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1 Introduction

The inflationary paradigm has been proven to be quite fascinating for understanding various
challenging issues (such as horizon problem, flatness problem, etc.) in the early universe
cosmology [1, 2]. Moreover, it provides an elegant way for studying the inhomogeneities and
anisotropies of the universe, which could be responsible for generating the correct amount of
primordial density perturbations initiating the structure formation of the universe and the
cosmic microwave background (CMB) anisotropies [3]. The simplest (single-field) inflationary
process can be understood via a (single) scalar field slowly rolling towards its minimum in
a nearly flat potential. There has been enormous amount of progress towards constructing
inflationary models and the same has resulted in plethora of those which fit well with the
observational constraints fromWMAP [4, 5] as well as the recent most data from PLANCK [3,
6–8], and so far the experimental ingredients are not sufficient to discriminate among the
various known models compatible with the experiments.

In general, if the perturbations are purely Gaussian, the statistical properties of the per-
turbations are entirely described by the two-point correlators of the curvature perturbations,
namely the power spectrum. The observables which encode the non-Gaussian signatures are
defined through the so-called non-linearity parameters fNL, τNL and gNL parameter which
are related to bispectrum (via the three-point correlators) and the tri-spectrum (via the four-
point correlators) of the curvature perturbations. Although, the recent Planck data [7] could
not get very conclusive so far, it is still widely accepted that the signature of non-Gaussianity
could be a crucial discriminator for the various known consistent inflationary models. For
this purpose, multi-field inflationary scenarios have been more promising because of their
relatively rich structure and geometries involved [9–15] (See [16, 17] also for recent review).
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Meanwhile, a concisely analytic formula for computing the non-linear parameter for a given
generic multi-field potential has been proposed in [18, 19], which is valid in the beyond
slow-roll region as well. Recently, some examples with (non-)separable multifield potentials
have been studied in [20] which can produce large detectable values for the non-linear pa-
rameter fNL and τNL. However, most of these works were investigated on a flat background.
One of the main purpose of this work is to provide a general formula for these cosmological
observables on a non-flat background in multi-filed inflationary model.

To illustrate the validity of these formula in a concrete model, we will utilize a so-called
poly-instanton inflationary model which comes from the setup of string cosmology in Type
IIB string compactification. Significant amount of progress has been made in building up
inflationary models in type IIB orientifold setups with the inflaton field identified as an open
string modulus [21–24], a closed string modulus [25–27] and involutively even/odd axions [28–
34]. Along the lines of moduli getting lifted by sub-dominant contributions, recently so-called
poly-instanton corrections became of interest. These are sub-leading non-perturbative con-
tributions which can be briefly described as instanton corrections to instanton actions. The
mathematical structure of poly-instanton is studied in [35], the consequent moduli stabi-
lization and inflation have been studied in a series of papers [27, 36–39]. In the framework
of type IIB orientifolds, several single/multi-field models have been studied for aspects of
non-Gaussianities [39–44]. The computation of non-Gaussianties in racetrack models has
been made in [45] and in the context of large volume scenarios, by the so-called roulette
inflationary models [46, 47]. Despite of being a good and simple example for multi-field
inflation with a non-flat background, this class of models allows the presence of several in-
flationary trajectories of sufficient (≥ 50) number of efoldings with significant curving and
a subsequent investigation of non-Gaussianities in such a setup has resulted in small values
of non-linearity parameters in slow roll [48] and large detectable values of those in beyond
slow-roll regime [39].

In this article, our main aim is to revisit the analytic expressions of various cosmo-
logical observables, including scalar/tensor power spectra, scalar/tensor spectral tilts, non-
Gaussianity parameters, tensor-to-scalar ratio and their runnings for a generic multi-field
inflationary model driven on a non-flat background. The idea is to represent various observ-
ables in terms of field variations of the number of e-folding N along with the inclusion of
curvature correction coming from the non-flat field space metric. Some crucial developments
along these lines have been made in recent works [18, 49–53]. These generic expressions
which automatically include the terms beyond the leading order slow-roll expansion, recover
all the respective well known single field expressions in the limiting case. Moreover, we utilize
these expressions for checking the various consistency relations in a string inspired two-field
‘roulette’ inflationary model [39] based on poly-instanton effects. The strategy for computing
the field-variations of number of e-folding N is via numerical approach following the so-called
‘backward formalism’ [18] and then to use the solutions for the computation of various cos-
mological observables. From the recent Planck data [3, 6–8], the experimental bounds for
various cosmological observables under consideration are,

Scalar Power Spectrum : 2.092× 10−9 < PS < 2.297× 10−9

Spectral index : 0.958 < nS < 0.963

Running of spectral index : − 0.0098 < αnS
< 0.0003 (1.1)

Tensor to scalar ratio : r < 0.11

Non Gaussianity parameters : − 9.8 < fNL < 14.3, τNL < 2800
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while some other cosmological observables (like running of non-Gaussianity parameter) rele-
vant for study made in this article could be important future observations.

The article is organized as follows: in section 2, we will provide relevant pieces of infor-
mation regarding type IIB orientifold compactification along with ingredients of “roulette-
inflationary setup” developed with the inclusion of poly-instanton corrections [27, 39]. Sec-
tion 3 will be devoted to set the strategy for computing the field derivative of number of
e-folding N which gets heavily utilized in the upcoming sections. In section 4, we present the
analytic expressions of various cosmological parameters such as scalar/tensor power spectra
(PS ,PT ), spectral index and tilt (nS , nT ), tensor to scalar ratio (r) as well as their numerical
details applied to the model under consideration. Section 5 deals with a detailed analytical
and numerical analysis of the non-linearity parameters (fNL, τNL and gNL) and their scale de-
pendence encoded in terms of nfNL

, nτNL
and ngNL

parameters. Finally an overall conclusion
will be presented in section 6 followed by an appendix A for intermediate computations.

2 Roulette inflation setup with type IIB orientfolds

In order to illustrate the general formula for multi-field inflation model on a non-flat back-
ground, we collect the relevant ingredients for a concrete model comes from type IIB orien-
tifold compactification with the inclusion of poly-instanton corrections to the superpotential.
In the context of type IIB orientifolds compactification on Calabi-Yau threefolds CY3, it has
been shown that in the presence of Wilson Divisor with h1,0+ (D) = 1, one has the right zero
mode structure for an Euclidean D3-brane wrapping on it to generate poly-instanton effect
in the superpotential [35].

For h11− (CY3/O) = 0, the N = 1 Kähler coordinates complexifying the four cycle
volumes are simply given as Tα = τα + iρα.

