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Understanding how deep learning architectures work is a central scientific problem. Re-
cently, a correspondence between neural networks (NNs) and Euclidean quantum field the-
ories has been proposed. This work investigates this correspondence in the framework of
p-adic statistical field theories (SFTs) and neural networks. In this case, the fields are real-
valued functions defined on an infinite regular rooted tree with valence p, a fixed prime
number. This infinite tree provides the topology for a continuous deep Boltzmann machine
(DBM), which is identified with a statistical field theory on this infinite tree. In the p-adic
framework, there is a natural method to discretize SFTs. Each discrete SFT corresponds to
a Boltzmann machine with a tree-like topology. This method allows us to recover the stan-
dard DBMs and gives new convolutional DBMs. The new networks use O(N) parameters
while the classical ones use O(N2) parameters.
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1. Introduction
Deep neural networks have been successfully applied to various tasks, including self-driving
cars, natural language processing, and visual recognition, among many others [1,2]. There is a
consensus about the need to develop a theoretical framework to understand how deep learn-
ing architectures work. Recently, physicists have proposed the existence of a correspondence
between neural networks (NNs) and quantum field theories (QFTs), more precisely statistical
field theory (SFT); see Refs. [3–12] and references therein. This correspondence takes different
forms depending on the architecture of the networks involved.

In Ref. [12], a study of the above-mentioned correspondence was initiated in the framework
of the non-Archimedean statistical field theory (SFT). In this case, the background space (the
set of real numbers) is replaced by a set of p-adic numbers, where p is a fixed prime number. The
p-adics are organized in a tree-like structure; this feature facilitates the description of hierarchi-
cal architectures. In Ref. [12], a p-adic version of the convolutional deep Boltzmann machines
(DBMs) is introduced where only binary data are considered and with no implementation. By
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adapting the mathematical techniques introduced by Le Roux and Benigio in Ref. [13], the
author shows that these machines are universal approximators for binary data tasks.

In this article, we continue discussing the correspondence between SFTs and NNs in the p-
adic framework. Compared with Ref. [12], here we consider more general architectures and data
types. We note that dealing with general data is challenging both in theory and implementation.
We argue that p-adic analysis still provides the right framework to understand the dynamics
of NNs with large tree-like hierarchical architectures. In our approach, a NN corresponds to
the discretization of a p-adic SFT. The discretization process is carried out in a rigorous and
general way. Moreover, such discretization allows us to obtain many recently developed DBMs.
For instance, the NNs constructed in Ref. [5] are a particular case of those introduced here. We
also discuss the implementation of a class of p-adic convolutional networks and obtain desired
results on a feature detection task based on hand-writing images of decimal digits.

The main novelty of our p-adic convolutional DBMs is that they use significantly fewer pa-
rameters than the conventional ones. A detailed discussion is given in Sect. 6. We note that
the connections between p-adic numbers and neural networks have been considered before.
Neural networks whose states are p-adic numbers were studied in Refs. [14,15]. These models
are completely different from those considered here. These ideas have been used to develop
non-Archimedean models of brain activity and mental processes [16]. In Refs. [17,18], p-adic
versions of cellular neural networks were studied. These models involved abstract evolution
equations.

2. p-adic numbers
In this section, we introduce basic concepts for the p-adic numbers. For more detailed informa-
tion, refer to Appendix A.

From now on, p denotes a fixed prime number. Any non-zero p-adic number x has a unique
expansion of the form

x = x−k p−k + x−k+1 p−k+1 + · · · + x0 + x1 p + · · · ,

with x−k �= 0, where k is an integer, and the xj are numbers from the set {0, 1, …, p − 1}. The
set of all possible numbers of such a form constitutes the field of p-adic numbers Qp. There are
natural field operations, sum and multiplication, on p-adic numbers; see, e.g., Ref. [19]. There
is also a natural norm in Qp defined as |x|p = pk where k depends on x, for a non-zero p-adic
number x.

The field of p-adic numbers with the distance induced by | · |p is a complete ultrametric space.
The ultrametric property refers to the fact that |x − y|p ≤ max {|x − z|p, |z − y|p} for any x, y, z
in Qp. In this article, we work with p-adic integers, which are p-adic numbers satisfying −k ≥ 0.
All such p-adic integers constitute the unit ball Zp. The unit ball is closed under addition and
multiplication, so it is a commutative ring. Throughout this article, we work mainly with locally
constant functions supported in the unit ball, i.e., with functions of type ϕ : Zp → R, such that
ϕ(a + x) = ϕ(a) for all x in Zp. The simplest example of such a function is the chararcterisstic
function 1Zp (x) of the unit ball Zp: 1Zp (x) = 1 if |x|p ≤ 1, otherwise 1Zp (x) = 0. To check that
1Z p (a + x) = 1Zp (a), we use that Zp is closed under addition. If |x|p ≤ p−l, where the integer
l is fixed and independent of a. We denote by D(Zp) the real vector space of test functions
supported in the unit ball. There is a natural integration theory so that

∫
Zp

ϕ (x) dx gives a
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Fig. 1. The rooted tree associated with the group Z2/23Z2. The elements of Z2/23Z2 have the form i = i0
+ i12 + i222, i0, i1, i2 ∈ {0, 1}. The distance satisfies −log2|i − j|2 =level of the first common ancestor of
i, j.

