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We study scalar, fermionic and gauge fields coupled nonminimally to gravity in the Einstein-Cartan
formulation. We construct a wide class of models with nondynamical torsion whose gravitational spectra
comprise only the massless graviton. Eliminating nonpropagating degrees of freedom, we derive an equivalent
theory in themetric formulation ofgravity. It features contact interactions of a certain formbetween, and among,
the matter and gauge currents. We also discuss briefly the inclusion of curvature-squared terms.
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I. INTRODUCTION

There is overwhelming evidence in favor of General
Relativity (GR) as the theory of classical gravity.
Nevertheless, this leaves open a far-reaching question about
the choice of fundamental fields. Different options lead to
different formulations of gravity. One possibility, which is
most commonly used, is the metric approach. In this
formulation, the metric is selected as the only fundamental
field whereas the Christoffel symbols are defined a priori as
functions of the metric and are fixed to correspond to the
Levi-Civita connection. This implies that the gravitational
dynamics is fully captured by curvature.
Another formulation of GR is provided by the Einstein-

Cartan (EC) theory [1,2]. In this case, the vielbein and spin
connection assume the role of fundamental fields, from
which the metric and Christoffel symbols can be sub-
sequently derived. Since the connection is independent of
the metric, the theory features torsion in addition to
curvature. While the metric and EC formulations of gravity
look very different, they are exactly equivalent in the pure
GR case. The way to see this is as follows. In EC gravity, it
is possible to solve for the connection. If no matter is
included, the result is the Levi-Civita connection.

Hence, torsion still vanishes, but this time dynamically
as a consequence of its equations of motion.
The different formulations represent an inherent theo-

retical ambiguity contained within GR. A theory of pure
gravity cannot distinguish between them, and this puts on
equal footing the various choices of fundamental fields,
including the most commonly used metric approach. It is
important to stress the difference between the formulations
of GR and its modifications, such as massive (for a review
see [3]) or Dvali-Gabadadze-Porrati [4] gravity. The latter
can already be distinguished from GR in pure gravity.
The list of formulations of GR which are equivalent in

pure gravity is rather long. Let us indicatively mention the
ones based on the Palatini [5,6],1 affine [8–12], or teleparallel
[13–16] (see [17] for a review) gravity. Given this zoo of
options, the question arises if one can select a preferred one.
The answer is twofold. First, some choices may lead to
conceptual advantages. For example, EC gravity follows
from gauging the Poincaré group [18,19], which brings
gravity closer to the rest of the interactions in nature; see
[20–25] for reviews. Furthermore, the first-order formalism
(where the metric and connection are independent) allows
for boundary terms that are well defined without any need
for an infinite counterterm [26]. Of course, such arguments
are not irrefutable. Second, and more importantly, once
matter fields are involved, the “degeneracy” may very well
be lifted, so that different frameworks lead to different
predictions. This can open a way, at least in principle, to
distinguish between them via observations and experiment.
In order for this to be possible, however, it is necessary to
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systematically quantify their differences. The goal of the
present paper is to contribute to this program.
In what follows we focus on EC gravity, which encom-

passes the metric and Palatini2 versions as special cases.
First, we shall discuss EC theory in more detail. In general,
gauging of the Poincaré group leads to the introduction of
40 degrees of freedom (in four spacetime dimensions).
They are distributed among the 24-component spin con-
nection and 16-component tetrad/vierbein. Owing to the
local nature of the Poincaré transformations, not all
40 degrees of freedom can be physical. In fact, using the
gauge freedom, half of them can be eliminated. This leaves
at most 20 propagating degrees of freedom. It is an easy
exercise to decompose the latter into states with definite
spin and parity; this reveals that 12 degrees of freedom
are in the spin-2 sector (the massless gravitonþ
two massive tensors), six in the spin-1 sector (two massive
vectors), and two in the spin-0 sector (two massive scalars)
[27,28]. In EC gravity, however, only the massless graviton
is endowed with a kinetic term. This implies that the rest of
the gravitational states are not propagating and that the
connection is nondynamical.
Once coupled to matter, the inequivalence of EC and

metric gravity manifests itself in two ways. First, since
there is no a priori assumption about the symmetry of the
Christoffel symbols, matter can source torsion even when it
is only coupled minimally to gravity. This is e.g., the case
for fermions. Generically, the resulting effects are sup-
pressed by powers of the Planck mass MP [19,29].
Secondly, one can add additional terms to the action. An
example consists in the Holst term [30–33], which is the
full contraction of the curvature tensor with the totally
antisymmetric symbol. In metric gravity this vanishes
identically—it actually comes down to the algebraic
Bianchi identity of the Riemann tensor—but it gives a
nontrivial contribution once torsion is present. The addi-
tional terms in the action come with a priori undetermined
dimensionless coupling constants. If they are bigger
than 1, they lead to effects that are already visible well
below the Planck scale.
A consequence of the equivalence between the metric

and EC formulations of GR in the absence of matter is that
their particle spectrum is identical and comprises the two
polarizations of the massless graviton. Interestingly, this
continues to be the case also when the theory is coupled to
matter sectors. The connection now picks up extra pieces
involving the matter fields, but it remains nondynamical.
Correspondingly, it is possible to solve for torsion. By
plugging the result back into the action, one can derive an
equivalent torsion-free theory, in which the matter sector is
supplemented with a set of specific higher-dimensional

operators. In other words, the EC framework acts as a set of
selection rules in that it singles out a particular subset of all
possible higher-dimensional operators consistent with the
gauge redundancies of the system.
Over the years there has been a lot of progress in

constructing the most general EC theory with (nonmini-
mally) coupled scalar and fermionic fields [34–43]. So far,
the most complete model, which encompasses the previously
mentioned works as special cases, was investigated in [44].
However, even in the study [44] numerous terms were
(implicitly) excluded from the Lagrangian without justifi-
cation. Our goal here is to generalize the previous inves-
tigations by first proposing systematic criteria for
construction an action of matter coupled to EC gravity
and then including all terms that fulfill these criteria. In doing
so, we take into account fermions, a real scalar, as well as an
Abelian-Higgs model. Of particular interest is the latter case,
for it is a stripped to its bare essentials version of the
Standard Model (SM) that nonetheless captures all the
salient features of its symbiosis with EC gravity. Among
the various terms that appear in the action, there are also
couplings of theUð1Þ scalar current to torsion. For the fully-
fledged SM this corresponds to the hypercharge. In the
effective metric description this translates into novel higher-
dimensional terms describing contact interactions of this
current with itself and with the other fields.
The paper is organized as follows. In Sec. II we introduce

some basic concepts of EC theory and then lay out criteria
for methodically constructing an action of matter fields
coupled to gravity. Based on these principles, we discuss in
details all terms that we include in the action. In Sec. III we
derive the effective metric description of the theory. As a
sanity check, we compare various limiting cases of our
findings with existing results in the literature. In Sec. IV we
discuss how our considerations are altered in the presence
of curvature-squared terms. In particular, we introduce and
study a model in which the inclusion of such a term does
not lead to new propagating degrees of freedom. In Sec. V
we conclude.