1 After stabilizing the heavier moduli like the
volume moduli V and small four-cicle moduli Ts = {τs, ρs} discussed in [27], one gets a two-
field potential of lighter moduli, i.e. the poly-instanton moduli τw and ρw, which is simplified
to the following expression after suitable uplifting mechanism [39]:

Vinf(τw, ρw) = Vup + V0 + e−awτw (µ1 + µ2 τw) cos(awρw) (2.1)

where aw = 2π while µ1, µ2, V0 and Vup are model dependent parameters. This potential
has the following set of critical points:

τw =
µ2 − aw µ1

aw µ2
, awρw = mπ (2.2)

where m ∈ Z. For the details of moduli stabilization and creating the mass hierarchy, we
refers to the the reader to earlier work in [27, 39]. Moreover, in order to trust the effective
field theory we need µ1

µ2
< 0. From now on, we fix our notation with a sampling of parameters

such that {µ1 > 0, µ2 < 0} and performing the redefinitions τw = φ1, ρw = φ2, the uplifted
scalar potential becomes

Vinf(φ1, φ2) =
( gs
8π

)

eKCS

[

−µ2 e
−1+

aw µ1
µ2

aw
+ e−awφ1 (µ1 + µ2 φ1) cos(awφ2)

]

. (2.3)

1For a recent work related to implementing odd axion in poly-instanton setup and the relevant geometric
configuration are studied in [54, 55].
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Here, a proper normalization factor
( gs
8π

)

eKCS has been included [25], where KCS denotes
the Kähler potential for the complex structure moduli. For the time being, we assume that
eKCS ∼ O(1). Furthermore, we set the numerical parameters for moduli stabilization similar
to the ones chosen in one of the benchmark models (in [27]). The parameters, which would
be directly relevant for further computations in this article, are

µ1 = 2.9× 10−8, µ2 = −1.9× 10−8, aw = 2π, gs = 0.12 , (2.4)

V = 905, τ s = 5.7, ξsw = 1/(6
√
2).

The non-zero components of the ‘effective’ non-flat moduli space metric Gab relevant for
inflaton dynamics are G11 ≃ 3ξsw

2
√
2V

√
τs+φ1

≃ G22. Note that the field space metric is diagonal

and does not dependent on the second field φ2. The various non-zero components of the
Christoffel connections and the Riemann tensor are given as

Γ1
11 = Γ2

12 = −Γ1
22 ≡ − 1

4(τ3 + φ1)
; R1

221 = R2
112 ≡

1

2(τ3 + φ1)2
.

Under the sampling (2.4), the form of the effective two-field inflationary potential (2.3) is
shown in figure 1 which leads to a “roulette” type inflation [39].

For the “poly-roulette inflation” proposed in [39], we used the background N e-folding
number as the time coordinate, i.e. dN = Hdt. The Einstein-Friedmann equations are
obtained as

d2

dN2
φa + Γa

bc
dφb

dN

dφc

dN
+

(

3 +
1

H

dH

dN

)

dφa

dN
+

Gab∂bV

H2
= 0, (2.5a)

H2 =
1

3

(

V (φa) +
1

2
H2 Gab

dφa

dN

dφb

dN

)

.

(2.5b)

Using expressions (2.5a) and (2.5b), one can derive another useful expression for variation of
Hubble rate in terms of e-folding,

1

H

dH

dN
=

V

H2
− 3. (2.6)

For numerical convenience, we solve these equations in the time basis t and then change the
result back to the basis N e-folding.

As introduced in [19], we will follow the field redefinitions given as2

ϕa
1 ≡ φa, ϕa

2 ≡ φ̇a =

(

dφa

dt

)

, (2.7)

with a = 1, 2. This redefinitions translate the second-order background equations of motions
eq. (2.5a) into two first-order Ordinary Differential Equations (ODEs) as follows

F a
1 ≡ dϕa

1

dN
=

(

dφa

dN

)

=
ϕa
2

H
and F a

2 ≡ Dϕa
2

dN
= −3ϕa

2 − GabVb

H
, (2.8)

2The use of this notation would be more clear in the upcoming sections. Further, we will be using a
combined indexing A such that any object OA has two components given as OA ≡ {Oa

1 ,O
a
2}. For example,

ϕA = {ϕa
1 , ϕ

a
2}.
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N f = 270
N f = 65

N f = 7.4

N f = 44.2

N f run away

N f = 62

N f = 98.8
N f = 67.2

N f = 1

3.5 4.0 4.5 5.0 5.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 1. The left figure is the effective potential as a function of the moduli τw and ρw. The
right one is the full inflationary trajectories for various initial conditions where the value of e-folding
number N at the end of inflation is labeled on each of these trajectories. Various minima in dark blue
are separated by maxima in light blue shade.

where D is the covariant derivative defined as Dϕa
2 = dϕa

2 + Γa
bcϕ

b
2dϕ

c
1 subject to the con-

straints

H2 =
1

3

(

V +
1

2
Gabϕ

a
2ϕ

b
2

)

.

Then eq. (2.6) will be simplified as Ḣ = −1
2 Gabϕ

a
2ϕ

b
2. As usual, one has to look at the sufficient

conditions for realizing slow-roll inflation which are encoded in the so-called slow-roll param-

eters ǫ ≡ − Ḣ
H2 , η ≡ ǫ̇

ǫH . Now, we can solve the background field equations (2.8) to get the

full trajectories under different initial conditions. We choose φa(0) = φa
0 and dφa

dt
dφa

dt |t=0 =
0; for a ∈ {1, 2} as a set of initial conditions and trace the corresponding trajectories up to
the end of inflation. Figure 1 shows the complex evolution of trajectories for some samples
of initial conditions given in table 1. The various inflationary trajectories shown in figure 1
can be classified in the following categories

(I) Given that the initial conditions are such that the axion is minimized at its respective
minimum to begin with, two-field inflationary process reduces to its single field ana-
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Class τw ρw NF Trajectory

I 5 1 62 I

4 0.3 1
II 4.55 1.474 67.2

4 0.496 65 IIa
3.9 1.495 98.8 IIb

III 3.5 -0.5 -

3.65 0.2 7.4
IV 3.4 0.3 44.2

3.7 0.4 270 IV

Table 1. Initial conditions for these trajectories shown in figure 1. The trajectories I, IIa, IIb and
IV are chosen for studying cosmological observables in the upcoming sections.

logue [27]. These are stable trajectories and are attracted towards the respective valley
in a straight line like the trajectory in figure 1 with NF = 62.

(II) For the axion initial condition being a little bit (and not too far) away from the min-
imum, the trajectories rolls to the nearest valley and trace towards the respective
minimum like those trajectories in figure 1 with NF = 1, 67.2, 65, 98.8.

(III) If the axion initial condition starts with its value at the maximum, this results in an
unstable trajectory directed straightly outwards from the respective attractor point
showing a run-away behavior like the yellow trajectory in figure 1.

(IV) If a trajectory starts from the axion initial condition being closer to some maximum
value as well as the initial value for the divisor volume mode being not very far from its
respective minimum, one observes that such an inflationary trajectory crosses several
axion-ridges before getting attracted into a valley. This can be understood from the
fact that this class of initial condition is such that the initial potential energy is just a
little higher to begin with and the N e-folding increase very slow at the beginning of
these trajectories, see figure 1 with NF = 7.4, 44.2, 270.

For most of these trajectories except the single-field one, there exists a region of quick-
roll (with η > 1) before starting the slow-roll. However, this region lasts within a couple of
e-foldings. Further, there is a region in field space where there is a strong violation of slow-
roll condition via η ≫ 1 before the end of inflation. This beyond slow-roll regime also does
not significantly contribute to the e-folding and lasts within one or two e-foldings. In this
article, our main focus has been to look for the behavior of various cosmological parameters
within the slow-roll regime which covers the most of the inflationary process.

