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Abstract. Using 0N formalism, in the context of a generic multi-field inflation driven on a
non-flat field space background, we revisit the analytic expressions of the various cosmological
observables such as scalar/tensor power spectra, scalar/tensor spectral tilts, non-Gaussianity
parameters, tensor-to-scalar ratio, and the various runnings of these observables. In our back-
ward formalism approach, the subsequent expressions of observables automatically include
the terms beyond the leading order slow-roll expansion correcting many of the expression at
subleading order. To connect our analysis properly with the earlier results, we rederive the
(well) known (single field) expressions in the limiting cases of our generic formulae. Further,
in the light of PLANCK results, we examine for the compatibility of the consistency rela-
tions within the slow-roll regime of a two-field roulette poly-instanton inflation realized in
the context of large volume scenarios.

Keywords: inflation, string theory and cosmology, non-gaussianity

ArXiv ePrint: 1403.0654

Article funded by SCOAPS3. Content from this work may be used
B under the terms of the Creative Commons Attribution 3.0 License. .
Any further distribution of this work must maintain attribution to the author(s) d01101088/1475 7516/2014/10/008
and the title of the work, journal citation and DOI.


mailto:xingao@vt.edu
mailto:tli@itp.ac.cn
mailto:pkshukla@to.infn.it
http://arxiv.org/abs/1403.0654
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1475-7516/2014/10/008

Contents

1 Introduction 1
2 Roulette inflation setup with type IIB orientfolds 3
3 Field derivatives of number of e-foldings (INV) 6
4 Cosmological observables-1 10
4.1 Scalar power spectra, spectral index and its scale dependence 10
4.2  Tensor-to-scalar ratio and its scale dependence 15
5 Cosmological observables-I1 17
5.1 Non-Gaussianity parameters 17
5.2  Running of non-Gaussianity parameters 19
6 Conclusions 24
A Details about various components of A4B 25
Single field components of Q(4)ABCD 27

1 Introduction

The inflationary paradigm has been proven to be quite fascinating for understanding various
challenging issues (such as horizon problem, flatness problem, etc.) in the early universe
cosmology [1, 2]. Moreover, it provides an elegant way for studying the inhomogeneities and
anisotropies of the universe, which could be responsible for generating the correct amount of
primordial density perturbations initiating the structure formation of the universe and the
cosmic microwave background (CMB) anisotropies [3]. The simplest (single-field) inflationary
process can be understood via a (single) scalar field slowly rolling towards its minimum in
a nearly flat potential. There has been enormous amount of progress towards constructing
inflationary models and the same has resulted in plethora of those which fit well with the
observational constraints from WMAP [4, 5] as well as the recent most data from PLANCK |3,
6-8], and so far the experimental ingredients are not sufficient to discriminate among the
various known models compatible with the experiments.

In general, if the perturbations are purely Gaussian, the statistical properties of the per-
turbations are entirely described by the two-point correlators of the curvature perturbations,
namely the power spectrum. The observables which encode the non-Gaussian signatures are
defined through the so-called non-linearity parameters fnr,7nr and gy parameter which
are related to bispectrum (via the three-point correlators) and the tri-spectrum (via the four-
point correlators) of the curvature perturbations. Although, the recent Planck data [7] could
not get very conclusive so far, it is still widely accepted that the signature of non-Gaussianity
could be a crucial discriminator for the various known consistent inflationary models. For
this purpose, multi-field inflationary scenarios have been more promising because of their
relatively rich structure and geometries involved [9-15] (See [16, 17] also for recent review).



Meanwhile, a concisely analytic formula for computing the non-linear parameter for a given
generic multi-field potential has been proposed in [18, 19], which is valid in the beyond
slow-roll region as well. Recently, some examples with (non-)separable multifield potentials
have been studied in [20] which can produce large detectable values for the non-linear pa-
rameter fyr and 7n7. However, most of these works were investigated on a flat background.
One of the main purpose of this work is to provide a general formula for these cosmological
observables on a non-flat background in multi-filed inflationary model.

To illustrate the validity of these formula in a concrete model, we will utilize a so-called
poly-instanton inflationary model which comes from the setup of string cosmology in Type
IIB string compactification. Significant amount of progress has been made in building up
inflationary models in type IIB orientifold setups with the inflaton field identified as an open
string modulus [21-24], a closed string modulus [25-27] and involutively even/odd axions [28—
34]. Along the lines of moduli getting lifted by sub-dominant contributions, recently so-called
poly-instanton corrections became of interest. These are sub-leading non-perturbative con-
tributions which can be briefly described as instanton corrections to instanton actions. The
mathematical structure of poly-instanton is studied in [35], the consequent moduli stabi-
lization and inflation have been studied in a series of papers [27, 36-39]. In the framework
of type IIB orientifolds, several single/multi-field models have been studied for aspects of
non-Gaussianities [39-44]. The computation of non-Gaussianties in racetrack models has
been made in [45] and in the context of large volume scenarios, by the so-called roulette
inflationary models [46, 47]. Despite of being a good and simple example for multi-field
inflation with a non-flat background, this class of models allows the presence of several in-
flationary trajectories of sufficient (> 50) number of efoldings with significant curving and
a subsequent investigation of non-Gaussianities in such a setup has resulted in small values
of non-linearity parameters in slow roll [48] and large detectable values of those in beyond
slow-roll regime [39].

In this article, our main aim is to revisit the analytic expressions of various cosmo-
logical observables, including scalar/tensor power spectra, scalar/tensor spectral tilts, non-
Gaussianity parameters, tensor-to-scalar ratio and their runnings for a generic multi-field
inflationary model driven on a non-flat background. The idea is to represent various observ-
ables in terms of field variations of the number of e-folding N along with the inclusion of
curvature correction coming from the non-flat field space metric. Some crucial developments
along these lines have been made in recent works [18, 49-53]. These generic expressions
which automatically include the terms beyond the leading order slow-roll expansion, recover
all the respective well known single field expressions in the limiting case. Moreover, we utilize
these expressions for checking the various consistency relations in a string inspired two-field
‘roulette’ inflationary model [39] based on poly-instanton effects. The strategy for computing
the field-variations of number of e-folding IV is via numerical approach following the so-called
‘backward formalism’ [18] and then to use the solutions for the computation of various cos-
mological observables. From the recent Planck data [3, 6-8], the experimental bounds for
various cosmological observables under consideration are,

Scalar Power Spectrum : 2.092 x 107? < Pg < 2.297 x 107

Spectral index : 0.958 < ng < 0.963

Running of spectral index : — 0.0098 < a4 < 0.0003 (1.1)
Tensor to scalar ratio: r < 0.11

Non Gaussianity parameters : — 9.8 < fyr < 14.3, 71 < 2800



while some other cosmological observables (like running of non-Gaussianity parameter) rele-
vant for study made in this article could be important future observations.