Fig. 2. Based upon Ref. [20], we construct an embedding f : Zp → R2. The figure shows the images of
f(Z2) and f(Z3). This computation requires a truncation of the p-adic integers. We use Z2/214Z2 and
Z3/310Z3, respectively.

well-defined real number. The measure dx is the so-called Haar measure of Qp. Further details
are given in Appendix A.3.

Since the p-adic numbers are infinite series, any computational implementation involving
these numbers requires a truncation process: x �−→ x0 + x1 p + . . . + xl−1 pl−1, l ≥ 1. The set
of all truncated integers mod pl is denoted as Gl = Zp/plZp. This set can be represented as a
rooted tree with l levels; see Fig. 1.

The unit ball Zp is an infinite rooted tree with fractal structure; see Fig. 2. Appendix A
provides a review of the basic aspects of the p-adic analysis required here. We note that the
word “field” will be used here in two different contexts throughout the article. In a mathemat-
ical context, we refer to algebraic fields; in a physical context, we refer to Euclidean quantum
fields.
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3. Non-Archimedean {v, h}4-statistical field theories
We fix a(x), b(x), c(x), d (x) ∈ D(Zp), e ∈ R, and an integrable function w (x) : Zp → R. A p-
adic continuous Boltzmann machine (or a p-adic continuous BM) is a statistical field theory
involving two scalars fields v, h. The function v(x) ∈ D(Zp) is called the visible field and the
function h(x) ∈ D(Zp) is called the hidden field. We assume that the field {v, h} performs thermal
fluctuations and that the expectation value of the field is zero.

The size of the fluctuations is controlled by an energy functional of the form

E (v, h; θ) := E (v, h) = E0 (v, h) + Eint (v, h) ,

where θ = (w, a, b, c, d, e). The first term

E0 (v, h) = −
∫
Zp

a(x)v (x) dx −
∫
Zp

b(x)h (x) dx + e
2

∫
Zp

v2 (x) dx + e
2

∫
Zp

h2 (x) dx

is an analogue of the free-field energy. The second term

Eint (v, h) = −
∫∫

Zp×Zp

h (y) w (x − y) v (x) dxdy +
∫
Zp

c(x)v4 (x) dx +
∫
Zp

d (x)h4 (x) dx

is an analogue of the interaction energy. The results presented in this section are valid for more
general functionals in which the first term in Eint(v, h) is replaced by∫∫

Zp×Zp

h (y) w (x, y) v (x) dxdy.

The motivation behind the definition of the energy functionals E (v, h) is that the discretizations
of these functionals give the energy functionals considered in Refs. [5,13,21,22].

All the thermodynamic properties of the system are described by the partition function of
the fluctuating fields, which is defined as

Zphys(θ) =
∫

dvdh e− E (v,h)
KBT ,

where KB is the Boltzmann constant and T is the temperature constant. We normalize in such a
way that KBT = 1. The measure dvdh is ill defined. However, it is expected that such a measure
can be defined rigorously by a limit process. The statistical field theory corresponding to the
energy functional E (v, h; θ) is defined as the probability measure

Pphys(v, h; θ) = dvdh
exp (−E (v, h))

Zphys
,

on the space D(Zp) × D(Zp).
The information about the local properties of the system is contained in the correlation func-

tions G(n)
I,K (x1, . . . , xn) of the field {v, h}: for n ≥ 1, and two disjoint subsets I, K ⊂ {1, 2, . . . , n},

with I
∐

K = {1, 2, . . . , n}, where
∐

is the disjoint union, we set

G(n)
I,K (x1, . . . , xn) =

〈∏
i∈I

v (xi)
∏
j∈K

h
(
xj

)〉

:= 1
Zphys

∫
dvdh

∏
i∈I

v (xi)
∏
j∈K

h
(
xj

)
e−E (v,h).

These functions are also called the n-point Green functions.
To study these functions, one introduces two auxiliary external fields J0(x),J1(x) ∈ D(Zp),

called currents, and adds to the energy functional E as a linear interaction energy of these
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currents with the field {v, h}:
Esource(v, h, J0, J1) = −

∫
Zp

J0(x)v (x) dx −
∫
Zp

J1(x)h (x) dx;

now the energy functional is E (v, h, J0, J1) = E (v, h) + Esource(v, h, J0, J1). The partition func-
tion formed with this energy is

Z(J0, J1) = 1

Zphys
0

∫
dvdh e−E (v,h,J0,J1 ),

where

Zphys
0 =

∫
dvdh e−E0(v,h).

