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Two topics in soft collinear effective theory (SCET) for gravitational interactions are explored. First, the
collinear Wilson lines—necessary building blocks for maintaining multiple copies of diffeomorphism
invariance in gravity SCET—are extended to all orders in the SCET expansion parameter λ, where it has
only been known to OðλÞ in the literature. Second, implications of reparametrization invariance (RPI) for
the structure of gravity SCET Lagrangians are studied. The utility of RPI is illustrated by an explicit
example in which Oðλ2Þ hard interactions of a collinear graviton are completely predicted by RPI from its
OðλÞ hard interactions. It is also pointed out that the multiple diffeomorphism invariances and RPI together
require certain relations among OðλÞ terms, thereby reducing the number of OðλÞ terms that need to be
fixed by matching onto the full theory in the first place.
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I. INTRODUCTION

In this note, we extend the discussions of soft collinear
effective theory (SCET) for gravity presented in [1].
Gravity SCET is a gravity analog of the SCET originally
formulated for QCD [2–6]. While the formalism of [1]
includes both soft and collinear gravitons, in this note we
ignore soft gravitons and exclusively focus on collinear
gravitons. Then, the relevant part of a gravity SCET
Lagrangian describing N collinear sectors1 can be written
in the following form:

LSCET ¼
XN
n¼1

Ln þ Lhard; ð1Þ

where Ln consists only of fields in the nth collinear
sector, while all hard interactions—the interactions that
couple different collinear sectors—are in Lhard. Using λ as a

measure of collinearness (i.e., λ ∼ p⊥=E ≪ 1), LSCET is an
expansion in powers of λ. Ln can be straightforwardly
obtained by expanding the full-theory Lagrangian to the
desired order in λ (e.g., see [7] for some first worked out
examples of Ln at OðλÞ). All the meat of the effective
theory is in Lhard. Referring to the dimension of Lhard in the
absence of gravity as Oðλ0Þ, Ref. [1] worked out, for the
first time, how to construct Lhard at OðλÞ. It also showed
that the absence of collinear singularities in gravity—first
investigated by Weinberg [8] and later proven rigorously in
the full theory by Akhoury et al. [9]—follows trivially from
an effective gauge symmetry of gravity SCET in that there
are simply no operators atOðλnÞwith n ≤ 0 that respect the
symmetry.
The first problem we will discuss in this note concerns

this effective gauge symmetry. As in QCD SCET [4,5], the
splitting of a gauge field into N collinear sectors means that
we effectively have N copies of the corresponding gauge
invariance, one for each collinear sector. For gravity SCET,
this means that we have N copies of diffeomorphism (diff)
invariance and local Lorentz symmetry, where transforma-
tion parameters for the nth diff × Lorentz group are
restricted to only have the Fourier modes of the nth
collinear sector. Then, writing an operator in Lhard as
O1O2 � � �ON with On consisting only of fields in the
nth collinear sector, each On must be gauge invariant
under the nth collinear diff × Lorentz because all other Om
with m ≠ n are trivially invariant under the nth collinear
diff × Lorentz. Analogously to QCD SCET, Ref. [1]
accomplishes such invariance by introducing Wilson lines,
i.e., the collinear diff Wilson line for collinear diff

*sabya@hep.fsu.edu
†tokui@fsu.edu
‡yunesiar@msu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1i.e., N well-collimated energetic “jets” widely separated in
angle from one another, where a jet may refer to particles in the
initial state. Fields in the nth collinear sector consist only of
Fourier modes pointing approximately in the direction of the nth
“jet axis” within a small angle of OðλÞ.
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invariances and the collinear Lorentz Wilson line for
collinear local Lorentz invariance. (These collinear
Wilson lines should not be confused with the “collinear
Wilson line” studied in [7] as the latter is not a Wilson line
for either diff or Lorentz invariance but was introduced as a
resummation of certain Oð1=λÞ couplings.) While [1] gives
an exact closed-form expression of the collinear Lorentz
Wilson line, it provides an expression of the collinear diff
Wilson line only to OðλÞ. In this note, we will present a
method that permits us to express the collinear diff Wilson
line to any desired order in λ.
The second problem we investigate is reparametrization

invariance (RPI) in gravity SCET. As in QCD SCET, the
nth collinear sector is most conveniently described in terms
of the nth light cone coordinates, which is defined such that
the components of a collinear momentum q in this sector
should scale in λ as

ðqþn ; q−n ; qinÞ ¼ ðq−n
; qþn

;−qinÞ ∼ ðλ0; λ2; λÞ; ð2Þ

with in ¼ 1n, 2n referring to the two spatial directions
orthogonal to the jet axis of the nth collinear sector. The
metric in this coordinate system is indicated above in the
relation between the upper and lower indices, which in
particular implies q1 · q2 ∼ λ2 if both q1 and q2 obey the
scaling law (2). On the other hand, the assumption that
different collinear sectors are widely separated from one
another means that

ðpþn ; p−n ; pinÞ ¼ ðp−n
; pþn

;−pinÞ ∼ ðλ0; λ0; λ0Þ; ð3Þ

for any p that belongs to an mth collinear sector with
m ≠ n. So, we have p1 · p2 ∼ λ0 if p1 and p2 belong to
different collinear sectors. Now, reparametrization (RP)
refers to a change in the bases of light cone coordinates that
keeps both scaling laws (2) and (3) unchanged. Since any
two effective field theories (EFTs) with identical field
contents, symmetries, and power counting laws describe
the same physics, our theory must be RP invariant (RPI)
[10,11]. As we will discuss below, despite being a change
in coordinate bases, RP differs from diff × Lorentz in terms
of scaling laws. Thus, RPI can indeed lead to additional
constraints on the structure of the Lagrangian beyond
diff × Lorentz. We will illustrate the utility of RPI in
gravity SCET by deriving all Oðλ2Þ operators from OðλÞ
operators in Lhard for the scattering of two scalars into two
scalars plus a collinear graviton at tree level.

