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1 Introduction: the de Sitter swampland conjecture

The observable universe appears to have emerged from a period of high curvature. Almost
certainly, if we run the clock backwards, we encounter a period where classical general
relativity does not apply. Remarkably, while string theory has provided tools to think about
many questions in quantum gravity, cosmologies resembling our own remain inaccessible to
controlled approximations in the theory. Conceivably the observed big bang is not described
by a quantum theory of gravity or requires some still larger structure, but it would seem
more likely that this simply represents a failure of our present collection of theoretical tools.

Strong evidence from supernovae [1], CMB [2], and Large Scale Structure observa-
tions [3] suggest that our universe has entered a stage of exponential expansion, well-
described as a de Sitter solution of Einstein’s equations. At a time shortly after the big
bang, there is good reason to think that the universe also went through a period of expo-
nential expansion [4–7]. So de Sitter space seems likely to play an important role in any
understanding of our present and past universe. The inflationary period lasted only for a
brief moment; our limited understanding of how de Sitter space might arise in string theory
would suggest that even our present de Sitter universe is metastable.

The notion of a cosmic landscape introduces another role for spaces of positive cosmo-
logical constant (c.c.). In particular, such a landscape might allow a realization of anthropic
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selection of the c.c. [8], but would seem to require the existence of a vast set of metastable,
positive c.c. vacua.

Given these considerations, the conjecture of [9] that metastable de Sitter space lies in
the swampland of quantum gravity theories is particularly interesting, with possible impli-
cations for inflation, the nature of the currently observed dark energy, and implementing
the anthropic explanation of the c.c. We will not address the conjecture in its full general-
ity, but we will examine the starting point. The authors of [9] begin with the observation
that it has proven difficult to construct de Sitter space in string theory. While there are
constructions that appear to achieve a positive cosmological stationary point in a suitable
effective action [10, 11], it is not clear that they are in any sense generic.

But one should first ask: what would it mean to construct de Sitter space in string
theory? In most constructions, one starts with some classical solution of the equations of
critical string theory. These solutions invariably have moduli or pseudomoduli. Then one
adds features, such as fluxes, branes, and orientifold planes which give rise to a potential
for these moduli, and looks for a local minimum with positive four-dimensional c.c. These
attempts to construct de Sitter space generally raise two questions. First, what is the
approximation scheme that might justify any such construction? Second, any would-be de
Sitter space found in this way is necessarily, at best, metastable: inevitably there is a lower
energy density in asymptotic regions of the original moduli space. Quantum mechanically,
the purported de Sitter state cannot be eternal. It has a history; it will decay in the future
and must have been created by some mechanism in the past. The quantum mechanics of
this process is challenging to pin down. In this paper, we will see that already classically,
the notion of an eternal de Sitter space in string theory is problematic; small perturbations
near the de Sitter stationary point of the effective action evolve to singular cosmologies.

In more detail, there are at least two challenges to any search for metastable de Sitter
space in string theory:

1. One requires a small parameter(s) allowing a controlled approximation to finding
stationary points of an effective action. Here one runs into the problem described
in [12]. Without introducing additional, fixed parameters (i.e., introducing parame-
ters not determined by moduli), would-be stationary points in the potential for the
moduli lie at strong coupling. Typically, attacks on this problem (and the question
of de Sitter space) exploit large fluxes.1 If there is to be a systematic approximation,
it is necessary that the string coupling be small and compactification radii large at
any would-be stationary point found in this way. If the strategy is to obtain inverse
couplings and radii scaled by some power of fluxes, it is also important that these
fluxes (and possibly other discrete parameters) can be taken arbitrarily large, with-
out spoiling the effective action treatment. Even allowing uncritically for this latter
possibility, we will see that it is quite challenging to realize arbitrarily weak string
coupling and large radius, with positive or negative c.c.2

1The KKLT [13] constructions are, in some sense, an exception, which we will discuss later.
2This point has been noted earlier [14–16]. A broad critique, applicable to many non-perturbative

scenarios, has been put forward in [17].
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2. If one finds such a stationary point, one must ask about stability. More precisely, in
string theory, we are used to searching for suitable background geometries and field
configurations by requiring that the evolution of excitations about these configura-
tions is described by a unitary S matrix. Classically, at least in a flat background, this
is the statement that any initial perturbation of the system has a sensible evolution to
some final perturbation. Again, we will see that this requirement is problematic for
any would-be classical de Sitter stationary point in such a theory; even if all eigenval-
ues of the mass-squared matrix (small fluctuation operator) are positive, large classes
of small perturbations evolve to singular geometries.

