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1 Introduction

In refs. [1–3] Wald and his collaborators Lee and Iyer constructed a powerful formalism
that could be used to prove the first law of black-hole mechanics [4] and, through this
proof, to find the entropy formula for black-hole solutions of any diffeomorphism-invariant
theory. This formalism has been very successful in absence of matter fields but it was not
clear how to use it on their presence. It is known that, in many cases, these fields give rise
to new terms in the first law, associated to the possible variations of the conserved charges
associated to them. It was unclear how these terms could arise in this formalism since it
is based in diffeomorphism invariance alone and, apparently, the gauge symmetries that
ensure the conservation of the charges that occur in the additional terms of the first law
play no rôle whatsoever.

As we have discussed in refs. [5–7], diffeomorphisms and gauge transformations are,
actually, closely related, because gauge fields are not just tensors. This was one of the main
assumptions in the derivation of the well-known Iyer-Wald prescription for the entropy
ref. [3]. The transformation of a gauge field under an isometry which leaves invariant
all the fields of a black-hole solution always induces a gauge transformation, which, when
correctly taken into account [8] (via covariant Lie derivatives, for instance), gives rise to the
missing terms in the first law. If one uses a tetrad formulation, although the Vielbein is not
a matter field, one must properly take into account that it transforms under local Lorentz
transformations as well [9] using the Lie-Lorentz covariant derivative (see refs. [10–12] and
references therein).

Still, terms associated to the variations of charges which are not associated to gauge
symmetries, such as magnetic charges, will not appear derivations of the first law based on
Wald’s formalism, while they are known to appear in other derivations of the first law [13].
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Terms associated to the variations of the asymptotic values of the scalars (moduli) such
as those found in ref. [14] (see, also, ref. [15]), will not appear, either. This fact does not
invalidate the first law, but it is a limitation to its applicability since one cannot study the
effects of the variations of the missing charges.

Smarr formulae [16] provide another approach to this problem. They are closely related
to the first law: the scaling arguments of refs. [17, 18] show how the thermodynamical
variables (typically, charges) and their conjugate thermodynamical potentials must occur
in the Smarr formula. This argument explains why there are no terms associated to the
moduli in the first law if one accepts that the black-hole mass does not depend on them
when it is expressed in terms of the entropy and the conserved charges.1

If the black holes under consideration have magnetic charges, then their Smarr formula
must contain a term proportional to them and their associated potentials.

As explained in refs. [17, 18], Smarr formulae can be derived from Komar integrals [21].
In ref. [22] it was shown how to construct Komar integrals in general theories using Wald’s
formalism. The integrand contains a surface term which is the Noether-Wald charge and
a volume term proportional to the on-shell Lagrangian density. As shown in ref. [23], the
volume term can always be expressed as a surface term. Since the variation of the integral
the Noether-Wald charge gives the first law without variations of magnetic charges and
since, as we have argued, the Smarr formula must contain terms with magnetic charges
and potentials, it is not clear how and if those terms are going to appear. Moreover,
electric and magnetic terms must occur in an electric-magnetic symmetric form in the
Smarr formula if the equations of motion of the theory have that property.

In this paper we want to study if and how this electric-magnetic duality invariance of
the Smarr formula arises from a formalism (Wald’s) which is not electric-magnetic sym-
metric because only the gauge transformations which imply the conservation of the electric
charges are taken into account. To this order, in section 2, we are going to study the static
black-hole solutions of a 4-dimensional theory whose equations of motion are invariant un-
der the archetype of electric-magnetic (or S-) duality group: “axion-dilaton gravity,” which
is the bosonic sector of pure, ungauged, N = 4, d = 4 supergravity [24]. The family of
solutions that we are going to study, found in ref. [25] is invariant, as a family, under the
SL(2,Z) duality group and the results obtained should be automatically invariant under
that group. These solutions will be introduced in section 3. In section 4 we will construct
the Komar integral as a surface integral in a manifestly gauge and diffeomorphism-covariant
form using the momentum maps introduced in refs. [5–7]. In section 5 we will use the Ko-
mar integral to explicitly test the Smarr formula for the static axion-dilaton black holes
under consideration. A general form of the Smarr formula will, then, be given in section 6,
where we will discuss its electric-magnetic SL(2,R) invariance. Finally, section 7 contains
our conclusions and some directions for future work.

