑟2 − 𝑟1)(𝑟2 + 𝑑0) (𝑟2 + 𝑑1) , (6)

and the entropy of the black hole is

𝑆 = 𝜋 (𝑟2 + 𝑑0) (𝑟2 + 𝑑1) . (7)

One can also define the dilaton charge as follows:

Σ = 14𝜋 ∫𝑑Σ𝜇∇𝜇𝜙 =
(𝑑0 − 𝑑1)2 , (8)

where, depending on the values of electric/magnetic charge
of black hole, it can be positive or negative. Firstly, the four
parameters’ (𝑄, 𝑃, 𝜙0,𝑀) dyonic solution is found in [37].
Here, the key point is that there is no boundary condition on𝑟1 and 𝑟2 to make this dyonic black hole.

The Ricci scalar is calculated as follows:

𝑅 = (𝑑0 − 𝑑1)2 (𝑟 − 𝑟1) (𝑟 − 𝑟2)2 (𝑟 + 𝑑0)3 (𝑟 + 𝑑1)3 . (9)

The domain of ℎ(𝑟) ≥ 0 is restricted with the causality. The
singularity is found at 𝑟𝑆 = −𝑑0 for 𝑑0 > 𝑑1, or at 𝑟𝑆 = −𝑑1 for𝑑1 > 𝑑0.

One of the special cases which we use to construct a
DTSWwhen 𝑑1 = −𝑑0 is that the dilaton charge is a constant
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𝑑0 such as 𝑑0 = Σ. Furthermore, we suppose that (𝑟1 + 𝑟2) =2𝑀 and (𝑟1𝑟2) = 𝑟20 [37]. The solution becomes

𝑓 (𝑟) = (𝑟 − 𝑟1) (𝑟 − 𝑟2)(𝑟2 − Σ2) ,
ℎ (𝑟) = (𝑟2 − Σ2)
𝑒2𝜙 = 𝑒2𝜙0 𝑟 − Σ𝑟 + Σ ,
𝐹𝑟𝑡 = 𝑒2𝜙0𝑄

(𝑟 + Σ)2 ,
𝐹𝜃𝜑 = 𝑃 sin 𝜃.

(10)

One can find the magnetically charged solutions of [38, 39]
by using𝑄 = 0 and also the Schwarzschild solution by setting𝑃 = 0.
3. Construction of DTSW

Let us now proceed to use the cut-and-paste technique to
construct a DTSWusingmetric (3). Consider two spherically
symmetric space-time solutions of the dyonic black hole
metric in 4 dimensions and then remove from each four-
dimensional manifold𝑀(±) the regions described by [9]

𝑀(±) = {𝑟(±) ≤ 𝑎 | 𝑎 > 𝑟ℎ} , (11)

where 𝑎 is the radius of the throat of the DTSW with an
important condition 𝑎 > 𝑟ℎ. In other words, 𝑎 should be
greater than the event horizon in order to avoid the formation
of an event horizon. Next, paste these two manifolds at the
boundary hypersurface given by Σ(±) = {𝑟(±) = 𝑎, 𝑎 > 𝑟ℎ}
which results with a geodesically complete manifold 𝑀 =𝑀+ ∪ 𝑀−. According to the Darmois-Israel formalism, we
can choose the coordinates on 𝑀 as 𝑥𝛼 = (𝑡, 𝑟, 𝜃, 𝜑), while
the coordinates on the inducedmetric Σ are 𝜉𝑖 = (𝜏, 𝜃, 𝜑). For
the parametric equation on Σ, we can write

Σ : 𝐹 (𝑟, 𝜏) = 𝑟 − 𝑎 (𝜏) = 0. (12)

Our main goal is to compare various characteristics of
EMD theory and dyonic black hole, such as the surface stress-
energy tensor and the basic question of stability. For this
purpose, we define the dynamical induced metric on Σ that
can now be written in terms of the proper time 𝜏 on the shell,
where 𝑎 = 𝑎(𝜏), as follows:

𝑑𝑠2Σ = −𝑑𝜏2 + 𝑎 (𝜏)2 (𝑑𝜃2 + sin2𝜃 𝑑𝜑2) . (13)