The problem of evolution of small perturbations is connected with the properties of
the moduli of string compactifications, described above. We consider, in particular, dis-
turbances of the moduli fields in a classical, eternal de Sitter space. We will see in this
paper that some small fluctuations in the far past are amplified, rolling over the barrier
to a contracting universe that culminates in a big crunch singularity. As a result, already
classically, there is no notion of an S matrix (in the sense of describing the future of any
small disturbance of the system), even restricted to very small perturbations localized near
the metastable minimum of the potential. Within our current collection of calculational
tools, we lack any framework in string theory to study such singularities. As a result, we
will explain, the problem of constructing de Sitter space in string theory is not, at least at
present, accessible to systematic analysis.

Overall, then, we will argue that we lack theoretical methods to address, in any sys-
tematic fashion, the problem of constructing de Sitter space in string theory, much as we
lack the tools to understand big bang or big crunch singularities in any controlled approx-
imation. The existence of metastable de Sitter states may be plausible or not, but it is a
matter of speculation.3 The failure to find such states in any controlled analysis appears,
at least at present, inevitable.

2 The S matrix and classical field evolution

Much of our focus will be on the evolution of classical perturbations in metastable de Sitter
space. We will argue that many of these perturbations evolve towards a big crunch singu-
larity, and that this is outside of the scope of current methods in string theory/quantum
gravity. In critical string theory, the object of interest is the S matrix. A classical solution
of the string equations corresponds to a space-time for which one can define a sensible
scattering matrix. The connection to classical scattering, in field theory and string theory,

3Reference [18] gives non-perturbative arguments for the absence of de Sitter vacua in controlled ap-
proximations. Various scenarios for how de Sitter might arise, and how this might be understood, even
lacking a systematic approximation, have been put forward. Among many examples, [19, 20] argue for a
more refined version, based on explicit constructions; [21, 22] consider F-theory compactifications and as-
sociated prospects. [23] proposes another way in which de Sitter might arise. [24] takes a phenomenological
view of the problem. An alternative discussion of de Sitter space in flux vacua appears in [17], who argues
against flux stabilization on rather general grounds. [25] takes an optimistic view of the prospects for such
constructions and [26–28] put forth several scenarios.
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arises from considering the evolution of small disturbances. These correspond to initial and
final isolated, localized states, with large occupation numbers. These can be considered
as coherent states. For a single real scalar field, for example, one can develop a classical
perturbation theory. Start, at lowest order, with a field configuration of the form

φ(x) = φ~p1(x) + φ~p2(x) + φ~k1
(x) + φ~k2

(x) (2.1)

where each term represents a localized wave packet with mean momentum ~ki. Momentum
conservation requires ~p1 + ~p2 = ~k1 +~k2 within the momentum uncertainty, and non-trivial
scattering requires that the wave packets all overlap at a point in space-time. Quantum
mechanically, the scattering problem we have outlined here corresponds to some large
number of particles of each momentum in both the initial and final states. Making a
decomposition into positive and negative frequency components:

φ(x) = φ+(x) + φ−(x)→

 φ+(x)|Φ〉 = Φ(x)|Φ〉
〈Φ|φ−(x) = 〈Φ|Φ∗(x)

. (2.2)

In momentum space, Φ±(~k)ei~k·~x∓iωt corresponds to the positive and negative frequency
components. Reality requires Φ±(~k) = Φ±∗(−~k). Occupation numbers scale as |Φ±(~k)|.

Order by order in the interaction, λφ4, we can compute corrections to the classical
scattering,

δφ(x) = δφ~p1(x) + δφ~p2(x) + δφ~k1
(x) + δφ~k2

(x). (2.3)

Evaluated at the interaction point, δφ defines an S matrix (more precisely a T matrix) on
the space of coherent states. This can be decomposed as an S matrix on states of definite
particle number; the classical approximation is valid when the occupation numbers are
large.

Phrased this way, the statement that one can construct an S matrix for large occupa-
tion numbers in initial and final states is the statement that one has sensible evolution from
any initial classical configuration (described by ~p1, ~p2) to any final configuration (~k1, ~k2).

In the case of de Sitter space, the question of the existence of an S matrix is subtle [29].
We will focus, instead, on what we view as a minimal requirement that all classical pertur-
bations in a would-be metastable de Sitter vacuum have a sensible evolution arbitrarily far
into the future. We will see that some subset of possible perturbations evolve to singular
geometries, over which we have no theoretical control. We argue that this means that
one does not have a controlled construction of such spaces. The existence, or not, of such
metastable de Sitter spaces then becomes a matter of conjecture.

