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We study the approximate scattering state solutions of the Duffin-Kemmer-Petiau equation (DKPE) and the spinless Salpeter
equation (SSE) with the Hellmann potential. The eigensolutions, scattering phase shifts, partial-waves transitions, and the total
cross section for all the partial waves are obtained and discussed. The dependence of partial-waves transitions on total angular
momentum number, angular momentum number, mass combination, and potential parameters was presented in the figures.

1. Introduction

Therelativistic and nonrelativistic quantummechanical study
of Hellmann potential is a long-standing and a well-known
problem.TheHellmannpotential in this studymay bewritten
as [1–5]

𝑉 (𝑟) = −𝑎𝑟 + 𝑏𝑟 𝑒−𝜌𝑟, (1)

where the first part is theCoulombpotential with the strength
parameter 𝑎 and the second part is the screening Coulomb
and/or Yukawa potential with the strength parameter 𝑏.
The parameter 𝜌 is the potential screening parameter which
regulates the shape of the potential. The Coulomb potential
has been investigated by some authors in all the limits
of quantum mechanics due to its importance in atomic
physics [6–8]. Both eigenfunctions and eigenvalues and their
structures have been presented in the previous work. The
bound and scattering states of the screening Coulomb and/or
Yukawa potential have been studied by some researchers in
various dimensions [9–12].The energy levels, wave functions,
phase shifts, scattering amplitude, and the effect of the screen-
ing parameter on quantum systems have been extensively
discussed.The importance of these two parts necessitates the
study of Hellmann potential in quantum mechanics.

However, most of the recent studies on the quantum
mechanical treatment of Hellmann potential focused on the
relativistic and nonrelativistic bound state problems [1–5].
Just recently a good number of researchers have explored the
study of the scattering states of Hellmann problems so as to
obtain new results that will provide a better understanding of
quantum systems. In this regard, Yazarloo et al. extended the
study to scattering states of Dirac equation with Hellmann
potential under the spin and pseudospin symmetries [4].
The Dirac phase shift and normalized wave function for
the spin and pseudospin symmetries were reported. Arda
and Sever studied the approximate nonrelativistic bound and
scattering states with any 𝑙 values using the PT-/non-PT
symmetry and non-Hermitian Hellmann potential [13]. The
phase shift was calculated in terms of the angular momentum
quantum number. Also, in one of our previous papers,
we studied the scattering state solution of Klein-Gordon
equation with Hellmann potential [14]. Again, Arda studied
the approximate bound state solution of two-body spinless
Salpeter equation for Hellmann potential [15]. He obtained
energy levels and eigenfunctions in terms of hypergeometric
functions. He also treated Yukawa potential and Coulomb
potential as special cases. The Hellmann potential finds its
applications in nuclear and high energy physics.
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The motivation behind this work is to investigate the
approximate scattering state solutions of Duffin-Kemmer-
Petiau equation (DKPE) and spinless Salpeter equation (SSE)
with Hellmann Potential. The SSE explains in detail the
dynamics of semirelativistic of and two-body effects particle
[see [16] and the references therein] whereas the DKPE
explains explicitly the dynamics of relativistic spin 0 and spin
1 particles [see [17–26] and the references therein].

This work is organized as follows: Section 2 presents
scattering state solutions of DKPE with Hellmann potential.
The scattering state solution of SSE with Hellmann potential
is presented in Section 3. In Section 4, we discuss the results
and the conclusion are given in Section 5.

2. Scattering States of
the Duffin-Kemmer-Petiau Equation
(DKPE) with Hellman Potential

TheDKP equation with energy𝐸𝑛,𝐽, total angular momentum
centrifugal term, and the mass m of the particle is given as
follows [17–22]:

𝑈󸀠󸀠𝑛,𝐽 (𝑟) − 𝐽 (𝐽 + 1)𝑟2 + [(𝐸𝑛,𝐽 + 𝑉0V )2 − 𝑚2]𝑈𝑛,𝐽 (𝑟) = 0, (2)

where 𝑈𝑛,𝐽(𝑟) is the radial wave function depending on the
principal quantum number 𝑛 and total angular momentum
quantum number 𝐽 and 𝑉0V is the vector potential represent-
ing Hellmann potential of (1) in this study. The subscript “V”
symbolizes vector while the superscript zero (“0”) stands for
the spin zero for the particle. 𝐸𝑛,𝐽 is the energy levels of the
spin-zero particle.

