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1 Introduction

The notion of criticality refers to the coalescence of the linearized equations of motion
(EOM) such that propagating massive modes turn into massless. In particular, Critical
Gravity (CrG) in 4D is a higher-curvature theory introduced by Lu and Pope in ref. [1],
considered a probe of quantum gravity free from the usual pathologies of higher-derivative
theories. As a matter of fact, the model is devoid of ghost-like modes, an appealing physical
feature. The particle content of CrG is characterized by the presence of a massless gravi-
ton and the emergence of a new logarithmic mode, which can be eliminated by imposing
standard asymptotically anti-de Sitter (AAdS) boundary conditions.

Critical Gravity represents a unique point in the parametric space of Einstein gravity
augmented by arbitrary quadratic couplings in the curvature [1, 2]. As a consequence of this
particular feature, it was shown that the mass of the Schwarzschild-AdS black hole is zero.

Later, the above result was extended to a generic Einstein space, showing that all
conserved quantities are identically vanishing [3]. This was understood in ref. [4] as a
consequence of the fact that four-dimensional renormalized Einstein-AdS gravity can be
embedded into Conformal Gravity (CG) such that, for Einstein solutions, the actions of
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both theories are the same. In principle, the action of CG can be decomposed into Einstein
and non-Einstein parts, whose dynamics is encoded in the AdS curvature

Fµνλρ = Rµνλρ + 1
`2
δµνλρ , (1.1)

and the traceless Ricci tensor, respectively. The latter vanishes for Einstein spacetimes,
recovering the renormalized Einstein-AdS action. Since the CrG action is constructed as
the difference between the actions for Einstein-AdS and CG [2], it depends entirely on the
non-Einstein modes, and therefore, it yields zero upon evaluating on Einstein solutions.
We recall the fact that, in the Euclidean sector, the action corresponds to the free-energy
functional and thus depends on the canonical conjugates given by the black hole charges
and corresponding chemical potentials. The triviality of the action, therefore, is a strong
evidence of the vanishing of said conserved charges.

From the point of view of the Wald procedure [5–7], the conserved quantities can be
directly calculated following standard Noether identities. In the case of four-dimensional
CrG, the analysis done in ref. [4] confirmed that the only non-vanishing contribution to the
Noether prepotential is coming from terms which are quadratic in the Bach tensor. This
automatically implies the vanishing of the Noether charges for Einstein spacetimes, what is
in agreement with the triviality of the action in this sector. In other words, the vanishing
of the free energy for Einstein spacetimes turns them into an infinitely degenerate vacuum,
such that this entire class becomes a vacuum modular space of the theory [3]. By vacuum,
it is meant the vanishing of the free energy in the Euclidean section, or alternatively, the
space of configurations that have vanishing conserved charges. This is a different notion
of vacuum than referring to the maximally-symmetric configuration, which still uniquely
corresponds to pure AdS spacetime.

In order to further understand the role of conformal symmetry in higher-dimensional
gravity, in ref. [8], novel properties of 6D Conformal Gravity were unveiled. Indeed, a
particular version of CG — discovered by Lu, Pang and Pope (LPP) [2]—was recently
shown to contain a generic Einstein sector [8]. From a holographic standpoint, the action for
LPP gravity reduces to the renormalized version of the corresponding Einstein functional,
once generalized Neumann boundary conditions on the asymptotic metric are imposed.

In the same reference, Critical Gravity at the bicritical point in six dimensions was
introduced as the difference between Einstein-AdS gravity and the newly-found CG theory
that admitted Schwarzschild-AdS black holes.

Subsequent papers contributed to the understanding of Critical Gravity from a different
perspective. Taking into account the renormalization of the Einstein part of the action
leads to the addition of the corresponding Euler term, which is topological in any even
bulk dimension. Both terms form the renormalized Einstein-AdS gravity action. This
action, in turn, was written as a polynomial of the AdS curvature in ref. [9]. On the
other hand, by considering a compact expression of the LPP Conformal Gravity on top of
the renormalized Einstein gravity, one is able to decompose the six-dimensional Critical
Gravity action in terms of the Einstein and the non-Einstein parts (proportional to the
traceless Ricci tensor). Thus, the triviality of the CrG action for Einstein solutions was
also made manifest in 6D.
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In this work, we follow the generalized Noether-Wald procedure [5–7] to construct the
Noether prepotential and compute conserved charges for AAdS solutions to 6D CG and
CrG. We provide a compact form for the charges in 6D Conformal Gravity (previously
studied in ref. [10]) that turns Einstein spaces trivial within the framework of 6D Critical
Gravity, as the Noether charges are identically zero.

The article is organized as follows: in section 2, we review Conformal and Critical
Gravity in six dimensions; first in its seminal form (see ref. [2]) and later in their recently
proposed, more compact form, in a more convenient basis [8]. In section 3, we present
the basics of the Noether-Wald formalism and we compute the Noether prepotential for
both aforementioned theories. Then, the triviality of the Noether-Wald charges of Critical
Gravity in the Einstein sector is explicitly worked out. Discussion and further remarks
are given in section 4. Additionally, we include two appendices to render the manuscript
self contained: the first one to define projections of the Riemann tensor onto different
objects that greatly simplifies the calculations and the second one for recalling properties
of Einstein spacetimes.