3 Searching for stationary points of an effective action

We first explore some of the challenges to the construction of stationary points of the
effective action with positive c.c. Typically, these efforts involve the introduction of branes,
orientifold planes, and fluxes [10]. One searches for particular stationary points of the
action with positive cosmological constant, and asks whether the string coupling is small
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and the compactification radii large at these points [30, 31]. This, by itself, does not
address the question of whether there is a systematic approximation. The system with
branes and fluxes is not a small perturbation of the system without, and the range of
validity of the expansion in one is not related to that of the other. If there is to be a
systematic approximation of any sort, one requires a sequence of such stationary points as
one increases the flux numbers; the would-be small parameters are the inverse of some large
flux numbers. In our discussion we will assume that it makes sense to take such numbers
arbitrarily large. Then the goal is to find stable, stationary points of the action where

1. The string coupling is small.

2. All compactification radii are large.

3. The cosmological constant is small and positive.

As reviewed in [11], satisfying this set of constraints is challenging. We review some of the
issues in this section. Similar analyses, with similar conclusions, have appeared in [14–16].
Our point of view is that this is not surprising. Searches at weak coupling were not likely
to yield non-supersymmetric metastable vacua, dS or AdS, and provide little information
about the existence or non-existence of such states. For the dS case, it is hard to see how
such states could be understood without a much broader understanding of their cosmology,
as we will discuss subsequently.

We follow [10] in studying type II theories in the presence of an Op plane, and a
background geometry with metric

ds2 = gµνdx
µdxν + ρ g0

IJ dy
IdyJ . (3.1)

Here g0
IJ represents a background reference metric for the compactified dimensions. gµν

represents the metric of four dimensional space-time, which we hope to be de Sitter. Ref-
erence [10] distinguishes directions parallel and perpendicular to the orientifold plane with
an additional modulus σ; for simplicity, we assume σ ∼ 1; this assumption can be relaxed
without severe difficulty. We ignore other light moduli as well. We also include NS-NS
3-form and R-R q-form fluxes, H(n)

IJK , F
(n)
q .

The fluxes will be understood as taking discrete, quantized values. The dependence of
terms on the moduli ρ and τ = ρ3/2 e−φ is given in [10], and is readily understood from
the following considerations:

1. In the NS-NS sector, there is a factor 1/g2 = e−2φ in front of the action. The four-
dimensional Einstein term has a coefficient τ2 = ρ3/g2. This can be brought to canon-
ical form by the Weyl rescaling, gµν → gµντ

−2. The moduli τ and ρ will be our focus.

2. Again in the NS-NS sector, terms involving the three-index tensor, before rescaling,
contain a factor τρ−3; after the Weyl rescaling, they acquire an additional factor of
τ−3 in front. Terms involving the six-dimensional curvature similarly scale as ρ−1τ−3.

3. In the RR sector, the flux terms have, before rescaling, no factors of 1/g. They
have various factors of ρ depending on the rank of the tensor. The Weyl rescaling
introduces a factor of τ−4.
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The resulting action is [10]:

V = −τ−2
(
ρ−1R6(σ)− 1

2ρ
−3∑

n

σ6n−3(p−3)
∣∣∣H(n)

∣∣∣2)− τ−3ρ
p−6

2 σ
(p−3)(p−9)

2
T10
p+ 1

+ 1
2

τ−4
4∑
q=0

ρ3−q∑
n

σ6n−q(p−3)
∣∣∣F (n)
q

∣∣∣2 + 1
2τ
−4ρ−2∑

n

σ6n−5(p−3)
∣∣∣F (n)

5

∣∣∣2
 . (3.2)

Again, we will ignore the index (n) in what follows and set σ = 1. To illustrate the issues, we
will consider large F2 and F4. These fluxes satisfy, with H3 = 0, Bianchi identities, with a
source for F4. These equations can be satisfied with large fluxes through two and four cycles.