The functional derivatives of Z(J0, J1) with respect to J0(x), J1(x) evaluated at J0 = 0, J1 = 0
give the correlation functions of the system:

G(n)
I,K (x1, . . . , xn) = 1

Z

[∏
i∈I

δ

δJ0 (xi)

∏
j∈K

δ

δJ1
(
xj

)Z(J0, J1)

]
J0=0
J1=0

,

where Z = Zphys

Zphys
0

. The functional Z(J0, J1) is called the generating functional of the theory.

The description of the {v, h}4-SFTs presented above is based in the classical version of these
theories [23,24]. In Ref. [25], a mathematically rigorous formulation of φ4-SFTs is presented;
the fields are functions from QN

p into R, with N arbitrary. We expect that this theory can be
extended to the {v, h}4-SFTs presented here.

4. Discrete SFTs and p-adic discrete Boltzmann machines
A central difference between the p-adic SFTs and the classical ones is that, in the p-adic case,
the discretization process can be carried out in an easy rigorous way. More specifically, the dis-
cretization of a p-adic SFT is constructed by restricting the energy functional E (v, h; θ) to a
finite-dimensional vector subspace Dl (Zp) of the space of test functions D(Zp). The test func-
tions in Dl (Zp) have the form

ϕ (x) = ∑
i∈Gl

ϕ (i) �
(
pl |x − i|p

)
, ϕ (i) ∈ R,

where i = i0 + i1 p + · · · + il−1 pl−1 ∈ Gl = Zp/plZp, l ≥ 1, and �(pl|x − i|p) is the character-
istic function of the ball B−l(i). Here, it is important to notice that Gl is a finite, Abelian,
additive group. In the p-adic world, the discrete functions are a particular case of the p-adic
continuous functions, more precisely, D(Zp) = ∪l∈NDl (Zp) and Dl (Zp) ⊂Dl+1(Zp). There is no
Archimedean counterpart of this result.

By taking v, h ∈ Dl (Zp) and l sufficiently large, the restriction El (v, h; θ) of the energy func-
tional E (v, h; θ) to Dl (Zp) has the form

El (v, h; θ) = −
∑
j∈Gl

∑
k∈Gl

wkv j+kh j −
∑
j∈Gl

a jv j −
∑
j∈Gl

b jh j + e
2

∑
j∈GN

l

v2
j + e

2

∑
j∈Gl

h2
j

+
∑
j∈Gl

c jv4
j +

∑
j∈Gl

d jh4
j . (1)

We refer the reader to Appendix B for further details of this calculation. From now on, we refer
to Eq. (1) as the energy functional for a discrete {v, h}4-SFT.
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In the general case, El (v, h; θ) is a p-adic analogue of the {v, h}4 neural networks introduced
in Ref. [5]. In this article, each hidden state hj and visible state vi interact through a weight wij.
Therefore, this requires the number of G2

l for weights w, whereas our counterpart requires only
Gl. See Sect. 6 for further discussion.

We now attach to the discrete energy functional a p-adic discrete BM. For any visible and
hidden states, v = [vi]i∈Gl

and h = [hi]i∈Gl
, the Boltzmann probability distribution attached to

El (v, h; θ) is given by

Pl (v, h; θ) = exp (−El (v, h; θ))∑
v,h

exp (−El (v, h; θ))
.

When there is no risk of confusion, we will omit θ in the notation. When cj = dj = 0 for all j
∈ Gl, the energy functional El (v, h; θ) corresponds to a p-adic analogue of the convolutional
deep belief networks studied in Ref. [21].

We note that the energy functional El has translational symmetry; i.e., El is invariant under
the transformations j → j + j0, k → k + k0 for any j0, k0 ∈ Gl. This transformation is well
defined since Gl is an additive group. In the case of applications to image processing, the group
property also implies that the convolution operation does not alter image dimensions. The con-
volutional p-adic discrete BMs introduced here are a specific type of DBM (also called deep
belief networks, DBNs).

5. Experimental results
We implement a p-adic discrete Boltzmann machine for processing binary images, then v, h :
Zp → {0, 1} ⊂ R; in this case, we use the following energy functional:

El (v, h; θ ) = −
∑
j∈Gl

∑
k∈Gl

|k|p≤p−N

wkv j+kh j −
∑
j∈Gl

a jv j −
∑
j∈Gl

b jh j

for some natural number 0 ≤ N ≤ l. Note that, compared to Eq. (1), the quadratic and bi-
quadratic terms are omitted since they do not play any role in the case in which v, h are binary
variables. The condition N ≤ l implies that the convolution operation is restricted to a small
neighborhood of radius p−N for each pixel. The condition N = 0 means that the convolution
involves all the points in the image.

Our numerical experiment is based on the MNIST dataset, where each image is considered as
a sample of the visible state. Our first task is to train the network to maximize the log-likelihood
of the visible states. We choose p = 3 and l = 6 since the image dimension is 33 × 33. In general,
p and l depend on the size of the images to be processed. Typically p is chosen as a small prime
number, e.g., 2 or 3.