2 Compact forms for the Conformal Gravity and Critical Gravity actions
in six dimensions

2.1 Conformal Gravity in six dimensions

Conformal Gravity in four dimensions is constructed out of the unique conformal invariant
allowed: the squared Weyl tensor. In six dimensions, however, there are three independent
conformal invariants that can be used to construct the theory [11–13]. A linear combination
of them with arbitrary coefficients does not guarantee the existence of Einstein spaces as
solution to the field equations. Nevertheless, there exists a particular choice of the param-
eters that allows one to circumvent the previous obstruction. The conformally invariant
theory possessing an Einstein-AdS sector was first obtained in ref. [2] and it is described
by the action1

ICG = α

∫
M

d6x
√
−g

[
L

(1)
CG + 1

4L
(2)
CG −

1
12L

(3)
CG

]
, (2.1)

where

L
(1)
CG = WαβµνW

αρλνWρ
βµ
λ , (2.2)

L
(2)
CG = WµναβW

αβρλWρλ
µν , (2.3)

L
(3)
CG = Wµρσλ

(
δµν� + 4Rµν −

6
5Rδ

µ
ν

)
W νρσλ +∇µV µ , (2.4)

Vµ = 4Rµλρσ∇νRνλρσ + 3Rνλρσ∇µRνλρσ − 5Rνλ∇µRνλ

+ 1
2R∇µR−R

ν
µ∇νR+ 2Rνλ∇νRλµ . (2.5)

1The same combination of conformal invariants defines the type-B anomaly of 7D Einstein-AdS
gravity [14].
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Here, Wµν
λρ is the Weyl tensor (see appendix A for conventions) and L

(i)
CG with i = 1, 2, 3

are the three conformal invariants in six dimensions built upon inequivalent contractions
of the Weyl tensor and derivatives thereof. Later on, the same theory was rewritten in
a more convenient and compact basis from a conformal viewpoint [8]. In particular, the
action

ICG = α

∫
M

d6x
√
−g

(
L

(bulk)
CG + L

(bdy)
CG

)
, (2.6)

was separated into bulk and boundary pieces given by

L
(bulk)
CG = 1

4!δ
ν1...ν6
µ1...µ6W

µ1µ2
ν1ν2 W

µ3µ4
ν3ν4 W

µ5µ6
ν5ν6 + 1

2δ
ν1...ν5
µ1...µ5W

µ1µ2
ν1ν2 W

µ3µ4
ν3ν4 S

µ5
ν5 + 8CµνλCµνλ , (2.7a)

L
(bdy)
CG = ∇µ

(
8WµκλνCκλν −W κλ

νσ∇µW νσ
κλ

)
, (2.7b)

respectively.2 Here
Cµνλ = ∇λSµν −∇νSµλ , (2.9)

and
Sµν = 1

D − 2

[
Rµν −

1
2(D − 1)Rδ

µ
ν

]
, (2.10)

are the Cotton and Schouten tensors, respectively. This form of the LPP Conformal Grav-
ity is convenient for the study of the Einstein sector of the theory. Indeed, when the ac-
tion (2.6) is evaluated in Einstein spacetimes, it reduces to the renormalized Einstein-AdS
action up to a proportionality constant [8]. This property will be crucial for the determi-
nation of the Noether-Wald charges of the theory as well as its relation to six-dimensional
Critical Gravity.

2.2 Critical Gravity in six dimensions

The presence of special points in the parametric space of higher-curvature theories where
new qualitative features arise has been reported in various examples in the literature,
such as the chiral point in Topologically Massive gravity [15–17], Quasitopological grav-
ity [18, 19], Einstenian Cubic gravity [20, 21], Born-Infeld and Chern-Simons gravity [22],
to mention a few. Critical gravity, as introduced by Lu and Pope in ref. [1], extends the
notion of criticality in four dimensions. More specifically, there is a unique combination
of the Einstein-Hilbert action enhanced by a negative cosmological constant and quadratic
curvature invariants that leads to the vanishing of ghost modes. The corresponding action
reads

ICrit = 1
16πGN

∫
M4

d4x

[
R− 2Λ + 3

2Λ

(
RµνR

µν − 1
3R

2
)]

. (2.11)

After some algebraic manipulation, the latter can be rewritten as Einstein-Weyl gravity up
to the Gauss-Bonnet term which, in four dimensions, does not modify the bulk dynamics of

2Here, δν1...νp
µ1...µp = p! δν1

[µ1
. . . δ

νp

µp] is the generalized Kronecker delta whose trace satisfies the property

δ
ν1...νp
µ1...µpδ

µ1
ν1 . . . δ

µk
νk

= (D − p+ k)!
(D − p)! δ

νk+1...νp
µk+1...µp . (2.8)
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the theory.3 Interestingly enough, this theory belongs to a generic class of quadratic curva-
ture gravities in arbitrary dimensions which have a critical point in a unique vacuum [24].
Nevertheless, 4D Critical Gravity is the only one among this class of theories admitting
Einstein spacetimes as solutions.