II. COLLINEAR DIFF WILSON LINES
TO ALL ORDERS

We begin with the collinear diff Wilson lines. Since a
collinear Wilson line only concerns a single collinear
sector, we drop the index n on the light cone coordinates
and simply refer to them byþ, −, and i ¼ 1, 2. Throughout
this note, we adopt the convention that we convert all diff

indices to Lorentz indices by using (inverse) vierbeins so
that all operators are diff scalars. Reference [1] then gives
the collinear diff Wilson line, VðxÞ, to OðλÞ,

V1ðxÞ ¼ 1 −
�

1

∂2
−
Γμ
−−ðxÞ

�
∂μ; ð4Þ

where the “ 1” on V1 indicates that it is an Oðλ0Þ þOðλÞ
expression, while

1

∂−
fðx−Þ≡

Z
x−

−∞
dx−0fðx−0Þ; ð5Þ

and f� � �g indicates that the integration only acts on the
expression between fandg.2 When V1 acts on an arbitrary
diff scalar operator ϕðxÞ of collinear modes, the product
V1ϕ is diff invariant to OðλÞ, i.e., δðV1ϕÞ ¼ Oðλ2Þ under
xμ → xμ − ξμðxÞ with an infinitesimal ξμ. It is useful to
reverify this to lay the groundwork for establishing V to all
orders. We need to know two things for this purpose. First,
under diff, we have δϕ ¼ ξμ∂μϕ and

δΓμ
νρ ¼ ∂ν∂ρξ

μ þ £ξΓ
μ
νρ; ð6Þ

where £ξ denotes the Lie derivative with respect to ξμ,

£ξΓ
μ
νρ ¼ ξσ∂σΓ

μ
νρ − ð∂σξ

μÞΓσ
νρ þ ð∂νξ

σÞΓμ
σρ þ ð∂ρξ

σÞΓμ
νσ:

ð7Þ
Second, we need some power counting rules from [1]

∂μ ∼ qμ; ξμ ∼
qμ

λ
; Γμ

νρ ∼
qμqνqρ

λ
; ð8Þ

where q is a collinear momentum, scaling as in (2). These
relations tell us that the Christoffel term in (4) is indeed
OðλÞ as ð1=q2−Þðqμq−q−=λÞqμ ∼ λ. For the variation of Γμ

νρ

in (6), the first term on the right-hand side is the same order
in λ as Γμ

νρ itself while the Lie derivative term is higher
order by one power of λ, which can be seen from (8) as
qνqρqμ=λ ∼ Γμ

νρ and ðqσ=λÞqσΓμ
νρ ∼ λΓμ

νρ, respectively. The
scaling laws (8) also tell us that δϕ ¼ ξμ∂μϕ ∼ λϕ. Then, in
δðV1ϕÞ, we only have two OðλÞ contributions: δϕ, and the
term containing δΓμ

−− with the Lie derivative term ignored.
These two OðλÞ contributions cancel with each other, so
V1ϕ is indeed collinear diff invariant to OðλÞ.
We now describe a systematic way to find V to any

desired order in λ. First, we define the collinear diff Wilson
line V acting on a collinear diff scalar ϕ as

2This Wilson line evidently comes from an infinite past and is
appropriate when it acts on an operator ϕðxÞ that annihilates
collinear particles. When ϕðxÞ creates collinear particles, 1=∂−
should instead be interpreted as −

R
∞
x− dx

−0fðx−0Þ so that the
Wilson line would extend to an infinite future. Rephrasing the
following discussion for this case is a trivial matter.
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VϕðxÞ≡ ϕðXÞ; ð9Þ

where Xμ is the coordinates of the geometrical point that
would be equal to xμ in the absence of gravity. Being a
geometrical point, the actual geometrical location of point
X in spacetime is diff invariant even though the coordinates
representing its location change under diff. Therefore, the
value of ϕ at this location, ϕðXÞ, is diff invariant.
To draw such X in spacetime, we identify X as the end

point of a semi-infinite geodesic x̄μðsÞ,

Xμ ≡ x̄μðsÞjs¼0: ð10Þ

In the absence of gravity, this end point would be at xμ and
the geodesic would be directed in the x− direction3 toward
an infinite past (s → −∞). Therefore, we take the geodesic
equation

d2x̄μ

ds2
¼ −Γμ

νρðx̄Þ dx̄
ν

ds
dx̄ρ

ds
; ð11Þ

and solve for x̄μðsÞ perturbatively in powers of Γμ
νρ as

x̄μðsÞ ¼ x̄μ0ðsÞ þ x̄μ1ðsÞ þ x̄μ2ðsÞ þ � � � ðx̄μn ∼OðΓnÞÞ with
the “initial” condition,

x̄μ0js¼0 ¼ xμ;
dx̄μ0
ds

����
s¼0

¼ δμ−: ð12Þ

The integration constants for xμn with n ≥ 1 should be
chosen such that xμðsÞ → xμ0ðsÞ as s → −∞, reflecting
the boundary condition that no gravity was present in
the infinite past. Needless to say, we also expand Xμ as
Xμ ¼ Xμ

0 þ Xμ
1 þ Xμ

2 þ � � � (Xμ
n ∼OðΓnÞ).