To tune the parameters aj, bj, wj, j ∈ G6 of the network, we first transform each image I into a
test function Test (I ) ∈ D6(Z3). The test function Test(I) is defined in terms of the tree structure
of G6 in the following way: we define I as the root of the tree. Later we divide I into three even
horizontal slices (sub-images). These sub-images are the vertices at level 1, and they are the
children of I. Each sub-image Ij at level 1 is then divided vertically into three sub-images; these
are the children of Ij. All the 32 new sub-images correspond to the vertices at level 2. We repeat
this process until we reach level 6. At level 6, each vertex corresponds to a pixel, and we denote
it by a value Ii for i ∈ G6. Then Test(I) is defined as

∑
i∈G6

Ii�(36|x − i|3). See Fig. 3 for the
construction of the tree corresponding to a 32 × 32 image. Figure 4 shows a graph of a test
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Fig. 3. The construction of the tree corresponding to a 3 × 3 image.

Fig. 4. The processing of date using p-adic networks requires the transformation of the actual data to its
p-adic form. The left image shows a visualization of the test function corresponding to the right image.
The visualization uses the embedding f : Zp → R2 shown in Fig. 2.

function corresponding to an image from the MNIST data set. For further details, the reader
may consult the appendix to Ref. [18].

We note that, in a p-adic discrete deep BM, the visible and hidden states are functions on a
finite tree. Only the vertices at the top level, which are marked as orange and blue balls, are
allowed to have states. See Fig. 5 for the case p = 2, l = 2. The remaining trees’ vertices (see the
black dots in Fig. 5) only codify the hierarchical relation between states. The visible and hidden
vertices connected by the same type of lines share the same weight w.

We adapted the contrastive divergence learning method to the p-adic framework [26]. The
technical details are presented in Appendix C.2. We implement two different types of networks.
In the first type, the function wk is supported in the entire tree G6; in the second type, the
function wk is supported in a proper subset of the tree G6. We use the full MNIST handwritten
digits, without considering labels, to train a six-layer three-adic feature detector. The results are
shown in Fig. 6.

After the processing by the network is completed, it is necessary to transform the test function
into an image.
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Fig. 5. A p-adic BM for p = 2, l = 2.

Fig. 6. (a) is the original input image. (b) is the reconstructed image using Gibbs sampling with w having
Z3 as support. (c) is the reconstructed image with w supported in 33Z3. (d) is the reconstructed image
with w supported in 34Z3.
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6. Conclusions
The standard BMs [26] and the φ4-neural networks introduced in Ref. [5] are particular classes
of p-adic discrete BMs. Indeed, if w(x, y) is a test function and the interaction between the
visible and hidden field has the form −∫∫

Zp×Zp
h (y) w (x, y) v (x) dxdy, then in the correspond-

ing discrete energy functional, after a suitable rescaling of the weights wk, j, the interaction of
the visible and hidden states takes the form −∑

j∈Gl

∑
k∈Gl

wk, jvkh j . Here [wk, j] is an ordinary
matrix, which means that its entries wk, j depend neither on the algebraic structure of Gl nor on
its topology.

In the case in which the interaction between the visible and hidden fields has the form
−∫∫

Zp×Zp
h (y) w (x − y) v (x) dxdy, the corresponding discrete energy functional depends on

the group structure of Gl, and the corresponding neural network is a particular case of a DBM;
see Fig. 5.

The condition l ≥ l0, for some constant l0, means that a p-adic discrete BM admits arbitrarily
large copies; this is a consequence of the fact that p-adic numbers have a tree-like structure. We
expect that for l sufficiently large the statistical properties of the network can be studied using
a p-adic continuous SFT.

Our numerical experiments show that p-adic discrete convolutional DBMs alone can be used
to process real data; this opens the possibility of using these networks as layers in specialized
NNs.

In Ref. [12] the first author conjectured that the limit

e−E (v,h)

Zphys
dvdh = lim

l→∞
Pl (v, h) d#Gl v d#Gl h (2)

exists in some sense; here d#Gl x denotes the Lebesgue measure of R#Gl . Then the correlation
between the network activity in different regions of the underlying tree Gl can be understood
by computing the correlation functions of the corresponding continuous SFT.

For practical applications the NNs should be discrete entities. This type of NN naturally
corresponds with discrete SFTs. To use Euclidean QFT to study NNs, it is convenient to have
continuous versions of these networks. Thus, a clear way of passing between discrete SFTs to
continuous ones is required. The existence of the limit (2) is a very difficult problem in classical
QFT. In Ref. [25] the existence of this limit was established for p-adic φ4-theories involving one
scalar field; we expect that these techniques can be extended to the QFT case considered here.