The effect of total angular momentum centrifugal term in
(2) can be subdued using approximation scheme of the type
[1–3, 14, 22, 27]

1𝑟2 ≈ 𝜌2(1 − 𝑒−𝜌𝑟)2 . (3)

The above approximation has been reported to be valid for𝜌𝑟 ≪ 1 [14, 22, 27]. The approximate schemes to centri-
fugal terms have been applied by several authors in several
important quantum problems. Also, its development is used
in treating centrifugal terms by several authors in several
important works; [see [28–32] and the references therein].
Substituting (1) and (3) into (2) and transform using mapping
function 𝑧 = 1 − 𝑒−𝜌𝑟 lead to

𝑧2 (1 − 𝑧)2𝑈󸀠󸀠𝑛,𝐽 (𝑧) − 𝑧2 (1 − 𝑧)𝑈󸀠𝑛,𝐽 (𝑧)
+ [−𝛽1𝑧2 + 𝛽2𝑧 − 𝛽3]𝑈𝑛,𝐽 (𝑧) = 0, (4)

where we have employed the following parameters for sim-
plicity:

−𝛽1 = 𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1)
− 𝑘2𝜌2 ,

(5)

𝛽2 = −2𝐸𝑛,𝐽𝜌 (𝑎 + 𝑏) + 2𝑏 (𝑎 − 𝑏) , (6)

−𝛽3 = 𝐽 (𝐽 + 1) − (𝑎 − 𝑏)2 , (7)

and 𝑘 = √(𝐸2𝑛,𝐽 − 𝑚2) + 𝑎2𝜌2 − 2𝑎𝜌𝐸𝑛,𝐽 − 𝐽(𝐽 + 1)𝜌2 is the
wave propagation constant.

Choosing the trial wave function of the type,

𝑈𝑛,𝐽 (𝑧) = 𝑧𝛾 (1 − 𝑧)−𝑖(𝑘/𝜌) 𝑢𝑛,𝐽 (𝑧) , (8)

and substituting it into (4), we obtain the hypergeometric
type equation [33]

𝑧 (1 − 𝑧) 𝑢󸀠󸀠𝑛,𝐽 (𝑧) + [2𝛾 − (2𝛾 − 2𝑖 𝑘𝜌 + 1) 𝑧] 𝑢󸀠𝑛,𝐽 (𝑧)
+ [(𝛾 − 𝑖 𝑘𝜌)

2 + 𝛽1]𝑢𝑛,𝐽 (𝑧) = 0,
(9)

where

𝛾 = 12 + √(𝐽 + 12)
2 − (𝑎 − 𝑏)2, (10)

𝜏1 = 𝛾 − 𝑖 𝑘𝜌
− √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 ,

(11)

𝜏2 = 𝛾 − 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 ,

(12)

𝜏3 = 2𝛾. (13)

Therefore, the DKP radial wave functions for any arbitrary 𝐽−
states may be written as

𝑈𝑛,𝐽 (𝑟)
= 𝑁𝑛,𝐽 (1 − 𝑒−𝜌𝑟)𝛾 𝑒𝑖𝑘𝑟 2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) , (14)

where𝑁𝑛,𝐽 is the normalization factor.
The phase shifts 𝛿𝐽 and normalization factor 𝑁𝑛,𝐽 can be

obtained by applying the analytic-continuation formula [33].

2𝐹1 (𝜏1, 𝜏2, 𝜏3; 𝑧) = D (𝜏3)D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)

⋅ 2𝐹1 (𝜏1; 𝜏2; 1 + 𝜏1 + 𝜏2 − 𝜏3; 1 − 𝑧)
+ (1 − 𝑧)𝜏3−𝜏1−𝜏2 D (𝜏3)D (𝜏1 + 𝜏2 − 𝜏3)

D (𝜏1)D (𝜏2)
⋅ 2𝐹1 (𝜏3 − 𝜏1; 𝜏3 − 𝜏2; 𝜏3 − 𝜏1 − 𝜏2 + 1; 1 − 𝑧) .