1This fact follows from the independence of the entropy on the moduli, which, to the best of our
knowledge, has been proven for static, extremal, asymptotically-flat black holes only [19, 20].
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2 Axion-dilaton gravity

The 4-dimensional model known as “axion-dilaton gravity” is nothing but the bosonic
sector of pure, ungauged, N = 4, d = 4 supergravity [24] and describes two scalars: the
axion a and the dilaton φ combined into the complex axidilaton field λ ≡ a+ ie−2φ (often
denoted by τ) that parametrizes the coset space SL(2,R)/SO(2), and six 1-form fields
Am = Amµdx

µ with 2-form field strengths

Fm = dAm , (2.1)

coupled to gravity, which we will describe through the Vierbein ea = eaµdx
µ. The number

of 1-forms does not play a relevant rôle if it is larger than one, and can be left undetermined
although it has to be set to six if one wants to embed the solutions of the theory into the
Heterotic Superstring (HST) effective action compactified on a T6. The model with just
two 1-forms can also be viewed as a model of N = 2, d = 4 supergravity coupled to a single
vector multiplet, and one can use the powerful solution-generating techniques developed
in that class of models to construct extremal [26, 27] and non-extremal [27, 28] black-
hole solutions.

The action of the theory in the conventions of ref. [29]2 in differential-form language
is (summation over repeated m indices is understood)

S = 1
16πG(4)

N

∫ [
− ? (ea ∧ eb) ∧Rab + 2dφ ∧ ?dφ+ 1

2e
4φda ∧ ?da

+ 2e−2φFm ∧ ?Fm + 2aFm ∧ Fm
]

≡
∫

L .

(2.2)

We will set G(4)
N = 1 and we will ignore the normalization factor (16π)−1 for the

time being.
The equations of motion are defined by

δS =
∫ {

Ea ∧ δea + Eφδφ+ E(a)δa+ Em ∧Am + dΘ(ϕ, δϕ)
}
, (2.3)

and given by

Ea = ıa ? (eb ∧ ec) ∧Rbc + 2 (ıadφ ? dφ+ dφ ∧ ıa ? dφ)

+ 1
2e

4φ (ıada ? da+ da ∧ ıa ? da) + 2e−2φ (ıaFm ∧ ?Fm − Fm ∧ ıa ? Fm) , (2.4a)

Eφ = −4d ? dφ+ 2e4φda ∧ ?da− 4e−2φFm ∧ ?Fm , (2.4b)

E(a) = −d
(
e4φ ? da

)
+ 2Fm ∧ Fm , (2.4c)

Em = −4dFm , (2.4d)
2The only difference with the conventions of refs. [25, 30–33] is that no imaginary units are introduced

with the Hodge dualization. These conventions are the same used in refs. [5–7].
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where we have defined the dual 2-form field strength

Fm ≡
1
4
δS

δFm
= e−2φ ? Fm + aFm . (2.5)

Furthermore,

Θ(ϕ, δϕ) = − ? (ea ∧ eb) ∧ δωab + 4 ? dφδφ+ e4φ ? daδa+ 4Fm ∧ δAm . (2.6)

Since the Maxwell equations tell us that the Fms are closed on-shell, we can introduce
a dual 1-form field Am defined by

Fm = dAm . (2.7)

3 Static dilaton-axion black hole solutions

The most general family of non-extremal, static, black holes with non-trivial dilaton, axion
and electromagnetic fields was obtained in ref. [25].3 In the notation of ref. [29], these
solutions take the form4

ds2 = e2Udt2 − e−2Udr2 −R2dΩ2
(2) ,

λ = λ∞r + λ∗∞Υ
r + Υ ,

Amt = eφ∞R−2[Γm(r + Υ) + c.c.] ,

Amt = eφ∞R−2[Γm(λ∞r + λ∗∞Υ) + c.c.] ,

(3.1)

where the functions that occur in the metric are

e2U = R−2(r − r+)(r − r−) , r± = M ± r0 ,

R2 = r2 − |Υ|2 , r2
0 = M2 + |Υ|2 − 4ΓmΓm ∗ .

(3.2)

In these functions, M is the ADM mass, the constants Γm are related to the complex
electromagnetic charges, λ∞ = a∞ + ie−2φ∞ is the asymptotic value of the axidilaton and
Υ = Σ + i∆ is the axidilaton charge. All these parameters are defined by the asymptotic

3These solutions were obtained by an SL(2,R) rotation of those found in ref. [31]. The case with a single
1-form had been dealt with in ref. [34], but it is qualitatively different since these solutions can have electric
and magnetic charges and vanishing axion. In their turn, the solutions of ref. [31] are a generalization of
those in ref. [30], which were originally discovered by Gibbons and Maeda in refs. [35, 36]. The single-vector
case was rediscovered by Garfinkle, Horowitz and Strominger in ref. [37] and it is the solution on which
the SL(2,R) rotation was performed in ref. [34]. Stationary generalizations (inclusion of NUT charge) were
constructed in [32] and, for the extremal case, using supersymmetry and spinorial techniques, in ref. [38]
(see also ref. [33].) Finally, the most general, non-extremal, stationary black-hole solution of the model was
constructed in ref. [29].