The concept of criticality was later generalized to theories that involve non-derivative
cubic curvature invariants in ref. [25]. Even though these theories have desirable unitarity
properties, it is not clear whether the solution space contains an Einstein sector, similar
to the one found in four dimensions. In six dimensions, a generalization of the 4D Critical
Gravity was introduced by LPP in ref. [2]. Namely, a theory with a unique vacuum that
admits an Einstein sector and has massless modes in addition to the standard graviton.
The LPP CrG action was given as

ICrit = 1
16πGN

∫
M6

d6x

[
R− 2Λ− `4

72E6 + `4

24

(
4L

(1)
CG + L

(2)
CG −

1
3L

(3)
CG

)]
, (2.12)

where
E6 = 1

23 δ
ν1...ν6
µ1...µ6R

µ1µ2
ν1ν2 R

µ3µ4
ν3ν4 R

µ5µ6
ν5ν6 , (2.13)

is the topological Euler density in 6D. Similar to its 4D counterpart, eq. (2.12) becomes
trivial for Schwarzschild-AdS and Kerr-AdS spacetimes, as a consequence of the equivalence
between Einstein-AdS and the LPP CG action in 6D [8].

As noticed in ref. [26], considering that Λ=−10
`2 , the Einstein-Hilbert term of eq. (2.12),

together with the topological density, can be rewritten as∫
M6

d6x

(
R− 2Λ− `4

72E6

)
=
∫

M6
d6x
√
−g`4P6 (F) , (2.14)

where

P6 (F) = 1
2 (4!) `2 δ

ν1...ν4
µ1...µ4F

µ1µ2
ν1ν2 F

µ3µ4
ν3ν4 −

1
(4!)2 δ

ν1...ν6
µ1...µ6F

µ1µ2
ν1ν2 F

µ3µ4
ν3ν4 F

µ5µ6
ν5ν6 , (2.15)

is a polynomial in the AdS curvature defined in eq. (1.1). This combination gives the topolo-
gically renormalized Einstein-AdS gravity action [9] for AAdS manifolds with conformally-
flat boundaries [27]. In order to obtain the correct renormalized action for arbitrary AAdS
spacetimes, the latter action has to be supplemented by a boundary term. Therefore,

I
(ren)
EH =

∫
M

d6x
√
−gL (ren)

EH

= `4

16πGN

(∫
M

d6x
√
−gP6 (F) + 1

24

∫
M

d6x
√
−g∇µ

(
Fκλνσ∇µFνσκλ

))
, (2.16)

gives the renormalized Einstein-AdS action for arbitrary 6D AAdS manifolds.
Considering I(ren)

EH as defined in eq. (2.16) and the definition of CG given in eq. (2.1),
the CrG action of eq. (2.12) becomes

ICrit = I
(ren)
EH − ICG , (2.17)

3Nevertheless, the topological term comes with a coupling constant such that, when combined with the
Einstein-Hilbert action, it forms the four-dimensional renormalized Einstein-AdS action [23].
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where the coupling constant of CG is chosen as α = − `4

384πGN . Here, unlike in the four
dimensional case, the theory is not free of pathologies. Indeed, only one out of the two
massive gravitons coalesces with the massless one, leaving the remaining ghost excitation
intact. Thus, the action (2.17) corresponds to the bicritical point in the parameter space.
As noted in ref. [2], the absence of the remaining massive mode would require the addition
of a Weyl squared term with fixed coupling constant. Nevertheless, since this theory
(tricritical gravity) is not a linear combination of the Einstein-AdS gravity and the CG in
the corresponding dimension, and since it does not have Einstein spacetimes as solutions,
it is out of the scope of our analysis.

Our interest in LPP CrG, originates from the fact that Einstein-Conformal gravity
at the critical point probes the emergence of Einstein gravity from Conformal Gravity [4,
8, 28, 29]. This is understood as the triviality of Critical Gravity both at the level of
the action and at the level of the conserved charges for Einstein solutions [1, 3]. The
analogous analysis in six dimensions takes places at the bicritical point. The triviality
of the corresponding action (2.6) was proven in ref. [8]. In what follows, we study the
behaviour of the Noether-Wald charges in this theory, what allows us to generalize the
emergence of Einstein from Conformal Gravity in D = 6.

3 Noether-Wald formalism for conserved charges in Conformal Gravity
and Critical Gravity

In this section, we review the Noether-Wald formalism for computing conserved charges.4

Additionally, we obtain the Noether prepotential explicitly for Conformal Gravity and
Critical Gravity in six dimensions.