3 Field derivatives of number of e-foldings (N)

The field variations of number of e-foldings (denoted as NA1A2...An) play very crucial role as
most of the cosmological observables can be written out by utilizing the same, and hence
computing those is always among the central task. Following [18, 19] on the lines of the
redefinitions (2.7) in the previous section, the perturbations of the scalar field on N =
constant gauge can be expressed as

δϕA(λ,N) ≡ ϕA(λ+ δλ,N)− ϕA(λ,N) , (3.1)

– 6 –
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where λ’s are 2n − 1 integration constants (for an n- component scalar field) which, along
with N , parametrizes the initial values of the fields [18, 19]. Further, considering the field
fluctuations in N = const. gauge, the δN formalism [56] implies expressing the curvature
perturbations at each spatial point of the field space at N = NF where NF corresponds to a
final time-hypersurface of uniform energy density. In fact, the curvature perturbations can
be expressed at each spatial point in terms of the variation of the field fluctuations point to
point and order by order as under [19]

ζ(NF ,x) ≃ δN(NF , ϕ
A(N∗))

=
∑ 1

n!
N∗

A1A2...An
δϕA1(x) δϕA2(x) . . . δϕAn(x), (3.2)

N∗
A1A2...An

≡
(

DnN(NF , ϕ
A)

∂ϕA1∂ϕA2 . . . ∂ϕAn

)

at ϕA=ϕA

(0)
(N∗)

,

where ϕA
(0) corresponds to an unperturbed trajectory and the quantities with superscripts

∗ mean to be evaluated at the initial time N = N∗. Moreover, due to spatial dependence,
the values of fields ϕA

0 (N∗) on the initial flat hypersurface differ point to point and thus
characterizes the initial field perturbations. As the number of e-foldings is counted between
the initial and final hypersurface, it has field (ϕA) dependence in terms of the fluctuation
vector δφA as given under

δϕA ≡ ϕA − ϕA
0 = δ(1)ϕA +

1

2
δ(2)ϕA + . . . , (3.3)

Also, by δN formalism, the field derivatives of the e-folding N∗
A1A2...An

are simply given

by field derivatives of N(NF , ϕ
A) which being the number of e-folding gained during the

evolution of the homogeneous universe from an initial to a final uniform energy density
hypersurface, and hence field variations N∗

A1A2...An
will also have dependence on the number

of e-foldings through ϕA. Now we come to the task of computing these field derivatives of
e-foldings which is important for cosmological observable computations.

The dynamics of the field derivative of e-foldings can be expressed in terms of coupled
first order differential equations. To establish those relations, the evolution equations for the
field fluctuations δϕA is an important ingredient. The same can be obtained by perturbing
the dynamical equation (2.8) for a non-flat background metric, and are simply given by order
by order as under [19]

D

dN
δϕA(N) = PA

B(N) δϕB(N) +
1

2
QA

(3) BC(N) δϕB(N) δϕC(N) + . . . (3.4)

+
1

(l − 1)!
QA

(l) B1...Bl−1
(N) δϕB1(N) . . . δϕBl−1(N) + . . . ,

where PA
B and QA

(l) B1...Bl−1
are defined as follows:

PA
B ≡

(

DFA

∂ϕB

)

at ϕA=ϕA

(0)
(N)

, (3.5)

QA
(l) B1...Bl−1

≡
(

Dl−1 FA

∂ϕB1 ∂ϕB2 . . . ∂ϕBl−1

)

at ϕA=ϕA

(0)
(N)

,

– 7 –
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where ϕA
(0) corresponds to an unperturbed trajectory. For example, using the dynamics of

fields ϕA governed by (2.8), the explicit expressions for PA
B(N) are simplified to

P a1
1b = − 1

6H3
ϕa
2 Vb ,

P a1
2b = −V a

b

H
+

1

6H3
V aVb −

1

H
Ra

cbd ϕ
c
2 ϕ

d
2 , (3.6)

P a2
1b =

1

H
δab − 1

6H3
ϕa
2 (Gbdϕ

d
2) ,

P a2
2b = −3 δab +

1

6H3
V a (Gbcϕ

c
2) .

The other expressions for QA
(l) B1...Bl−1

can be analogously computed by using the higher order

covariant field ϕA derivatives of FA. Now consider the variations of curvature perturbation
defined in (3.2) as under

D

dN
ζ(N) =

[(

DNA
dN

)

δφA +NA

(

DδφA

dN

)]

(3.7)

+
1

2!

[(

DNAB
dN

)

δφA δφB +NAB

(

DδφA

dN

)

δφB +NAB δφA
(

DδφB

dN

)]

+
1

3!

[(

DNABC
dN

)

δφA δφB δφC +NABC

(

DδφA

dN

)

δφB δφC

+NABC δφA
(

DδφB

dN

)

δφC +NABC δφA δφB
(

DδφC

dN

)]

+ . . .

Using the expressions (3.3), and the fact that curvature perturbation at final uniform hy-
persurface NF is independent on the choice of NF as long as NF > Nc, where Nc is certain
time after background trajectories have completely conversed, then in a backward evolution
manner, the constancy of curvature perturbation at N = NF can be ensured order by order
by satisfying the following backward evolution differential equations given as under3

D

dN
NA(N) = −NB(N)PB

A|ϕ=ϕ(0)(N) , (3.8)

D

dN
NAB(N) = −NAC(N)P C

B −NBC(N)P C
A −NC(N)QC

AB|ϕ=ϕ(0)(N) ,

D

dN
NABC(N) = −ND(N)QD

AB C −NABD(N)PD
C −NADC(N)PD

B −NCBD(N)PD
A

−NC D(N)QD
AB −NAD(N)QD

B C −NBD(N)QD
C A|ϕ=ϕ(0)(N)

where it is understood that all the quantities in the right hand side of the aforementioned
expressions depend on e-folding number N . The initial conditions for solving the above set
of ODEs, which are the values of various derivatives of e-folding N evaluated at some final

3Expressions analogous to (3.8) can also be found in [51]. Although our strategy (which is based on
backward-formalism) is the same to those of [18, 19], however our approach for solving the ODEs is different
as for our case the sole task has been reduced to solve coupled ODEs of tensorial objects (NA, NAB and NABC)
instead of vector objects (NA,ΘA and ΩA) as in [18, 19]. See [57] also for similar computation on constancy

of curvature perturbation at N = NF .

– 8 –
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constant time-hypersurface tF (e.g. NF
A , NF

AB, N
F
ABC), are given as follows

NF
A = −

(

HA
HD FD

)

at ϕ=ϕ(0)(NF )

,

NF
AB = −

(

UAB
HD FD

)

at ϕ=ϕ(0)(NF )

, (3.9)

NF
ABC = −

(

ZABC
HD FD

)

at ϕ=ϕ(0)(NF )

.

The expressions for quantities HA(N), HAB(N), HABC(N),UAB(N),ZABC(N) as well as
QA

BC(N) and QA
BCD(N) involve various derivatives of the scalar potential and the Hub-

ble rate. The explicit expressions can be found in appendix of [39].

In our two field model described in previous section, the set of equations (3.8) expands
into 84 (4 + 16 + 64) coupled differential equations which have to be numerically solved
utilizing the same number of conditions given in (3.9). After having the numerical solutions
to these field derivatives, one can easily compute all the cosmological observables as the same
can be written in terms of NA, NAB and NABC . In the upcoming section we would revisit
the generic analytic expressions for the various cosmological observables and subsequently
analyze the numerical estimates.

Various expressions for a single field inflationary potential. In order to make our
notations sufficiently clear and convenient to follow, let us briefly present the simplified
version of those expressions for a single field inflationary potential V (φ) driven on a flat
background. The same would be useful to derive the well-known single field expressions for
cosmological observables such as scalar power spectrum Ps, spectral index ns, running of
spectral index αns etc., whose general multi-field forms for a non-flat background have to be
discussed later in the upcoming sections.