The junction conditions on Σ imply from the Lanczos
equations

𝑆𝑖𝑗 = − 18𝜋 ([𝐾𝑖𝑗] − 𝛿𝑖𝑗𝐾) , (14)

in which 𝑆𝑖𝑗 = diag(−𝜎, 𝑝𝜃, 𝑝𝜑) is the energy momentum
tensor on the thin shell and 𝐾 and [𝐾𝑖𝑗] are defined as 𝐾 =

trace[𝐾𝑖𝑖] and [𝐾𝑖𝑗] = 𝐾𝑖𝑗+ −𝐾𝑖𝑗−, respectively. Furthermore,
the extrinsic curvature𝐾𝑖𝑗 is defined by

𝐾(±)𝑖𝑗 = −𝑛(±)𝜇 ( 𝜕2𝑥𝜇𝜕𝜉𝑖𝜕𝜉𝑗 + Γ𝜇𝛼𝛽 𝜕𝑥
𝛼

𝜕𝜉𝑖 𝜕𝑥
𝛽

𝜕𝜉𝑗 )
Σ

. (15)

We can choose the unit vectors 𝑛(±)𝜇 , such that 𝑛𝜇𝑛𝜇 = 1
and normal to𝑀(±) as follows:

𝑛(±)𝜇 = ±(𝑔𝛼𝛽
𝜕𝐹𝜕𝑥𝛼 𝜕𝐹𝜕𝑥𝛽


−1/2 𝜕𝐹𝜕𝑥𝜇)

Σ

. (16)

Adopting the orthonormal basis {𝑒𝜏, 𝑒𝜃, 𝑒𝜑} (𝑒𝜏 = 𝑒𝜏, 𝑒𝜃 =[ℎ(𝑎)]−1/2𝑒𝜃, 𝑒𝜑 = [ℎ(𝑎)sin2𝜃]−1/2𝑒𝜑), for metric (3), the
extrinsic curvature components are found as [24]

𝐾±
𝜃𝜃
= 𝐾±𝜑𝜑 = ± ℎ (𝑎)2ℎ (𝑎)√𝑓 (𝑎) + ̇𝑎2,

𝐾±𝜏𝜏 = ∓ 2 ̈𝑎 + 𝑓 (𝑎)2√𝑓 (𝑎) + ̇𝑎2 ,
(17)

where the prime and the dot represent the derivatives with
respect to 𝑟 and 𝜏, respectively.With the definitions of [𝐾�̂�𝑗] ≡𝐾+
�̂�𝑗
− 𝐾−
�̂�𝑗
and 𝐾 = tr[𝐾�̂�𝑗] = [𝐾�̂� �̂�] and the introduction of

the surface stress-energy tensor 𝑆�̂�𝑗 = diag(𝜎, 𝑝𝜃, 𝑝𝜑), we have
the Einstein equations on the shell (also called the Lanczos
equations):

− [𝐾�̂�𝑗] + 𝐾𝑔�̂�𝑗 = 8𝜋𝑆�̂�𝑗, (18)

which in our case results in a shell of radius 𝑎 with energy
density 𝜎 and transverse pressure 𝑝 = 𝑝𝜃 = 𝑝𝜑. Using
the above results from the Lanczos equations, one can easily
check that the surface density and the surface pressure are
given by the following relations [24, 25]:

𝜎 = −√𝑓 (𝑎) + ̇𝑎24𝜋 ℎ (𝑎)ℎ (𝑎) , (19)

𝑝 = √𝑓 (𝑎) + ̇𝑎28𝜋 [2 ̈𝑎 + 𝑓 (𝑎)𝑓 (𝑎) + ̇𝑎2 + ℎ
 (𝑎)ℎ (𝑎) ] . (20)

Note that the energy density is negative at the throat
because of the flare-out condition in which the area is
minimal at the throat (then ℎ(𝑟) increases for 𝑟 close to 𝑎
and ℎ(𝑎) > 0), so we have exotic matter. From the last two
equations, we can nowwrite the static configuration of radius𝑎; by setting ̇𝑎 = 0 and ̈𝑎 = 0, we get