The article is organized as follows: in section 2, we will provide relevant pieces of infor-
mation regarding type IIB orientifold compactification along with ingredients of “roulette-
inflationary setup” developed with the inclusion of poly-instanton corrections [27, 39]. Sec-
tion 3 will be devoted to set the strategy for computing the field derivative of number of
e-folding NV which gets heavily utilized in the upcoming sections. In section 4, we present the
analytic expressions of various cosmological parameters such as scalar/tensor power spectra
(Ps, Pr), spectral index and tilt (ng,nr), tensor to scalar ratio (1) as well as their numerical
details applied to the model under consideration. Section 5 deals with a detailed analytical
and numerical analysis of the non-linearity parameters (fyr,7nrz and gyz) and their scale de-
pendence encoded in terms of ny,,,nry, and ng,, parameters. Finally an overall conclusion
will be presented in section 6 followed by an appendix A for intermediate computations.

2 Roulette inflation setup with type IIB orientfolds

In order to illustrate the general formula for multi-field inflation model on a non-flat back-
ground, we collect the relevant ingredients for a concrete model comes from type IIB orien-
tifold compactification with the inclusion of poly-instanton corrections to the superpotential.
In the context of type IIB orientifolds compactification on Calabi-Yau threefolds CY3, it has
been shown that in the presence of Wilson Divisor with hi’o(D) = 1, one has the right zero
mode structure for an Euclidean D3-brane wrapping on it to generate poly-instanton effect
in the superpotential [35].

For h''(CY3/0) = 0, the N' = 1 Kihler coordinates complexifying the four cycle
volumes are simply given as T, = 7o + ipo.! After stabilizing the heavier moduli like the
volume moduli V and small four-cicle moduli Ts = {75, ps} discussed in [27], one gets a two-
field potential of lighter moduli, i.e. the poly-instanton moduli 7,, and p,,, which is simplified
to the following expression after suitable uplifting mechanism [39]:

Vinf(Twa Pw) = Vup + Vo + e T (,ul + w2 Tw) COS(awpw) (2‘1)

where a,, = 2m while u1, p2, Vo and V,, are model dependent parameters. This potential
has the following set of critical points:

_ M2 — Gy 1
w )

D= 2.2
oo f12 APy = MT (2.2)

where m € Z. For the details of moduli stabilization and creating the mass hierarchy, we
refers to the the reader to earlier work in [27, 39]. Moreover, in order to trust the effective
field theory we need “—; < 0. From now on, we fix our notation with a sampling of parameters
such that {1 > 0, ue < 0} and performing the redefinitions 7, = ¢1, pw = ¢2, the uplifted
scalar potential becomes

aw K1

Vine (01, ¢2) = (&> eftes [—W + e (g + g ¢1) cos(awds) | - (2.3)

8 Ay

'For a recent work related to implementing odd axion in poly-instanton setup and the relevant geometric
configuration are studied in [54, 55].



Here, a proper normalization factor (g—;) efcs has been included [25], where Kcg denotes
the Kahler potential for the complex structure moduli. For the time being, we assume that
efes ~ O(1). Furthermore, we set the numerical parameters for moduli stabilization similar
to the ones chosen in one of the benchmark models (in [27]). The parameters, which would
be directly relevant for further computations in this article, are

p=2.9x%x1078, po = —1.9x 1078, aw = 2, gs = 0.12, (2.4)
Y = 905, T = 5.7, Esw = 1/(6V/2).
The non-zero components of the ‘effective’ non-flat moduli space metric G, relevant for
. . N 35w N ..
inflaton dynamics are G11 >~ W= T Goo. Note that the field space metric is diagonal

and does not dependent on the second field ¢o. The various non-zero components of the
Christoffel connections and the Riemann tensor are given as

1 . T T 1
_4(?3 + d)l) ) R221 =R 112 = 2(?3 ¥+ ¢1)2'
Under the sampling (2.4), the form of the effective two-field inflationary potential (2.3) is
shown in figure 1 which leads to a “roulette” type inflation [39].

For the “poly-roulette inflation” proposed in [39], we used the background N e-folding
number as the time coordinate, i.e. dN = Hdt. The Einstein-Friedmann equations are
obtained as

1 _ 2 1
1111_1112__:[‘22:

a2 ., . dobdec 1 dH\ d¢* G®o,V
v NN T <3+HdN> N 0 (2:5)
1 1 do® do?
H? = — Y+ —H? G | -
3 (V(¢ )+ 5 gbdeN)
(2.5b)

Using expressions (2.5a) and (2.5b), one can derive another useful expression for variation of
Hubble rate in terms of e-folding,

1 dH Vv
- _3 2.6
HdIN  H? (2:6)
For numerical convenience, we solve these equations in the time basis ¢t and then change the
result back to the basis N e-folding.

As introduced in [19], we will follow the field redefinitions given as?

) do®
¢?E¢“,¢%E¢“=<CZ>, (2.7)

with @ = 1,2. This redefinitions translate the second-order background equations of motions
eq. (2.5a) into two first-order Ordinary Differential Equations (ODEs) as follows

def do“ ©5 Dysj b Vb
Fo=%21 2 (99 ) 2 %2 g po=2F2 o gpn gt 2.
L= 4N <dN> g =y = e 0Ty (2:8)

2The use of this notation would be more clear in the upcoming sections. Further, we will be using a
combined indexing A such that any object O has two components given as O* = {O%,05}. For example,

o = {pt,p8}.
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Figure 1. The left figure is the effective potential as a function of the moduli 7, and p,. The
right one is the full inflationary trajectories for various initial conditions where the value of e-folding
number NV at the end of inflation is labeled on each of these trajectories. Various minima in dark blue
are separated by maxima in light blue shade.

where D is the covariant derivative defined as D3 = dp$ + I'.5dp$ subject to the con-
straints

1 1. .
H? — 3 (V +3 %ww%) .