The generalized two-component vector φA = {φa
1, φ

a
2} is simply given as φA = {φ, φ̇}.

The inflaton dynamics is governed by the second order EOM given as φ̈ + 3H φ̇ + Vφ = 0
which can be reformulated into two first-order expressions as under

FA := Fφ =
φ̇

H
, F φ̇ = −3 φ̇− Vφ

H
. (3.10)

Using these expressions of FA, the simplified versions of various components of PA
B are

written as

P φ
φ = − 1

6H3
φ̇ Vφ , P φ̇

φ = −Vφφ

H
+

1

6H3
VφVφ , (3.11)

P φ

φ̇
=

1

H
− 1

6H3
φ̇2 , P φ̇

φ̇
= −3 +

1

6H3
Vφ φ̇.
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Similarly, the eight components of Q(3)
A
BC are simplified to

Qφ
φφ =

V 2
φ φ̇

12H5
− Vφφ φ̇

6H3
, Qφ̇

φφ̇
= −

V 2
φ φ̇

12H5
+

Vφφ φ̇

6H3
,

Qφ

φ̇φ
= − Vφ

6H3
+

Vφ φ̇
2

12H5
, Qφ

φ̇φ̇
= − φ̇

2H3
+

φ̇3

12H5
, (3.12)

Qφ̇
φφ = −

V 3
φ

12H5
+

Vφ Vφφ

2H3
− Vφφφ

H
, Qφ̇

φ̇φ
= −

V 2
φ φ̇

12H5
+

Vφφ φ̇

6H3
,

Qφ

φφ̇
= − Vφ

6H3
+

Vφ φ̇
2

12H5
, Qφ̇

φ̇φ̇
= − Vφ φ̇

2

12H5
+

Vφ

6H3
,

while the sixteen components of Q(4)
A
B C D are given in the appendix B.

4 Cosmological observables-I

4.1 Scalar power spectra, spectral index and its scale dependence

Scalar power spectrum (PS). Utilizing the generalized field derivatives of the number
of e-foldings N , power spectra of the scalar perturbation modes for a multi-field inflation
driven on a non-flat background can be simply given as [19]

PS =

(

H2

4π2
AAB NANB

)

at N=N∗

, (4.1)

where the field variations of N are defined as NA = DAN,NAB = DABN and NA = AABNB.
In general, AAB depends on the non-flat background metric. The explicit expressions for
various components, after including the slow-roll corrections [58–60], are given in appendix A.
Now, after expanding the various terms in (4.1), we get

PS =
H2

4π2

[

Aab
11N

1
a N

1
b +Aab

12N
1
a N

2
b +Aab

21N
2
a N

1
b +Aab

22N
2
a N

2
b

]

(4.2)

=

[

H2

4π2
Aab

11N
1
a N

1
b

]

+

[

H2

4π2

(

Aab
12N

1
a N

2
b +Aab

21N
2
a N

1
b

)

]

+

[

H2

4π2
Aab

22N
2
a N

2
b

]

I II III

In figure 2, the blue lines inside the shadow represents an intermediate value (Ps∗ ∼ 2.1×10−9)
allowed in the constraint window. Depending on the hierarchal contributions expected4 from
the metric components AAB, we separate out the respective three kinds of terms in (4.2) for
numerical investigations. A numerical analysis as shown in figure 2 confirms that the most
dominant contribution comes from the first piece (I) of eq. (4.2). The first piece-I, which
produces almost entire scalar power spectrum PS , can also be rewritten as5

PS =

(

H∗
2π

)2 [

Gab − 2 ǫ Gab + 2α
GacǫcdN

d
1 N b

1

Gpq N1
p N1

q

]

N1
a N

1
b , (4.3)

4Please see appendix A for details on components of AAB and a numerical justification about the slow-roll
relation 3H N2

a ∼ N1
a .

5Please see the appendix A for the details.
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Figure 2. Scalar power spectrum plotted for the four trajectories under consideration. It is observed
that the most dominant contribution comes from terms of type-I as mentioned in (4.2). The shadow
region shows the allowed window (1.1) presented by Planck [3, 6–8].

where in the above expression, α = 2−ln 2−γ ≃ 0.7296 with γ ≃ 0.5772 the Euler-Mascheroni
constant [58–60], and ǫab is defined as

ǫab = ǫGab +

(

Gac Gbd −
1

3
Rabcd

)

ϕc
2 ϕ

d
2

H2
− V;ab

3H2
.

Further, for a single field (φ) inflationary model, using the slow-roll relations N2
a ≡ Nφ̇ ∼ Nφ

3H

along with the simplified definitions N1
a ≡ Nφ = H

φ̇
and ǫ = φ̇2

2H2 , we get a simple and

well-known result [60–62]

PS ∼ H2

4π2

[

GabN1
a N

1
b

]

∼ H2

4π2 (2 ǫ)
. (4.4)

Apart from recovering the well known expressions (4.3) (as given in [58, 59]) and (4.4) (as
can be found in [60–62]) in the limiting cases, our general expression (4.2) for scalar power
spectrum involves new contributions; for example, the second (II) and third pieces (III)
of (4.2) are new terms in our analysis which includes the contributions of the types involving
the derivatives of generalized (twofold) field vector ϕA ≡ {ϕa

1, ϕ
a
2}, i.e. not only the field

vector φa = ϕa
1 but also the derivatives of the time-derivatives of the field φ̇a = ϕa

2 as
well. However, the new pieces (II) and (III) induce contributions which are one order more
suppressed in slow-roll parameters as compared to the first piece (I) leading to negligible
corrections for all the trajectories in our two field setup. To see it explicitly, one needs to
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observe the details of the components of generalized (kind of) metric AAB which have been
derived in appendix A.

Scalar spectral index (nS). The spectral index for scalar perturbation modes of a multi-
field inflation driven on a non-flat background can be computed from the relationt

nS − 1 =
D lnPS

d ln k
≃ D lnPS

H dt
=

D lnPS

dN
,

where D
dN is the covariant time derivative along a background trajectory in the field space.

Using the general expression (4.1) of power spectrum PS , we get

nS − 1 = −2 ǫ+ 2
AAB

(

DNA

dN

)

NB

AAB NANB
+

(

DAAB

dN

)

NANB

AAB NANB
. (4.5)

For further simplification, we need to utilize the first evolution equation of efolding field
derivatives (3.8) given as

D

dN
NA(N) = −PB

A(N)NB(N),

where the explicit expressions for various components of PA
B are given in (3.6). Subsequently,

the expression for scalar spectral index simples to

nS − 1 = −2 ǫ− 2
AAB NA P C

B NC
AAB NANB

+

(

DAAB

dN

)

NANB

AAB NANB
(4.6)

I II III

where we separate out the full expression for nS − 1 in three kinds of pieces for numerical
investigations. A numerical analysis as reflected in figure 3 shows that the first piece (I) is
negligible and the most dominant contribution comes from the second piece (II) of eq. (4.6).
The third piece (III) shows up with some non-trivial values coming from the curvature of
the field space generated by {φa, φ̇a}, however the same does not significantly compete with
type II contributions to change the naively expected results. Also, it was observed that
for trajectories IIa and IIb, the observed values of scale violation was slightly beyond the
experimental bounds. Besides, larger values indicated in the left most regime of trajectories
IIa and IIb is an outcome of the fact that slow-roll is followed by a fast roll regime which
lasts within one or two number of e-foldings as discussed in section 2.