It is widely accepted in the artificial intelligence community that the probability distributions
Pl (v, h) should approximate any finite probability distribution very well, which means that the
corresponding NNs are universal approximators. We argue that this property is connected with
the topology and the structure of the NNs, and that the problem of designing good architec-
tures for NNs is out of the scope of QFT. We expect that QFT techniques will be useful to
understand the qualitative behavior of large NNs, which can be well approximated as ‘contin-
uous’ NNs.

The study of the correspondence between p-adic Euclidean QFTs and NNs is just starting.
We envision that the next step will be to develop perturbative calculations of the correlation
functions via Feynman diagrams, to study connections with Ginzburg–Landau theory, and to
develop practical applications of the p-adic convolutional BMs.
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A. Basic facts of p-adic analysis
In this section we review some of the basic results of p-adic analysis required in this article. For
a detailed exposition on p-adic analysis the reader may consult Refs. [27,28–30]. For a quick
review of p-adic analysis the reader may consult Ref. [31].

A.1. The field of p-adic numbers
The field of p-adic numbers Qp is defined as the completion of the field of rational numbers Q
with respect to the p-adic norm | · |p, which is defined as

|x|p =
{

0 if x = 0

p−γ if x = pγ
a
b
,

(A1)

where a and b are integers coprime with p. The integer γ = ordp(x) := ord(x), with ord(0) :=
+∞, is called the p-adic order of x. The metric space

(
Qp, |·|p

)
is a complete ultrametric space.

Ultrametric means that |x + y|p ≤ max {|x|p, |y|p}. As a topological space Qp is homeomorphic
to a Cantor-like subset of the real line; see, e.g., Refs. [27,20,28].

Any p-adic number x �= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xj pj,

where xj ∈ {0, 1, 2, …, p − 1} and x0 �= 0. In addition, for any x ∈ Qp \ {0} we have

|x|p = p−ord(x).

A.2. Topology of Qp

For r ∈ Z, denote by Br(a) = {x ∈ Qp; |x − a|p ≤ pr} the ball of radius prwith its center at a ∈ Qp,
and take Br(0) := Br. The ball B0 equals the ring of p-adic integers Zp. The balls are both open
and closed subsets in Qp. We use �(p−r|x − a|p) to denote the characteristic function of the
ball Br(a). Two balls in Qp are either disjoint or one is contained in the other. As a topological
space

(
Qp, |·|p

)
is totally disconnected; i.e., the only connected subsets of Qp are the empty set

and the points. A subset of Qp is compact if and only if it is closed and bounded in Qp; see, e.g.,
Sect. 1.3 in Ref. [27] or Sect. 1.8 in Ref. [28]. The balls and spheres are compact subsets. Thus(
Qp, |·|p

)
is a locally compact topological space.

A.2.1. Tree-like structures Any p-adic integer i admits an expansion of the form i = ikpk +
ik + 1pk + 1 + ··· for some k ≥ 0, ik �= 0. The set of p-adic truncated integers modulo pl, l ≥
1, consists of all the integers of the form i = i0 + i1 p + · · · + il−1 pl−1. These numbers form a
complete set of representatives for the elements of the additive group Gl = Zp/plZp, which is
isomorphic to the set of integers Z/plZ (written in base p) modulo pl. By restricting | · |p to
Gl, it becomes a normed space, and |Gl|p = {0, p−(l − 1), …, p−1, 1}. With the metric induced
by | · |p, Gl becomes a finite ultrametric space. In addition, Gl can be identified with the set
of branches (vertices at the top level) of a rooted tree with l + 1 levels and pl branches. By
definition the root of the tree is the only vertex at level 0. There are exactly p vertices at level
1, which correspond to the possible values of the digit i0 in the p-adic expansion of i. Each of
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these vertices is connected to the root by a non-directed edge. At level k, with 2 ≤ k ≤ l + 1,
there are exactly pk vertices; each vertex corresponds to a truncated expansion of i of the form
i0 + ··· + ik − 1pk − 1. The vertex corresponding to i0 + ··· + ik − 1pk − 1 is connected to a vertex
i′0 + · · · + i′k−2 pk−2 at the level k − 1 if and only if

(
i0 + · · · + ik−1 pk−1

) − (
i′0 + · · · + i′k−2 pk−2

)
is divisible by pk − 1. See Fig. 1. The balls B−r(a) = a + prZp are infinite rooted trees.

A.3. The Haar measure
Since (Zp, +) is a locally compact topological group, there exists a Haar measure dx, which
is invariant under translations; i.e., d(x + a) = dx [32]. If we normalize this measure by the
condition

∫
Zp

dx = 1, then dx is unique. It follows immediately that∫
Br(a)

dx = ∫
a+p−rZp

dx = pr∫
Zp

dy = pr, r ∈ Z.

On a few occasions we use the 2D Haar measure dxdy of the additive group (Zp × Zp, +) and
normalize this measure by the condition

∫
Zp

∫
Zp

dxdy = 1. For a quick review of the integration
in the p-adic framework the reader may consult Ref. [31] and references therein.