Then eq. (2.6) will be simplified as H = —% Gappdph. Asusual, one has to look at the sufficient
conditions for realizing slow-roll inflation which are encoded in the so-called slow-roll param-

eters € = —%, n = 5. Now, we can solve the background field equations (2.8) to get the

full trajectories under different initial conditions. We choose ¢*(0) = ¢§ and %d&i" lt=0 =
0; for a € {1,2} as a set of initial conditions and trace the corresponding trajectories up to
the end of inflation. Figure 1 shows the complex evolution of trajectories for some samples
of initial conditions given in table 1. The various inflationary trajectories shown in figure 1

can be classified in the following categories

(I) Given that the initial conditions are such that the axion is minimized at its respective
minimum to begin with, two-field inflationary process reduces to its single field ana-

800 (¥YT0Z )OTdvOCr



’ Class H Tw ‘ Puw H Np ‘ Trajectory
I ) 1 62 I

4 0.3 1

IT 4.55 | 1.474 || 67.2
4 10496 || 65 IIa
3.9 | 1.495 || 98.8 ITb
I11 3.5 | -0.5 -

3.65 | 0.2 74
v 3.4 0.3 44.2
3.7 | 04 270 IV

Table 1. Initial conditions for these trajectories shown in figure 1. The trajectories I, Ila, IIb and
IV are chosen for studying cosmological observables in the upcoming sections.

logue [27]. These are stable trajectories and are attracted towards the respective valley
in a straight line like the trajectory in figure 1 with Np = 62.

(IT) For the axion initial condition being a little bit (and not too far) away from the min-
imum, the trajectories rolls to the nearest valley and trace towards the respective
minimum like those trajectories in figure 1 with Np = 1, 67.2, 65, 98.8.

(III) If the axion initial condition starts with its value at the maximum, this results in an
unstable trajectory directed straightly outwards from the respective attractor point
showing a run-away behavior like the yellow trajectory in figure 1.

(IV) If a trajectory starts from the axion initial condition being closer to some maximum
value as well as the initial value for the divisor volume mode being not very far from its
respective minimum, one observes that such an inflationary trajectory crosses several
axion-ridges before getting attracted into a valley. This can be understood from the
fact that this class of initial condition is such that the initial potential energy is just a
little higher to begin with and the N e-folding increase very slow at the beginning of
these trajectories, see figure 1 with Np = 7.4, 44.2, 270.

For most of these trajectories except the single-field one, there exists a region of quick-
roll (with n > 1) before starting the slow-roll. However, this region lasts within a couple of
e-foldings. Further, there is a region in field space where there is a strong violation of slow-
roll condition via 1 > 1 before the end of inflation. This beyond slow-roll regime also does
not significantly contribute to the e-folding and lasts within one or two e-foldings. In this
article, our main focus has been to look for the behavior of various cosmological parameters
within the slow-roll regime which covers the most of the inflationary process.

3 Field derivatives of number of e-foldings (IV)

The field variations of number of e-foldings (denoted as N, 4,4, ) play very crucial role as
most of the cosmological observables can be written out by utilizing the same, and hence
computing those is always among the central task. Following [18, 19] on the lines of the
redefinitions (2.7) in the previous section, the perturbations of the scalar field on N =
constant gauge can be expressed as

5o (A N) = o (A + 0\, N) — oA\, N), (3.1)



where \'s are 2n — 1 integration constants (for an n- component scalar field) which, along
with N, parametrizes the initial values of the fields [18, 19]. Further, considering the field
fluctuations in N = const. gauge, the §N formalism [56] implies expressing the curvature
perturbations at each spatial point of the field space at N = Np where Ng corresponds to a
final time-hypersurface of uniform energy density. In fact, the curvature perturbations can
be expressed at each spatial point in terms of the variation of the field fluctuations point to
point and order by order as under [19]

C(Np,x) ~ ON(Ng, o (N*))

1 *
= 3 Ny, 087 () 872 () . (x), (3.2)
At T 0B 0pA ) 4y asga ()

where cp{(‘)) corresponds to an unperturbed trajectory and the quantities with superscripts
* mean to be evaluated at the initial time N = N,. Moreover, due to spatial dependence,
the values of fields go()‘l(N*) on the initial flat hypersurface differ point to point and thus
characterizes the initial field perturbations. As the number of e-foldings is counted between
the initial and final hypersurface, it has field (') dependence in terms of the fluctuation
vector 0¢# as given under

1
5g0'4E@A—Qaa“:5(1)¢A+§5(2)¢A+... , (3.3)

Also, by dN formalism, the field derivatives of the e-folding N} ., 4 are simply given
by field derivatives of N(Np, ") which being the number of e-folding gained during the
evolution of the homogeneous universe from an initial to a final uniform energy density
hypersurface, and hence field variations N 4, 4 will also have dependence on the number
of e-foldings through ¢ 4. Now we come to the task of computing these field derivatives of
e-foldings which is important for cosmological observable computations.

The dynamics of the field derivative of e-foldings can be expressed in terms of coupled
first order differential equations. To establish those relations, the evolution equations for the
field fluctuations d¢* is an important ingredient. The same can be obtained by perturbing
the dynamical equation (2.8) for a non-flat background metric, and are simply given by order
by order as under [19]

D 1
7 07 (V) = PA5(N) 65 (N) + 5 Q) ge(N) 0P (N) 6°(N) + ... (3.4)
1
T QU By.5,(N) 5P (N) .. 5B (N) + ...,
where PAB and Qz‘l‘) BB, are defined as follows:
DF4
P4 = <(‘93> , (3.5)
YT S at pA=g (N)
Q.A _ < Dl—l FA )
() By...Bi—1 8(,081 88082 o 8g081—1 » ¢A:¢(‘(‘))(N) s



where 4,0{(‘)) corresponds to an unperturbed trajectory. For example, using the dynamics of

fields ¢ governed by (2.8), the explicit expressions for P“4(NN) are simplified to

Pallb _ _filﬁ 805 Vi,

Pl — _% + 6% Vv, — %Racbd 05 05, (3.6)
P2 — %55 — % 0% (Grat) ,

P% = —360 + L V' (Gpetps) -

6H3

The other expressions for QE‘}) BB, Can be analogously computed by using the higher order

covariant field ¢ derivatives of F4. Now consider the variations of curvature perturbation
defined in (3.2) as under

Dot = [ (284 oo+ na (200 (3.7
+% [<D£Q48> 5™ 668 + N <DCZ€A> 5P + Nag 6™ (Z@f)]
+% [(%) 3¢ 668 5¢° + N agc (D;£A> 568 5¢°
+N e 6™ <Z(5]fg> §6C + Nage 6™ 6¢8 <D£Cﬂ +...