Although the numerical analysis is done via directly computing the numerical solutions
for field derivatives of number of e-foldings, let us elaborate on the expression (4.6) in connec-
tion with the literatures. The first two terms of (4.6) are similar to what have been claimed
in [49]. The last one is a new type of term which does not appear in [49] because in that
case AAB = Aab

11 ∼ Gab and metric being a covariantly constant object nullifies the last term.
However, for our case the subleading terms are induced which are slow-roll suppressed. Uti-
lizing the explicit expressions of PA

B (3.6), the first two terms in eq. (4.6) of spectral index
are simplified to the following one in the slow-roll limit

nS − 1 = −2 ǫ− 2

(

∂N
∂φa

) (

φ̇a φ̇d

H2 + 1
3 R

a
bc
d φ̇a φ̇b

H2 − DadV
V

)(

∂N
∂φd

)

Gab
(

∂N
∂φa

) (

∂N
∂φb

) , (4.7)
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Figure 3. Spectral index nS − 1 plotted for the four trajectories under consideration. It is observed
that the most dominant contribution comes from terms of type-II as mentioned in (4.6). The shadow
region shows the allowed window (1.1) presented by Planck [3, 6–8]. It is observed that only the
trajectories of class I and IV are within the experimental bounds, and class II trajectories (IIa and
IIb) are slightly beyond.

which matches with those given in [61, 63]. Here it is worth to mention that the aforemen-

tioned relation is generalized in our approach. It is only the piece of type OA/B = Oa/b
1 of

the second part (II) along with the first part (I) in our general expression (4.6) which re-

produces this result (4.7) while the terms involving OA/B = Oa/b
2 induce new but subleading

contributions. Further, the third piece (4.6) is a new contribution coming from the non-flat
metric which are subleading (for the current setup under consideration) but those might be
important if the field space is highly non-flat.

Before getting to the next observable, let us have a very quick cross check for our
general formula (4.6) for the simplest single field inflation driven by a scalar field φ on a flat

background. For this case, eqs. (3.10)–(3.12) along with the slow-roll relations Nφ̇ ∼ Nφ

3H and

Nφ = −H
φ̇

immediately imply that

AAB NA P C
B NC

AAB NANB
∼
(

− φ̇2

H2
− Vφφ

V

)

= 2ǫ− η0 . (4.8)

Note that here Dǫ
dN = 4ǫ2 − 2 ǫ η0 where η0 is the standard η parameter defined as η0 ≡ Vφφ

V
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has been used. After implementing these redefinitions, the scalar spectral index results in

nS − 1 ≃ −6 ǫ+ 2 η0 (4.9)

which is a well-known standard result for single field case [64, 65]. Note that despite of metric
being flat, there are slow-roll suppressed contributions in AAB. However, the contribution
from the third term in (4.6) would be the second-order slow-roll suppressed.

Running of scalar spectral index nS. Using generic expression for scalar spectral in-
dex (4.6), one can easily compute its running which comes out to be

αnS
≃ DnS

dN
=

[

−(nS − 1 + 2 ǫ)2 − 2

(

D ǫ

dN

)]

−





2
(

DPB
A

dN

)

NANB

NANA





+

[

2

NANA

{

AAC PD
C ND PB

ANB +AAD PB
AND PC

B NC

}]

(4.10)

+

[

1

NANA

{

NC NA

(

D2AAC

dN2

)

− 2NC P
D
AND

(

DAAC

dN

)}]

= (I) + (II) + (III) + (IV ) ,

where each term in big bracket is separated out for numerical comparison given in figure 4
as under. A detailed numerical analysis done for the four trajectories under consideration as
plotted in figure 4 shows that all the pieces I, II, III and IV do have non-trivial contributions,
however, their combined effects are well within the experimental bounds.

Before coming to the tensor perturbative modes, let us derive the expression of the
running of spectral index αns for a single filed inflationary potential. The same would help
in understanding the insights of the various components in (4.10). Using the single field
analogue of various expressions given in (3.10)–(3.12), we get the following leading order
contributions of various parts of (4.10),

(I) ≡ −24 ǫ2 + 20 ǫ η0 + . . . , (II) ≡ −16 ǫ2 + 12 ǫ η0 − 2 ξ2 + . . . , (4.11)

(III) ≡ 16 ǫ2 − 16 ǫ η0 + . . . , (IV ) ≡ −60 ǫ2 η0 + . . . ,

where dots denote the subleading corrections while the standard slow-roll definitions η0 =
Vφφ

V

and ξ2 =
Vφ Vφφφ

V 2 have been used. The sum of these contributions gives the well-known single
field expression at the leading order as below [65]

αns ≃ −24 ǫ2 + 16 ǫ η0 − 2 ξ2 + . . . , (4.12)

which shows that each of the terms except those involving derivative of the field space metric
are parts of the overall leading order contributions. Again it is important to recall that

similar to the previous cases, these are only the pieces of type OA/B = Oa/b
1 in our general

expression (4.10) which sum up to reproduce this standard result while the terms involving

OA/B = Oa/b
2 induces new but subleading contributions with higher order slow-roll suppressed

pieces. However the same can not be as clean to observe after expanding out the compact
expression leading into too lengthy pieces in terms of component substituents. Nevertheless
in the numerical analysis, these higher order slow-roll effects are automatically included.
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Figure 4. Running of spectral index αnS
plotted for the four trajectories under consideration. The

shadow region shows the allowed window (1.1) presented by Planck [3, 6–8].

4.2 Tensor-to-scalar ratio and its scale dependence

Tensor Power spectra (PT ). The power spectra of the tensor perturbation modes with
the leading order slow-roll correction is given as [60–62, 66, 67],

PT = 8

(

H2

4π2
[1− (1 + α)ǫ]

)

at N=N∗

, (4.13)

where α = 2− ln 2− γ ≃ 0.7296 where γ ≃ 0.5772 is the Euler-Mascheroni constant [58–60].

Tensorial spectral tilt (nT ). The spectral tilt for tensor perturbations is defined
as [60–62]

nT ≡ D lnPT

d ln k
≃ D lnPT

dN
≃ −2 ǫ− (1 + α)

(

Dǫ
dN

)

1− (1 + α)ǫ
. (4.14)

Here Dǫ
dN = 4ǫ2 − 2ǫ η0 and so being suppressed by slow-roll parameter ǫ (which is order

10−9 − 10−7 for the four trajectories under consideration), the tensorial tilt is negligibly
small for all the trajectories.

Tensor-to-scalar ratio (r). The tensor-to-scalar ratio is one of cosmological parameters
which has attracted major attention since long. In general, it is defined as the ratio of power
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spectra of tensor and scalar perturbation modes and can be written as under [60, 62, 68]

r ≡ PT

Ps
.

Using the field derivatives of number of efoldings, we get the following useful relation

r = 8
[1− (1 + α)ǫ]

NANA
. (4.15)

Also, as it has been elaborated in the appendix A, the contributions to r as given in (4.15)
receive subleading contributions from the N2

b components of NANA. However, the same
still results in a negligibly small value of r for all the trajectories. Neglecting N2

b component
contributions, one gets

r ≃ 8
[1− (1 + α)ǫ]

N1
a

(

Gab − 2 ǫ Gab + 2α
GacǫcdN

d
1 Nb

1
Gpq N1

p N1
q

)

N1
b

where (4.16)

ǫab = ǫGab +

(

Gac Gbd −
1

3
Rabcd

)

ϕc
2 ϕ

d
2

H2
− V;ab

3H2
.