For 3 ≤ p ≤ 7 and choosing T10 = 1, R6 ∼ 1, we can drop the T10 term because the
R6 term will dominate. We can attempt to find large τ and ρ by turning on F2 = n2 and
F4 = n4 (other combinations of fluxes give similar results). Then one has the relevant terms:

− τ−2ρ−1R6 + 1
2τ
−4
(
n2

2ρ+ n2
4ρ
−1
)
. (3.3)

Differentiating with respect to ρ and τ , for n4 � n2 � 1, one has then

ρ−2R6 + 1
2τ
−2
(
n2

2 − n2
4ρ
−2
)

= 0 (3.4)

and
ρ−1R6 − τ−2

(
n2

2ρ+ n2
4ρ
−1
)

= 0. (3.5)

We get a solution of the form:

ρ2 = −1
3

(
n4
n2

)2
; τ2 = 2

3
n2

4
R6

. (3.6)

Negative ρ2 is not acceptable. But even if somehow ρ2 had been positive, we would have
had:

g2 = ρ3

τ2 ∝ R6

(
n4
n3

2

)
; (3.7)

so the string coupling would not have been weak. The other terms we have neglected are
suppressed at this point. For example, the term proportional to T10ρ

−3/2τ−3 is suppressed
by (n2/n4)2.

For p = 8, which corresponds to the T10 term dominating, turning on, again, n4 and
n2, one finds that ρ2 = −7n2

4/n
2
2, which is also negative. Parameterically, one now has

g2 ∝ n3
4/n

7
2, so again, even if one ignored signs, this regime would give large ρ and τ but

also large g.
An interesting case is provided by p = 8 with n0 and n2 non-zero. In this case, one

finds that
ρ2 = 1

5
n2

2
n2

0
; τ = 8

5n
2
2 (3.8)

so one requires n2 � n0. Both quantities are now positive, but the cosmological constant,
consistent with expectations of [10], is negative, corresponding to AdS space. Setting this
aside, one has that

g2
s ∝

1
n2

2
(3.9)
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so the string coupling is small. But this is not good enough. If one considers higher
derivative terms in the effective action at tree level (α′ expansion) these are not suppressed.
Writing the action in ten dimensions, the terms (written schematically)∫

d4xd6y
√
g4
√
g6

(
FIJF

IJ +
(
FIJF

IJ
)2
)

(3.10)

are both of the same order in the large flux, n2
2, due to the two extra factors of ρ−2 coming

from the two extra powers of inverse metric in the second term. For all values of p, if we
just consider the H and Fq terms, ∂V/∂τ = 0 gives negative ρ2.

In other cases, one finds these and other pathologies — AdS rather than dS stationary
points and instabilities. Searches involving broader sets of moduli [30, 31] seem to allow at
best a few isolated regions of parameter space where such solutions might exist. Whether
these might exhibit a sensible perturbation expansion is currently an open question, but our
results above suggest that the combination is a tall order. So, even with the large freedom in
flux choices we have granted ourselves, metastable de Sitter stationary points would appear
far from generic in regimes where couplings are small and compactification radii are large.

4 Expectations for evolution of perturbations in de Sitter space

String theory has had many dramatic successes in understanding issues in quantum grav-
ity. But one severe limitation is its inability, to date, to describe cosmologies resembling
our own, which appear to emerge from a big bang singularity or evolve to a big crunch
singularity. This could reflect some fundamental limitation; more likely, it reflects the inad-
equacy of our present theoretical tools to deal with situations of high curvature and strong
coupling. For example, consider a pseudomoduli space where the potential falls to zero for
large fields in the positive direction. If one starts the system in the far past with expand-
ing boundary conditions, then further in the past there is a big bang singularity; if one
starts with contracting boundary conditions, there is a big crunch in the future [32]. These
high curvature/strong coupling regions are inevitable, despite the system being seemingly
weakly coupled through much of this history. It is possible that in any string cosmol-
ogy, there need not be an actual curvature singularity, but the growth of the curvature
means that the system enters a regime where any conventional sort of effective action or
conventional weak coupling string description breaks down. It seems hard to avoid the
conclusion that there is such a singularity (regime of high curvature) in the past or future
of cosmological solutions on a moduli space. These problems might be avoided in some
more complete treatment of the problem within the framework of a single cosmology, or
perhaps something else, such as eternal inflation in a multiverse, is needed. In any case,
the problem is beyond our present theoretical reach.

Our question, in this section, is: are things better for metastable de Sitter space-times?
In particular, in efforts to construct de Sitter space-times in string theory, the strategy is
to search some effective action for a positive c.c. stationary point, separated by a finite
potential barrier from a region in field space where, asymptotically, the potential tends to
zero. If we start the system at the local minimum of the potential, classically, it will stay
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there eternally. But how do small fluctuations evolve? Might there be small disturbances
that drive the field to explore the region on the other side of the barrier, exhibiting the
pathologies of the system on pseudomoduli spaces of [32]?