Using the expressions (3.3), and the fact that curvature perturbation at final uniform hy-
persurface N is independent on the choice of Nr as long as Np > N,., where N, is certain
time after background trajectories have completely conversed, then in a backward evolution
manner, the constancy of curvature perturbation at N = Ng can be ensured order by order
by satisfying the following backward evolution differential equations given as under®

D

Na(V) = —Ng(N) Pl e s () » (3.8)
D

gy Nas(N) = =Nac(N) P% — Nic(N) PS4 = Ne(N) Q€ 45l gm0 ()

D

o Vasce(N) = —Np(N) Q"¢ — Nasp(N) P — Napc(N) Py — Nesp(N) P%y
—Nen(N) QP45 — Nan(N) Qe — Nop(N) Qe alp—por ()
where it is understood that all the quantities in the right hand side of the aforementioned

expressions depend on e-folding number N. The initial conditions for solving the above set
of ODEs, which are the values of various derivatives of e-folding N evaluated at some final

3Expressions analogous to (3.8) can also be found in [51]. Although our strategy (which is based on
backward-formalism) is the same to those of [18, 19], however our approach for solving the ODEs is different
as for our case the sole task has been reduced to solve coupled ODEs of tensorial objects (N4, Nag and Nagc)
instead of vector objects (N4, 0% and Q.4) as in [18, 19]. See [57] also for similar computation on constancy
of curvature perturbation at N = Np.



constant time-hypersurface tp (e.g. N 5 , N EB’ N EBC), are given as follows

H
5.
A HpFP ), p=p) (NF)
Uas >
Niz = - < , (3.9)
A8 HpFP ), =) (Np)
Z ABc >
NE. = ( )
A5 Hp FP ) o om0 ()

The expressions for quantities HA(N), Hog(N), Hapc(N),Uag(N),Zapc(N) as well as
Q%c(N) and Q4. (N) involve various derivatives of the scalar potential and the Hub-
ble rate. The explicit expressions can be found in appendix of [39].

In our two field model described in previous section, the set of equations (3.8) expands
into 84 (4 + 16 + 64) coupled differential equations which have to be numerically solved
utilizing the same number of conditions given in (3.9). After having the numerical solutions
to these field derivatives, one can easily compute all the cosmological observables as the same
can be written in terms of Ny, Nag and Ngpe. In the upcoming section we would revisit
the generic analytic expressions for the various cosmological observables and subsequently
analyze the numerical estimates.

Various expressions for a single field inflationary potential. In order to make our
notations sufficiently clear and convenient to follow, let us briefly present the simplified
version of those expressions for a single field inflationary potential V(¢) driven on a flat
background. The same would be useful to derive the well-known single field expressions for
cosmological observables such as scalar power spectrum Pj, spectral index ng, running of
spectral index a,,, etc., whose general multi-field forms for a non-flat background have to be
discussed later in the upcoming sections.

The generalized two-component vector ¢ = {¢%, $3} is simply given as qu' = {o, qb}
The inflaton dynamics is governed by the second order EOM given as ¢ +3H ¢ + V; = 0
which can be reformulated into two first-order expressions as under

. . V.
FA=  Ff= F?=_3¢— ﬁ‘ﬁ (3.10)

k4
H’

Using these expressions of F4, the simplified versions of various components of PAB are
written as

1 . j V. 1
¢ _ ¢ _ 20
Fo="5ms Ve Fo="" Tems V¥ (8.11)
1 1 . ; 1 .
¢ L 2 ¢ _
Po=a " em Py==3% g3 Voo



Similarly, the eight components of Q(?’)ABC are simplified to

2 ] 3 2 7
Q% = Vi Veed Q¢3.:_V¢¢’ Vo &
*¢  12H5 G6H3'’ e 12H>  6H3'’
V, V2 ¢ ¢
o _ Ve ¢ ¢ _ _
@ o6  6H3  12H5’ @ b 2 H3 + 12 H5’ (3.12)
o = Vo VoVos Vou Qb = Vo  Veoo
P9 12H5 2HS3 H e 12H>  6H3’
Vs | Vyd? ; Vyd? Y,
0% ¢ ¢ 0% ¢ f

66~ G6H3  12H°’ ¢~ 12HS ' 6H3’

while the sixteen components of Q(4)AB op are given in the appendix B.

4 Cosmological observables-1

4.1 Scalar power spectra, spectral index and its scale dependence

Scalar power spectrum (Pg). Utilizing the generalized field derivatives of the number
of e-foldings N, power spectra of the scalar perturbation modes for a multi-field inflation
driven on a non-flat background can be simply given as [19]

H? a5
at N=N.

where the field variations of N are defined as Ny = D4N, Nag = DN and N4 = AABNp.

In general, A8 depends on the non-flat background metric. The explicit expressions for

various components, after including the slow-roll corrections [58-60], are given in appendix A.
Now, after expanding the various terms in (4.1), we get

H2 ab arl arl ab arl ar2 ab ar2 a1l ab ar2 AT2

PS - m AllNa Nb +A12Na Nb +A21Na Nb +A22Na Nb (42)

H? b a1 a H?

= [WA%NCL No |+ |12

1 17 177

H2
(agh 2 3 + gt 20| + | g gt 2

In figure 2, the blue lines inside the shadow represents an intermediate value (Psy ~ 2.1x1079)
allowed in the constraint window. Depending on the hierarchal contributions expected? from
the metric components A8, we separate out the respective three kinds of terms in (4.2) for
numerical investigations. A numerical analysis as shown in figure 2 confirms that the most
dominant contribution comes from the first piece (I) of eq. (4.2). The first piece-I, which
produces almost entire scalar power spectrum Pg, can also be rewritten as®

H* 2 gace de Nb
Py = <27T> [gab 92¢G® 1 2a Wllj\nl NI N} (4.3)
p q

4Please see appendix A for details on components of A*? and a numerical justification about the slow-roll
relation 3H N2 ~ N}.
SPlease see the appendix A for the details.

,10,



__Trajectory - ‘ . . Trajectory —lla

25x107°F \
| 5.x107° — 1
2.x107° ] T
) 4.x107° T
15x10°F — 1l . — Ps[N]
3.x107°F _ P
— 1 s
1.x10°} — PNI | 1 2,109\
_ P&
5.x10710 1 ] 1.x107°F
0 o=
10 20 30 40 50 60 10 20 30 40 50 60
N N
Trajectory —11b ‘ Trajectory IV
" - 25x1078 |
5.x 10 o o
o o 2.x10°°}
4.x107°F pany | — 1
- s|
-8 [ — Ps[N
3.x10°F — P b 15x10 - Ps[ 1
\ Sk
2.x107° |1 3 1.x10°8F
1.x107°F ! 1 5.x107° |
Ob— ‘ ‘ : ‘ 0 : : : : :
20 40 60 80 50 100 150 200 250
N N

Figure 2. Scalar power spectrum plotted for the four trajectories under consideration. It is observed
that the most dominant contribution comes from terms of type-I as mentioned in (4.2). The shadow
region shows the allowed window (1.1) presented by Planck [3, 6-8].