Running of tensor-to-scalar ratio (nr). In [67], it was motivated that running of
tensor-to-scalar ratio r could be relevant for the detectability through laser interferometer
experiments. Based on simple scaling arguments in the power spectra of scalar and tensor
perturbations which is

PT ∝ knT and PS ∝ knS−1 , (4.17)

one gets an overall scale dependence in r given as r ∝ knT−nS+1. Therefore, a running in the
tensor-to-scalar ratio can be captured as

nr ≡
D ln r

d ln k
≃ D ln r

dN
≡ 1− nS + nT . (4.18)

Further utilizing the expression (4.6), we get the following useful relation

nr ≃ 2
AAB NA P C

B NC
AAB NANB

−

(

DAAB

dN

)

NANB

AAB NANB
. (4.19)

Note that the aforementioned expression (4.19) consistently reproduces the results of [67] at
the leading order which is

nr = 4 ǫ− 2 η0 +
2

3

NaR
a
bcf Gfd ∂φb

∂N
∂φc

∂N Nd

Gpq NpNq
. (4.20)

As it has been seen throughout, after writing out the quantities in terms of two-fold vectors
OA = {Oa

1 ,Oa
2} etc., our expressions generalize the known results at higher order in slow-roll;

for example, our tensor-to-scalar ratio given in (4.15) generalizes (4.16) (given in [60, 62, 68])
while its running (4.20) (given in [67]) is generalized by our expression (4.19). Further, the
effects of the non-flat background origin can be important in relevant model. The same has
not been the case for the present model in which ǫ parameters are hierarchically smaller than
the η parameters for all the four trajectories.
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5 Cosmological observables-II

5.1 Non-Gaussianity parameters

The signatures of non-Gaussianities are encoded in a set of non-linearity parameters which
are commonly denoted as fNL, τNL and gNL. These are generically related to the n-point
correlators of curvature perturbations; the 2-point correlators simply give rise to a Gaussian
shaped power spectrum while the 3-point correlators are related to the bi-spectrum which
encodes the non-Gaussianities via the non-linearity parameter fNL. Similarly, the 4-point
correlators give rise to a tri-spectrum via τNL and gNL parameters. Using the δN -formalism,
the non-linearity parameters fNL, τNL and gNL are defined as,

fNL =
5

6

NANB NAB
(ND ND)2

, τNL =
NANAB NBC NC

(ND ND)3
, gNL =

25

54

NANB NC NABC
(ND ND)3

. (5.1)

Based on expected hierarchial contributions, we separate out the four contributions of fNL

from the generic expression (5.1) as below

fNL =

[

5

6

Na
1 N b

1 N
11
ab

(ND ND)2

]

+

[

5

6

Na
2 N b

1 N
21
ab

(ND ND)2

]

+

[

5

6

Na
1 N b

2 N
12
ab

(ND ND)2

]

+

[

5

6

Na
2 N b

2 N
22
ab

(ND ND)2

]

= I + II + III + IV . (5.2)

For single field case, using the followings leading order contributions in slow-roll expansion,

NA : Nφ = −H

φ̇
, Nφ̇ ≃ − Nφ

3H
, (5.3)

NAB : Nφφ ≃ 1− η0
2ǫ

, Nφφ̇ ≃ 1

3H
− η0

6Hǫ
≃ Nφ̇φ, Nφ̇φ̇ ≃ 1

6H2
− η0

18H2ǫ

NABC : Nφφφ ≃ −2η20 + ξ2 + 2η0ǫ

2
√
2ǫ3/2

, Nφφφ̇ ≃ −6η20 + 3ξ2 − 6ǫ2 + 9η0ǫ

18
√
2Hǫ3/2

,

Nφφ̇φ̇ ≃ −6η20 + 3ξ2 + 6η0ǫ

54
√
2H2ǫ3/2

, Nφ̇φ̇φ̇ ≃ −6η20 + 3ξ2 − 3ǫ2 + 3 (η0 − 3) ǫ

162
√
2H3ǫ3/2

the same results in the following single field expression of fNL parameter

6

5
fNL = 2ǫ− η0 (5.4)

which is a standard result [59]. Note that from figure 5, it is clear that the first part
of expression (5.2) is the most dominant contribution. The other parts (II-IV) are new
contributions and can add up significantly to the overall magnitude towards the end of
slow-roll regime, however these new contributions are higher order slow-roll suppressed and
negligible for the present setup under consideration.

Similarly, based on expected hierarchial contributions, we separate out the four types
of contributions of τNL, from the definition given in (5.1), as below

τNL =

[

Na
1 N11

ab N
bc
11N

1
c

(ND ND)3

]

+

[

Na
2 N21

ab N
bc
11N

1
c

(ND ND)3
+

Na
1 N12

ab N
bc
21N

1
c

(ND ND)3
+

Na
1 N11

ab N
bc
12N

2
c

(ND ND)3

]

+

[

Na
2 N22

ab N
bc
21N

1
c

(ND ND)3
+

Na
1 N12

ab N
bc
22N

2
c

(ND ND)3
+

Na
2 N21

ab N
bc
12N

2
c

(ND ND)3

]

+

[

Na
2 N22

ab N
bc
22N

2
c

(ND ND)3

]

= I + II + III + IV . (5.5)
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Figure 5. Non-linearity parameter fNL plotted for the four trajectories.

From figure 6, it is clear that the first part is the most dominant contribution. As expected,
using (5.3), one gets the following leading order single field expression [59]

τNL =

(

6

5
fNL

)2

≃ (2ǫ− η0)
2 . (5.6)

Apart from the non-linearity parameters fNL and τNL, the following relation known as
Suyama-Yamaguchi inequality [69]

aNL ≡
(

6
5 fNL

)2

τNL
≤ 1 (5.7)

is also of great importance. The equality holds for single field inflationary models. So any
deviation of this parameter aNL away from unity automatically indicates a multi-field process
happening and then this parameter (along with others) could be a possible discriminator for
the known plethora of inflationary models. The respective numerical details for the four
trajectories are given in figure 7.

Similarly, according to the expected hierarchial contributions, one can separate out the
four contributions of gNL in (5.1) also given as below

gNL =

[

25

54

Na
1N

b
1N

c
1N

111
abc

(ND ND)3

]

+

[

25

54

(

Na
2N

b
1N

c
1N

211
abc +Na

1N
b
2N

c
1N

121
abc +Na

1N
b
1N

c
2N

112
abc

)

(ND ND)3

]

(5.8)

+

[

25

54

(

Na
2N

b
2N

c
1N

221
abc +Na

1N
b
2N

c
2N

122
abc +Na

2N
b
1N

c
2N

212
abc

)

(ND ND)3

]

+

[

25

54

Na
2N

b
2N

c
2N

222
abc

(ND ND)3

]

= I + II + III + IV .

– 18 –



J
C
A
P
1
0
(
2
0
1
4
)
0
0
8

ΤNL@ND
IV

III

II

I

10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N

Trajectory -I

ΤNL@ND
IV

III

II

I

10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

0.10

0.12

N

Trajectory -IIa

ΤNL@ND
IV

III

II

I

20 40 60 80
0.00

0.01

0.02

0.03

0.04

N

Trajectory -IIb

ΤNL@ND
IV

III

II

I

50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

0.030

N

Trajectory -IV

Figure 6. Non-linearity parameter τNL plotted for the four trajectories.