(15)

Considering (15) with the property 2𝐹1(𝜏1, 𝜏2, 𝜏3; 0) = 1,
when 𝑟 󳨀→ ∞, yields
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2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) 󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑟 󳨀→ ∞ D (𝜏3) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2) + 𝑒−2𝑖𝑘𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (16)

The following relations have been introduced in the process
of derivation

𝜏3 − 𝜏1 − 𝜏2 = (𝜏1 + 𝜏2 − 𝜏3)∗ = 2𝑖 (𝑘𝜌) , (17)

𝜏3 − 𝜏2 = 𝛾 + 𝑖 𝑘𝜌
− √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2
= 𝜏1∗,

(18)

𝜏3 − 𝜏1 = 𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2
= 𝜏2∗.

(19)

Now, defining a relation,

D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑒𝑖𝛿, (20)

and inserting it into (16) yield

2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) 󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑟 󳨀→ ∞ D (𝜏3) [ D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)] 𝑒−𝑖𝑘𝑟 [𝑒𝑖(𝑘𝑟−𝛿) + 𝑒−𝑖(𝑘𝑟−𝛿)] (21)

Thus, we have the asymptotic form of (14) when 𝑟 󳨀→ ∞ as

𝑈𝑛,𝐽 (𝑟) 󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑟 󳨀→ ∞ 2𝑁𝑛,𝐽D (𝜏3) [ D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)] sin (𝑘𝑟 +

𝜋2 + 𝛿) . (22)

Accordingly, with the appropriate boundary condition
imposed by [34], (22) yields

𝑈𝑛,𝐽 (∞) 󳨀→ 2 sin(𝑘𝑟 − 𝑙𝜋2 + 𝛿𝐽) . (23)

Comparing (22) and (23), the DKP phase shift and the corre-
sponding normalization factor can be found, respectively, as
follows:

𝛿𝐽 = 𝜋2 (𝐽 + 1) + argD (𝜏3 − 𝜏1 − 𝜏2) − argD (𝜏3 − 𝜏1)
− arg D (𝜏3 − 𝜏2)

= 𝜋2 (𝐽 + 1) + argD(2𝑖𝑘𝜌 ) − argD (𝜏2∗)
− arg D (𝜏1∗)

(24)

and

𝑁𝑛,𝐽 = 1√𝜏3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜏3 − 𝜏2)D (𝜏3 − 𝜏1)

D (𝜏3 − 𝜏1 − 𝜏2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1√𝜏3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜏1∗)D (𝜏2∗)
D (2𝑖 (𝑘/𝜌))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(25)

TheDKP total cross section for the sum of partial-wave cross
sections 𝜎𝐽 is defined as [27]

𝜎𝑡𝑜𝑡𝑎𝑙 = ∞∑
𝑙=0

𝜎𝐽 = 𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) 𝑇𝐽, (26)

where𝑇𝐽 = 4 sin2𝛿𝐽 defines the DKP partial-wave transitions.
A straightforward substitution of phase shift formula in

(24) into (26) yields the total cross section

𝜎𝑡𝑜𝑡𝑎𝑙 = 4𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) sin2 [𝜋2 (𝐽 + 1) + argD(2𝑖𝑘𝜌 )
− argD (𝜏2∗) − argD (𝜏1∗)]

(27)

Also, we need to analyze the gamma function D(𝜏3 − 𝜏1) [34]
from the S-matrix as

𝜏3 − 𝜏1 = 𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 .

(28)

The first-order poles of D(𝛾 + 𝑖(𝑘/𝜌) +√𝑎(𝑎 − 2𝐸𝑛,𝐽/𝜌) + 𝑏(𝑏 − 2𝐸𝑛,𝐽/𝜌) − 𝐽(𝐽 + 1) − 𝑘2/𝜌2) are
situated at
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D(𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2)
+ 𝑛 = 0 (𝑛 = 0, 1, 2, . . .) .