A.4. The Bruhat–Schwartz space in the unit ball
A real-valued function ϕ defined on Zp is called a Bruhat–Schwartz function (or a test function)
if for any x ∈ Zp there exists an integer l (x) ∈ Z such that

ϕ(x + x′) = ϕ(x) for any x′ ∈ Bl (x). (A2)

The R-vector space of Bruhat–Schwartz functions supported in the unit ball is denoted by
D(Zp). For ϕ ∈ D(Zp), the largest number l = l(ϕ) satisfying Eq. (A2) is called the exponent of
local constancy (or the parameter of constancy) of ϕ. A function ϕ in D(Zp) can be written as

ϕ (x) =
M∑
j=1

ϕ
(
x̃ j

)
�

(
prj

∣∣x − x̃ j
∣∣

p

)
,

where x̃ j , j = 1, …, M, are points in Zp, rj, j = 1, …, M, are integers, and �
(

prj
∣∣x − x̃ j

∣∣
p

)
denotes the characteristic function of the ball B−r j (x̃ j ) = x̃ j + prj Zp.

B. Discretization of the energy functional
The elements of Gl = Zp/plZp, l ≥ 1, have the form i = i0 + i1 p + · · · + il−1 pl−1, where the ik
are p-adic digits. We denote by Dl (Zp) the R-vector space of all test functions of the form

ϕ (x) = ∑
i∈Gl

ϕ (i) �
(
pl |x − i|p

)
, ϕ (i) ∈ R;

here �(pl|x − i|p) is the characteristic function of the ball i + plZp. Notice that ϕ is sup-
ported on Zp and that Dl (Zp) is a finite-dimensional vector space spanned by the basis{
�

(
pl |x − i|p

)}
i∈Gl

.

By identifying ϕ ∈ Dl (Zp) with the column vector [ϕ (i)]i∈Gl
∈ R#Gl , we obtain that Dl (Zp) is

isomorphic to R#Gl endowed with the norm
∥∥∥[ϕ (i)]i∈GN

l

∥∥∥ = maxi∈Gl |ϕ (i)|. Furthermore,

Dl ↪→ Dl+1 ↪→ D(Zp),

where ↪→ denotes a continuous embedding.
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The restriction of E to the subspace Dl (Zp) gives a discretization of E denoted as El. Indeed,
by assuming that

v (x) = ∑
i∈Gl

v (i) �
(
pl |x − i|p

)
,

h (x) = ∑
i∈Gl

h (i) �
(
pl |x − i|p

)
,

we have ∫∫
Zp×Zp

w (x − y) �
(
pl |x − i|p

)
�

(
pl |y − j|p

)
dxdy

=
∫∫

pl Zp×pl Zp

w((i − j) + (x − y))dxdy,

and by using that a(x), b(x), c(x), d(x) are test functions supported in the unit ball and taking
l sufficiently large, we have

a (x) �
(
pl |x − i|p

) = a (i) �
(
pl |x − i|p

)
,

b(x)�
(
pl |x − i|p

) = b(i)�
(
pl |x − i|p

)
,

c (x) �
(
pl |x − i|p

) = c (i) �
(
pl |x − i|p

)
,

d (x)�
(
pl |x − i|p

) = d (i)�
(
pl |x − i|p

)
,

and consequently

El (v, h) = −
∑

i, j∈Gl
i �= j

v (i) h ( j)

⎛⎜⎝ ∫∫
pl Zp×pl Zp

w(i − j + x − y)dxdy

⎞⎟⎠
− p−l

∑
i∈Gl

a (i) v (i) − p−l
∑
i∈Gl

b (i) h (i) + ep−l

2

∑
i∈Gl

v2 (i) + ep−l

2

∑
i∈Gl

h2 (i)

+ p−l

2

∑
i∈Gl

c (i) v4 (i) + p−l

2

∑
i∈Gl

d (i) h4 (i) .

We take vi = v (i), hi = h (i),

wi− j =
∫∫

pl Zp×pl Zp

w((i − j) + (x − y))dxdy,

ai = p−la(i), bi = p−lb(i), ci = p−lc(i), di = p−ld(i), for i, j ∈ Gl, and θ = {
wi j, ai, bi, ci, di

}
. We

also rescale e to epl, then

El (v, h; θ) = −
∑

i, j∈Gl

wi− jvih j −
∑
i∈Gl

aivi −
∑
i∈Gl

bihi

+ e
2

∑
i∈Gl

v2
i + e

2

∑
i∈Gl

h2
i +

∑
i∈Gl

civ4
i +

∑
i∈Gl

dih4
i .

We now recall that Gl is an additive group, then∑
i, j∈Gl

wi− jvih j =
∑
j∈Gl

∑
k∈Gl

wkv j+kh j,
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and consequently

El (v, h; θ) = −
∑
j∈Gl

∑
k∈Gl

wkv j+kh j −
∑
j∈Gl

a jv j −
∑
j∈Gl

b jh j

+ e
2

∑
j∈GN

l

v2
j + e

2

∑
j∈Gl

h2
j +

∑
j∈Gl

c jv4
j +

∑
j∈Gl

d jh4
j .