In one presentation of de Sitter space (which covers all of the space):

ds2 = −dτ2 + cosh2(Hτ)
[
dχ2 + sin2 χdΩ2

2

]
. (4.1)

A homogeneous scalar field in this space, φ(τ), obeys

φ̈+ 3H sinh(Hτ)
cosh(Hτ) φ̇+ V ′(φ) = 0. (4.2)

The equation is slightly more complicated if φ depends on r as well.
The metric of equation (4.1) respects an SO(4, 1) symmetry, as well as a Z2 that

reverses the sign of τ . Suppose, first, the potential for φ rises in all directions about a
minimum (taken at φ = 0 for simplicity). For large positive τ , any perturbation of φ
about a local minimum damps; for large negative τ , the motion is amplified as τ increases
(it damps out in the past). Correspondingly, in the far past and the far future, the field
approaches the local minimum (to permit a perturbative discussion, we must require that
the maximum value of the disturbance at all times is small). Starting in the far past, we can
think in terms of a localized disturbance in space (e.g., due to a source localized in space
time) and study the Fourier transformed field. If the disturbance has some characteristic
momentum k, this momentum will blueshift exponentially as τ → 0, and the amplitude
will grow. For τ > 0, the distribution will damp and redshift to longer wavelengths.

If the perturbation has scale smaller than H−1 (and in particular if the Hubble con-
stant is small compared to the curvature of the potential), then the space-time near the
disturbance is approximately flat, and, assuming rotational invariance, the disturbance
breaks SO(3, 1)× translations to SO(3). In terms of the full symmetry of de Sitter space,
the perturbation breaks SO(4, 1) to SO(3). To summarize, any approximately homoge-
neous disturbance in eternal de Sitter corresponds to a solution that grows in the far past
and decreases in the future. One can define past and future relative to the point where
the scalar field is a maximum. The location of this point breaks much of the continuous
symmetry of de Sitter space but leaves SO(3)× Z2, where the Z2 represents time reversal
about the point where the amplitude of the field oscillation is a maximum. The maximum
of the field, indeed, provides a natural definition of the origin of time. At this point, the
time derivative of the field vanishes.

Now for a potential that has a local minimum with positive energy density, and that
falls to zero for large |φ|, we might expect that if we create a small, localized perturbation at
some (r0, τ0) this perturbation will damp out if τ0 � 0. But if τ0 � 0, the perturbation will
grow, possibly crossing over the barrier while τ � 0. In this case, the emergent universe
on the other side of the barrier is contracting, and we might expect the system to run
off towards φ =∞, until the universe undergoes gravitational collapse. If this is the case,
then the Z2 symmetry might be said to be spontaneously broken; one has a pair of classical
solutions, one with a singularity in the past, one in the future, related by the Z2 symmetry.

Before establishing this fact, it is helpful to review some aspects of the Coleman-De
Luccia (CDL) bounce from this perspective [33].
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4.1 The Coleman-De Luccia bounce as a solution of the field equations with
Minkowski signature

We are interested in disturbances which lead to motion over a barrier, rather than tunneling.
We might expect, however, that once the system passes over the barrier, its subsequent
evolution is not particularly sensitive to whether it passed over the barrier or tunneled
through it. In the case of a thin-wall bubble, before including gravity, at large times, the
bubble wall becomes relativistic, and the bubble radius is of order t, so one expects that
the bubble energy is proportional to t3, dwarfing any difference in the energy of order the
barrier height at the time of bubble formation. The same is true for a thick-walled bounce
connecting two local minima of some potential. In other words, at large time, at least for
very small GN , we might expect the solution to be a small perturbation of the bounce
solution of Coleman [34] and Coleman and De Luccia [33], which we will review briefly.

4.2 Tunneling with GN = 0

Consider, first, the bounce solution without gravity. We consider a potential, V (φ), with
local minima at φtrue, φfalse, where V (φfalse) > V (φtrue). Starting with the field equations,

�Φ + V ′(φ) = 0, (4.3)

for points that are space-like separated from the origin (the center of the bubble at the
moment of its appearance), we introduce ξ2 = r2 − t2, in terms of which

d2φ

dξ2 + 3
ξ

dφ

dξ
− V ′(φ) = 0. (4.4)

This is the Euclidean equation for the bounce.
For points that are time-like separated, calling τ2 = t2 − r2,

d2φ

dτ2 + 3
τ

dφ

dτ
+ V ′(φ) = 0. (4.5)

These equations are related by ξ = iτ .
On the light cone, ξ = τ = 0, we have dφ/dτ = dφ/dξ = 0, and we have to match

φ(0) = φ0. In the tunneling problem [34], φ0 is determined by the requirement that
φ → φfalse as ξ → ∞; this can be thought of as a requirement of finite energy relative to
the configuration where φ = φfalse everywhere.