where in the above expression, o = 2—In2—v ~ 0.7296 with v ~ 0.5772 the Euler-Mascheroni
constant [58-60], and €,y is defined as

0504 Vi

H? 3H? '

1
€ab = €Gap + (gac Gpd — 3 Rabcd>

Further, for a single field (¢) inflationary model, using the Slow—roll' relations N2 = N F év—g
along with the simplified definitions N} = Ny = % and € = %, we get a simple and

well-known result [60-62]

H? H?
Ps~ 13 [gab N} Nbl] ~ 2@ (4.4)
Apart from recovering the well known expressions (4.3) (as given in [58, 59]) and (4.4) (as
can be found in [60-62]) in the limiting cases, our general expression (4.2) for scalar power
spectrum involves new contributions; for example, the second (II) and third pieces (III)
of (4.2) are new terms in our analysis which includes the contributions of the types involving
the derivatives of generalized (twofold) field vector o = {¢%, ¢4}, i.e. not only the field
vector ¢ = ¢ but also the derivatives of the time-derivatives of the field P = ©5 as
well. However, the new pieces (IT) and (III) induce contributions which are one order more
suppressed in slow-roll parameters as compared to the first piece (I) leading to negligible
corrections for all the trajectories in our two field setup. To see it explicitly, one needs to
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observe the details of the components of generalized (kind of) metric A48 which have been
derived in appendix A.

Scalar spectral index (ng). The spectral index for scalar perturbation modes of a multi-
field inflation driven on a non-flat background can be computed from the relationt

DlnPSNDlnPS_DlnPS
dlnk ~— Hdt ~ dN

ng —1=

where % is the covariant time derivative along a background trajectory in the field space.
Using the general expression (4.1) of power spectrum Pg, we get

AAB (DdNA) Np <DAAB) N Np
AAB N Ng | AMB N, Ng

ng—1=-2e+2 (4.5)

For further simplification, we need to utilize the first evolution equation of efolding field
derivatives (3.8) given as

T NA(N) = =P%(N) Ns(N),

where the explicit expressions for various components of P 13 are given in (3.6). Subsequently,
the expression for scalar spectral index simples to

AAB
| = ge g AT NP Ne ( = ) S (4.6)
ns L e AAB N 4 N AAB N, Ng ‘
I II 111

where we separate out the full expression for ng — 1 in three kinds of pieces for numerical
investigations. A numerical analysis as reflected in figure 3 shows that the first piece (I) is
negligible and the most dominant contribution comes from the second piece (II) of eq. (4.6).
The third piece (III) shows up with some non-trivial values coming from the curvature of
the field space generated by {¢?, éa}, however the same does not significantly compete with
type II contributions to change the naively expected results. Also, it was observed that
for trajectories Ila and IIb, the observed wvalues of scale wviolation was slightly beyond the
experimental bounds. Besides, larger values indicated in the left most regime of trajectories
ITa and IIb is an outcome of the fact that slow-roll is followed by a fast roll regime which
lasts within one or two number of e-foldings as discussed in section 2.

Although the numerical analysis is done via directly computing the numerical solutions

for field derivatives of number of e-foldings, let us elaborate on the expression (4.6) in connec-
tion with the literatures. The first two terms of (4.6) are similar to what have been claimed
n [49]. The last one is a new type of term which does not appear in [49] because in that
case AAB = A% ~ G and metric being a covariantly constant object nullifies the last term.
However, for our case the subleading terms are induced which are slow-roll suppressed. Uti-
lizing the explicit expressions of P“‘l‘g (3.6), the first two terms in eq. (4.6) of spectral index
are simplified to the following one in the slow-roll limit

aN) <<z'>“<i>d Rad ¢“¢" Dadv) (ﬂ)
9¢° H? v Py

g (&) <3%b> |

n5—1:—26—2<

(4.7)
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Figure 3. Spectral index ng — 1 plotted for the four trajectories under consideration. It is observed
that the most dominant contribution comes from terms of type-II as mentioned in (4.6). The shadow
region shows the allowed window (1.1) presented by Planck [3, 6-8]. It is observed that only the
trajectories of class I and IV are within the experimental bounds, and class II trajectories (ITa and
IIb) are slightly beyond.

which matches with those given in [61, 63]. Here it is worth to mention that the aforemen-
tioned relation is generalized in our approach. It is only the piece of type OA/B = (’)T/ b of
the second part (II) along with the first part (I) in our general expression (4.6) which re-
produces this result (4.7) while the terms involving OA/B — O;/ * induce new but subleading
contributions. Further, the third piece (4.6) is a new contribution coming from the non-flat
metric which are subleading (for the current setup under consideration) but those might be
important if the field space is highly non-flat.

Before getting to the next observable, let us have a very quick cross check for our
general formula (4.6) for the simplest single field inflation driven by a scalar field ¢ on a flat
background. For this case, eqs. (3.10)—(3.12) along with the slow-roll relations N ~ év—ﬁ and

Ny = —% immediately imply that

AAB N 4 PG N, 2
A BC SO Voo ) _oe (4.8)
AAB N 4 Np H? Vv
Note that here 5)—]\6, = 4€?> — 2€ny where 79 is the standard n parameter defined as 1y = @
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has been used. After implementing these redefinitions, the scalar spectral index results in
ng—1>~—6e+2n (4.9)

which is a well-known standard result for single field case [64, 65]. Note that despite of metric
being flat, there are slow-roll suppressed contributions in A4Z. However, the contribution
from the third term in (4.6) would be the second-order slow-roll suppressed.

Running of scalar spectral index ng. Using generic expression for scalar spectral in-
dex (4.6), one can easily compute its running which comes out to be

D PpB A
Dng 9 De 2( dNA> N7 Np
Opg ™~ —— = |—(ng—14+2e)* =2 — || —
S dN dN NANY

2
+[NA NA{AAC PR Np PB Ng + AP P5, Np PG, NCH (4.10)

1 DZA.AC D DAAC
e (T ) -2t ()

=)+ +UI)+(IV),

where each term in big bracket is separated out for numerical comparison given in figure 4
as under. A detailed numerical analysis done for the four trajectories under consideration as
plotted in figure 4 shows that all the pieces I, I1, III and IV do have non-trivial contributions,
however, their combined effects are well within the experimental bounds.