C. Some probability distributions
From now on, we assume that visible and hidden fields are binary variables. However, most of
our mathematical formulation is valid under the assumption that visible and hidden fields are
discrete variables. We set

V = {V1,V2, . . . ,VN}, H = {H1, H2, . . . , HN},
N = pl, to be the respective visible and hidden random variable sets. The random variables
(V , H ) take values (v, h) ∈ {0, 1}2N . For the sake of simplicity, we will identify the random
vector V with v, and the random vector H with h. We identify Gl with the set of branches
(vertices at the top level) of a rooted tree with l + 1 levels and pl branches. Attached to each
branch i ∈ Gl there are two states: vi, hi. With this notation, v = [vi]i∈Gl

is a realization of the
visible field, and h = [hi]i∈Gl

is a realization of the hidden field. The joint distribution of the
random vectors (v, h) is given by the following Boltzmann probability distribution:

Pl (v, h; θ) = exp (−El ((v, h; θ)))
Zl

, (C1)

where

Zl =
∑
v,h

exp (−El (v, h; θ)) ,

and El is defined in Eq. (1).
By using the joint distribution of the visible field and the hidden field (C1), we compute the

marginal probability distributions as follows:

Pl (v; θ) =
∑

h

Pl (v, h; θ) =

∑
h

exp (−El (v, h; θ))∑
v,h

exp (−El (v, h; θ))
,

Pl (h; θ) =
∑

v

Pl (v, h; θ) =

∑
v

exp (−El (v, h; θ))∑
v,h

exp (−El (v, h; θ))
.

Since we are assuming that v, h are binary, the energy functional takes the form

El (v, h; θ) = −
∑
k∈Gl

∑
j∈Gl

wkv j+kh j −
∑
j∈Gl

a jv j −
∑
j∈Gl

b jh j .

The classical BM has the advantage of independence between the visible units as well as the
hidden units. The p-adic BM shares the same advantage; i.e., by fixing the hidden field h, the
random variables vi, i ∈ Gl, become independent. An analogous assertion is valid if we fix the
visible field v. More precisely, the conditional probability distributions satisfy

Pl (v | h; θ) =
∏
j∈Gl

Pl
(
v j | h; θ

)
, and Pl (h | v; θ) =

∏
j∈Gl

Pl
(
h j | v; θ

)
.
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Indeed, by direct computation, we have

Pl (v | h; θ) = Pl (v, h; θ)
Pl (h; θ)

= exp (−El (v, h; θ))∑
v

exp (−El (v, h; θ))
=

∏
j∈Gl

exp

⎛⎝∑
k∈Gl

wkv jh j−k + a jv j

⎞⎠
∑

v

∏
j∈Gl

exp

⎛⎝∑
k∈Gl

wkv jh j−k + a jv j

⎞⎠

=
∏
j∈Gl

exp

⎛⎝v j

∑
k∈Gl

wkh j−k + a jv j

⎞⎠
∑

v j

exp

⎛⎝v j

∑
k∈Gl

wkh j−k + a jv j

⎞⎠ =
∏
j∈Gl

Pl
(
v j, h; θ

)∑
v j

Pl
(
v j, h; θ

) =
∏
j∈Gl

Pl
(
v j | h; θ

)
.

Similarly, we can prove that

Pl (h | v; θ) =
∏
j∈Gl

Pl
(
h j | v; θ

)
. (C2)

C.1. Gradient of the log-likelihood
The log-likelihood giving a single visible state v is given by

ln Pl (v|θ) = ln
1
Z

∑
h

e−E (v,h) = ln
∑

h

e−E (v,h) − ln
∑
h,v

e−E (v,h).

Taking the derivative with respect to the parameters gives the following mean-like representa-
tion:

∂

∂θ
ln Pl (v|θ) = ∂

∂θ
ln

∑
h

e−E (v,h) − ∂

∂θ
ln

∑
h,v

e−E (v,h)

= − 1∑
h

e−E (v,h)

∑
h

e−E (v,h) ∂

∂θ
E (v, h) + 1∑

v,h
e−E (v,h)

∑
v,h

e−E (v,h) ∂

∂θ
E (v, h)

= −
∑

h

Pl (h|v)
∂

∂θ
E (v, h) +

∑
v,h

Pl (v, h)
∂

∂θ
E (v, h). (C3)

In the case of multiple visible states S = {v1, v2, . . . , vs}, the log-likelihood is defined in the

average sense; i.e.,
1
s

∑
v∈S

ln Pl (v|θ).