(29)

By applying algebraic means to (29), we obtain the DKP
bound state energy levels equation for theHellmann potential
as follows:

𝑘2 = −𝜌2 [(𝑛 + 𝛾)2 + 𝑎 (2𝐸𝑛,𝐽/𝜌 − 𝑎) + 𝑏 (2𝐸𝑛,𝐽/𝜌 − 𝑏) − 𝐽 (𝐽 + 1)2 (𝑛 + 𝛾) ]2 . (30)

3. Scattering States Solutions of
the Spinless Salpeter Equation (SSE) with
Hellmann Potential

The spinless Salpeter equation for two different particles
interacting in a spherically symmetric potential in the center
of mass system is given by [see [35–38] and the references
therein]

[∑
𝑖=1,2

(√−󳵻 + 𝑚2𝑖 − 𝑚𝑖) + (𝑉 (𝑟) − 𝐸𝑛,𝑙)]𝜒 (𝑟) = 0, (31)

where 𝜒(𝑟) = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑). Also, using appropriate trans-
formation equation 𝑅𝑛𝑙(𝑟) = 𝜓𝑛𝑙(𝑟)/𝑟, the radial component
of SSE in the case of heavy interacting particles may be
written as [see details in [35–38]]

𝜓󸀠󸀠𝑛𝑙 (𝑟) + [−𝑙 (𝑙 + 1)𝑟2 + 2𝜇 (𝐸𝑛,𝑙 − 𝑉 (𝑟))
+ (𝜇𝜂)

3 (𝐸𝑛,𝑙 − 𝑉 (𝑟))2]𝜓𝑛𝑙 (𝑟) = 0,
(32)

where

𝜇 = 𝑚1𝑚2(𝑚1 + 𝑚2) , (33)

(𝜂𝜇)
3 = 𝑚1𝑚2(𝑚1𝑚2 − 3𝜇2) . (34)

The units ℏ = 𝑐 = 1 have been employed in the process of
derivation and 𝐸𝑛,𝑙 is the semirelativistic energy of the two
particles having arbitrary masses 𝑚1 and 𝑚2. 𝜇 and 𝜂 are the
reduced mass and mass index, respectively. The solution to
(32) becomes nonrelativistic as the term with the mass index
tends to zero.

Substituting the potential in (1) and approximation in (3)
into (32) and applying the same procedure in Section 2, the
radial wave functions for the spinless Salpeter equation with
Hellmann potential are obtained as follows:

𝜓𝑛𝑙 (𝑟) = 𝑁𝑛,𝑙 (1 − 𝑒−𝜌𝑟)𝜐 𝑒𝑖𝑘𝑟 2𝐹1 (𝜉1, 𝜉2, 𝜉3; 1 − 𝑒−𝜌𝑟) , (35)

having the following useful parameters:

𝑘 = √2𝜇 (𝐸𝑛,𝑙 + 𝑎𝜌) + (𝜇𝜂)
3 (𝐸𝑛,𝑙 + 𝑎)2 − 𝑙 (𝑙 + 1) 𝜌2, (36)

𝜐 = 12 + √(𝑙 + 12)
2 − (𝜇𝜂)

3 (𝑎𝜌 − 𝑏)2, (37)

𝜉1 = 𝜐 − 𝑖 𝑘𝜌 − √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (38)

𝜉2 = 𝜐 − 𝑖 𝑘𝜌 + √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (39)

𝜉3 = 2𝜐. (40)

The corresponding phase shift for the spinless Salpeter equa-
tion containing Hellmann potential is obtained as
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Figure 1: DKP partial-wave transition for the Hellman potential as a function of total angular momentum 𝐽 with 𝑎 = 𝑏 = 0.15 and 𝐸𝑛,𝐽 =𝑚 = 1.