Independent of the quantum mechanical tunneling problem, the bounce is a solution
of the source-free field equations for all time (positive and negative) and everywhere in
space. In the time-like region, the solution for negative time is identical to that for positive
time. Translation invariance is broken, but SO(3, 1) invariance and the Z2 invariance are
preserved.

4.3 Classical perturbations of the false vacuum with GN = 0

Without gravity, we might consider starting the system in the false vacuum and giving it
a “kick” so that, in a localized region, the system passes over the barrier. On the other
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side, the system looks like a bubble, but not of the critical size. We might expect that
the evolution of the bubble, on macroscopic timescales, is not sensitive to the detailed,
microscopic initial conditions. For a thin-walled bubble, for example, we can think of
configurations, as in [34], where at time t = 0, one has a bubble of radius R0, inside of
which one has true vacuum, outside false vacuum, and a transition region described by the
kink solution of the one dimensional field theory problem with nearly degenerate minima.
Take the case of a single real field, φ, with potential:

V (φ) = −1
2µ

2φ2 + 1
4λφ

4 + εφ+ V0.

For small ε, the minima of the potential lie at

φ± ≈ ±

√
µ2

λ
. (4.6)

We can define our bubble configuration, with radius R large compared µ−1, as the kink
solution of the one dimensional problem,

φB(r;R) = φ+ − φ−
2 tanh

(
µ(r −R)√

2

)
+ φ+ + φ−

2 . (4.7)

For our problem, we want to treat R → R(t) as a dynamical variable. If R0(t) is slowly
varying in time (compared to µ−1), then we can write an action for R,

S =
∫
dt

∫
r2drdΩ

(1
2(∂tφB(r;R(t)))2 − (~∇φB(r,R(t)))2 − V (φB(r,R(t)))

)
(4.8)

≈
∫
dt4πR2

∫ R+δ

R−δ
dr

(1
2(∂rφ)2

)(
Ṙ2 − 2

)
,

where we have used the thinness of the wall to reduce the three-dimensional integral to a
one-dimensional integral, and the fact that for the kink solution, the kinetic and potential
terms are equal, to write the second term. We will restore the ε term in a moment.

The integral over the bounce solution is straightforward, yielding
√

2/3. So we have
the effective action for R,

S = 4π
∫
dt

(√
2
3µ

3(R2Ṙ2 − 2R2) + ε

3R
3
)
. (4.9)

Correspondingly, the energy of the configuration is:

E(R, Ṙ) = 4π
(√

2
3(R2Ṙ2 + 2R2 − 1

3εR
3)
)
≡ M(R)

2 Ṙ2 + V (R). (4.10)
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We can extract several results from this expression. In particular we have:

1. The point where the potential vanishes, R = R1 = 2
√

2µ3

ε .

2. The location and value of the potential at the maximum: R = R2 = 4
√

2µ3

3ε .

3. We can determine Ṙ as a function of R and the initial value of R (for simplicity
assuming Ṙ(0) = 0).

We have checked, numerically, that starting with a field configuration corresponding
to φ(x, t = 0) = φB(r;R), φ̇(x, t = 0) = 0, to the left of the barrier, the bubble collapses.
Starting slightly to the right, the wall quickly becomes relativistic and expands. This is
consistent with an intuition that the energy of conversion of false vacuum to true is largely
converted into the energy of the wall.

We can make this latter statement more precise. If we write:

φ(r, t) = φcr(t, r) + χ(t, r), |χ| � φcr, (4.11)

where φcr is the critical bubble solution, then

(∂2 +m2(r, t))χ = 0. (4.12)

Here m2 is essentially a θ function, transitioning between the mass-squared of χ in the
false and true vacua. Since the bubble wall moves at essentially the speed of light, and
undergoes a length contraction by t ∼ γ, we have that

m2(t, r) ≈ m2(t2 − r2) (4.13)

and the χ equation is solved by

χ = 1
r
χ(t2 − r2). (4.14)

So the amplitude of χ decreases with time, and the energy stored is small compared to
that in the bubble wall.