The numerical details for these non-linear parameters as given in figures 5, 6 and 8 indicate
that these parameters are negligibly small near the horizon exit and become non-trivial only
towards the end of inflation where η parameter becomes close to unity. Using (5.3), one gets
the following standard single field leading order contribution [59]

54

25
gNL ≃

(

2ǫ η0 − 2η20 + ξ2
)

+ . . . (5.9)

Thus our expression (5.8) generalizes earlier result of expression (5.9), the one given in [59],
with the new terms being (II-IV).

5.2 Running of non-Gaussianity parameters

Running of fNL. Using (5.1), the running of fNL can be computed as

nfNL
≡ D ln fNL

dk
∼ D ln fNL

dN
(5.10)

= −4
ACD

(

DNC

dN

)

ND

AAB NANB
+ 2

ACB
(

DNB

dN

)

ND NCD

NAB NANB +

(

DNCD

dN

)

NC ND

NAB NANB

−2

(

DACD

dN

)

NC ND

AAB NANB
+

(

DACB

dN

)

NB ND NCD

NAB NANB .
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Figure 7. Non-linearity ratio parameter aNL plotted for the four trajectories under consideration.
The first trajectory being a single field trajectory, there is no deviation from unity. However, at
the curving regimes , the other trajectories do have a different values indicating the involvement of
multiple fields.

Now utilizing the first two evolution equations of (3.8) for NA and NAB given as follows

D

dN
NA(N) = −PB

A(N)NB(N) ,

D

dN
NAB(N) = −NAC P

C
B −NBC P

C
A −NC Q

C
AB ,

the expression (5.10) for nfNL
is simplified to the one given below

nfNL
= 4

PB
D NB ND

ND ND
− 2

PA
C N

C NB NAB
NC ND NCD

− 2
PD

C ND NB NC
B

NC ND NCD

−NANB QC
AB NC

NC ND NCD
− 2

(

DACD

dN

)

NC ND

NANA
+

(

DACB

dN

)

NB ND NCD

NAB NANB . (5.11)

Further using the expression of scalar spectral index (4.6), it is good to point out that our
expression of running of fNL can be written as a generalized version to that of [70] as below

nfNL
= −

[

2 (nS − 1 + 2 ǫ)

]

− 2

[

PA
C N

C NB NAB
NC ND NCD

+
PD

C ND NB NC
B

NC ND NCD

]

−
[

NANB QC
AB NC

NC ND NCD

]

+

[

(

DACB

dN

)

NB ND NCD

NAB NANB

]

(5.12)

= (I) + (II) + (III) + (IV ) .
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Figure 8. Non-linearity parameter gNL plotted for the four trajectories.

The first three terms are the generalized version to those given in [49]. Again the last terms
is an entirely new and did not appear in the expression given in [49], since Aab

11 ∼ Gab nullifies

the term DACD

dN . The numerical details for four trajectories are given in figure 9 which indicate
that nfNL

are non-trivial only towards the end of inflation where η parameter becomes close
to unity. For the single field inflationary potential V (φ), using (3.10)–(3.12) and (5.3) one
gets the following leading order contributions,

(I) ≃ 4(2ǫ− η0), (II) ≃ −16 ǫ2 + 16 ǫ η0 − 4 η20
2ǫ− η0

, (III) ≃ 8 ǫ2 − 6 ǫ η0 + ξ2

2ǫ− η0
(5.13)

where (IV ) is one order more suppressed in slow-roll parameters. The first three contributions
sum to the following well known leading order expression [71]

nfNL
≃ 8ǫ2 − 6ǫ η0 + ξ2

2ǫ− η0
+ . . . (5.14)

which is standard result. Here, a factor of (2 ǫ−η0) appears from the relation NAB NANB ≃
2ǫ−η0
4 ǫ2

in the denominator of (5.12). It is worth to mention that our expression (5.12) of
running of fNL generalizes the one given in [70, 71] on the same lines of new terms with
higher order slow-roll suppression as explained for the previous cases.
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Figure 9. Running of fNL plotted for four trajectories under consideration.

Running of τNL. Using (5.1), the running of τNL can be represented as

nτNL
≡ D ln τNL

dk
∼ D ln τNL

dN
(5.15)

=

[

6
PA

D NAND

ND ND
− 3

(

DACD

dN

)

NC ND

NANA

]

−
[

2
NAQD

AB ND NBC NC
NANAB NBC NC

]

−
[

2NANAB NB C PD
C ND

NANAB NB C NC
+

2NANAD NB C PD
B NC

NANAB NB C NC
+

2NANBD NB C PD
AND

NANAB NB C NC

]

−
[2
(

DAAD

dN

)

ND NAB NBC NC

NANAB NB C NC
−

2
(

D(ABE ACF )
dN

)

NANAB NEF NC

NANAB NB C NC

]

= I + II + III + IV .

Again, using the expression of scalar spectral index (4.6), the first bracket terms in (5.15)
reduces to −3 (nS − 1 + 2 ǫ), and thus our expression of running of τNL receives an analo-
gous form to that of [70]. The numerical details for four trajectories are given in figure 10
which indicate that nτNL

are non-trivial only towards the end of inflation where η parameter
becomes close to unity. For the single field inflationary potential V (φ), using (3.10)–(3.12)
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Figure 10. Running of τNL plotted for four trajectories under consideration.

and (5.3) one gets the following leading order contributions [70],

nτNL
= 2nfNL

. (5.16)

Running of gNL. Using (5.1), the running of gNL can be represented as

ngNL
≡ D ln gNL

dk
∼ D ln gNL

dN
= 6

PA
D NAND

ND ND
− 3

(

DACD

dN

)

NC ND

NANA
(5.17)

−3PA
D ND NB NC NABC

NAB C NANB NC +

(

DNABC

dN

)

NANB NC

NAB C NANB NC .

To simplify the aforementioned running of gNL, we use equation (3.8) to get the following

ngNL
≃
[

−3 (nS − 1 + 2 ǫ)

]

−
[

(

QD
AB ND C +QD

B C NDA +QD
CANDB

)

NANB NC

NAB C NANB NC

]

−
[

3PA
D ND NB NC NABC +

(

NABD PD
C +NADC PD

B +NDBD PD
A
)

NANB NC

NAB C NANB NC

]

−
[

QD
AB C ND NANB NC

NAB C NANB NC

]

= I + II + III + IV , (5.18)
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Figure 11. Running of gNL plotted for four trajectories under consideration.

where we have neglected the terms with derivatives of AAB as those are found to be negligible
in all the previous analysis. The numerical details for four trajectories are given in figure 11
which indicate that ngNL

are non-trivial only in the regions where η parameter becomes close
to unity.

6 Conclusions

In this article, we presented generalized analytic expressions for various cosmological ob-
servables in the context of a multi-field inflation driven on a non-flat field space. A closer
investigation has been made regarding the new/generalized contributions to various cos-
mological observables coming from the non-trivial field space metric, which appears in the
standard kinetic term of the scalar field Lagrangian. Subsequently, in order to connect our
findings with the known results, we recovered the standard results as limiting cases from the
analytic expressions we derived.