AD-dimensional action constructed out of the metric and covariant derivatives thereof,
respecting diffeomorphism invariance, can be generically written as

I [gµν ] =
∫

M
dDx
√
−g L

[
gµν , R

µν
λρ ,∇σ1R

µν
λρ , . . . ,∇(σ1 . . .∇σn)R

µν
λρ

]
. (3.1)

An arbitrary stationary variation of the latter with respect to the metric yields [5–7]

δI =
∫

M
dDx
√
−g δgµνEµν +

∫
M

dDx
√
−g ∇µΘµ , (3.2)

where

Eµν =Eµ
λρσRνλρσ−

1
2gµνL −2∇λ∇ρEµλρν , (3.3)

Θµ =−2∇ρδgνσEρσµν+2δgνσ∇ρEρσµν , (3.4)

Eµνλρ = ∂L

∂Rµνλρ
−∇σ1

∂L

∂∇σ1Rµνλρ
+. . .+(−1)n∇(σ1 . . .∇σn)

∂L

∂∇(σ1 . . .∇σn)Rµνλρ
, (3.5)

denote the equations of motion, i.e. Eµν = 0, the boundary term arising from the variation,
and the functional derivative of the Lagrangian with respect to the Riemann and derivatives

4A similar formalism was previously proposed in ref. [30] (see also [31]).
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thereof, respectively. The latter would correspond to the field equations for the Riemann
tensor if it were considered as an independent field from the metric. From hereon, we
refer to Eµνλρ as the E-tensor and we shall assume that it has the same symmetries of the
Riemann tensor as in ref. [32].

Invariance of the action (3.2) under the diffeomorphism generated by the flow of a
vector field ξ = ξµ∂µ, implies that

∇µ [Θµ(g,Lξg)−L ξµ] ≡ ∇µJµ = −LξgµνEµν , (3.6)

where Lξ is the Lie derivative along the vector field ξ and Jµ is the Noether current, i.e.

Jµ = −2∇ν
(
Eµνλρ∇λξρ + 2ξλ∇ρEµνλρ

)
. (3.7)

From eq. (3.6), it is direct to see that, on-shell, ∇µJµ = 0. Therefore, the Poincaré lemma
allows us to express the Noether current locally as Jµ = ∇νqµν , where

qµν = −2
(
Eµνλρ∇λξρ + 2ξλ∇ρEµνλρ

)
= −qνµ , (3.8)

is known as the Noether prepotential. In addition, if ξ is a Killing vector field, one can
compute conserved charge associated to the latter through

Q [ξ] =
∫

Σ
qµνdΣµν , (3.9)

where Σ is a codimension-2 hypersurface and dΣµν its area element.5

3.1 Noether prepotential for Conformal Gravity

In order to compute the Noether prepotential for six dimensional Conformal Gravity, we
separate the E-tensor (3.5) into two pieces, namely,

[
ECG

]γδ
στ

=
[
E

(bulk)
CG

]γδ
στ

+
[
E

(bdy)
CG

]γδ
στ
. (3.10)

The first term on the right-hand side of eq. (3.10) is associated to L
(bulk)
CG , while the second

one corresponds to L
(bdy)
CG as defined in eq. (2.7). Explicitly, they are

[
E

(bulk)
CG

]γδ
στ

= ∂L
(bulk)
CG

∂Rστγδ
−∇ρ

[
∂L

(bulk)
CG

∂∇ρRστγδ

]

= ∂L
(bulk)
CG

∂Wµν
λρ

∂Wµν
λρ

∂Rστγδ
+ ∂L

(bulk)
CG
∂Sµν

∂Sµν
∂Rστγδ

−∇ρ

[
∂L

(bulk)
CG

∂Cµνλ

∂Cµνλ
∂∇ρRστγδ

]

= α

8 δ
λρν3...ν6
µνµ3...ν6W

µ3µ4
ν3ν4

(
Wµ5µ6
ν5ν6 +8Sµ5

ν5 δ
µ6
ν6

)(
Ξµνλρ

)γδ
στ

+α

2 δ
ν1...ν5
µ1...µ5W

µ1µ2
ν1ν2 W

µ3µ4
ν3ν4

(
∆µ5
ν5

)γδ
στ

−32α∇ρCµνρ (∆µν)γδστ , (3.11)

5For generic gravity theories, the Noether-Wald charge needs to be supplemented by a boundary term
to recover the Hamiltonian mass (See appendix C).
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and

[
E

(bdy)
CG

]γδ
στ

= ∂L
(bdy)
CG

∂Rστγδ
−∇ρ

[
∂L

(bdy)
CG

∂∇ρRστγδ

]
+∇(χ∇ξ)

[
∂L

(bdy)
CG

∂∇(χ∇ξ)Rστγδ

]
(3.12)

= ∂L
(bdy)
CG

∂Wµν
λρ

∂Wµν
λρ

∂Rστγδ
−∇ρ

[
∂L

(bdy)
CG

∂∇µW κλ
νσ

∂∇µW κλ
νσ

∂∇ρRστγδ
+ ∂L

(bdy)
CG

∂Cµνλ

∂Cµνλ
∂∇ρRστγδ

]

+∇(χ∇ξ)