We expect the same to hold for a thick-walled bounce.

4.4 Behavior of the disturbance with small GN

Consider the same system, now with a small GN . Again, our disturbance, after a short
period of time, approaches the critical (GN = 0) bubble. At larger time, it will then agree
with the Coleman-De Luccia solution, including the small effects of gravity.

As we will see in the next section, for the asymptotically falling potential, with ex-
panding boundary conditions, the evolution of the configuration is non-singular. But with
contracting boundary conditions, one encounters, as expected, a curvature singularity.
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5 Behavior of the bounce with asymptotically falling potential

We have argued that, independent of the microscopic details of the initial conditions, in
the case of a disturbance that connects two metastable minima of a scalar potential, the
large time evolution of an initial disturbance that crosses the barrier is that of the critical
bubble, in the limit of small GN . We expect that the same is true for a potential that
falls asymptotically to zero. Once more, the underlying intuition is that at late times,
the energy released from the change of false to true vacuum overwhelms any slight energy
difference in the starting point. So we expect the solution to go over to φ(τ). So in this
section, we will focus principally on the behavior of the critical bubble, φ(τ).

5.1 Field evolution with small GN

For small but finite GN , there is a long period where GN × T00 × τ2 � 1, gravitation is
negligible, and the picture of the previous section of the flat-space evolution of the bubble
(or disturbance) is unaffected. For a vacuum bubble in de Sitter space, gravitational
effects become important, for fixed r � H−1, for example, only once t ∼ H−1. Provided
the bubble has evolved to a configuration approximately that of the critical bubble, we can
take over the critical bubble results (with gravity).

So we consider the bubble evolution in the region of Minkowski signature. Writing the
metric in the form

ds2 = −dτ2 + ρ(τ)2
(
dσ2 + sinh2(σ)dΩ2

2

)
, (5.1)

the equations for ρ and φ are:
φ̈+ 3 ρ̇

ρ
φ̇+ V ′(φ) = 0 (5.2)

and
ρ̇2 = 1 + κ

3

(1
2 φ̇

2 + V (φ)
)
ρ2. (5.3)

Note that if the bubble emerges in a region of large ρ (κρ2V � 1) then, for the
asymptotically falling potential, the kinetic term quickly comes to dominate in the equation
for ρ; the system becomes kinetic energy dominated. This is visible in the numerical results
we describe subsequently.

We should pause here to consider the tunneling problem. We will see in the next section
that if we take the positive root in equation (5.3), one obtains an expanding universe in
the future, but there is a singularity in the far past (before the appearance of the bubble).
Alternatively, if we take the negative root, the singularity appears in the far future. Which
root one is to take brings us to questions of the long-time history of the universe, i.e., how
the universe came to be in the metastable false vacuum. The point of our discussion in
this paper is that this issue already arises classically.

5.2 Behavior of the equations for large τ

Before describing our numerical results, it is helpful to consider some crude approximations
which give insight into the behavior of the system. In the region with ξ = iτ , the equations
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become those of CDL in the time-like region:

φ̈+ 3 ρ̇
ρ
φ̇+ dV

dφ
= 0, (5.4)

ρ̇ = ±
√

1 + κ

3ρ
2
(1

2 φ̇
2 + V (φ)

)
. (5.5)

We argued at the end of the previous section that we might expect that the potential is
not particularly relevant in the φ equation for large ρ(0). Ignoring the potential, we can
also ask, self consistently, whether the second term in the ρ̇ equation dominates over the
first. If it does, we have an FRW universe with k = 0 and

ρ ∝ (τ − τ0)1/3, τ > τ0; ρ ∝ (τ0 − τ)1/3, τ < τ0. (5.6)

(These are the results for a universe with p = wρ; w = 1.) We can see this directly from
the equations. We have

ρ̇

ρ
= ±

√
κ

6 φ̇. (5.7)

So
d2φ

dτ2 ±
√

3κ
2 φ̇2 = 0. (5.8)

We look for a solution of the form

φ̇ = α(τ − τ0)−1, (5.9)

α =
√

2
3κ. (5.10)

Plugging this back into the ρ̇ equation gives

ρ̇

ρ
= ±1

3
1

τ − τ0
, (5.11)

which is consistent with the expected (τ − τ0)1/3 behavior. So we have a singularity in the
past or the future.