The basic idea has been to rewrite all the cosmological variables in terms of field deriva-
tives of number of e-foldings N and thereafter to solve the differential equation governing the
evolution by utilizing the so-called ‘backward formalism’. For this purpose, we translated the
whole problem in solving for the evolution of field-derivatives of N in form of a set of coupled
order-one differential equations for vector NA, 2-tensor NAB and 3-tensor NABC quantities.
Following the strategy of Yokoyama et al. [19], each of the index A counts as 2n, where n
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is the number of scalar fields taking part in the inflationary process. This happens because
each second-order differential equations for n-inflatons has been equivalently written as the
first-order differential equations (2.8) for 2n number of fields. The same implies that the
evolution equations for NA results into 2n differential equations while those of NAB and
NABC result in 4n2 and 8n3 order-one differential equations, respectively. This is obvious
that the numerical analysis gets difficult for large number of scalar fields involved, however,
we exemplified the analytic results for a two-field inflationary model, and hence the analysis
still remains well under controlled as well as efficient for solving 84 order-one (but coupled)
differential equations.

The analytic expressions of various cosmological observables have been utilized for a
detailed numerical analysis in a two field inflationary model realized in the context of large
volume scenarios. In this model, the inflationary process is driven by a so-called Wilson
divisor volume modulus and its respective C4 axion appearing in the chiral coordinate. The
same results in a ‘roulette’ type inflation in which depending on the initial conditions, various
inflationary trajectories can generate sufficient number of e-foldings as well as significant
curving during the inflationary dynamics. Apart from a consistent realization of CMB results,
we have also studied the scale dependence of non-Gaussianity observables which could be
interesting from the point of view of upcoming experiments.

The analytic expressions for various cosmological observables derived in this article
involve the quantities/intermediate ingredients in the form of OA ≡ {Oa

1 ,Oa
2}. Unlike the

usual approach, it includes not only the derivative with respect to the field Oa
1 but also the

derivatives with respect to the time derivatives of the field Oa
2 . This method subsequently

induce new terms to generalize the previously known expressions of the respective observables
with subleading higher order slow-roll corrections. Moreover, the expressions are derived for
any generic multi-field inflationary potential with non-flat background and thus could be
applicable and useful for generic models.
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A Details about various components of AAB

Th role of two tensor AAB is equivalent to a metric in the configuration space generated with
the fields ϕa

1 and ϕa
2. The same can be generically defined through the following two-point

correlator of field fluctuations δϕA

〈

δϕA
∗ δϕB

∗
〉

= AAB
(

H∗
2π

)2

. (A.1)

In general, AAB depends on the non-flat background metric as well as on the slow-roll pa-
rameters. Up to a good approximation, the two point correlator of ϕa

1 fluctuations are given
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as [58]
〈

δϕa
1∗ δϕ

b
1∗

〉

=

(

H∗
2π

)2 [

Gab − 2 ǫ Gab + 2α
GacǫcdN

d
1 N b

1

Gpq N1
p N1

q

]

. (A.2)

In the above expression, α = 2− ln 2− γ ≃ 0.7296 where γ ≃ 0.5772 is the Euler-Mascheroni
constant [58–60], and ǫab is defined as

ǫab = ǫGab +

(

Gac Gbd −
1

3
Rabcd

)

ϕc
2 ϕ

d
2

H2
− V;ab

3H2
. (A.3)

Now comparing eqs. (A.1) and (A.2), we simply get the component Aab
11. For getting the other

components of AAB, let us consider the following form of the Friedmann field equation (2.8)

Dϕa
2

d t
+ 3H ϕa

2 + V a = 0 . (A.4)

The aforementioned evolution equation (A.4) along with the following relation

(

δ
D

dt
− D

dt
δ

)

ϕa
2 =

[

Ra
cbd ϕ

c
2 ϕ

d
2

]

δϕa
1

and the slow-roll simplifications, result in the fluctuations of δϕa
2 to be of the form6

δϕa
2 ≃

(

V a Vb

18H3
−

V a
;b

3H
+

1

3H
Ra

cdb ϕ
c
2ϕ

d
2

)

δϕb
1 ≡ ∆a

b δϕ
b
1 . (A.5)

By using relations (A.5) along with (A.1) and (A.2), all the components of AAB can be
immediately picked up as follows

Aab
11 = Gab − 2 ǫ Gab + 2α

GacǫcdN
d
1 N b

1

Gpq N1
p N1

q

;

Aab
12 = ∆a

c A
cb
11 =

(

Aab
21

)T
and Aab

22 = ∆a
c ∆

b
dA

cd
11 . (A.6)

Note that, the leading order slow-roll correction to Aab
11 are also consistent with those of [59,

60], for example, with a diagonal field space metric Gab, the off-diagonal contributions to
Aab

11 appears only with non-standard corrections with coefficient α. Also, in slow-roll regime

the relations N2
a ∼ N1

a

3H holds [72], and the same is justified by the plots in figure 12. Now
utilizing the various components of (A.6) in NA = AABNB, we get useful relations

Na
1 = Aab

11N
1
b +Aab

12N
2
b ≃

(

Aab
11 +

Aab
12

3H

)

N1
b ,

Na
2 = Aab

21N
1
b +Aab

22N
2
b ≃

(

Aab
21 +

Aab
22

3H

)

N1
b .

Using the aforementioned relation, one can observe that Aab
12 and Aab

21 are suppressed by
slow-roll parameters as compared to Aab

11 while Aab
22 is suppressed by two orders of slow-roll

parameters as compared to Aab
11.

6The relation (A.5) differs to the analogous expression given in [18], and the difference is due to definition
of their ϕa

2 = dφa

dN
which for our case it is ϕa

2 = dφa

dt
, and the appearance of curvature corrections.
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Figure 12. Ratio of the two components of N1

a and N2

a plotted for the four trajectories. These plots
show that in the regime of ǫ ≪ 1 and η ≪ 1, the relation “ 3H N2

a ∼ N1

a ” is justified to a reasonably
good extent.

B Single field components of Q(4)
A

BCD

The sixteen components of Q(4)
A
B C D for single filed potential with flat background are

Qφ
φφφ = −

5φ̇V 3
φ

72H7
+

φ̇VφVφφ

4H5
− φ̇Vφφφ

6H3
, Qφ̇

φφ̇φ
=

5φ̇V 3
φ

72H7
− φ̇VφVφφ

4H5
+

φ̇Vφφφ

6H3
,

Qφ

φ̇φφ
= −

5φ̇2V 2
φ

72H7
+

φ̇2Vφφ

12H5
+

V 2
φ

12H5
− Vφφ

6H3
, Qφ

φ̇φ̇φ
=

φ̇Vφ

4H5
− 5φ̇3Vφ

72H7
,

Qφ̇
φφφ =

5V 4
φ

72H7
−

V 2
φ Vφφ

2H5
+

2VφVφφφ

3H3
+

V 2
φφ

2H3
− Vφφφφ

H
, Qφ

φφ̇φ̇
=

φ̇Vφ

4H5
− 5φ̇3Vφ

72H7
, (B.1)

Qφ

φφ̇φ
= −

5φ̇2V 2
φ

72H7
+

φ̇2Vφφ

12H5
+

V 2
φ

12H5
− Vφφ

6H3
, Qφ̇

φ̇φ̇φ̇
=

5φ̇3Vφ

72H7
− φ̇Vφ

4H5
,

Qφ

φφφ̇
= −

5φ̇2V 2
φ

72H7
+

φ̇2Vφφ

12H5
+

V 2
φ

12H5
− Vφφ

6H3
, Qφ

φ̇φφ̇
=

φ̇Vφ

4H5
− 5φ̇3Vφ

72H7
,

Qφ̇
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