To illustrate how it works explicitly, let us find V to the
second order and directly verify that δðV2ϕÞ ¼ Oðλ3Þ.
First, at OðΓ0Þ, we have

x̄μ0 ¼ xμ þ δμ−s; Xμ
0 ¼ xμ; ð13Þ

as we should. Plugging this back into (11) and picking up
OðΓ1Þ terms, we get

d2x̄μ1
ds2

¼ −Γμ
−−ðx̄0Þ ⇒ x̄μ1 ¼ −

�
1

∂2
s
Γμ
−−ðx̄0Þ

�
: ð14Þ

Evaluating x̄μ1 at s ¼ 0 then gives

Xμ
1 ¼ −

�
1

∂2
−
Γμ
−−ðxÞ

�
∼
qμ

λ
; ð15Þ

where (8) was used to get the scaling. Substituting X0 þ X1

for X in (9) and expanding it to OðλÞ indeed reproduces V1

in (4).
Moving on to OðΓ2Þ terms, we have

d2x̄μ2
ds2

¼ −2Γμ
ν−

dx̄ν1
ds

− ð∂νΓμ
−−Þx̄ν1

¼ 2Γμ
ν−

�
1

∂s
Γν
−−

�
þ ð∂νΓμ

−−Þ
�
1

∂2
s
Γν
−−

�
; ð16Þ

where all the Christoffel symbols are evaluated at point x̄μ0
and all x̄μ0;1;2 at an arbitrary s. This leads to

Xμ
2¼

�
1

∂2
−

�
2Γμ

ν−

�
1

∂−
Γν
−−

�
þð∂νΓμ

−−Þ
�

1

∂2
−
Γν
−−

���
; ð17Þ

where all the Christoffel symbols are now evaluated at
point x. From (8), we see that

Xμ
2 ∼ qμ; ð18Þ

so X2 is higher order than X1 by one power of λ as it
should be.
We can now substitute X0 þ X1 þ X2 for X in (9) to

obtain V2 and verify that δðV2ϕÞ ¼ Oðλ3Þ. First, expanding
in λ to second order, we have

V2ϕðxÞ ¼ ϕðxÞ þ Xμ
1∂μϕðxÞ

þ
�
Xμ
2 þ

1

2
Xμ
1X

ν
1∂ν

�
∂μϕðxÞ: ð19Þ

Then, referring to (8) and ignoring terms of Oðλ3Þ and
higher, we get

δðV2ϕÞ ¼ δϕþ δXμ
1∂μϕþ Xμ

1∂μδϕ

þ ðδXμ
2 þ Xμ

1δX
ν
1∂νÞ∂μϕ

¼ −
�

1

∂2
−
£ξΓμ

−−

�
∂μϕþ Xμ

1∂μδϕ

þ ðδXμ
2 þ Xμ

1δX
ν
1∂νÞ∂μϕ; ð20Þ

with δϕ ¼ ξρ∂ρϕ. In the last expression above, all terms
are Oðλ2Þ as all OðλÞ terms had canceled out. For the δXμ

1

and δXμ
2 in the last line of (20), we should simply use

δΓμ
νρ ¼ ∂ν∂ρξ

μ, because the Lie derivative term would
result in Oðλ3Þ terms. It is then straightforward to verify
that all the terms in (20) cancel out, demonstrating that
δðV2ϕÞ ¼ Oðλ3Þ indeed.
The process above can clearly be iterated to an arbitrary

order in λ. We therefore have a method to compute collinear
diff Wilson lines to any desired order in λ.

3As usual, the reason for picking out the x− direction is due to
the power counting (2), which says powers of ∂− are unsup-
pressed and thereby allows local operators to be displaced from
one another in the x− direction.
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III. REPARAMETRIZATION INVARIANCE

We now move on to our second topic, i.e., RPI. Let us
write a general RP transformation as pμ → p0

μ ¼ pμ þ
pνω

ν
μ with ων

μ being infinitesimal. Demanding that the
light cone metric as indicated in (2) be invariant under RP,
we get ωμ

ν ¼ −ων
μ. Despite this property of ων

μ, RP is not
Lorentz transformations nor a subset of diff transforma-
tions, because RP transformation parameters must obey
different scaling properties from the Lorentz/diff trans-
formation parameters. As derived in [1], if ων

μ were a
Lorentz or diff transformation parameter, it would scale as
ων

μ ∼ qνqμ=λ, where q is a collinear momentum scaling as
in (2). Then, for a momentum p scaling as in (3), we would
have p0

μ ∼ pμ þ pνðqνqμ=λÞ ∼ pμ þ qμ=λ. But this would
give p0

− ∼ 1=λ, contradicting with the original scaling,
p− ∼ λ0. Therefore, RP must be given a different scaling
law from diff × Lorentz transformations. This means that
RPI would constrain the SCET Lagrangian differently from
diff × Lorentz, thereby offering us an additional predic-
tive power.
Following the RPI nomenclature in QCD SCET, we

distinguish three types of RP. Type-I RP [10] is generated
by a three-vector parameter Δi ¼ −Δi ≡ ωiþ, which gives

p0þ ¼ pþ þΔipi; p0
− ¼ p−; p0

i ¼ pi−Δip−: ð21Þ

Demanding that the scaling law be preserved when p is
collinear to q, we get Δi ∼ λ. The same demand on a
noncollinear pwould only give a weaker condition. Type-II
[11] is generated by ϵi ¼ −ϵi ≡ ωi