𝛿𝑙 = 𝜋2 (𝑙 + 1) + argD(2𝑖 (𝑘𝜌)) − arg D (𝜉2∗) − arg D (𝜉1∗) , (41)

𝜉1∗ = 𝜉3 − 𝜉2 = 𝜐 + 𝑖 𝑘𝜌 − √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (42)

𝜉2∗ = 𝜉3 − 𝜉1 = 𝜐 + 𝑖 𝑘𝜌 + √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 . (43)

and the normalization constant

𝑁𝑛,𝑙 = 1
D (𝜉3)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
D (𝜉1∗)D (𝜉2∗)
D (2𝑖 (𝑘/𝜌))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (44)

The energy eigenvalue equation for the spinless Salpeter
equation with Hellmann potential is

𝑘2 = −𝜌2 [[
(𝑛 + 𝜐)2 − 2𝜇𝑎/𝜌 + (𝜇/𝜂)3 (2𝑏𝐸𝑛,𝑙/𝜌 − 2𝑎𝐸𝑛,𝑙/𝜌2 − 𝑎2/𝜌2 + 𝑏2) + 𝑙 (𝑙 + 1)

2 (𝑛 + 𝜐) ]
]
2

. (45)

The total scattering cross section for the sum of partial-wave
cross sections 𝜎𝑙 is given as

𝜎𝑡𝑜𝑡. = ∞∑
𝑙=0

𝜎𝑙 = 𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) 𝑇𝑙, (46)

where

𝑇𝑙 = 4 sin2𝛿𝑙 (47)

which defines the partial-wave transitions for the SSE with
Hellmann potential in this present study.

4. Discussion

We have used the units ℏ = 𝑐 = 1 in partial-wave transition
illustrations. For equal mass cases, we used (𝜇/𝜂)3 = 1/4 and𝜇 = 𝑚1/2 while (𝜇/𝜂)3 = 1 and 𝜇 = 𝑚1/100 were used for
unequalmasses cases. In all the cases, we consider𝑚2 = 𝐸𝑛,𝑙 =1 and𝑚1 = 1 for the equal masses case only. For the screening
parameters 𝜌 = 0.1, 𝜌 = 0.2, and 𝜌 = 0.3, the DKP partial-
waves transitions increase exponentially (see Figure 1). The
two-body effect here appears as a shift of the phases of
the partial waves. For lower partial-waves, say 𝑙 < 5, the
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Figure 2: (a) Partial-wave transition for the spinless Salpeter equation with the Hellmann potential as a function of angular momentum
quantum number 𝑙 with 𝑎 = 0.2, 𝑏 = −1, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5. (b) Partial-wave transition for the spinless Salpeter equation with the Hellmann
potential as a function of angular momentum quantum number 𝑙 with 𝑎 = 2, 𝑏 = −1, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.
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Figure 3: Partial-wave transition for the spinless Salpeter equation with theHellmann potential as a function of angular momentumquantum
number 𝑙 with 𝑎 = 0, 𝑏 = −3, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.

partial-waves transition decays exponentially whereas, for
higher partial waves, say 𝑙 > 5, the partial-waves transition
rises exponentially (see Figures 2–4). Also alteration of
potential parameters has a serious effect on the partial-wave
transition illustrations. Compare Figure 2(a) with Figures
2(b) and 3 and Figure 4(a) with Figure 4(b).

5. Conclusion

We have investigated the approximate scattering state solu-
tions of DKPE and SSE with Hellman potential via analytical
method. The approximate DKP and semirelativistic scatter-
ing phase shifts, partial-wave transitions, eigenvalues, and
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Figure 4: (a) Partial-wave transition for the spinless Salpeter equation with the Hellmann potential as a function of angular momentum
quantum number 𝑙 with 𝑎 = −2, 𝑏 = 0, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5. (b) Partial-wave transition for the spinless Salpeter equation with the Hellmann
potential as a function of angular momentum quantum number 𝑙 with 𝑎 = 3, 𝑏 = 0, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.

normalized eigenfunctions have been obtained. The DKP
and semirelativistic partial-wave transition calculations for
the Hellmann potential were shown in Figures 1–4, respect-
ively.

It is clearly shown that the total angular momentum num-
ber, angular momentum number, and potential parameters
contribute significantly to the partial-wave transition and that
the two-body effects modify the phases of the partial waves
and are usually noticeable for lower partial waves.
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