𝜎0 = −√𝑓 (𝑎0)4𝜋
ℎ (𝑎0)ℎ (𝑎0) , (21)

𝑝0 = √𝑓 (𝑎0)8𝜋 [𝑓 (𝑎0)𝑓 (𝑎0) +
ℎ (𝑎0)ℎ (𝑎0) ] . (22)
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From (21), we see that the surface density is negative (i.e.,𝜎0 < 0); as a consequence of this, the WEC is violated. The
amount of exotic matter concentrated at the wormhole is
calculated by the following integral:

Ω𝜎 = ∫√−𝑔 (𝜌 + 𝑝𝑟) 𝑑3𝑥. (23)

In the case of a TSW, we have 𝑝𝑟 = 0 and 𝜌 = 𝜎𝛿(𝑟 − 𝑎),
where 𝛿(𝑟 − 𝑎) is the Dirac delta function.The above integral
can be easily evaluated if we first make use of the Dirac delta
function

Ω𝜎 = ∫2𝜋
0
∫𝜋
0
∫∞
−∞
𝜎√−𝑔𝛿 (𝑟 − 𝑎) 𝑑𝑟 𝑑𝜃 𝑑𝜑. (24)

Substituting the value of energy density in the last equa-
tion, for the energy density located on a thin-shell surface in
static configuration, we find

Ω𝜎 = −2𝑎0√(𝑎0 − 𝑟1) (𝑎0 − 𝑟2)(𝑎20 − Σ2) . (25)

To analyze the attractive and repulsive nature of the
wormhole, we can calculate the observer’s four-acceleration𝑎𝜇 = 𝑢]∇]𝑢𝜇, where the four-velocity reads 𝑢𝜇 = (1/√𝑓(𝑟),0, 0, 0). For the radial component of the four-acceleration, we
find

𝑎𝑟 = Γ𝑟𝑡𝑡 ( 𝑑𝑡𝑑𝜏)
2

= 𝑎20 (𝑟1 + 𝑟2) − 2𝑎0 (Σ2 + 𝑟1𝑟2) + Σ2 (𝑟1 + 𝑟2)2 (𝑎20 − Σ2)2 .
(26)

One can easily observe that the test particle obeys the
equation of motion

𝑑2𝑟𝑑𝜏2 = −Γ𝑟𝑡𝑡 ( 𝑑𝑡𝑑𝜏)
2 = −𝑎𝑟. (27)

We conclude from the last equation that if 𝑎𝑟 = 0, we get
the geodesic equation, while the wormhole is attractive when𝑎𝑟 > 0 and repulsive when 𝑎𝑟 < 0.
4. Stability Analysis

In this section, using the formalism developed in Section 3,
we calculate the potential and define the stability method for
DTSW. From the energy conservation, we have [24]

𝑑𝑑𝜏 (𝜎A) + 𝑝𝑑A𝑑𝜏
= {[ℎ (𝑎)]2 − 2ℎ (𝑎) ℎ (𝑎)} ̇𝑎√𝑓 (𝑎) + ̇𝑎22ℎ (𝑎) ,

(28)

where the area of the wormhole is calculated byA = 4𝜋ℎ(𝑎).
It is noted that the internal energy of the throat is located
at the left side of (28) as a first term. Then, the second term

represents the work done by the internal forces of the throat;
on the other hand, there is a flux term in the right side of the
equation. Furthermore, to calculate the equation of dynamics
of the wormhole, we use 𝜎(𝑎) in (19) and find this simple
equation:

̇𝑎2 = −𝑉 (𝑎) , (29)

with potential

𝑉 (𝑎) = 𝑓 (𝑎) − 16𝜋2 [ ℎ (𝑎)ℎ (𝑎)𝜎 (𝑎)]
2 . (30)

A Taylor expansion to the second order of the potential 𝑉(𝑎)
around the static solution yields [24]

𝑉 (𝑎) = 𝑉 (𝑎0) + 𝑉 (𝑎0) (𝑎 − 𝑎0) + 𝑉 (𝑎0)2 (𝑎 − 𝑎0)2
+ 𝑂 (𝑎 − 𝑎0)3 .