−, which gives

p0þ ¼ pþ; p0
− ¼ p− þ ϵipi; p0

i ¼ pi − ϵipþ: ð22Þ

Demanding that the scaling law be preserved when p is not
collinear to q, we get ϵi ∼ λ0. The same demand on a
collinear p would only give a weaker condition. Type-III
[11] is generated by α≡ ωþþ, leading to p0þ ¼ ð1þ αÞpþ,
p0
− ¼ ð1 − αÞp−, and p0

i ¼ pi with α ∼ λ0. Type-III is
literally a Lorentz boost in the light cone direction, for
which the theory is already invariant. So, Type-III does
not give additional constraints beyond diff × Lorentz.
Similarly, the theory is already manifestly invariant under
rotations generated byωi

j. However, both Type-I and -II RPs
can give us nontrivial constraints on the structure of a gravity
SCET Lagrangian that is not implied by diff × Lorentz.
To be concrete, we consider a simple example of

scattering of two massless scalars into two massless scalars
plus a graviton, where the graviton is collinear to one of
the initial scalars. That is, we have four collinear sectors
(N ¼ 4), and consider ϕðp1Þ þ ϕðp2Þ → ϕðp3Þ þ ϕðp4Þþ
hμνðqÞ with q ∼ p1. We assume that the only nongravita-
tional coupling in the full theory is Lint ¼ −ϕ4=4!, and we
do not consider loops. As worked out in [1], the Oðλ0Þ and
OðλÞ interactions in Lhard are given by

Lð0þ1Þ
hard ¼ −ðV1ϕ1Þϕ2ϕ

�
3ϕ

�
4

−
1

2

�
1

∂2
−
R−−

�
ϕ1ϕ2ϕ

�
3ϕ

�
4

þ
�

1

∂3
−
R−i−j

�
ϕ1

�∂i∂j

∂þ
ϕ2

�
ϕ�
3ϕ

�
4 þ ð2 → 3; 4Þ;

ð23Þ

where V1 is the OðλÞ collinear diff Wilson line (4), while
ð2 → 3; 4Þ indicates the same operators as the preceding
one with a Riemann tensor except that ϕ2 is replaced by ϕ�

3

or ϕ�
4. Here and below, spacetime indices always refer to the

first light cone coordinates, where ϕ1 and the graviton by
definition belong to the first collinear sector.
In (23), V1 contains both Oðλ0Þ and OðλÞ terms, while

the Ricci and Riemann terms are both OðλÞ because R−− ∼
R−i−j ∼ λ [1]. The OðλÞ term inside V1ϕ1 is related by
symmetry to the Oðλ0Þ term, while the coefficients of the
Ricci and Riemann terms are determined by matching onto
the full theory. This is the first place where gravity SCET is
far more practically efficient and conceptually transparent
than the full theory. Since hμν scales as qμqν=λ [1], the
scaling law (2) tells us that h−− ∼ 1=λ. Hence, in the full-
theory calculation of the amplitude for the h−− polarization,
one must painfully expand each propagator of each dia-
gram toOðλ2Þ, only to find that allOð1=λÞ andOðλ0Þ terms
cancel out after adding up all diagrams. In the gravity
SCET calculation, in contrast, symmetry and power count-
ing tell us without any calculations that there are simply no
operators containing a collinear graviton at Oð1=λÞ and
Oðλ0Þ. Hard interactions manifestly begin at OðλÞ in the
SCET Lagrangian. Symmetry and power counting also tell
us that allOðλÞ terms beside the ones from collinear Wilson
lines must come with R−− or R−i−j [1]. To fix the forms of
the R−− and R−i−j terms, we can just choose to match the
simplest polarizations like hij or h−þ, as they are already
OðλÞ and we do not need any further λ expansions on the
full theory side.
Moving now onto Oðλ2Þ, we find that RPI gives

strong constraints on the structure of Oðλ2Þ operators
and determine them completely. First, notice that extending
diff × Lorentz to Oðλ2Þ does not predict any Oðλ2Þ
interactions relevant for our process in question ϕ1 þ ϕ2 →
ϕ3 þ ϕ4 þ hμν at tree level. This is because the process only
involves one graviton, while the Oðλ2Þ terms arising from
multiplying the terms in (23) by vierbeins or Wilson lines
for diff × Lorentz would be all two-graviton terms. We thus
disregard those Oðλ2Þ terms. For the same reason, we also
ignore the Oðλ2Þ terms corresponding to two-graviton
terms from Rμν, Rμνρσ, ðRμνÞ2, etc., as well as the Oðλ2Þ
terms in V2 we derived earlier as they are all quadratic
in hμν. Therefore, for the purpose of seeing what Oðλ2Þ
interactions are required by the symmetries of the theory for
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ϕ1 þ ϕ2 → ϕ3 þ ϕ4 þ hμν at tree level, we only need to
promote (23) to make it RPI.
Let us begin with RPI promoting the expression (4). It is

already invariant under Type-I as ∂− does not transform
under Type-I [see (21)]. It is also already invariant under
Type-III as the transformations of the two lower-minus
indices in the numerator are canceled by the two lower-
minus indices in the denominator. It is not RPI under
Type-II, however, as the lower-minus index does transform
under Type-II (see (22)).
To promote the expression (4) to an RPI form, we

employ and extend a strategy proposed in [12] for QCD
SCET. The basic idea is the following. Imagine a collinear
momentum q and another momentum p in a different
collinear sector from q. Then, at the leading order in λ, we
have q · p ¼ q−pþ ∼ λ0. Here, the product q−pþ is not RPI
beyondOðλ0Þ but the original full dot product, q · p, is RPI
to all orders as it does not refer to any specific choice of
light cone coordinate basis. Thus, we can RPI-promote
q−pþ by changing it back to q · p and reexpanding it to the
desired order in λ. While this technique is used for RPI-
promotingWilson lines in [12], we will be applying it to the
hard interactions as well. We note in passing that RPI
invariance has also been used to derive relations among the
matching coefficients in the framework of heavy quark and
non-relativistic effective field theories [13,14].
To use this strategy for RPI-promoting (4), we introduce a

notation that allows us to handle different collinear sectors
simultaneously. In the new notation, (4) is rewritten as