Before coming to the tensor perturbative modes, let us derive the expression of the
running of spectral index a,, for a single filed inflationary potential. The same would help
in understanding the insights of the various components in (4.10). Using the single field
analogue of various expressions given in (3.10)—(3.12), we get the following leading order
contributions of various parts of (4.10),

()= —24€*4+20eny + ... , (IT) = —16€® +12emy — 262 + ..., (4.11)
(IT1) =16€* —16emy + ... , (IV)=—-60e*no + ... ,

where dots denote the subleading corrections while the standard slow-roll definitions ng = %

and &2 = % have been used. The sum of these contributions gives the well-known single
field expression at the leading order as below [65]

O, ~ —24€* +16enmy — 262+ ..., (4.12)

which shows that each of the terms except those involving derivative of the field space metric
are parts of the overall leading order contributions. Again it is important to recall that
similar to the previous cases, these are only the pieces of type OA/B — (’)‘11/ ®in our general
expression (4.10) which sum up to reproduce this standard result while the terms involving
OA/B — (9;/ ® induces new but subleading contributions with higher order slow-roll suppressed
pieces. However the same can not be as clean to observe after expanding out the compact
expression leading into too lengthy pieces in terms of component substituents. Nevertheless
in the numerical analysis, these higher order slow-roll effects are automatically included.
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Figure 4. Running of spectral index «,  plotted for the four trajectories under consideration. The
shadow region shows the allowed window (1.1) presented by Planck [3, 6-8].

4.2 Tensor-to-scalar ratio and its scale dependence

Tensor Power spectra (Pr). The power spectra of the tensor perturbation modes with
the leading order slow-roll correction is given as [60-62, 66, 67],

Pres ( h-(4ad) (4.13)

Ar? at N=N,
where o = 2 —In2 — v ~ 0.7296 where v ~ 0.5772 is the Euler-Mascheroni constant [58—-60].

Tensorial spectral tilt (nr). The spectral tilt for tensor perturbations is defined
as [60-62]
_DWnPr _DnPr _ (1+a) ()

M=k S AN, 2 T s At a) (4.14)

Here C%f, = 4¢2 — 2eny and so being suppressed by slow-roll parameter e (which is order
1072 — 1077 for the four trajectories under consideration), the tensorial tilt is negligibly

small for all the trajectories.

Tensor-to-scalar ratio (r). The tensor-to-scalar ratio is one of cosmological parameters
which has attracted major attention since long. In general, it is defined as the ratio of power
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spectra of tensor and scalar perturbation modes and can be written as under [60, 62, 68|

_ Pr

Py
Using the field derivatives of number of efoldings, we get the following useful relation

1-(1+a)]

—3
" NAN,

(4.15)
Also, as it has been elaborated in the appendix A, the contributions to r as given in (4.15)
receive subleading contributions from the Nb2 components of N4 N 4. However, the same
still results in a negligibly small value of r for all the trajectories. Neglecting sz component
contributions, one gets

1—-(1
r~8 -+ a)gi]CE TN where (4.16)
N (g -2 g0+ 20 ) )
1 509 Vi
€ab = €YGap + (gac Gbd — g Rabcd> 80121852 - 3 7132 .

Running of tensor-to-scalar ratio (n,). In [67], it was motivated that running of
tensor-to-scalar ratio r could be relevant for the detectability through laser interferometer
experiments. Based on simple scaling arguments in the power spectra of scalar and tensor
perturbations which is

Proc k" and Pgoc k™S (4.17)

one gets an overall scale dependence in r given as r oc k"7~ "5+l Therefore, a running in the
tensor-to-scalar ratio can be captured as

:DlnrNDlnr
"=k~ dN

=1—ng+nr. (4.18)

Further utilizing the expression (4.6), we get the following useful relation

DAAB
g A% NA D% Ne ( - ) R (4.19)
ny =~ - :
AAB N4 Np AAB N 4 Npg

Note that the aforementioned expression (4.19) consistently reproduces the results of [67] at
the leading order which is

b c
e 2 NI G N,
n =4e— =

(4.20)

As it has been seen throughout, after writing out the quantities in terms of two-fold vectors
O = {07,045} etc., our expressions generalize the known results at higher order in slow-roll;
for example, our tensor-to-scalar ratio given in (4.15) generalizes (4.16) (given in [60, 62, 68])
while its running (4.20) (given in [67]) is generalized by our expression (4.19). Further, the
effects of the non-flat background origin can be important in relevant model. The same has
not been the case for the present model in which e parameters are hierarchically smaller than
the n parameters for all the four trajectories.
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5 Cosmological observables-I1

5.1 Non-Gaussianity parameters

The signatures of non-Gaussianities are encoded in a set of non-linearity parameters which
are commonly denoted as fyr,7nr and gyr. These are generically related to the n-point
correlators of curvature perturbations; the 2-point correlators simply give rise to a Gaussian
shaped power spectrum while the 3-point correlators are related to the bi-spectrum which
encodes the non-Gaussianities via the non-linearity parameter fyp. Similarly, the 4-point
correlators give rise to a tri-spectrum via 77, and gy parameters. Using the  N-formalism,
the non-linearity parameters fyr, 7nr and gy are defined as,

s :gNANBNAB _ :NANABNBCNC :§NANBNCNABC
NL=6 (NDNp)2 * 'NE (NPNp)? PN T 54 (NDNp)?

(5.1)
Based on expected hierarchial contributions, we separate out the four contributions of fyr,
from the generic expression (5.1) as below

fop = |2 NYNgy ] [5 NS NYNail | [5 NPNSNG| | [5 N Ny N
6 (NP Np)2 | |6 (NDNp)2| " |6 (NPNp)2 | ' |6 (ND Np)?
— T+ I+ IIT+1V . (5.2)

For single field case, using the followings leading order contributions in slow-roll expansion,

H N,
Ny: N¢:—g, d-):_BT‘*}, (5.3)
70 1 70 1 70
Nagp : Npp~1— — N, ~———~N; N~ — ———
AB ¢9 2’ 00~ 3H  6He 0¥ 90~ GH2  18HZ
N ‘ Noot o —2n2 + &% + 2npe N~ —6m3 + 362 — 6€ + Inoe
ABC - ¢b¢ = 9/263/2 ’ pod — 182 H 32 ’
__N—677§+3§2+67706 N...N_6778+352_362+3(n0_3)6
ololoN 54\/§H263/2 ’ PdPd — 162\/§H363/2

the same results in the following single field expression of fy; parameter

6
sfve =2e—m (5.4)

which is a standard result [59]. Note that from figure 5, it is clear that the first part
of expression (5.2) is the most dominant contribution. The other parts (II-IV) are new
contributions and can add up significantly to the overall magnitude towards the end of
slow-roll regime, however these new contributions are higher order slow-roll suppressed and
negligible for the present setup under consideration.