A. Conventions

Throughout this paper we work in four spacetime
dimensions. Greek letters are reserved for spacetime
indices and capital Latin letters for Lorentz indices. Both
the spacetime gμν and Minkowski ηAB metrics have mostly
plus signature. Our convention for the gamma matrices is

fγA;γBg¼−2ηAB; γ5¼−iγ0γ1γ2γ3¼ iγ0γ1γ2γ3; ð1Þ

meaning that

fγA;ΣBCg ¼ −2ϵABCDγ5γD; ½γA;ΣBC� ¼ −4iηA½BγC�;

ΣAB ≡ i
2
½γA; γB�: ð2Þ

2The Palatini formulation treats the metric and affine con-
nection as independent fields, yet the connection is assumed to be
symmetric.
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The totally antisymmetric tensor is taken such that
ϵ0123 ¼ 1. We work in natural units c ¼ ℏ ¼ 1.

II. CONSTRUCTING THE ACTION

A. Geometrical preliminaries

The mathematical toolbox of EC gravity is that of the
Poincaré gauge theory. The gravitational interaction
emerges from gauging the Poincaré group [18,19]. In order
to make this possible, one needs to introduce more degrees
of freedom as compared to GR. Specifically, it is necessary
to introduce two gauge fields in order to localize Lorentz
transformations and translations. These are the (spin)
connection ωAB

μ , which is antisymmetric in its upper
indices, and the tetrad/vierbein eAμ , respectively. They live
in the (co)tangent space of the spacetime manifold. The
space is endowed with two bases. One is induced by the
spacetime metric gμν; to refer to it, we use Greek indices,
covariant under diffeomorphisms. The other is an ortho-
normal-noncoordinate basis referred to with Latin indices
and enjoying covariance under local Lorentz transforma-
tions. These two bases are connected via the tetrad e.g.,
VA ¼ eAμVμ, for a vector Vμ. In particular, the two metrics
are related via

gαβ ¼ eAαeBβ ηAB; ηAB ¼ eαAe
β
Bgαβ: ð3Þ

The covariant derivatives in the two bases read

DμVα¼∂μVαþΓα
σμVσ; DμVA¼∂μVAþωAB

μ VB; ð4Þ

with Γκ
μν the affine connection. They transform homo-

geneously under diffeomorphism and local Lorentz trans-
formations, respectively. The fact that the coefficients Γα

σμ

and ωAB
μ correspond to the same connection expressed in

different bases leads to DμeAν ¼ 0.3 This condition ensures
the compatibility of the two expressions in Eq. (4) and
moreover implies

Γκ
νμ ¼ eκAð∂μeAν þ ωA

μBe
B
ν Þ: ð5Þ

Thus, the Γκ
νμ can be defined as functions of the tetrad and

the spin connection. The antisymmetry of the spin con-
nection, ωAB

μ ¼ −ωBA
μ , implies metric compatibility

∇μgαβ ¼ 0 ⇔ ∇μηAB ¼ 0: ð6Þ

Finally, the field strengths corresponding to the spin
connection and tetrad can be obtained by acting with the

commutator of covariant derivatives on a vector. This yields
the explicit form of the curvature FAB

μν and torsion TA
μν:

FAB
μν ¼ ∂μω

AB
ν − ∂νω

AB
μ þ ωA

μCω
CB
ν − ωA

νCω
CB
μ ; ð7Þ

TA
μν ¼ ∂μeAν − ∂νeAμ þ ωA

μBe
B
ν − ωA

νBe
B
μ : ð8Þ

Using appropriate Poincaré- and diffeomorphism-invariant
combinations of F and T, one can write down an effective
theory by expanding in powers of the field strengths, or
equivalently, in the derivatives of the fields. We will discuss
this in detail in the following.

B. Selection rules for the terms in the action

In the following, we shall construct an action for matter
coupled to gravity in the EC formulation. Thereby, our
goal is to solely focus on those effects that arise from
the ambiguities in the coupling of matter to gravity.
Correspondingly, we shall demand equivalence to the
metric theory in pure gravity, and also leave the matter
sector on its own invariant. This leads us to impose the
following three criteria:

(i) The purely gravitational part of the action should
solely contain operators of mass dimension not
greater than 2.

(ii) In the flat spacetime limit, i.e., for eAμ ¼ δAμ , ωAB
μ ¼ 0,

the matter Lagrangian should be renormalizable.
(iii) The coupling of matter to gravity should only happen

through operators of mass dimension not greater
than 4.

Let us elaborate on the significance of the above. The
purpose of criterion (i) is to ensure that the gravitational sector
is equivalent to GR in the metric formulation. A necessary
condition to achieve this is to have the same particle content.
Hence, we demand that out of the plethora of possible states
of gravitational origin, the massless graviton is the only one
that propagates. Why this requirement motivates us to only
consider terms of mass dimension not greater than 2 can be
understood by counting the derivatives [41]. Torsion contains
a derivative of the tetrad, see Eq. (8), i.e., each occurrence of
T in the action counts as one derivative. Curvature F consists
of derivatives of torsion and torsion-squared terms (see
Eqs. (7) and also (21) below), hence it counts as two
derivatives.Now torsion and curvature havemass dimensions
1 and 2, respectively. Consequently, the number of derivatives
is equivalent to the mass dimension, and criterion (i) is
tantamount to restricting ourselves to terms with at most 2
derivatives.As iswell known, operatorswithmorederivatives
would generically lead to the appearance of new propagating
degrees of freedom.Moreover, some of themwould also have
kinetic terms with the wrong signs.
We have to mention, however, that there are exceptions to

this dictum. First, certain combinations of curvature-squared
terms result in healthy particle spectra [27,28,46–61].
Second, one can devise particular higher-curvature theories

3We remark that it is also possible to consider the case in which
Γα
σμ and ωAB

μ represent two different connections, and corre-
spondingly DμeAν does not vanish [45].
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which do not propagate any particles apart from the massless
graviton. Thus, condition (i) is sufficient but not necessary
for the absence of new propagating degrees of freedom. We
further discuss this point in Sec. IV.
Next, criterion (ii) implies that before coupling to

gravity, the matter sector only contains terms of mass
dimension not bigger than 4. This postulate is crucial for
the predictiveness of our setup. As we will show, the model
built according to (i) and (ii) can be equivalently expressed
as a torsion-free theory that contains a specific set of
higher-dimensional operators of the matter fields. If we
were to drop condition (ii), i.e., added from the beginning
all possible higher-dimensional operators to the action, the
inclusion of torsion would not bring any new information.
Equivalently, one can say that we use torsion as a criterion
to select specific higher-dimensional operators of the matter
theory. Needless to say, the soundness of such an approach
remains to be checked. One way to do so is to explore its
consequences. Insofar as it leads to predictions that are
consistent and in agreement with observations, this can be
regarded as an a posteriori justification for imposing
criteria (i) and (ii). In the present paper, we shall lay the
groundwork for exploring the consequences of the theory
defined by these conditions.
Finally, criterion (iii) states that also after coupling

matter to gravity, the theory only contains terms of mass
dimension not bigger than 4. Imposing such a requirement
appears to be natural in view of the analogous condition
(ii) in the matter sector. Like condition (i), it ensures that the
operators coupling gravity and matter do not introduce any
additional propagating degrees of freedom. However,
unlike (i) and (ii), criterion (iii) can be easily relaxed in
explicit computations without spoiling the predictiveness of
our setup and without the danger of invoking extra
propagating particles. For this reason, our analysis below
is, in fact, more general, and our results remain valid even if
condition (iii) is relaxed.
To summarize, we have proposed certain criteria to

construct a generic class of models for coupling matter
to gravity in the EC formulation. Postulates (i) and (ii) are
restrictive enough to ensure that the pure matter sector
does not contain any higher-dimensional operators and
that the pure gravity sector is equivalent to GR in its metric
formulation. Thus, any new effects that we discover
originate solely from the interaction of matter with gravity.
In other words, we explore the consequences of the fact that
there is not a unique way of coupling matter to gravity.