[
∂L

(bdy)
CG

∂∇µCκλν
∂∇µCκλν

∂∇(χ∇ξ)Rστγδ
+ ∂L

(bdy)
CG

∂∇(α∇β)W
µν
κλ

∂∇(α∇β)W
µν
κλ

∂∇(χ∇ξ)Rστγδ

]

= 8α∇µCνλρ
(
Ξµνλρ

)γδ
στ

+ 96α∇ρCµνρ (∆µν)γδστ + 16α∇(χ∇ξ)Wχµνξ (∆µν)γδστ ,

where the projectors Ξ and ∆ have been defined in appendix A and the trace of the
generalized Kronecker delta in eq. (2.8) has been used to rewrite the bulk piece of the
E-tensor. Additionally, we notice that the contribution of the second term of L

(bdy)
CG to

eq. (3.12) is identically zero. Thus, we find[
ECG

]γδ
στ

= α

8 δ
λρν3...ν6
µνµ3...ν6W

µ3µ4
ν3ν4

(
Wµ5µ6
ν5ν6 + 8Sµ5

ν5 δ
µ6
ν6

) (
Ξµνλρ

)γδ
στ

+ α

2 δ
ν1...ν5
µ1...µ5W

µ1µ2
ν1ν2 W

µ3µ4
ν3ν4

(
∆µ5
ν5

)γδ
στ

+ 8α∇µCνλρ
(
Ξµνλρ

)γδ
στ

+ 16α∇ρCµνρ (∆µν)γδστ , (3.13)

where we have used eq. (A.12) to express the last term of E(bdy)
CG as the covariant divergence

of the Cotton tensor.

3.2 Noether prepotential for Critical Gravity

Similarly to CG, in order to obtain the Noether prepotential for Critical Gravity, we first
need to compute the E-tensor associated to the renormalized Einstein-Hilbert action writ-
ten as in eq. (2.16). Thus, using eq. (3.5) we get

[
E

(ren)
EH

]γδ
στ

= ∂L
(ren)
EH

∂Rστγδ
−∇ρ

[
∂L

(ren)
EH

∂∇ρRστγδ

]
+∇(χ∇ρ)

[
∂L

(ren)
EH

∂∇(χ∇ρ)R
στ
γδ

]

= ∂L
(ren)
EH

∂F κλνα

∂F κλνα
∂Rστγδ

−∇ρ

[
∂L

(ren)
EH

∂∇µF κλνα
∂∇µF κλνα
∂∇ρRστγδ

]
+∇(χ∇ρ)

[
∂L

(ren)
EH

∂∇(β∇µ)F κλνα

∂∇(β∇µ)F
κλ
να

∂∇(χ∇ρ)R
στ
γδ

]

=− `4

384πGN
1
8δ

γδν3...ν6
στµ3...µ6F

µ3µ4
ν3ν4

(
Fµ5µ6
ν5ν6 −

2
`2
δµ5µ6
ν5ν6

)
. (3.14)

Then, the E-tensor for the Einstein-Conformal Gravity action in 6D is given by[
EEC

]γδ
στ

=
[
E

(ren)
EH

]γδ
στ
−
[
ECG

]γδ
στ
, (3.15)

for an arbitrary choice of the coupling α of the CG term of eq. (3.13).
In Einstein spacetimes, the boundary E-tensor of CG vanishes identically since it

involves only covariant derivatives of the Cotton tensor (see appendix B). On the other
hand, notice that the first term on the right-hand side of eq. (3.13) involves the projection
of the generalized delta onto its completely traceless part in the first four indices, whose
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explicit expression is given in eq. (A.15). Thus, evaluated on Einstein spacetimes, eq. (3.13)
becomes[
ECG

]γδ
στ

∣∣∣∣
E

= α

8 δ
ν1...ν6
µ1...µ6

(
Ξµ1µ2
ν1ν2

)γδ
στ
Fµ3µ4
ν5ν6

(
Fµ5µ6
ν5ν6 −

2
`2
δµ5µ6
ν5ν6

)
+α

2 δ
ν1...ν5
µ1...µ5F

µ1µ2
ν1ν2 F

µ3µ4
ν3ν4

(
∆µ5
ν5

)γδ
στ
,

= α

8 δ
γδν3...ν6
στµ3...µ6F

µ3µ4
ν5ν6

(
Fµ5µ6
ν5ν6 −

2
`2
δµ5µ6
ν5ν6

)
+α

8 δ
ν1...ν5
µ1...µ5

( 1
20δ

µ5
ν5 δ

γδ
στ+δµ5

[σ δ
[γ
τ ]δ

δ]
ν5

)
Fµ1µ2
ν1ν2

(
Fµ3µ4
ν3ν4 −

2
`2
δµ3µ4
ν3ν4

)
− α

16δ
ν1...ν5
µ1...µ5

(
2δµ5

[σ δ
[γ
τ ]δ

δ]
ν5 + 1

10δ
µ5
ν5 δ

γδ
στ

)
Fµ1µ2
ν1ν2 F

µ3µ4
ν3ν4 ,

where the definition of ∆ in eq. (A.6) has been used. After some algebra the last expression
gives [