Similarly, based on expected hierarchial contributions, we separate out the four types
of contributions of 7xp, from the definition given in (5.1), as below

o < [EN | NENEMNE | NENENENL NG
(NP Np)? (NP Np)? (NP Np)? (NP Np)?
N§ NzZ Ngi N} | NiNai Ngs N2 Ng Nap NisNZT | [N Nep Njs N2
[ (NP Np)? (NP Np)3 (NP Np)3 } [ (NP Np)? ]
— [+ IT+IIT+1V . (5.5)
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Figure 5. Non-linearity parameter fy plotted for the four trajectories.

From figure 6, it is clear that the first part is the most dominant contribution. As expected,
using (5.3), one gets the following leading order single field expression [59]

2
TNL — <§fNL> ~ (26 — 770)2 . (56)

Apart from the non-linearity parameters fyr and 7yr, the following relation known as
Suyama-Yamaguchi inequality [69]
6 2
aN = 7(5 fNL) S 1 (57)
TNL

is also of great importance. The equality holds for single field inflationary models. So any
deviation of this parameter ay, away from unity automatically indicates a multi-field process
happening and then this parameter (along with others) could be a possible discriminator for
the known plethora of inflationary models. The respective numerical details for the four
trajectories are given in figure 7.

Similarly, according to the expected hierarchial contributions, one can separate out the
four contributions of gy, in (5.1) also given as below

25 NPNENENAEL] | (25 (NENPNINL + NENENENEE! + NENPNSNAS)
oNz = [54 (NP Np)? ] {54 (VP Np)? ] (5:8)
25 (N§NJNFNZ + N{NJNSN22 + Ny NYN§N2\2) 25 Ny NYN§NZ2?
E NN RAER
=1+ IIT+IIT+1V.
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Figure 6. Non-linearity parameter 7, plotted for the four trajectories.

The numerical details for these non-linear parameters as given in figures 5, 6 and 8 indicate
that these parameters are negligibly small near the horizon exit and become non-trivial only
towards the end of inflation where 1 parameter becomes close to unity. Using (5.3), one gets
the following standard single field leading order contribution [59]

54
2759NL2 (26770—27784-52)4-... (59)

Thus our expression (5.8) generalizes earlier result of expression (5.9), the one given in [59],
with the new terms being (II-IV).

5.2 Running of non-Gaussianity parameters

Running of fnr. Using (5.1), the running of fx can be computed as

DInfny  Dln fyp

C DN, CB ([ DN, DN, C
() o (5) N (B) N
B AAB N 4 Npg N NANB Nag NANB

(Z57) NeNp (B4 Na NP Nep
—2
AAB N, Ng | NugNANB
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Figure 7. Non-linearity ratio parameter ayy plotted for the four trajectories under consideration.
The first trajectory being a single field trajectory, there is no deviation from unity. However, at
the curving regimes , the other trajectories do have a different values indicating the involvement of
multiple fields.

Now utilizing the first two evolution equations of (3.8) for N4 and N5 given as follows

D B

N Va(V) = —P7(N) N(N),

D

Ty Nas(N) = —Nac Pl — Ngc P = Ne Qa5

the expression (5.10) for ny,, is simplified to the one given below

PBDNBND_ P@NCNBNAB_ PT. Np NBNG

Nfng = 4

NP Np NCNP Nep NCNP Nep
CD cB
NANBQE ( Ne (%) NeNo (2% Ns NP Nep
- —9 + (5.11)

NC€ NP Nep NANY N NANB
Further using the expression of scalar spectral index (4.6), it is good to point out that our
expression of running of fx7 can be written as a generalized version to that of [70] as below

PANC NBN PP Np NB NC
Mgy, = —|2(ng —1+26¢)| —2 | =< AB 4D B
NC NP Nep NC NP Nop
CcB
NANS Qi Ne] . [(Bi) No NP Neo .
_[ NC ND Nep }Jr[ Nag NANB } (5-12)

=)+ +UII)+(IV).
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Figure 8. Non-linearity parameter gy, plotted for the four trajectories.

The first three terms are the generalized version to those given in [49]. Again the last terms

is an entirely new and did not appear in the expression given in [49], since A% ~ G nullifies
the term 2 fJ\iD . The numerical details for four trajectories are given in figure 9 which indicate
that ny,, are non-trivial only towards the end of inflation where 1 parameter becomes close
to unity. For the single field inflationary potential V' (¢), using (3.10)—(3.12) and (5.3) one

gets the following leading order contributions,

—16€%+ 16€ 9 — 403
2e —mo

8e2—6eny+&2
2e —mo

(I) ~4(2¢ —ng), (IT) ~ , (IIT) ~ (5.13)

where (IV') is one order more suppressed in slow-roll parameters. The first three contributions
sum to the following well known leading order expression [71]

8e2 — Geng + &2
Nfny = S— +... (5.14)

which is standard result. Here, a factor of (2 €—1q) appears from the relation N 45 N4 N8 ~
2;;70 in the denominator of (5.12). It is worth to mention that our expression (5.12) of
running of fx7 generalizes the one given in [70, 71] on the same lines of new terms with

higher order slow-roll suppression as explained for the previous cases.
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Running of 7. Using (5.1), the running of 7, can be represented as

o DlnTNL DlnTNL

L= 5.15
n NL dk dN ( )
DACD
_ [ PhNaN? (W) Ne Npp 5 N4QP 45 Np N Ne
NP Np NAN 4 NAN 453 NBC N
B 2NANz NBC PR Np  2NANup NBCPL,Ne 2 NANgp NB€ PP, Np
NAN 3 NBC N, NAN 3 NBC N, NAN 3 NBC N,
2 (D;;‘]CD) Np N NEC Ny 2 (%) N4 N 45 Ner Ne
B NAN 3 NBC N, B NAN 3 NBC N, ]
=T+ I +1IT+1V.