C. Decomposition of torsion and contorsion

Due to the antisymmetry of torsion [defined in Eq. (8)] in
the spacetime indices, it has 24 independent components in
four dimensions. These can be conveniently grouped into
three irreducible pieces: a vector vμ, a pseudovector aμ, and
the 16-component reduced torsion tensor τμνρ. Explicitly,

vμ ¼ Tν
μν; aμ ¼ ϵμνρσTνρσ;

τμνρ ¼
2

3
ðTμνρ − v½νgρ�μ − T ½νρ�μÞ; ð9Þ

with Tμνρ ¼ eμATA
νρ, and summation over repeated indices

is tacitly assumed. As customary, square (round) brackets
stand for antisymmetrization (symmetrization) of the cor-
responding indices. The reduced torsion tensor is subject to
the following conditions

τνμν ¼ 0; ϵμνρστ
νρσ ¼ 0: ð10Þ

In terms of its irreducible components, the torsion tensor
reads

Tμνρ ¼
2

3
v½νgρ�μ −

1

6
aσϵμνρσ þ τμνρ: ð11Þ

Moreover, we introduce the torsionless spin connection

ω
∘ AB
μ which is a function of the tetrad. To find its expression,

we demand that the rhs of Eq. (8) vanish. The resulting
algebraic equation can be solved for the connection and
yields

ω
∘ AB
μ ¼ 1

2
½eνAð∂μeBν − ∂νeBμ Þ − eνBð∂μeAν − ∂νeAμ Þ

− eμCeνAeλBð∂νeCλ − ∂λeCν Þ�: ð12Þ

It follows from Eq. (5) that this is equivalent to

Γ
∘ κ
μν ¼

1

2
gκλð∂μgλν þ ∂νgμλ − ∂λgμνÞ; ð13Þ

where Γ
∘ κ
μν are the Christoffel symbols of the torsion-free

Levi-Civita connection.
The full spin connection can be split as

ωAB
μ ¼ ω

∘ AB
μ þ CAB

μ ; ð14Þ

implying the following decomposition of the affine
connection

Γκ
μν ¼ Γ

∘ κ
μν þ eκAe

B
νCA

μB; ð15Þ

where we introduced the contorsion tensor CAB
μ . The latter

is related to torsion as

CAB
μ ¼ 1

2
eαAeβBðTαβμ − Tβαμ − TμαβÞ: ð16Þ

Plugging into the above the decomposition (11) of torsion
in terms of the vector, pseudovector and reduced tensor, we
can express contorsion as
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CAB
μ ¼ eαAeβB

�
2

3
v½βgα�μ þ

1

12
ϵαβμνaν þ 2τ½αβ�μ

�
: ð17Þ

It is evident from Eq. (8) that

TA
μν ¼ CA

μBe
B
ν − CA

νBe
B
μ : ð18Þ

From Eqs. (16) and (18) it follows that torsion and
contorsion contain the same information about the space-
time geometry and are completely equivalent from a
dynamical point of view.
Having introduced the necessary ingredients and nota-

tion, in the following we shall systematically construct the
most general action of gravity coupled to matter that fulfills
the conditions (i) and (ii) spelled out in Sec. II B. It will
become apparent that working in terms of the torsion
components vμ; aμ; τμνρ greatly facilitates the analysis.

D. Pure gravity

Let us first discuss a purely gravitational theory. We
already mentioned that the restriction to at most two
derivatives of the fields implies that the action can
only contain terms quadratic in torsion and linear in
curvature. Regarding torsion, this leads to the following
seven terms [41]

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
vμÞ; 1ffiffiffi

g
p ∂μð

ffiffiffi
g

p
aμÞ; vμvμ; aμaμ;

vμaμ; τμνρτ
μνρ; ϵμνρστμνλτρσ

λ; ð19Þ

where we denoted g ¼ − detðgμνÞ. As for curvature, only
two invariants are admissible. These are the parity-
preserving Einstein-Hilbert and parity-violating Holst
terms given by

F≡ 1

8
ffiffiffi
g

p ϵABCDϵ
μνρσFAB

μν eCρ eDσ ; and

F̃≡ 1ffiffiffi
g

p ϵμνρσeρCeσDFCD
μν ; ð20Þ

respectively. Using Eqs. (14)–(17), we can decompose the
above into torsion-free and torsionful contributions. This
gives

F ¼ R
∘

2
þ 1ffiffiffi

g
p ∂μð

ffiffiffi
g

p
vμÞ − 1

3
vμvμ þ

1

48
aμaμ þ

1

4
τμνρτ

μνρ;

ð21Þ

F̃ ¼ −
1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
aμÞ þ 2

3
aμvμ −

1

2
ϵμνρστλμντ

λ
ρσ; ð22Þ

where the torsion-free Riemannian curvatures are
defined as

R
∘ ¼ R

∘ μ
μ; R

∘
μν ¼ R

∘
νμ ¼ δλσR

∘ λ
μσν;

R
∘ λ
μσν ¼ ∂σΓ

∘ λ
νμ − ∂νΓ

∘ λ
σμ þ Γ

∘ λ
σρΓ

∘ ρ
νμ − Γ

∘ λ
νρΓ

∘ ρ
σμ: ð23Þ

In expanding F̃, we dropped the term ∝ ϵμνρσR
∘
μνρσ, since it

vanishes identically by virtue of the symmetries of R
∘
μνρσ.

Note also that the decompositions in (21) and (22) contain
all seven torsion invariants from Eq. (19), albeit with fixed
coefficients.
Overall, the action of pure gravity reads

Sgr ¼ M2
P

Z
d4x

ffiffiffi
g

p �
F þ 1

4γ̄
F̃ þ c̃vv

2
vμvμ þ c̃vavμaμ

þ c̃aa
2

aμaμ þ c̃ττταβγταβγ þ c̃0ττϵμνρστλμντλρσ þ 2Λ
�
;

ð24Þ

where the γ̄ and c̃’s are arbitrary dimensionless constants;
γ̄ is called the Barbero-Immirzi parameter [62,63]. For
completeness, we also included a cosmological constant
term Λ, although its presence does not play any role in the
subsequent analysis.
To get a better handle on the dynamics of the theory (24),

it is useful to express it in its equivalent metric-only form
by integrating out the nondynamical connection ωAB

μ .
Although straightforward, this approach quickly becomes
algebraically tedious, especially in the presence of matter.
Therefore, we will simplify the computation using the
following procedure. First, we split the connection as

in (14) in a torsionless part ω
∘ AB
μ and contorsion CAB

μ .
Secondly, we use Eq. (16) to replace contorsion by torsion
Tαβμ. Thirdly, we split torsion in its irreducible components
vμ, aμ, τμνρ [see Eq. (11)]. All these operations are bijective,
i.e., ωAB

μ uniquely determines the triplet vμ, aμ, τμνρ, and
vice versa. Therefore, varying the action with respect to
ωAB
μ is equivalent to varying with respect to vμ, aμ, τμνρ.