ECG
]γδ
στ

∣∣∣∣
E

= α

8 δ
γδν3...ν6
στµ3...µ6F

µ3µ4
ν5ν6

(
Fµ5µ6
ν5ν6 −

2
`2
δµ5µ6
ν5ν6

)
. (3.16)

Therefore, for Einstein-Conformal Gravity on Einstein spacetimes we find

[
EEC

]γδ
στ

∣∣∣∣
E

=
(
− `4

384πGN
− α

)
1
8δ

γδν3...ν6
στµ3...µ6F

µ3µ4
ν5ν6

(
Fµ5µ6
ν5ν6 −

2
`2
δµ5µ6
ν5ν6

)
. (3.17)

Notice that the latter vanishes identically at the critical point of the parameter space where
the CrG theory of eq. (2.17) is defined, namely, when α = − `4

384πGN . Since the Noether pre-
potential is defined through eq. (3.8), it is clear that it becomes zero for Einstein spacetimes
at the critical point and so do the corresponding Noether-Wald conserved charges.

This result indicates the triviality of the Einstein sector of Einstein-Conformal gravity
at the bicritical point, which corresponds to the CrG theory. Indeed, it is a direct conse-
quence of the coincidence between the Noether-Wald charges of Einstein-AdS gravity and
LPP CG when the coupling of the latter is α = − `4

384πGN . Thus, the two theories are not
only equivalent at the level of the action but also at the variation of it.

4 Discussion

In this work, we used the Noether-Wald formalism [6] to compute the prepotential qµν for
the unique six-dimensional Conformal Gravity with an Einstein sector [2]. A key ingredient
in this computation, is the recasting of the LPP action in terms of the Weyl, Schouten and
Cotton tensors [8], which has a compact form that significantly streamlines the derivation.

The contributions to the prepotential coming from the bulk and the boundary
(eqs. (3.11) and (3.12), respectively) were found and written in a simpler form, introducing
two tensors, Ξ and ∆, defined in eqs. (A.8) and (A.6), respectively. These objects act
as projection operators when contracted with the curvature tensor (see appendix A), such
that they give rise to the Weyl and Schouten tensors, respectively. They can be understood
as operators which reduce the Riemann tensor to its totally traceless and partially traceless
parts, such that the full Riemann admits an expansion in terms of these irreducible pieces.
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Based on our result for Conformal Gravity, we then obtained the Noether prepoten-
tial for Critical Gravity at the bicritical point. The action of the theory is defined as the
difference between the actions for renormalized Einstein-AdS gravity and CG in six dimen-
sions, with the overall coupling α of CG chosen such that the I(ren)

EH action is recovered for
Einstein spaces [2, 8]. Therefore, its action vanishes identically for Einstein solutions.

In ref. [33], the algebra of the conserved charges for Einstein-AdS gravity in arbitrary
dimensions was obtained. As the charges for the LPP CG theory match those of Einstein-
AdS for Einstein manifolds, it would be interesting to study their algebra in CG for generic
solutions, as it should contain the Einstein case as a subalgebra.

A general connection between the vanishing of the action for a class of solutions and the
vanishing of the corresponding charges is a subject not commonly discussed in the literature.
One may provide support to this idea considering gravity actions augmented by topological
terms and defining NW charges for the total action. Applying this principle to the Einstein-
AdS action in even bulk dimensions, say D = 2n, the action rendered finite by the addition
of the Euler term turns into a polynomial of degree n in the Weyl tensor. As a consequence,
the Noether charge is a polynomial of degree n−1. This immediately implies the vanishing
of both the action and the charges for maximally symmetric spaces [9]. Another illustrative
example is given by the addition of both Gauss-Bonnet and Chern-Pontryagin invariants
to the 4D Einstein-AdS gravity. The direct application of NW procedure leads to a charge
which is identically vanishing for globally (anti-)self dual solutions, feature that is shared
by the total action [34, 35]. This reasoning opens the possibility of zero action/zero charges
for the whole class of spaces, and not only for a particular solution. As a matter of fact,
that was also the case of CrG in four dimensions [3, 36].

It was then expected that, for Einstein manifolds, the prepotential in 6D Critical
Gravity and thus, its asymptotic charges, were vanishing as well. We explicitly checked
the triviality of eq. (3.8) for the Einstein case, thus confirming this expectation.

The fact that the Noether charges are zero for Einstein solutions of six-dimensional bi-
critical gravity, together with the vanishing of its action, are in complete analogy with the
four-dimensional case studied in [1–4]. It is interesting to ponder on the implications, as
from a thermodynamic point of view, the result suggests that Critical Gravity has a degen-
erate vacuum sector such that it accommodates the entire Einstein class, having vanishing
free energy. Indeed, not all Einstein spaces are maximally symmetric. However, from the
point of view of the thermodynamic potential, the maximally symmetric configuration —
pure AdS — is neither preferred, nor stabler, but merely a representative of the Einstein
vacuum. Furthermore, if the extended phase-space thermodynamics were considered for
the theory, the thermodynamic volume would be trivial for Einstein solutions, as it relates
to the on-shell action. This is interesting as, in the holographic context, said volume is
associated to the formation complexity of the dual thermal state in the CFT [37, 38].