V1 ¼ 1 −
1

ð0∂−Þ2
Γμ
−− 1∂μ; ð24Þ

where the left subscript on a derivative indicates the field it
acts on.Namely, 0∂ acts only onhμν, while 1∂;…; 4∂ act only
on ϕ1;…;ϕ4, respectively. On the other hand, regardless of
what left subscripts refer to, right super/subscripts always
refer to the first light cone coordinates as we mentioned
already. Thus, for example, the power counting laws (2)
and (3) tell us that 0;1∂þ ∼ λ2 and 2;3;4∂þ ∼ λ0.
With this notation, we can now promote (24) to an RPI

form using the strategy described above,

V1 ⟶ VRPI
1 ¼ 1 −

1

3

X4
n¼2

n∂ν
n∂ρ

ðn∂ · 0∂Þ2 Γ
μ
νρ 1∂μ: ð25Þ

To see how VRPI
1 reduces to (24) at OðλÞ, let us consider the

n ¼ 2 term in (25) for example. Using the power counting
laws (2), (3), and (8), we get

2∂ν
2∂ρ

ð2∂ · 0∂Þ2 Γ
μ
νρ 1∂μ ¼ 2∂þ 2∂þ

ð2∂þ 0∂−Þ2
Γμ
−− 1∂μ þOðλ2Þ

¼ 1

ð0∂−Þ2
Γμ
−− 1∂μ þOðλ2Þ: ð26Þ

Thus, together with the factor of 1=3 and the sum
over n ¼ 2, 3, 4, we indeed recover the expression (24).
The sum over n with an identical coefficient in (25) is not
required by RPI but is necessary for crossing symmetry of
the amplitude.
Now that VRPI

1 is manifestly RPI, expanding VRPI
1 to

Oðλ2Þ will give us Oðλ2Þ terms predicted by RPI given the
presence of the OðλÞ collinear diff Wilson line. There are
two types of the Oðλ2Þ contributions. First, for ðν; ρÞ ¼
ð−; iÞ or ði;−Þ in (25), the Γμ

νρ 1∂μ factor is alreadyOðλ2Þ as
we can see from the scaling law (8). Second, for ðν; ρÞ ¼
ð−;−Þ, the Γμ

νρ1∂μ factor isOðλÞ but we can also pick up an
OðλÞ term from the Taylor expansion of the denominator,

1

n∂ · 0∂ ¼ 1

n∂þ 0∂−

�
1 − n∂i

0∂i

n∂þ 0∂−
þOðλ2Þ

�
; ð27Þ

where the second term inside the parentheses is OðλÞ.
Combining these two types ofOðλ2Þ contributions, we find
that the Oðλ2Þ part of VRPI

1 is

−
2

3

X4
n¼2

�
n∂i

n∂þð0∂−Þ2
Γμ
i− − n∂i

0∂i

n∂þð0∂−Þ3
Γμ
−−

�
1∂μ; ð28Þ

which can further be combined into a single term,

2

3

X4
n¼2

n∂i
1∂μ

n∂þð0∂−Þ3
Rμ−i−: ð29Þ

This acting on −ϕ1ϕ2ϕ
�
3ϕ

�
4 thus gives the Oðλ2Þ hard

interactions predicted from RPI-promoting the Wilson line
term in (23).
The Ricci term in (23) can also be promoted to an RPI

form in the same way via the replacement

1

∂2
−
R−− ⟶

1

3

X4
n¼2

n∂μ
n∂ν

ðn∂ · 0∂Þ2 Rμν: ð30Þ

To expand this in λ, we need to recall the power counting
law for the Ricci tensor [1],

Rμν ∼ λqμqν: ð31Þ

We again have two types of Oðλ2Þ contributions as we
did from VRPI

1 above. We find that the Oðλ2Þ part of the
RPI-promoted expression in (30) is

2

3

X4
n¼2

�
n∂i

n∂þð0∂−Þ2
Ri− − n∂i

0∂i

n∂þð0∂−Þ3
R−−

�
: ð32Þ

This acting on − 1
2
ϕ1ϕ2ϕ

�
3ϕ

�
4 gives the Oðλ2Þ interactions

predicted by RPI-promoting the Ricci term in (23).
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RPI also works for the Riemann term in (23) in
essentially the same way. With our left subscript notation,
the OðλÞ Riemann term in (23) can be rewritten as

X4
n¼2

n∂i
n∂j

n∂þð0∂−Þ3
R−i−jϕ1ϕ2ϕ

�
3ϕ

�
4: ð33Þ

This can be RPI-promoted as

1

3

X
ðm;nÞ

m∂α
n∂μ

m∂β
n∂ν

ðm∂ · 0∂Þ2ðn∂ · 0∂ÞRαμβνϕ1ϕ2ϕ
�
3ϕ

�
4; ð34Þ

where m, n ¼ 2, 3, 4 and “ðm; nÞ” indicates summation
over all m and n with m ≠ n, with ðn;mÞ being regarded as
distinct from ðm; nÞ. Let us first verify that the expression
(34) reduces to (33) at OðλÞ. From the power counting law
for the Riemann tensor [1],