(31)

From (30), the first derivative of 𝑉(𝑎) is
𝑉 (𝑎) = 𝑓 (𝑎) − 32𝜋2𝜎 (𝑎)
⋅ ℎ (𝑎)ℎ (𝑎) {[1 − ℎ (𝑎) ℎ

 (𝑎)
[ℎ (𝑎)]2 ]𝜎 (𝑎)

+ ℎ (𝑎)ℎ (𝑎)𝜎 (𝑎)} ,
(32)

and the last equation takes the form

𝑉 (𝑎) = 𝑓 (𝑎) + 16𝜋2𝜎 (𝑎) ℎ (𝑎)ℎ (𝑎) [𝜎 (𝑎) + 2𝑝 (𝑎)] . (33)

The second derivative of the potential is

𝑉 (𝑎) = 𝑓 (𝑎) + 16𝜋2 {[ ℎ (𝑎)ℎ (𝑎)𝜎 (𝑎)

+ (1 − ℎ (𝑎) ℎ (𝑎)[ℎ (𝑎)]2 )𝜎 (𝑎)] [𝜎 (𝑎) + 2𝑝 (𝑎)]
+ ℎ (𝑎)ℎ (𝑎)𝜎 (𝑎) [𝜎 (𝑎) + 2𝑝 (𝑎)]} .

(34)

Since 𝜎(𝑎) + 2𝑝(𝑎) = 𝜎(𝑎)[1 + 2𝑝(𝑎)/𝜎(𝑎)], replacing
the parameter 𝑝 = 𝜓(𝜎) and 𝜓 = 𝑑𝑝/𝑑𝜎 = 𝑝/𝜎, we have
that 𝜎(𝑎) + 2𝑝(𝑎) = 𝜎(𝑎)(1 + 2𝜓), and using (35) again, we
obtain

𝑉 (𝑎0) = 𝑓 (𝑎0) − 8𝜋2 {[𝜎0 + 2𝑝0]2

+ 2𝜎0 [(32 −
ℎ (𝑎0) ℎ (𝑎0)[ℎ (𝑎0)]2 )𝜎0 + 𝑝0]

⋅ (1 + 2𝜓)} .

(35)

The wormhole is stable if and only if 𝑉(𝑎0) > 0.
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Figure 1: Stability regions of DTSW in terms of 𝜔 and radius of the throat 𝑎0 for different values of Σ, 𝑟1, and 𝑟2.

4.1. Stability Analysis of DTSW via the LBG. In what follows,
we will use three different gas models for the exotic matter
to explore the stability analysis: LBG [40], CG [61, 62], and
finally LogG [15].

The equation of state of LBG [9, 14, 59, 60] is given by
𝜓 = 𝜔𝜎, (36)

and hence
𝜓 (𝜎0) = 𝜔, (37)

where𝜔 is a constant parameter. Formore useful information
as regards the effects of the parameters Σ, 𝑟1, and 𝑟2, we

show graphically the DTSW stability in terms of 𝜔 and 𝑎0,
as depicted in Figure 1.

By changing the values of Σ, 𝑟1, and 𝑟2, which encode the
effects of electric𝑄, magnetic 𝑃, and dilaton charge 𝜙0 on the
DTSW stability, we see from Figure 1 that in two cases the
region of stability is below the curve in the interval to the right
of the asymptote, while in two other cases the stability region
is simply below the curve. The region of stability is denoted
by 𝑆.
4.2. Stability Analysis of DTSW via CG. The equation of state
of CG that we considered is given by [61]
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Figure 2: Stability regions of DTSW in terms of 𝜔 as a function of the throat 𝑎0 for different values of Σ, 𝑟1, and 𝑟2.