Opting for the second option, we will derive the equations
of motions for the irreducible components of torsion, solve
them and plug the result back into the action.
Practically, what we just described means that we use

(21) and (22) and rewrite the action (24) as

Sgr ¼ M2
P

Z
d4x

ffiffiffi
g

p �
R
∘

2
þ cvv

2
vμvμ þ cvavμaμ þ

caa
2

aμaμ

þ cττταβγταβγ þ c0ττϵμνρστλμντλρσ þ 2Λ
�
; ð25Þ

where we dropped the total derivatives of vμ and aμ, and
introduced the shifted constants
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cvv ¼ c̃vv −
2

3
; cva ¼ c̃va þ

1

6γ̄
; caa ¼ c̃aa þ

1

24
;

cττ ¼ c̃ττ þ
1

4
; c0ττ ¼ c̃0ττ −

1

8γ̄
: ð26Þ

Note that the contorsion contribution is completely factored
out and contained in the torsion-square terms.
Varying (25) with respect to vμ; aμ; τμνρ, we readily see

that torsion (and contorsion) is not sourced and therefore
all three quantities vanish. This means that in vacuum
the theory is indistinguishable from GR in the metric
formulation

Sgr ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘ þ 2Λ

�
: ð27Þ

This will change once matter is introduced.
Note finally that from Eq. (26) it follows that the actions

(24) and (25) are completely equivalent. However, the
second form is preferable from the point of view of
computational convenience as well as the fact that all of
the constants are independent.

E. Fermions

We are now in a position to generalize our considerations
by coupling matter fields to EC gravity. Let us start with
fermions. For the sake of illustration, we focus on a single
massless four-component spinor Ψ, with the generalization
to more generations being straightforward. The action
comprising the kinetic term for Ψ and its possible inter-
actions with torsion reads [41]

Sf ¼
Z

d4x
ffiffiffi
g

p �
i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

þ ðζvVVμ þ ζvAAμÞvμ þ ðζaVVμ þ ζaAAμÞaμ
�
: ð28Þ

Here γμ ¼ eμAγ
A, and the torsion-free fermionic covariant

derivative reads

D
∘
μ ¼ ∂μ þ

1

8
ω
∘ AB
μ ½γA; γB�: ð29Þ

Further, ζvV , ζ
a
V , ζ

v
A and ζaA are arbitrary coefficients. Finally,

Vμ ¼ Ψ̄γμΨ; Aμ ¼ Ψ̄γ5γμΨ ð30Þ

are the vector- and axial-fermionic currents, respectively.
A few comments are in order here. First, we could have

started from a noncanonical kinetic term for the fermion

Sf ⊃
Z

d4x
i
2

�
Ψ̄ð1þ δγ5ÞγμD

∘
μΨ −D

∘
μΨð1þ δγ5ÞγμΨ

�
;

ð31Þ

with δ a real constant. But now we can canonically
normalize the field, i.e., perform a field redefinition such
that the kinetic term of the fermion again assumes the form
as displayed in the first line of Eq. (28). In fermionic
interaction terms, this transformation can be reabsorbed by
a rescaling of the coupling constants. This stays true also
if interactions of fermionic currents with vμ and aμ are
included, provided that all possible contributions are taken
into account in the action. Thus, we can omit the term (31)
without loss of generality.
Second, one may wonder why we have not included a

coupling between Ψ and the reduced torsion tensor, viz
Ψ̄γμγνγρΨτμνρ. Using the properties of the γ-matrices, it is
not difficult to show that

Ψ̄γμγνγρΨτμνρ ∝ Vμτ
ν
μν þ iAμϵ

μνρστνρσ: ð32Þ

Both terms in the rhs of this expression vanish identically
by virtue of the constraints (10).
Finally, it is worth mentioning that like in the pure

gravity case, we could have equally well started with
nonminimally coupled fermions [35,36,42]

Sf ¼
Z

d4x
ffiffiffi
g

p �
i
2
Ψ̄ð1 − iα − iβγ5ÞγμDμΨ

−
i
2
DμΨð1þ iαþ iβγ5ÞγμΨþ ðzvVVμ þ zvAAμÞvμ

þ ðzaVVμ þ zaAAμÞaμ
�
; ð33Þ

where the covariant derivative Dμ now includes the full
connection. The real constants α, β are nonminimal cou-
plings, and zv=aV=A are analogous to the couplings in Eq. (28).
After decomposing the connection as in Eq. (14), one finds
that α and β feed into the torsion-current interactions, and
one ends up with Eq. (28) upon identifying

ζvV ¼ zvV −
α

2
; ζvA ¼ zvA −

β

2
; ζaV ¼ zaV; ζaA ¼ zaA −

1

8
:

ð34Þ

Thus, the nonminimal couplings are not independent param-
eters once torsion is coupled to the fermionic currents.

F. Real scalar field

Let us move to the scalar-gravity sector of the EC theory.
We first consider a real scalar ϕ; the case of a complex field
is discussed in Sec. II G. We find that the most general
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gravi-scalar action, at most quadratic in the derivatives of
all fields, reads

Sgrþϕ ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
Ω2R

∘
−
ð∂μϕÞ2

2
−Uþ vμ∂μZv

þ aμ∂μZa þM2
P

2
ðGvvvμvμ þ 2Gvavμaμ þGaaaμaμ

þGττταβγτ
αβγ þ G̃ττϵ

μνρστλμντ
λ
ρσÞ

�
: ð35Þ

Here Ω2, U, Zv=a, and Gij are, in general, arbitrary
functions of ϕ (“coefficient functions”). The function Ω2

represents the nonminimal coupling of the field to the Ricci
scalar, and U the potential. We can reduce the (infinite)
freedom contained in these functions to a limited number of
parameters by imposing condition (iii) from Sec. II B. The
latter only permits nonminimal interaction terms which are
at most quadratic in the field. Requiring invariance under
ϕ → −ϕ, we find

Ω2¼1þξϕ2

M2
P
; Zv=a¼ ζv=aϕ ϕ2; Gij¼cij

�
1þξijϕ

2

M2
P

�
;