Rμνρσ ∼
q½μqν�q½ρqσ�

λ
; ð35Þ

we see that the OðλÞ terms in (34) arise from picking up
OðλÞ terms from the numerator by setting ðα; μ; β; νÞ ¼
ð−; i;−; jÞ, ði;−; j;−Þ, ð−; i; j;−Þ, or ði;−;−; jÞ, while
picking up Oðλ0Þ contributions from the denominator by
truncating it to ðm∂þ 0∂−Þ2ðn∂þ 0∂−Þ. Let us describe how
the n ¼ 2 term of (33) arises from this. First, adding up the
ð−; i;−; jÞ terms coming from the ðm; nÞ ¼ ð3; 2Þ and
(4, 2) cases gives 2=3 of the n ¼ 2 term of (33). Next,
adding up the ði;−; j;−Þ terms from the ðm; nÞ ¼ ð2; 3Þ
and (2, 4) cases gives −1=3 of the n ¼ 2 term of (33) as

1

3

Ri−j−

ð0∂−Þ3
2∂i

2∂j

ð2∂þÞ2
½3∂þ þ 4∂þ� ¼ −

1

3

R−i−j

ð0∂−Þ3
2∂i

2∂j

ð2∂þÞ2 2∂þ:

ð36Þ

Here we have used the momentum conservation,

0∂μ þ 1∂μ þ � � � þ 4∂μ ¼ 0, where 0∂þ and 1∂þ are neg-
ligible as 0;1∂þ ∼ λ2 and 2;3;4∂þ ∼ λ0 from the scaling laws
(2) and (3). Finally, the ð−; i; j;−Þ and ði;−;−; jÞ terms
from the ðm; nÞ ¼ ð2; 3Þ and (2, 4) cases give 2=3 of the
n ¼ 2 term of (33) as

−
2

3

R−i−j

ð0∂−Þ3
2∂i

2∂þ
½3∂j þ 4∂j� ¼ 2

3

R−i−j

ð0∂−Þ3
2∂i

2∂þ
2∂j; ð37Þ

where momentum conservation has again been used with

0;1∂j ∼ λ being neglected compared to 2;3;4∂j ∼ λ0. Adding
up all these contributions gives us the n ¼ 2 term of (33).
We thus see that the RPI expression (34) indeed reproduces
the correct OðλÞ terms in (33).
Our next task is to expand (34) to Oðλ2Þ to get Oðλ2Þ

interactions predicted by RPI given theOðλÞ Riemann term

in (23). We have two sources of Oðλ2Þ contributions
depending on whether we directly get Oðλ2Þ components
of Rαμβν or pick up an OðλÞ component of Rαμβν and
multiplying it by an OðλÞ combination of derivatives. The
latter case is further divided into two categories depending
on whether the OðλÞ combination of derivatives comes
from the OðλÞ term in the expansion of the denominator
(27) or from the 0;1∂j thrown away in (37). Let us go
through these one-by-one.
First, from (35), the only OðλÞ component of Rαμβν is

R−i−j up to obvious permutations of the indices, while its
Oðλ2Þ components are R−ijk and R−þ−i up to permutations.
So, the direct Oðλ2Þ contributions from Rαμβν are given by
the following:

(i) R−ijk (∼Oðλ2Þ) multiplied by the leading order
denominators. Adding up all relevant permutations
of the indices and using momentum conservation in
a similar way as we did for (37), we get

2

3

X
ðm;nÞ

n∂i
m∂j

n∂k

n∂þ m∂þ 0∂−

R−ijk

ð0∂−Þ2
: ð38Þ

(ii) R−þ−i (∼Oðλ2Þ) multiplied by the leading order
denominators. Here, again after using momentum
conservation, we obtain

2

3

X4
n¼2

�
3

n∂− n∂i

n∂þ 0∂−
þ n∂i

n∂þ
þ n∂i

1∂−

n∂þ 0∂−

�
R−þ−i

ð0∂−Þ2
: ð39Þ

On the other hand, the Oðλ2Þ contributions from an OðλÞ
combination of derivatives acting on R−i−j ∼OðλÞ are the
following:
(i) R−i−j multiplied by the OðλÞ term from a denominator

as in (27). After momentum conservation, the
ðα; μ; β; νÞ ¼ ð−; i;−; jÞ terms of (34) become

−
2

3

�X
ðm;nÞ

m∂k

m∂þ
þ
X4
n¼2

n∂k

n∂þ

�
n∂i

n∂j
0∂k

n∂þð0∂−Þ2
R−i−j

ð0∂−Þ2
; ð40Þ

while the ði;−; j;−Þ terms become

X4
n¼2

n∂i
n∂j

n∂k
0∂k

ðn∂þÞ2ð0∂−Þ2
R−i−j

ð0∂−Þ2
; ð41Þ

and the ði;−;−; jÞ and ð−; i; j;−Þ terms together give

2

3

�X
ðm;nÞ

m∂i

m∂þ
− 2

X4
n¼2

n∂i

n∂þ

�
n∂j

n∂k
0∂k

n∂þð0∂−Þ2
R−i−j

ð0∂−Þ2
: ð42Þ
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(ii) The 0;1∂j terms neglected in (37)

2

3

X4
n¼2

R−i−j

ð0∂−Þ3
n∂i

n∂þ
½0∂j þ 1∂j�: ð43Þ

Now, in adding up all the contributions above, notice
that the Bianchi identity implies that R−ijk in (38) can be
rewritten as

R−ijk ¼ 0∂j

0∂−
R−i−k − 0∂k

0∂−
R−i−j: ð44Þ

Then, the first and second terms on the right-hand side here
cancel out with the first terms of (40) and (42), respectively.
No double summations,