Again, using the expression of scalar spectral index (4.6), the first bracket terms in (5.15)
reduces to —3 (ng — 1 + 2¢), and thus our expression of running of 7y, receives an analo-
gous form to that of [70]. The numerical details for four trajectories are given in figure 10
which indicate that n,,, are non-trivial only towards the end of inflation where 1 parameter
becomes close to unity. For the single field inflationary potential V(¢), using (3.10)—(3.12)
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Figure 10. Running of 7y, plotted for four trajectories under consideration.

and (5.3) one gets the following leading order contributions [70],
Nrny = 2N fy, - (5.16)

Running of gnr. Using (5.1), the running of gy can be represented as

DACD
Dlngny N Dlngng _ P‘ADNAND ( aN > N¢ Np

= = -3 5.17
Mone dk AN ND Np, NAN, (5.17)
DN A nB a1C
3 PA NP NB NC N ypc Cﬁﬁi)N N®N
Naigc NANBNC Naigc NANBNC

To simplify the aforementioned running of gy, we use equation (3.8) to get the following
D D D A nB N C
Npc + Np 4 + N N NP N
Mgy, ™ —3(n5—1+26) B (QAB DC QBC DA QCA DB)
NABC N Ng N
(3 P4, NP NB NC Nupe + (Napp P2 + Nape P% + Nppp PEy) NANE NC¢
NABC N Ny N¢

_|: QDABCND N.A NB NC

=1+ 1T+ 1IT+1V 5.18
NABCNANBNC } + + + ) ( )
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Figure 11. Running of gy plotted for four trajectories under consideration.

where we have neglected the terms with derivatives of A8 as those are found to be negligible
in all the previous analysis. The numerical details for four trajectories are given in figure 11
which indicate that ng,, are non-trivial only in the regions where 1 parameter becomes close
to unity.

6 Conclusions

In this article, we presented generalized analytic expressions for various cosmological ob-
servables in the context of a multi-field inflation driven on a non-flat field space. A closer
investigation has been made regarding the new/generalized contributions to various cos-
mological observables coming from the non-trivial field space metric, which appears in the
standard kinetic term of the scalar field Lagrangian. Subsequently, in order to connect our
findings with the known results, we recovered the standard results as limiting cases from the
analytic expressions we derived.

The basic idea has been to rewrite all the cosmological variables in terms of field deriva-
tives of number of e-foldings /N and thereafter to solve the differential equation governing the
evolution by utilizing the so-called ‘backward formalism’. For this purpose, we translated the
whole problem in solving for the evolution of field-derivatives of NV in form of a set of coupled
order-one differential equations for vector N4, 2-tensor N 45 and 3-tensor N4 5¢ quantities.
Following the strategy of Yokoyama et al. [19], each of the index A counts as 2n, where n
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is the number of scalar fields taking part in the inflationary process. This happens because
each second-order differential equations for n-inflatons has been equivalently written as the
first-order differential equations (2.8) for 2n number of fields. The same implies that the
evolution equations for N4 results into 2n differential equations while those of N 45 and
N 5c result in 4n? and 8n? order-one differential equations, respectively. This is obvious
that the numerical analysis gets difficult for large number of scalar fields involved, however,
we exemplified the analytic results for a two-field inflationary model, and hence the analysis
still remains well under controlled as well as efficient for solving 84 order-one (but coupled)
differential equations.

The analytic expressions of various cosmological observables have been utilized for a
detailed numerical analysis in a two field inflationary model realized in the context of large
volume scenarios. In this model, the inflationary process is driven by a so-called Wilson
divisor volume modulus and its respective C4 axion appearing in the chiral coordinate. The
same results in a ‘roulette’ type inflation in which depending on the initial conditions, various
inflationary trajectories can generate sufficient number of e-foldings as well as significant
curving during the inflationary dynamics. Apart from a consistent realization of CMB results,
we have also studied the scale dependence of non-Gaussianity observables which could be
interesting from the point of view of upcoming experiments.

The analytic expressions for various cosmological observables derived in this article
involve the quantities/intermediate ingredients in the form of O4 = {Of,0%}. Unlike the
usual approach, it includes not only the derivative with respect to the field Of but also the
derivatives with respect to the time derivatives of the field OF. This method subsequently
induce new terms to generalize the previously known expressions of the respective observables
with subleading higher order slow-roll corrections. Moreover, the expressions are derived for
any generic multi-field inflationary potential with non-flat background and thus could be
applicable and useful for generic models.
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A Details about various components of A3

Th role of two tensor A8 is equivalent to a metric in the configuration space generated with

the fields ¢ and ¢§. The same can be generically defined through the following two-point
correlator of field fluctuations ™

2
(o ack) = a2 (52 (A1)

In general, A8 depends on the non-flat background metric as well as on the slow-roll pa-
rameters. Up to a good approximation, the two point correlator of ¢{ fluctuations are given
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s [58]

H,\?2 G NI Nb
a b _ * ab ab cdiV1 1

In the above expression, « =2 —1n2 —~v ~ 0.7296 where v ~ 0.5772 is the Euler-Mascheroni
constant [58-60], and €,y is defined as

1 c, d Va
€ab = 6gab + (gac gbd - g Rabcd> @2;202 - Sﬁbg . (A3)

Now comparing eqs. (A.1) and (A.2), we simply get the component A¢%. For getting the other
components of A48 let us consider the following form of the Friedmann field equation (2.8)

D a
d‘i2+3H¢g+V“=0. (A.4)

The aforementioned evolution equation (A.4) along with the following relation
D D
<5dt - dt5> p5 = [Racbd ©5 ‘Pg} ot

and the slow-roll simplifications, result in the fluctuations of 6¢% to be of the form®

a Ve Vb Va§b 1 a c a
dp3 =~ (18 e Y Y R <P290§l> 5} = Af 6y (A.5)
By using relations (A.5) along with (A.1) and (A.2), all the components of A48 can be
immediately picked up as follows

ac d nrb
ab __ pab ab g 60dN1 Nl .
Al =07 = 2e G020 G NN
ab a ab T a Ab pcd
A% — AT AD = <A21> and AL = ATAb A (A.6)

Note that, the leading order slow-roll correction to A are also consistent with those of [59,

60], for example, with a diagonal field space metric G, the off-diagonal contributions to
A‘fl appears only W1th non-standard corrections with coefficient «. Also, in slow-roll regime
the relations N2 ~ 3 I(fl holds [72], and the same is justified by the plots in figure 12. Now
utilizing the various components of (A.6) in N4 = AAB Ny, we get useful relations

Aab
Np = A% NL A% NE = (Ash 4 A1) N
3H
Aab
N§ —A A A N}
2 <21+3H> b

Using the aforementioned relation, one can observe that A5 and A% are suppressed by
slow-roll parameters as compared to A% while A% is suppressed by two orders of slow-roll
parameters as compared to A

5The relatlon (A.5) differs to the analogous expressmn given in [18], and the difference is due to definition
of their ¢35 = W which for our case it is 5 = djt , and the appearance of curvature corrections.
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Figure 12. Ratio of the two components of N} and N2 plotted for the four trajectories. These plots
show that in the regime of € < 1 and 7 < 1, the relation “3 H N2 ~ N! 7 is justified to a reasonably
good extent.

B Single field components of Q(4)ABCD

The sixteen components of Q(4)A for single filed potential with flat background are
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