Taking the derivative with respect to wk gives

∂

∂wk
ln Pl (v|θ) =

∑
h

⎛⎝Pl (h|v)
∑
j∈Gl

v j+kh j

⎞⎠ −
∑
v,h

⎛⎝Pl (h, v)
∑
j∈Gl

v j+kh j

⎞⎠
=

∑
h

⎛⎝Pl (h|v)
∑
j∈Gl

v j+kh j

⎞⎠ −
∑

v

Pl (v)

⎛⎝∑
h

⎛⎝Pl (h|v)
∑
j∈Gl

v j+kh j

⎞⎠⎞⎠ .(C4)
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Now, let I be the ordered indexes of all the positive states in v:

∑
h

⎛⎝Pl (h|v)
∑
i∈Gl

vi+khi

⎞⎠ =
∑

h

Pl (h|v)

(∑
i∈I

hi−k

)

=
∑

hI

∑
hGl \I

∏
i∈ I

Pl (hi−k|v)
∏

i∈Gl \ I

Pl (hi−k|v)

(∑
i∈ I

hi−k

)

=
⎛⎝∑

hI

∏
i∈ I

Pl (hi−k|v)

(∑
i∈ I

hi−k

)⎞⎠⎛⎝∑
hGl \ I

∏
i∈Gl \ I

Pl (hi−k|v)

⎞⎠
︸ ︷︷ ︸

=1

=
∑

hI

(∏
i∈I

Pl (hi−k|v)
∑
i∈I

hi−k

)

=
∑
i∈ I

Pl (hi−k = 1|v) =
∑
i∈Gl

Pl (hi−k = 1|v)vi. (C5)

Combining Eqs. (C4) and (C5) gives

∂ log Pl (v|θ)
wk

=
∑
i∈Gl

Pl (hi−k = 1|v)vi −
∑

v

Pl (v)

⎛⎝∑
i∈Gl

Pl (hi−k = 1|v)vi

⎞⎠ . (C6)

Note that the above formula is different from the classical BM (see Eq. (29) in Ref. [26]).
We derive the derivatives with respect to aj and bj similarly as in the classical BM:

∂

∂a j
ln Pl (v|θ) = −

∑
h

Pl (h|v)
∂

∂a j
El (v, h) +

∑
v,h

Pl (h, v)
∂

∂a j
El (v, h)

=
∑

h

Pl (h|v)v j −
∑
v,h

Pl (h, v)v j = v j −
∑

v

Pl (v)v j, (C7)

and

∂

∂b j
ln Pl (v|θ) = −

∑
h

Pl (h|v)
∂

∂b j
El (v, h) +

∑
v,h

Pl (h, v)
∂

∂b j
El (v, h)

=
∑

h

Pl (h|v)h j −
∑
v,h

Pl (h, v)h j = Pl (h j = 1|v) −
∑

v

Pl (h j = 1|v). (C8)

C.2. Contrastive divergence learning
As in the classical case, the exact computation of the gradient of the log-likelihood involves an
exponential number of terms; see Eq. (C6). We adopt the contrastive divergence (CD) method,
introduced by Hinton [33], to the p-adic case to approximate the minimization of the gradient
of the log-likelihood.
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The approximation of Eqs. (C6)–(C9) using the contrastive convergence method can be rep-
resented as follows:

∂ log Pl (v|θ)
wk

≈
∑
i∈Gl

Pl (hi−k = 1|v(0))vi −
∑
i∈Gl

Pl (hi−k = 1|v(m) )v(m)
i ,

∂ log Pl (v|θ)
a j

≈ v(0)
j − v(m)

j ,

∂ log Pl (v|θ)
b j

≈ Pl (h j = 1|v(0)) − Pl (h j = 1|v(m) ), (C9)

where m is a predetermined positive integer, v(0) is a training example, and v(m) is a sample of the
Gibbs chain after m steps. More precisely, we implement the Gibbs sampling in the following
way. First, we obtain a sample of h(0) using the conditional distribution Pl (h|v(0)). Then, we
obtain a sample of v(1) using Pl (v|h(0)). We repeat this process until we get v(m).

The following formulas are utilized in the calculation. Let h−i denote the state of all hidden
units expect for the ith one:

Pl (hi = 1|v) = Pl (hi = 1|h−i, v) = Pl (hi = 1, h−i, v)
Pl (h−i, v)

= Pl (hi = 1, h−i, v)
Pl (hi = 1, h−i, v) + Pl (hi = 0, h−i, v)

= 1

1 + Pl (hi = 0, h−i, v)
Pl (hi = 1, h−i, v)

= 1

1 + 1

exp

( ∑
k∈Gl

wkvi+k + bi

) =: σ

⎛⎝∑
k∈Gl

wkvi+k + bi)

⎞⎠ .

Similarly, we have

Pl (hi = 0|v) = σ

⎛⎝−
∑
k∈Gl

wkvi+k − bi

⎞⎠ ,

Pl (vi = 1|h) = σ

⎛⎝∑
k∈Gl

wi−khk + ai

⎞⎠ ,

Pl (vi = 0|h) = σ

⎛⎝−
∑
k∈Gl

wi−khk − ai

⎞⎠ . (C10)
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