ð36Þ

where no summation over the repeated i, j indices is
implied, ξ is the standard nonminimal coupling constant
and ζv=aϕ , cij and ξij are also constants. The analysis of this
section is carried out for the general coefficient functions;
their form (36) will be used in Sec. III B to compare
with the previously studied models. Note also that,
although allowed in principle, the terms τμνμ ∂νZτðϕÞ and
ϵκλμντκλμ∂νZ̃τðϕÞ coupling the derivative of ϕ to the reduced
torsion tensor are identically zero due to (10).
For completeness, let us mention that, as before, it is

possible to start with the field ϕ nonminimally coupled to

the curvatures F and F̃ instead of R
∘

Sgrþϕ ¼
Z

d4x
ffiffiffi
g

p �
M2

PΩ2F þM2
PΩ̃2F̃ −

ð∂μϕÞ2
2

−U

þ vμ∂μzv þ aμ∂μza þ
M2

P

2
ðgvvvμvμ þ 2gvavμaμ

þ gaaaμaμ þ gττταβγταβγ þ g̃ττϵμνρστλμντλρσÞ
�
;

ð37Þ

with Ω̃2, zv=a and gij arbitrary coefficient functions. Using
Eqs. (21) and (22), we end up with the action (35), upon
identifying

zv¼ZvþM2
PΩ2; za¼Za−M2

PΩ̃2; gvv¼Gvvþ
2Ω2

3
;

ð38Þ

gva ¼ Gva −
2Ω̃2

3
; gaa ¼ Gaa −

Ω2

24
;

gττ ¼ Gττ −
Ω2

2
; g̃ττ ¼ G̃ττ þ Ω̃2: ð39Þ

G. Complex scalar field and gauge bosons

The results of the previous section can be readily
generalized to the case of a complex-scalar field Φ. For
simplicity, we focus on a local Uð1Þ theory and denote by
Fμ the corresponding Abelian gauge field. This is enough
to capture the differences from the case of the real scalar.
The action of the theory reads as follows:

SgrþΦ ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
Ω2R

∘
− ðDμΦÞ�DμΦ − U −

1

4
F2
μν

þ vμ∂μZv
Φ þ aμ∂μZa

Φ þ Zv
SSμv

μ þ Za
SSμa

μ

þM2
P

2
ðGvvvμvμ þ 2Gvavμaμ þ Gaaaμaμ

þ Gττταβγτ
αβγ þ G̃ττϵ

μνρστλμντ
λ
ρσÞ

�
: ð40Þ

Here Ω2, U, Zv=a
Φ , Zv=a

S and Gij are arbitrary coefficient
functions depending on Φ�Φ. Next, Dμ ¼ ∂μ − ieFμ cor-
responds to the Uð1Þ-covariant derivative with e the gauge
coupling, and Sμ is the scalar Noether current associated
with the global part of the Uð1Þ symmetry

Sμ ¼ −
i
2
ðΦ�ðDμΦÞ − ðDμΦÞ�ΦÞ: ð41Þ

Further, the field strength is given by

Fμν ¼ ∂μFν − ∂νFμ; ð42Þ

where it is important to note that partial derivatives are
used. In a torsion-free theory, one could have equivalently
employed covariant derivatives since the contributions with
Christoffel symbols would cancel out. Once torsion is
present, however, this is no longer true. In this case, using
covariant derivatives in Fμν would break the Uð1Þ gauge
invariance [20].
Employing condition (iii) from Sec. II B, we obtain

constraints on the coefficient functions analogous to
Eq. (36),
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Ω2 ¼ 1þ 2ξΦ�Φ
M2

P
; Zv=a

Φ ¼ 2Φ�Φζv=aΦ ;

Zv=a
S ¼ ζv=aS ; Gij ¼ cij

�
1þ 2ξijΦ�Φ

M2
P

�
; ð43Þ

where ξ, ζv=aΦ , ζv=aS , cij and ξij are constants and there is no
summation in the i, j indices.
Comparing with the case of the real scalar considered in

Sec. II F, there are two additional terms in the action,
namely the couplings between the Uð1Þ scalar current and
the torsion vectors. As we show below, once torsion is
eliminated, these give rise to dimension-six contact inter-
actions between Φ, Sμ, Vμ and Aμ.
Before moving on, let us point out that non-Abelian

groups can be treated in a completely analogous manner.
However, it is not possible to form gauge-invariant objects
using non-Abelian currents (at least to this order in
derivatives), hence the latter cannot be coupled to torsion.

III. EQUIVALENT METRIC THEORY

A. Full action

In the previous section we constructed the most general
actions for EC gravity without and with matter fields,
which at the same time satisfy the requirements listed in
Sec. II B. The full action of the theory we will consider in
what follows reads

S ¼ SgrþΦ þ Sf; ð44Þ

where SgrþΦ and Sf are given in Eqs. (40) and (28),
respectively. To keep the discussion as general as possible,
we choose the complex scalar field action SgrþΦ, since it
allows for additional interaction terms involving the current
Sμ which are absent in the case of the real scalar.
Let us carry out the program outlined in Sec. II D. To

integrate out the connection we derive the equations of
motion for vμ, aμ, τμνρ, from the action (44) and solve them.
Due to the presence of matter, the torsion components are
expressed in terms of the derivative of Φ and the scalar and
fermionic currents. Indeed, from

δS
δvμ

¼ 0;
δS
δaμ

¼ 0;
δS
δτμνλ

¼ 0; ð45Þ

it is a straightforward computation to show that

M2
Pvμ ¼

−GaaJvμ þ GvaJaμ
GvvGaa −G2

va
;

M2
Paμ ¼

GvaJvμ −GvvJaμ
GvvGaa −G2

va
; τμνρ ¼ 0; ð46Þ

where we introduced the generalized “currents”

Jv=aμ ¼ ∂μZ
v=a
Φ þ Zv=a

S Sμ þ ζv=aV Vμ þ ζv=aA Aμ: ð47Þ

Notice that the reduced torsion tensor τμνλ is zero on the
equations of motion, an aftermath of the fact that, unlike
vμ and aμ, it is not sourced at this order in derivatives.
Plugging Eq. (46) into the action (44), we obtain4

S ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
Ω2R

∘
− ðDμΦÞ�DμΦ −UðΦ�ΦÞ

−
1

4
F2
μν þ

i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

−
GaaJv2μ þ GvvJa2μ − 2GvaJvμJaμ

2M2
PðGvvGaa −G2

vaÞ
�
: ð48Þ

At this point we use Eq. (47) to express everything in terms
of (the derivatives of)Φ and the currents S, V, A. Before we
present the explicit result, it is convenient to move to the
Einstein frame where the gravitational part of the action
becomes canonical. We perform a Weyl rescaling of the
metric

gμν ↦ Ω−2g̃μν; ð49Þ

followed by a redefinition of the fermionic field

Ψ ↦ Ω3=2Ψ̃; ð50Þ

where we will omit the tilde in what follows. Then we find

S ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−

1

Ω2
ðDμΦÞ�DμΦ − fðΦ�ΦÞ

−
UðΦ�ΦÞ

Ω4
−
1

4
F2
μν þ

i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

þ 1

M2
P
ðLΦS þ LΦV þ LΦA þ LSS

þ LVV þ LAA þ LSV þ LSA þ LVAÞ
�
: ð51Þ

Let us explain what are the different terms entering this
expression. First, we recognize the standard Einstein-Hilbert
term, the covariant kinetic and potential terms for Φ
(rescaled by appropriate powers of the conformal factor),
and the usual kinetic terms for the gauge and fermionic
fields. Next, we have the function fðΦ�ΦÞ given by

fðΦ�ΦÞ ¼
�
GaaðZv

Φ
0Þ2 þ GvvðZa

Φ
0Þ2 − 2GvaZv

Φ
0Za

Φ
0

2M2
PΩ2ðGvvGaa −G2

vaÞ

þ 3M2
PΩ02

Ω2

�
∂μðΦ�ΦÞ∂μðΦ�ΦÞ; ð52Þ

4We omit the cosmological constant in what follows.
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where prime stands for derivative with respect to Φ�Φ.
Being quadratic in the derivatives of the scalar, it contributes
to its kinetic term; note, however, that it does not involve the
covariant derivative. The rest of the terms describe various
torsion-induced contact interactions between ∂μðΦ�ΦÞ and
the scalar Sμ and fermionic currents Vμ, Aμ. They read