𝜓 = 𝜔(1𝜎 − 1𝜎0) + 𝑝0, (38)

and one naturally finds

𝜓 (𝜎0) = − 𝜔𝜎20 . (39)

After inserting (38) into (29), we plot the stability regions
of DTSW supported by CG in terms of 𝑉(𝑎0) and 𝑎0 as
shown in Figure 2. It is worth mentioning that in three cases
the region of stability is above the curve in the interval to the
right of the asymptote, while in one case stability region is
below the curve in the interval to the right of the asymptote.
The region of stability is denoted by 𝑆.
4.3. Stability Analysis of DTSW via LogG. In our final exam-
ple, the equation of state for LogG is selected as follows [15]:

𝜓 = 𝜔 ln( 𝜎𝜎0) + 𝑝0, (40)

which leads to

𝜓 (𝜎0) = 𝜔𝜎0 . (41)

After inserting the above expression into (29), we show the
stability regions of TSW supported by LogG in Figure 3. In
this case, we see that the region of stability is above the curve
in the interval to the right of the asymptote. The region of
stability is denoted by 𝑆.
5. Conclusion

In this work, we have constructed a stable DTSW in the
context of EMD theory. In particular, we explore the role of
three parameters—Σ, 𝑟1, and 𝑟2—which encode the effects of
electric charge 𝑄, magnetic charge 𝑃, and dilaton charge 𝜙0
on the wormhole stability.The surface stress at the wormhole
throat is computed via Darmois-Israel formalism while the
stability analyses are carried out by using three different
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Figure 3: Stability regions of DTSW in terms of 𝜔 and radius of the throat 𝑎0 for different values of Σ, 𝑟1, and 𝑟2.

models. As a first model, we consider LBG and show that
the wormhole can be stable by choosing suitable values
of parameters Σ, 𝑟1, and 𝑟2. In the second case, we focus
on the stability analyses using a CG for the exotic matter
and show this by choosing suitable values of parameters Σ,𝑟1, and 𝑟2. Finally, we use LogG for the exotic matter and
show similar results. The results show that electric charge,
magnetic charge, and dilaton charge play an important role
inDTSWby increasing the stability domain of the wormhole.
A particularly interesting finding is that, for suitable values of𝑎0, the stable solutions exist in the DTSW for each value of𝜔 that is chosen. We conclude that DTSW is linearly stable
for variable EoS, which supports the fact that the presence
of EoS and dilaton/electric/magnetic charges induces stability
in the WH geometry. In particular, we can see from Figures
1(a) and 1(b) that, by keeping 𝑟1 and 𝑟2 fixed and changingΣ, the vertical asymptote is slightly shifted to the left with the
increase ofΣ.This clearly indicates the increase of the stability
region in the right of the asymptote. On the other hand,
anothermodel of charged TSWwas constructed by Eiroa and
Simeone [14] in low-energy string gravity, which supports
our results. Their results show 𝜌 and 𝑝 on the shell for the
null dilaton coupling parameter and it is shown that exotic
matter is localized; moreover, they managed to minimize
the exotic matter needed using the stronger dilaton-Maxwell
coupling.
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[59] A. Övgün and I. Sakalli, “A particular thin-shell wormhole,”
Theoretical and Mathematical Physics, vol. 190, no. 1, pp. 120–
129, 2017.

[60] V. Varela, “Note on linearized stability of Schwarzschild thin-
shell wormholes with variable equations of state,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 92,
no. 4, Article ID 044002, 11 pages, 2015.

[61] E. F. Eiroa andC. Simeone, “Stability of Chaplygin gas thin-shell
wormholes,”Physical ReviewD: Particles, Fields, Gravitation and
Cosmology, vol. 76, no. 2, Article ID 024021, 2007.

[62] F. S. N. Lobo, “Chaplygin traversablewormholes,”Physical Review
D: Particles, Fields, Gravitation and Cosmology, vol. 73, no. 6,
Article ID 064028, 9 pages, 2006.

[63] P. Goulart, “Dyonic black holes and dilaton charge in string
theory,” https://arxiv.org/abs/1611.03093.

[64] P. Goulart, “Massless black holes and charged wormholes in
string theory,” https://arxiv.org/abs/1611.03164.

[65] P. Aniceto and J. V. Rocha, “Dynamical black holes in low-
energy string theory,” Journal of High Energy Physics, vol. 2017,
article 35, 2017.

https://arxiv.org/abs/1612.06892
https://arxiv.org/abs/1611.03093
https://arxiv.org/abs/1611.03164