For numerical studies, we designed a potential with a local de Sitter minimum that
tends to zero for large φ

V (φ) = 1
2e
−φ + φ2e−φ

2
, (5.12)

This is plotted in figure 1; the local minimum lies near φ = 0.2. The potential blows
up for negative φ, but this will not concern us. We solve equations. (5.4) and (5.5) with φ0
taken to be not too far from the local minimum, with small dφ/dτ and with the negative sign
in the root of the ρ equation: φ(τ = 0) = 1/2; φ′(τ = 0) = −10−6; ρ(τ = 0) = 10. One sees
(figure 2) the scalar field roll over the barrier after some number of oscillations. The ratio
of potential to kinetic energy quickly tends to zero after the crossing. As we expect, we find
a singularity at a finite time in the future, and indeed ρ(τ) behaves as (τ0−τ)1/3 (figure 3).

We have argued that for more general initial conditions, provided gravity is sufficiently
weak, the system evolves quickly to the bounce configuration with GN ≈ 0. Its evolution
will then be as above.
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Figure 1. φ potential.
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Figure 2. φ crosses the barrier.
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Figure 3. ρ(τ) ∼ (τ0 − τ)1/3; τ0 ≈ 159.5.
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5.3 Implications of the singularity

Our main concern with the singularity is whether it is an obstruction to any sort of sys-
tematic analysis. If we have a weak coupling, small curvature description of the system,
allowing a perturbative analysis, we expect to be able to write an effective Lagrangian in-
cluding terms of successively higher dimension — higher numbers of derivatives — such as:

L = √g
( 1
GN
R+R2 + 1

M2R
4 + · · ·+ (∂µφ)2 + 1

M4 (∂µφ)4
)
. (5.13)

If one tries to analyze the resulting classical equations perturbatively, in the presence of
φ̇ ∼ 1/(t− t0) and R ∼ 1/(t− t0)2, at low orders, the terms in the expansion diverge and
the expansion breaks down. This is similar to the phenomena at a big bang or big crunch
singularity.

6 Conclusions

We have argued, from two points of view, that one cannot construct de Sitter space in
any controlled approximation in string theory. First, we have seen that even allowing the
possibility of arbitrarily large fluxes, it is very difficult to find stationary points for which
both the string coupling is small and compactification radii are large, even before asking
whether the corresponding cosmological constant is positive or negative. We have seen that
typically when sensible stationary points exist, even if formally radii are large and couplings
small, higher order terms in the expansions are not small. Related observations have been
made in [35], based on conjectures about the behavior of quantum gravity systems.

But our second obstacle seems even more difficult to surmount: a set of small pertur-
bations of any would-be metastable de Sitter state, classically, will evolve to uncontrollable
singularities.

This is not an argument that metastable de Sitter states do not exist in quantum
theories of gravity; only that they are not accessible to controlled approximations. The
problem is similar to the existence of big bang and big crunch singularities; we have em-
pirical evidence that the former exists in the quantum theory that describes our universe,
but we do not currently have the tools to describe these in a quantum theory of gravity.

Reference [36] has considered the question from the perspective of the KKLT [13] con-
structions. These involve vacua with fluxes, but the small parameter is not provided by
taking all fluxes particularly large; rather, it arises from an argument that there are so
many possible choices of fluxes that in some cases, purely at random, there is a small su-
perpotential. In other words, there is conjectured to be a vast set of (classically) metastable
states of which only a small fraction permit derivation of an approximate four-dimensional,
weak coupling effective action. Reference [36] argues that such a treatment is self consis-
tent. We are sympathetic to the view that such an analysis provides evidence that if in
some cosmology one lands for some interval in such a state, the state can persist for a long
period. But a complete description of such a cosmology is beyond our grasp at present.

In considering the cosmic landscape, one of the present authors has argued that, even
allowing for the existence of such states in some sort of semiclassical analysis, long-lived de
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Sitter vacua will be very rare, unless protected by some degree of approximate supersym-
metry [37]. The breaking of supersymmetry would almost certainly be non-perturbative in
nature; searches for concrete realizations of such states (as opposed to statistical arguments
for the existence of such states, along the lines of KKLT) would be challenging.

Ultimately, at a quantum level, reliably establishing the existence of metastable de
Sitter space appears to be a very challenging problem. One needs a cosmic history, and it
would be necessary that this history be under theoretical control, both in the past and in
the future. As a result, the significance of failing to find stationary points of an effective
action describing metastable de Sitter space is not clear. We have seen that even thought of
as classical configurations, there are questions of stability and obstacles to understanding
the system eternally, once small perturbations are considered. We view the question of the
existence of metastable de Sitter space as an open one.
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