LΦS ¼
1

Ω2

GaaZv
SZ

v
Φ
0 þGvvZa

SZ
a
Φ
0 −GvaðZa

SZ
v
Φ
0 þ Zv

SZ
a
Φ
0Þ

G2
va −GvvGaa

× ∂μðΦ�ΦÞSμ; ð53Þ

LΦV ¼ GaaZv
Φ
0ζvV þ GvvZa

Φ
0ζaV − GvaðζvVZa

Φ
0 þ Zv

Φ
0ζaVÞ

G2
va −GvvGaa

× ∂μðΦ�ΦÞVμ; ð54Þ

LΦA ¼ GaaZv
Φ
0ζvA þ GvvZa

Φ
0ζaA −GvaðζaAZv

Φ
0 þ Za

Φ
0ζvAÞ

G2
va − GvvGaa

× ∂μðΦ�ΦÞAμ; ð55Þ

LSS ¼
1

Ω2

GaaðZv
SÞ2 þ GvvðZa

SÞ2 − 2GvaZv
SZ

a
S

2ðG2
va − GvvGaaÞ

SμSμ; ð56Þ

LVV ¼ Ω2
GaaðζvVÞ2 þGvvðζaVÞ2 − 2Gvaζ

v
Vζ

a
V

2ðG2
va −GvvGaaÞ

VμVμ; ð57Þ

LAA ¼ Ω2
GaaðζvAÞ2 þGvvðζaAÞ2 − 2Gvaζ

v
Aζ

a
A

2ðG2
va − GvvGaaÞ

AμAμ; ð58Þ

LSV ¼ GaaZv
Sζ

v
V þ GvvZa

Sζ
a
V −GvaðZa

Sζ
v
V þ Zv

Sζ
a
VÞ

G2
va −GvvGaa

SμVμ;

ð59Þ

LSA ¼ GaaZv
Sζ

v
A þGvvZa

Sζ
a
A −GvaðZa

Sζ
v
A þ Zv

Sζ
a
AÞ

G2
va −GvvGaa

SμAμ;

ð60Þ

LVA ¼ Ω2
Gaaζ

v
Vζ

v
A þGvvζ

a
Vζ

a
A −GvaðζaVζvA þ ζvVζ

a
AÞ

G2
va −GvvGaa

VμAμ:

ð61Þ

Eqs. (51)–(61) are the main results of the paper. Bearing
in mind phenomenological applications, let us comment on
how these considerations are applied to the SM. This is
readily done by identifying the scalar field Φ with the
Higgs doublet H, i.e., replacing ðΦ;Φ�Þ ↦ ðH;H†Þ, and
requiring invariance under the electroweak group
SUð2ÞL × Uð1ÞY instead of Uð1Þ. Correspondingly, the
scalar current becomes related to the hypercharge Uð1ÞY
and is given by

Sμ ¼ −
i
2
ðH†ðDμHÞ − ðDμHÞ†HÞ; ð62Þ

where the covariant derivative is now Dμ ¼ ∂μ − igAa
μTa −

i g
0
2
Bμ with a ¼ 1, 2, 3 the SUð2ÞL indices, while g, g0 and

Aa
μ; Bμ are the couplings and gauge fields of the SUð2ÞL and

Uð1ÞY groups, respectively. We notice that torsion induces
interactions of the SM hypercharge current. Exploring their
phenomenological consequences would be interesting and
is left for future work. Note also that the SUð2ÞL part of the
electroweak group is not sensitive to torsion.

B. Limiting cases

If we do not impose criterion (iii) from Sec. II B, the
action (51) contains a functional freedom due to the various
coefficient functions. In contrast, only a finite number of
parameters are left once condition (iii) is implemented and
the functions are constrained according to Eq. (36) or (43).
Not counting the Planck mass, these are three in the gravity
sector, six per real scalar field, eight per complex scalar field,
and four per fermion. In the following, we shall impose
condition (iii) and explore various relations between the
action (51) and the models that have appeared previously in
the literature. This will provide a useful check of our results.
To the best of our knowledge, the existing studies are limited
to a real scalar field, so we replace Φ by ϕ=

ffiffiffi
2

p
and omit the

gauge field and the current Sμ in Eqs. (51)–(61).

1. Nonminimally coupled scalar field in Palatini gravity

As explained in the introduction, the Palatini formulation
of GR is the limiting case of the EC theory in the absence of
fermions. Models of Palatini gravity and a real scalar have
been studied extensively e.g., in the context of Higgs
inflation [64]. We recover this theory by setting

cvv¼−
2

3
; caa¼

1

24
; ξvv¼ ξaa¼−ζvϕ¼ ξ; ð63Þ

and equating the rest of the parameters to zero. For this
choice, the terms in Eq. (52) cancel each other out,
therefore

fðϕÞ ¼ 0: ð64Þ

2. Nonminimally coupled scalar field in metric gravity

The metric formulation of the theory is restored for zero
torsion. In this case the only nonvanishing term in Eq. (52)
is the one coming from the Weyl transformation of the
scalar curvature and is given by

fðϕÞ ¼ 3ξ2ϕ2

M2
PΩ4

ð∂ϕÞ2: ð65Þ

The is exactly the modification of the field’s kinetic term in
the original Higgs inflation model [65].
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3. EC gravity with the Holst and Nieh-Yan terms

In Ref. [44], a generalization of the metric and Palatini
scalar-gravity theories was suggested. It amounts to extend-
ing the EC action by coupling nonminimally a scalar field
to the Einstein-Hilbert as well as the Holst and Nieh-Yan
[66] invariants. The resulting theory was extensively
studied in the context of inflation [43,67] and dark matter
production [68]. The action (51) is an important step
towards further generalizations of this model, which is
reproduced by the following choice of parameters:

cvv ¼ −
2

3
; cva ¼

1

6γ̄
; caa ¼

1

24
;

ξvv ¼ ξaa ¼ −ζvϕ ¼ ξh; ξva ¼ ξγ; ζaϕ ¼ ξγ
4γ̄

þ ξη
4
;

ζvV ¼ −
α

2
; ζvA ¼ −

β

2
; ζaV ¼ 0; ζaA ¼ −

1

8
:

ð66Þ

The torsion-induced dimension-six operators are in this
case given by

fðϕÞ ¼ 3ϕ2

Ω4M2
P

ðξγ−ξhγ̄ þ ξηΩ2Þ2
Ω4ðγ2ðϕÞ þ 1Þ ∂μϕ∂μϕ; ð67Þ

LhV ¼ 3α

4Ω2

�
ξh þ

γðϕÞ
Ω2ðγ2ðϕÞ þ 1Þ

�
ξγ − ξh

γ̄
þ ξηΩ2

��

× ∂μϕ
2Vμ ð68Þ

LhA ¼ 3

4Ω2

�
βξh þ

1þ βγðϕÞ
Ω2ðγ2ðϕÞ þ 1Þ

�
ξγ − ξh

γ̄
þ ξηΩ2

��

× ∂μϕ
2Aμ ð69Þ

LVV ¼ 3α2

16ðγ2ðhÞ þ 1ÞVμVμ; ð70Þ

LAA ¼ 3ðβ2 − 2βγðϕÞ − 1Þ
16ðγ2ðϕÞ þ 1Þ AμAμ; ð71Þ

LVA ¼ 3αðβ − γðhÞÞ
8ðγ2ðϕÞ þ 1ÞVμAμ; ð72Þ

with

γðϕÞ ¼ 1

γ̄Ω2

�
1þ ξγϕ

2

M2
P

�
: ð73Þ

IV. A GLIMPSE ON CURVATURE-SQUARED
TERMS

The action (51) contains all terms compatible with the
two criteria from Sec. II B. Recall that the rationale behind
(i) was to ensure that the particle spectrum is the same as
in GR in the metric formulation. In particular, condition
(i) excludes all higher-curvature invariants. Although such
terms usually bring new degrees of freedom, this is not
always the case. In order to illustrate this, let us construct a
specific example of a model with a curvature-squared term
that propagates only the massless graviton. The starting
point is

S0 ¼
Z

d4x
ffiffiffi
g

p ½M2
PF þ cF2 þ jvμvμ þ jaμaμ� þ Sm; ð74Þ

where c is a constant, and the curvature F is defined in
Eq. (20). We allowed for arbitrary couplings of the torsion
vector and pseudovector to the currents jv=aμ that depend on
matter fields, thus without loss of generality we take the
matter action Sm not to contain torsion.
The reason we did not include torsion-squared terms in

S0, apart from those already contained in F, is twofold.
First, introducing a2μ or τ2κλμ does not affect our conclusions,
so we omit them for simplicity. Second, introducing v2μ and/
or vμaμ would actually modify the dynamics of the theory
so that it propagates a new scalar degree of freedom in
addition to the graviton. We will comment on this in what
follows.
To proceed, we rewrite Eq. (74) in a more convenient

form by introducing a Lagrange multiplier λ ¼ λðxÞ, so that

S0↦S¼
Z

d4x
ffiffiffi
g

p ½ðM2
Pþ4cλÞF−4cλ2þjvμvμþjaμaμ�þSm:

ð75Þ

It is clear that S ¼ S0 on λ’s equation of motion.
Decomposing F as in Eq. (21), solving for torsion and
performing a Weyl rescaling of the metric with conformal
factor5

Ω2 ¼ 1þ 4cλ
M2

P
; ð76Þ

we arrive at

S̃ ¼
Z

d4x
ffiffiffĩ
g

p �
M2

P

2

˜
R
∘
−
M4

P

4c
ð1 − Ω−2Þ2 þ 3ðj̃vμÞ2

4M2
PΩ4

−
12ðj̃aμÞ2
M2

PΩ4
þ 3

2
∂μΩ−2j̃vμ

�
þ S̃m; ð77Þ

5The order of operations is not essential.

KARANANAS, SHAPOSHNIKOV, SHKERIN, and ZELL PHYS. REV. D 104, 064036 (2021)

064036-10



where the tilde denotes the Weyl-transformed quantity. In
general, the matter currents j̃v=aμ as well as the action S̃m can
have an explicit dependence on Ω and, hence, on λ.
Nevertheless, irrespective of how the Lagrange multiplier
enters the action, no kinetic term for it can be generated
provided that we start from S0 or S.6 This would not have
been the case had we included vμvμ and/or vμaμ in the
action, since the equation of motion for torsion would have
acquired pieces ∝ ∂μΩ, rendering the field dynamical.
If we momentarily neglect S̃m, we can integrate out λ or,

equivalently, Ω, via its equation of motion. This gives

Ω2 ¼ M6
P þ 3cð16ðj̃aμÞ2 − ðj̃vμÞ2Þ
M6

P − 3cM2
P∇̃μj̃vμ

: ð78Þ

First, we observe that in the absence of external currents,
j̃vμ ¼ j̃aμ ¼ 0, the result is Ω2 ¼ 1 and the action (77)
reduces to metric gravity. On the other hand, if the currents
are nonvanishing, then plugging Ω2 in Eq. (77) leads to a
series of nontrivial higher-order operators. In general, they
are different from the ones in Eq. (51) that are obtained
from the linear-in-curvature terms only. This is already
clear from the presence of covariant divergence of j̃vμ in
Eq. (78). Of course, if we expand this equation in powers of
M−2

P , the form of the leading, dimension-six, operators will
be the same as in Eq. (51).
To summarize, it is possible to come up with “fine-

tuned” models with curvature-squared terms that do
not propagate new gravitational degrees of freedom and
lead to nontrivial contact interactions in their metrical
form. However, such theories are by no means generic.
Nevertheless, it would be interesting to study them
systematically.
What if one allows for extra degrees of freedom of

gravitational origin? For concreteness, let us focus again on
the curvature-squared operators. As discussed above, such
operators would in general bring about ghosts and/or
tachyons. This is partially due to higher-derivatives, but
also in the absence of those the Poincaré group, being
noncompact, can in general not ensure positive-definiteness
of all kinetic and mass terms. Again, there are exceptions to
this expectation—higher-derivative theories are not neces-
sarily plagued by inconsistencies, see [27,28,46–61] for a
nonexhaustive list of references, as well as [58,57] for the
most recent and complete analyses of the quadratic parity-
preserving and parity-violating Poincaré gauge theory,
respectively. Perhaps, the most well known and studied
example of a healthy theory is given by the following action
(see e.g., [46,69])

Z
d4x

ffiffiffi
g

p �
M2

P

2
R
∘ þ cR

∘ 2�
; ð79Þ

that propagates a massive spin-0 particle in addition to
the graviton.7 Speaking more generally, it is possible to
eliminate higher derivatives by having the curvature-
squared terms combine in very specific ways. To give an
idea, two such examples are the following

C1 ¼ FABCDFABCD − 2FABCDFCDAB þ 2FABCDFACBD;

ð80Þ

C2 ¼ FABCDFABCD þ FABCDFCDAB − 4FABCDFACBD;

ð81Þ

with FABCD ¼ eμAe
ν
BηCIηDJFIJ

μν. It can be readily checked
that, upon decomposing the connection as in Eq. (14), both
expressions read, schematically,

C1;C2 ⊃ Riemann2 þ Riemann × ∂ðTorsionÞ þ…; ð82Þ

where the ellipses stand for terms with at most two
derivatives. Working at the level of the action, after some
integrations by parts, and using the algebraic and differ-

ential Bianchi identities obeyed by R
∘
κλμν, both the

Riemann2- and the Riemann × ∂ðTorsionÞ-contributions
are found to vanish in (80) and (81).