Although certainly interesting, an analysis of possible effects such as spontaneous tran-
sitions between Einstein configurations in the context of Critical Gravity, reminiscent of
the Hawking-Page mechanism, are beyond the scope of the present paper.
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A Irreducible decomposition of the Riemann tensor and useful formulae

The Riemann tensor can be written in terms of its irreducible components as

Rµνλρ = Aµνλρ +Hµν
λρ +Wµν

λρ , (A.1)

where the trace, partially traceless and totally traceless parts are

Aµνλρ = 1
D(D − 1)δ

µν
λρR , (A.2)

Hµν
λρ = 4

D − 2δ
[µ
[λH

ν]
ρ] , (A.3)

Wµν
λρ = Rµνλρ −A

µν
λρ −H

µν
λρ , (A.4)

respectively. Here, Hµν = Rµν − 1
DgµνR is the traceless Ricci tensor while Wµν

λρ is the
Weyl tensor.

It is useful to rewrite the Ricci scalar, Ricci tensor, and traceless Ricci tensor as
projections of the Riemann tensor according to

R = 1
2δ

γδ
στR

στ
γδ , Rµν = δµ[τδ

[γ
σ]δ

δ]
ν R

στ
γδ , Hµ

ν =
(
δµ[τδ

[γ
σ]δ

δ]
ν −

1
2Dδ

µ
ν δ

γδ
στ

)
Rστγδ , (A.5)

respectively. The Schouten tensor, on the other hand, is defined through

Sµν = 1
D − 2

(
Rµν −

1
2(D − 1)δ

µ
νR

)
= − 1

D − 2

(
δµ[σδ

[γ
τ ]δ

δ]
ν + 1

4(D − 1)δ
µ
ν δ

γδ
στ

)
Rστγδ ≡ (∆µ

ν )γδστ R
στ
γδ , (A.6)

and it can be used to define the Cotton tensor, namely,

Cµνλ = 2∇[λSν]µ = − 1
D − 2δ

ρα
λν δ

β
µ

(
gα[σδ

[γ
τ ]δ

δ]
β + 1

4(D − 1)gαβδ
γδ
στ

)
∇ρRστγδ

= δραλν (∆µα)γδστ ∇ρR
στ
γδ , (A.7)

where (∆µα)γδστ = gαν
(
∆ν
µ

)γδ
στ
. Similarly, the Weyl tensor can be written in terms of

projection of the Riemann tensor as

Wµν
λρ = 1

4

(
δµνστ δ

γδ
λρ −

16
D − 2δ

[δ
[λδ

[µ
ρ] δ

ν]
[σδ

γ]
τ ] + 2

(D − 1) (D − 2)δ
µν
λρδ

γδ
στ

)
Rστγδ

≡
(
Ξµνλρ

)γδ
στ
Rστγδ . (A.8)
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Thus, it is clear that the role of Ξ is to project the Riemann tensor onto its completely
traceless part. Indeed, from its symmetries, one can explicitly check that(

Ξµνλρ
)γδ
στ

=
(
Ξγδστ

)µν
λρ
. (A.9)

Therefore, since the Weyl tensor is traceless in any pair of indices, we have(
Ξµνλρ

)γδ
στ
W στ
γδ = Wµν

λρ , (A.10)

that leads directly to the idempotency of this projector, namely,(
Ξµνλρ

)γδ
στ

(
Ξστγδ

)αβ
χξ

=
(
Ξµνλρ

)γδ
στ

(
Ξαβχξ

)στ
γδ

=
(
Ξµνλρ

)αβ
χξ

=
(
Ξαβχξ

)µν
λρ
. (A.11)

Moreover, one can find a relation between the projectors Ξ and ∆ from the relation between
the Cotton and the Weyl tensor, that is

Cµνλ = − 1
D − 3∇ρW

ρ
µνλ , (A.12)

giving

(∆µ
ν )γδστ = 1

(D − 1)(D − 3)
(
Ξρµρν

)γδ
στ
. (A.13)

Comparing eqs. (A.6) and (A.13) we find explicitly that

(
Ξρµρν

)γδ
στ

= −(D − 1)(D − 3)
(D − 2)

(
δµ[σδ

[γ
τ ]δ

δ]
ν + 1

4(D − 1)δ
µ
ν δ

γδ
στ

)
. (A.14)

Additionally, the projection onto the completely traceless part in the first four indices of
the generalized delta gives

δν1...νp
µ1...µp

(
Ξµ1µ2
ν1ν2

)γδ
στ

= δγδν3...νp
στµ3...µp + 4(D − p+ 1)

D − 2 δν2...νp
µ2...µp

(
δµ2

[σ δ
[γ
τ ]δ

δ]
ν2 + 1

4(D − 1)δ
µ2
ν2 δ

γδ
στ

)
.