P
ðm;nÞ, remain. Only the single

summations,
P

n, survive. Moreover, the 1∂− term of (39)
and the 1∂j term of (43) together cancel the Oðλ2Þ
contributions (29) from the Wilson line. None of these
cancellations is actually an accident as we will discuss later.
The total Oðλ2Þ interactions predicted by RPI-promoting

Lð0þ1Þ
hard are, therefore, given by

Lð2Þ
hard;RPI ¼

X4
n¼2

�
1

3

�
n∂i

0∂i

n∂þ 0∂−

R−−

ð0∂−Þ2
− n∂i

n∂þ 0∂−

Ri−

0∂−

�

þ 2

3

�
3

n∂− n∂i

n∂þ 0∂−
þ n∂i

n∂þ

�
R−þ−i

ð0∂−Þ2

þ
�
2

3
n∂i

0∂j

n∂þ 0∂−
− n∂i

n∂j
n∂k

0∂k

ðn∂þÞ2ð0∂−Þ2
�

R−i−j

ð0∂−Þ2
�
:

ð45Þ
Our next task is to show that there are noOðλ2Þ operators

other than (45). For this purpose, it is useful to first
understand why OðλÞ operators must be in the form (23)
up to numerical coefficients. The Wilson line term, of
course, is required and determined by gauge invariance

with no associated free parameter. The rest of Lð0þ1Þ
hard must

be also gauge invariant. Because of the power counting
laws (31) and (35), the only OðλÞ components of gauge
covariant objects are R−− and R−i−j. For our process, which
only has one graviton emission, these components are also
gauge invariant, as multiplying them by Wilson lines to
make them gauge invariant would only produce multi-

graviton couplings. In Lð0þ1Þ
hard , whatever is in front of R−− or

R−i−j must be dimensionless, so each of R−− and R−i−j
must be divided by two derivatives. The two derivatives
must be n∂− m∂− to “cancel” the two—indices in R−− or
R−i−j for Type-III RPI. To proceed further, we need to just
imagine gross features of the matching calculation as
follows. To determine n and m for our process of a single
graviton emission at tree level, observe that a derivative in
the denominator in Lhard arises only when ϕ2, ϕ3, or ϕ4

emits the graviton in a full-theory diagram. For example,

when ϕ2 emits the graviton in a full-theory diagram, the
internal ϕ2 propagator between the graviton emission and
the ϕ4 vertex goes as

1

ðp2 − qÞ2 ∝
1

p2 · q
¼ 1

p2þ q−

�
1þ pi

2 qi
p2þ q−

þ p2− qþ
p2þ q−

�
−1
;

ð46Þ
where the second and third terms inside the parentheses are
OðλÞ and Oðλ2Þ, respectively. We thus see that Taylor-
expanding propagators only give powers of 1=q−, never
1=pn− with n ¼ 1;…; 4, so we must have n ¼ m ¼ 0 for
the n∂− m∂−. We thus have the combinations R−−=ð0∂−Þ2
and R−i−j=ð0∂−Þ2. For the latter, the i and j indices must be
contracted with n∂i

m∂j, and to make it dimensionless we
must divide it by a Type-III invariant product of two
derivatives, which as we just learned above must be

l∂þ 0∂−. But at tree level with only one graviton, we
must have n ¼ m ¼ l because in each full-theory diagram
the graviton couples to only one of ϕ2, ϕ3, and ϕ4. And all
ϕ2;…;ϕ4 should appear symmetrically so we must sum
over n with the same coefficient. Therefore, the only
possible forms are

R−−

ð0∂−Þ2
;

X4
n¼2

n∂i
n∂j

n∂þ 0∂−

R−i−j

ð0∂−Þ2
: ð47Þ

There are no more combinations of derivatives that could
be inserted into these. Whatever they are, they must be
ratios of derivatives to be dimensionless. As we have seen
above, the only Oðλ0Þ Type-III invariant combination that
could appear in the denominator is n∂þ 0∂−. For each such
denominator, the numerator has to be dimension-2, Oðλ0Þ,
and Type-III invariant, and the only such combinations are
n∂þ 0∂−, n∂þ n∂−, and n∂i

n∂i. The first one would just
cancel the denominator. The second and third ones actually
have to be added together with a common coefficient for
the Lorentz invariance of the collinear sector n, thereby
forming n∂μ

n∂μ. But this acting on ϕn vanishes by the
leading-order equation of motion. We thus see that the
operators in (47) are the only possible OðλÞ operators for
Lhard with one collinear graviton emission at tree level.
Let us follow the same line of reasoning for Oðλ2Þ. For

Ricci, it must be either R−−=ð0∂−Þ2 multiplied by an OðλÞ
dimensionless ratio of derivatives, or R−i=0∂− multiplied
by an Oðλ0Þ ratio of dimension −1 carrying an index i. The
latter can only be n∂i=ðn∂þ 0∂−Þ with n ¼ 2, 3, 4, because

m∂i=ðn∂þ 0∂−Þ with m ≠ n cannot appear at tree level
while n∂i=ðn∂þ 0∂−Þ with n ¼ 0, 1 would be OðλÞ rather
than Oðλ0Þ. Similarly, the former can only be
n∂i

0∂i=ðn∂þ 0∂−Þ. For both cases, there are no more
combinations of derivatives that could be inserted without
vanishing by the leading-order equation of motion. Thus,
for Ricci, the only possible Oðλ2Þ operators are
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X4
n¼2

n∂i
0∂i

n∂þ 0∂−

R−−

ð0∂−Þ2
;