V. DISCUSSIONS AND OUTLOOK

The Einstein-Cartan formulation of General Relativity
naturally arises in the gauge approach to gravity. This
motivates a close study of this theory from both theoretical
and phenomenological perspectives. In particular, it is
important to understand how it deviates from the metric
formulation of GR, which is most commonly used. The
important new ingredient in this incarnation of gravity is
spacetime torsion. In the absence of matter, torsion is not
sourced, resulting into the EC and metric formulations
being (at least classically) completely equivalent.8 This
changes once matter is introduced, and in this paper we
painted a quantitative picture of the differences.
To this end, we first devised criteria for coupling the

SM to gravity in a generic way. We required that the
admissible terms are at most quadratic in the derivatives
and of mass dimension not bigger than four, so that wewere
restricted to terms at most linear in curvature and quadratic

6This is ultimately due to the fact that F transforms covariantly
under Weyl rescalings.

7One can introduce an additional nonminimally coupled scalar
playing the role of the Higgs field. The resulting model was
proposed in [70] in the context of Higgs inflation.

8Palatini gravity, which represents a special case of EC theory,
has been proven to be equivalent to the metric formulation also on
the quantum level [71].
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in torsion.9 This was sufficient to exclude additional
propagating degrees of freedom beyond the massless
graviton and those already present in the matter sector.
Subsequently, we constructed an action for EC gravity
coupled to matter, where we took into account fermions,
real or complex scalars and gauge bosons, and included all
terms that fulfill the criteria devised before.
In our setup, the connection and consequently torsion

are manifestly nondynamical. Nevertheless, its presence
affects nontrivially the dynamics of the rest of the fields. To
explicitly illustrate this, we constructed an equivalent
torsion-free theory by eliminating the connection via its
equation of motion. Various higher-dimensional terms
describing interactions between matter currents and field
derivatives appear this way [see Eqs. (52)–(61)]. They
comprise four-fermi interactions, mixing between scalar
and fermionic currents, and a modified kinetic term for the
scalar(s). In general, the interactions come with arbitrary
field-dependent coefficient functions. We can reduce the
functional freedom contained in them to a finite number of
parameters by restricting ourselves to nonminimal cou-
plings of the form displayed in Eqs. (36) and (43).
However, our analysis is valid beyond such a restriction.
In any case, the torsion-induced operators form a subset of
the plethora of possible higher-dimensional terms that we
would have added in an effective field theory approach that
starts directly from the metric theory.
An interesting novel result of our analysis concerns

gauge theories. Given a scalar current associated with an
Abelian (sub)group, it can and actually should be coupled
to torsion in all possible manners. Consequently, the
effective metric theory contains interactions of this current
with itself and the rest of the fields. We demonstrated how
this happens in an Abelian toy model. If the matter sector is
identified with the Standard Model, it is the radial mode
of the Higgs field that we envisage being nonminimally
coupled to the various geometrical objects. The aforemen-
tioned scalar current then corresponds to the hypercharge
and may give rise to interesting physics.
It is important to note that the theory we constructed has

many free parameters and coefficient functions. This means
that the mass scales suppressing the higher-dimensional
operators are, in principle, field dependent and arbitrary.
A judicial choice of parameters can make the suppression
scale lower than the Planck mass and lead to a rich
phenomenology. For example, it provides a mechanism
for producing singlet fermions, which can assume the role
of dark matter, in the early Universe [68].
As discussed above, confining ourselves to terms linear

in curvature is a sufficient but not a necessary condition
for the absence of extra gravitational degrees of freedom.

Thus, in principle, this requirement can be relaxed by
including curvature-squared terms in the action. At the
same time, this is something that has to be done with extra
care, since quite generically, higher-curvature invariants are
intrinsically linked to pathologies. In other words, only
particular combinations of curvature-squared invariants
should be allowed in the action for the theory to be healthy.
We presented a corresponding example in Sec. IV. It would
be interesting to systematically study the implications of
such modifications for the higher-dimensional interactions
between the matter fields.
Let us conclude by discussing two distinct but interre-

lated points. The first is how to reduce the arbitrariness of
the theory that we constructed here. An appealing way to
achieve that is by Weyl-gauging the action, i.e., requiring it
to be invariant under gauged dilatations. We will elaborate
on this in [74], but we shall give a brief outlook already
here. Although invoking the gauge principle to constrain a
theory without altering its spectrum may sound counter-
intuitive at first sight, in the sense that it normally
necessitates the introduction of extra dynamical degrees
of freedom, this is not the case for spacetime symmetries.
The reason is that certain geometrical quantities present in
the theory we constructed, more specifically the Ricci
scalar and torsion vector, transform inhomogeneously
under Weyl rescalings. Both can therefore assume the role
of effective gauge fields and compensate for the inhomo-
geneous pieces coming from their own transformations as
well as the ones from the kinetic term of the scalar. This
means that in order for the action to exhibit Weyl invariance,
the coefficient functions of these terms are not free anymore,
but are rather related to each other. Actually, this is a direct
generalization of what happens with the conformally
coupled scalar field in conventional GR; there, the non-
minimal coupling of the field is fixed by conformal
symmetry to be equal to the well-known value of −1=6
(in our conventions). The similarities do not end here; the
Weyl redundancy of the action is actually too much, since it
translates into ϕ being spurious also in the EC case. Thus, to
maintain a propagating spin-0 degree of freedom in the
spectrum, it is unavoidable to introduce yet another scalar
field and have the gauge freedom eliminate this instead.
What was implicitly assumed in the above discussion is

that the starting point for Weyl-gauging is a biscalar theory
invariant under global dilatations. This brings us to the
second point. The metric counterpart of exactly this, globally
scale-invariant, theory is the “Higgs-dilaton model” intro-
duced in [75]. It is an economic and, at the same time,
phenomenologically viable scale-invariant extension of the
Standard Model plus GR that has been extensively studied
and generalized, see [76–96] for a far from complete list
of references. In the cosmological context, the model
predicts a rather interesting phenomenology for the early
and late Universe, in complete agreement with observations.
Moreover, it connects these eras via a set of consistency

9Already at mass dimension five, many more terms appear.
Some of them, as well as their implications for low-energy
phenomenology, were e.g., discussed in [72,73].
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conditions between inflationary and dark energy observables
[80,97], which will hopefully be testable in the near future. It
would be interesting to understand which of the attractive
features of the metrical Higgs-dilaton model survive when
generalized this way. As far as particle physics is concerned,
scale (and conformal) symmetry may be relevant for
addressing the fine-tuning issues of the Standard Model
[98–106]. Given the prominent role that gravity plays in both
the hierarchy and cosmological constant puzzles, it is
certainly worth studying if and what changes when the

gravitational dynamics is described in terms of the Einstein-
Cartan theory.
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de riemann et les espaces à torsion, C.R. Hebd. Seances
Acad. Sci. 174, 593 (1922). É. Cartan, Sur les variétés à
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