(A.15)

B Einstein spacetimes

In this appendix, we briefly review the definition of Einstein spacetimes, which are de-
fined as solution to the Einstein field equations in presence of cosmological constant in D
dimensions,

Rµν −
1
2Rgµν + Λgµν = 0 . (B.1)

Taking the trace, it is direct to see that this equation is solved by

Rµν = −(D − 1)
`2

gµν , (B.2)
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where ` is the AdS radius, related to the cosmological constant through

Λ = −(D − 1)(D − 2)
2`2 . (B.3)

Thus, the condition (B.2) defines an Einstein spacetime. Notice that, when eq. (B.2) holds,
the traceless Ricci vanishes identically, namely, Hµν = 0. This, in turn, implies that the
Schouten tensor evaluated at Einstein-AdS spacetimes becomes

Sµν = − 1
2`2 δ

µ
ν , (B.4)

and the Cotton tensor is zero as a consequence of its definition Cµνλ = 2∇[λSν]µ. Addi-
tionally, the Weyl tensor for Einstein-AdS spacetimes becomes the AdS curvature, namely,

Wµν
λρ = Rµνλρ + 1

`2
δµνλρ ≡ F

µν
λρ . (B.5)

C Noether-Wald and Hamiltonian charges

The connection between the Noether-Wald charge Q[ξ] in eq. (3.9) and the notion of
Hamiltonian H[ξ] for a gravity theory has been discussed in the literature, since the seminal
work by Iyer and Wald [6].

In the simple example of General Relativity in 4D, we know that NW charge is equiv-
alent to the Komar formula

K[ξ] = − 1
8πG

∫
Σ
∇[µξν]dΣµν , (C.1)

which, evaluated for a timelike Killing vector, gives rise to half of the Hamiltonian mass [39].
The situation worsens in higher-dimensional GR, where the Komar factor takes the value
(D − 3)/(D − 2).

In order to properly define the Hamiltonian mass, one has to consider a correction due
to a boundary term B of the type

H[ξ] =
∫

Σ

(
qµν − ξ[µBν]

)
dΣµν , (C.2)

where dΣµν is the codimension-2 infinitesimal surface and qµν is defined in eq. (3.8).
Generally speaking, a HamiltonianH[ξ] describes the dynamics generated by the vector

field ξ = ξµ∂µ, whose variation is defined in terms of the Noether charge and surface term
Θ in eq. (3.4) as

δH[ξ] = δ

∫
Σ
qµνdΣµν −

∫
Σ
ξ[µΘν]dΣµν . (C.3)

Therefore, the Hamiltonian exists if there is a B, such that the integrability condition∫
Σ
ξ[µΘν](φ, δφ)dΣµν = δ

∫
Σ
ξ[µBν](φ)dΣµν (C.4)

is satisfied, provided that δφ satisfies the linear equations of motion (see ref. [5] for details) .
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Being able to integrate the above relation as a total variation is far from straightfor-
ward. In general, it requires breaking covariance at the boundary and the linearization of
the theory around a given background metric ḡµν . Only the use of precise boundary con-
ditions allows to express B in terms of the metric perturbation hab (with a, b as boundary
indices). In GR, this non-covariant, background-dependent contribution, added to the NW
charge, allows to construct the ADM mass as the correction of the Komar formula [6].

A posteriori, the need for the previous discussion can be atributted to the lack of a
well-posed action principle. In other words, NW procedure does not demand the surface
term Θ to vanish for a given set of boundary conditions. Then, it comes as no surprise the
fact Komar charge does not provide the right result, as it is not coming from a well-defined
variational problem.

In AdS gravity in 4D, the alternative is taking NW charges for an action supplemented
by a topological term in the bulk. This ensures that the total surface term Θ = ΘEH +ΘTop
will vanish for standard AAdS boundary conditions [34], since

Q[ξ] = − `2

16πG

∫
Σ

(
Rµνλρ + 1

`2
δµνλρ

)
∇λξρdΣµν . (C.5)

This provides a different sort of correction to the Komar formula, which is background
independent and fully covariant. In particular, one does not require the integration of
the charge.

For Conformal Gravity in 6D, there is no need to supplement the bulk term with
the topological density. Indeed, the theory is already finite and equivalent to Einstein-
AdS gravity for Einstein spaces with the topological term already included. In particular,
computing the surface term Θ explicitly for CG, we find the result of eq. (3.4) with (3.13).
In the case of Einstein solutions, the ΘCG is identical to the one for Einstein-AdS gravity.
Furthermore, since the non-Einstein solutions are continuously connected to the Einstein
sector — by turning off additional modes — the term ΘCG would vanish to the leading
order as well, considering the asymptotic form of the curvature given by

Rαβµν → −
1
`2
δαβµν . (C.6)

In addition, in the case of CrG, it is evident that Θ, as defined through eq. (3.17), vanishes
identically for Einstein solutions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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