X4
n¼2

n∂i

n∂þ 0∂−

R−i

0∂−
: ð48Þ

These are precisely the Ricci operators we have in (45), and
we have already seen that their coefficients are fixed by
Type-II RPI.
Similarly, for Riemann, a similar reasoning leads to only

four possibilities,

X4
n¼2

n∂i
0∂j

n∂þ 0∂−

R−i−j

ð0∂−Þ2
;

X4
n¼2

n∂i
n∂j

n∂þ 0∂−

n∂k
0∂k

n∂þ 0∂−

R−i−j

ð0∂−Þ2
;

X4
n¼2

n∂i
n∂−

n∂þ 0∂−

R−þ−i

ð0∂−Þ2
;

X4
n¼2

n∂i

n∂þ

R−þ−i

ð0∂−Þ2
: ð49Þ

These are precisely the Riemann operators we have in (45),
and we have already seen that their coefficients are fixed by
Type-II RPI.
We now see that the cancellations of R−ijk terms due to

the Bianchi identity (44) were actually destined to occur.
Observe the absence of R−ijk in the list (49). This follows
from the fact that n∂i

n∂j
n∂k acting on R−ijk would vanish

by the antisymmetry in j and k, while n∂i
0∂j

n∂k on R−ijk
would be Oðλ3Þ. Thus, the R−ijk term from (38) had to
cancel.
To conclude this section, we have seen that RPI

completely fixes the Oðλ2Þ operators given the OðλÞ
operators (23) as

Lð2Þ
hard ¼ Lð2Þ

hard;RPI; ð50Þ

where Lð2Þ
hard;RPI is given in (45). These operators are very

compact and can be readily translated into the amplitude at
Oðλ2Þ. Like the OðλÞ case, or even worse, the correspond-
ing full-theory calculation of the Oðλ2Þ terms is very
“inefficient” with many “unexpected” cancellations, but
we have explicitly checked that it agrees with the EFT
amplitude. We thus see that RPI is a powerful and useful
tool in gravity SCET.

IV. SUMMARY AND DISCUSSIONS

In this note, we first derived a formula from which
collinear diff Wilson lines can be computed to an arbitrary
order in λ. This is a necessary ingredient in gravity SCET
as the hard interaction, Lhard, in the effective Lagrangian
must be invariant under collinear diff gauge groups.
Next, we discussed RPI and illustrated how RPI can

significantly constrain the structure of the effective
Lagrangian by working out an example in which Oðλ2Þ
interactions in Lhard are completely fixed by RPI from
given OðλÞ interactions.

It appears that RPI can actually do even more—it can
even reduce the amount of matching calculation at OðλÞ.
This is suggested in our specific example by the cancella-
tion of the Oðλ2Þ terms (29) arising from RPI-promoting
the collinear diff Wilson line [recall the discussion above
the expression (45)]. Notice that the expression (29)
involves other collinear sectors than the first collinear
sector. But from the perspective of gauge symmetry, a
collinear Wilson line should only involve fields within its
own collinear sector. Thus, we could have foreseen that
the contributions (29) would be cancelled by some other
contributions. We can turn this around and demand that the
numerical factor and derivative structures acting on the
R−i−j at OðλÞ be such that the Oðλ2Þ terms arising from it
by RPI cancel those from the Wilson line. This completely
fixes the OðλÞ Riemann term in (23) without any OðλÞ
matching calculation onto the full theory. This leaves us
only the Ricci term in (23) to be matched atOðλÞ. Once that
is done, all Oðλ2Þ hard interactions can be derived from
RPI without any matching calculation (except for the very
gross features of full-theory diagrams we used) as we have
seen above.
Therefore, when combined with other symmetries and

some gross properties of amplitudes, RPI can lead to strong
constraints on the structures of effective Lagrangians in
gravity SCET. Our discussions above, however, also tell us
what complications we should expect when we go beyond
tree level and/or the one-graviton emission. For example, at
loop level, a graviton propagator in a full-theory diagram
can connect different collinear sectors. This suggests that
our argument above that led to the absence of double or
triple summations becomes invalid and we should expect
multiple summations. Therefore, a dedicated study akin to
what was done in [15] for the soft theorems in QCD SCET
must be also done for gravity SCET to see the power and
utility of RPI beyond tree level for gravitational amplitudes.
Moreover, the cancellations of the R−ijk terms andOðλ2Þ

Wilson line terms from RPI, both of which are compulsory
as we have discussed above, may be an indication that
our implementation of RPI is perhaps not optimal as it
introduces terms that we know will cancel at the end.
Therefore, even restricting ourselves at tree level and one-
graviton emission, we have an interesting problem of
figuring out such optimal implementation of RPI in gravity
SCET.
It should be emphasized that constraints from RPI are in

addition to those from diff × Lorentz. By using the Wilson
lines, an effective Lagrangian can be made diff × Lorentz
invariant to any desired order in λ, although the invariance
is not manifest due to the use of the light cone coordinates.
RPI gives additional constraints arising from removing the
reference to the light cone coordinates.
Finally, an important topic left out in this note is the

invariance under the RP between soft and collinear modes.
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Once soft modes are reintroduced to the theory, shifting
collinear momenta by soft momenta does not affect the
power counting of collinear modes and thus constitutes a
redundancy under which the theory should be invariant
[12]. It is very possible that this RPI can lead to further
constraints on the hard interactions at Oðλ2Þ, which is the
lowest order at which both the soft and collinear inter-
actions are present in gravity SCET [1]. We leave this very
interesting problem for future work.
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