4This presentation of the solutions uses only the time components of the original and dual vector fields.
As we are going to see, this information is enough to fully reconstruct all the components of these vectors.
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expansions

gtt ∼ 1− 2M
r

, (3.3a)

λ ∼ λ∞ − ie−2φ∞ 2Υ
r
, (3.3b)

1
2 [Fmtr + i ? Fmtr] ∼

e+φ∞Γm

r2 = e+φ∞(Qm + iPm)/2
r2 . (3.3c)

The axidilaton charge is not an independent parameter. In accordance with the no-hair
theorem, it is a function of the ADM mass and the electric and magnetic charges

Υ = − 2
M

Γm ∗Γm ∗ . (3.4)

The singularity is hidden under a horizon located at r = r+ if r2
0 > 0, and it is hidden

or coincides with it (but still is invisible for external observers) if r0 = 0.
The solution has been expressed, by convenience, using only the electric components

of the 1-forms and the dual 1-forms. The magnetic components can be obtained as follows.
From the definition of the dual 2-form field strengths eq. (2.5), we get

Fmrt = e−2φ

R2 sin θF
m
θϕ + aFmrt , (3.5)

so
Fmθϕ = e2φR2 sin θ (Fmrt − aFmrt) = 2eφ∞=m(Γm) sin θ . (3.6)

The gauge field Am, then, has to be defined in two patches. On the z ≥ −ε patch it is
given by the 1-form

Am+ = eφ∞R−2[Γm(r + Υ) + c.c.]dt+ 2eφ∞=m(Γm)(1− cos θ)dϕ , (3.7)

which is regular in that region5 and in the z ≤ +ε patch, it is given by the 1-form

Am− = eφ∞R−2[Γm(r + Υ) + c.c.]dt− 2eφ∞=m(Γm)(1 + cos θ)dϕ , (3.8)

which is also regular in that patch. Am+ and Am− differ by the gauge transformation

Am+ −Am− = d
[
4eφ∞=m(Γm)ϕ

]
. (3.9)

We can also compute the complete dual vector fields. From the definition eq. (2.5) we
find that

Fmθϕ = e−2φR2 sin θFmtr + aFmθϕ = 2eφ∞
{
e−2φ∞<e(Γm) + a∞=m(Γm)

}
sin θ , (3.10)

and

Am
+ = eφ∞R−2[Γm(λ∞r + λ∗∞Υ) + c.c.]dt

+ 2eφ∞
{
e−2φ∞<e(Γm) + a∞=m(Γm)

}
(1− cos θ)dϕ , (3.11a)

Am
− = eφ∞R−2[Γm(λ∞r + λ∗∞Υ) + c.c.]dt

− 2eφ∞
{
e−2φ∞<e(Γm) + a∞=m(Γm)

}
(1 + cos θ)dϕ , (3.11b)

5The Dirac string singularity of this 1-form lies in the negative z axis.
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in the same two patches, and

Am
+ −Am− = d

{
4eφ∞

[
e−2φ∞<e(Γm) + a∞=m(Γm)

]
ϕ
}
. (3.12)

The Hawking temperature and Bekenstein-Hawking entropy of these black holes are
given by

T = 1
4π∂rgtt(r+) = r0

2πR2(r+) , (3.13a)

S = πR2(r+) . (3.13b)

Observe that, as usual in 4-dimensional, static black holes

2ST = r0 . (3.14)

Then, it is not difficult to find a Smarr-type relation adding the ADM mass to the above
relation:

M = 2ST +M − r0 = 2ST + r− = 2ST + r−r+
r+

= 2ST + M2 − r2
0

r+

= 2ST + 4ΓmΓm ∗ − |Υ|2

r+
= 2ST + Qm

r+
Qm + Pm

r+
Pm − Σ

r+
Σ− ∆

r+
∆ .

(3.15)

This relation is correct (by construction) and, looking at it, it is tempting to conclude
that the 1/r+ terms (that include those associated to the scalar charges) can immediately
be identified with potentials on the horizon. However, as we are going to see, r− can be
rewritten in other ways in which only potentials associated to the electric and magnetic
charges occur. Note that the usual scaling argument does not allow for terms including
scalar charges or potentials because, by the no-hair theorem, these cannot be independent.
Indeed, the Komar charge leaves only room for electric and magnetic potentials and charges,
and, as we are going to see, the integral gives the above relation, although in a highly non-
trivial way.

4 Komar integral

As explained, for instance, in refs. [17, 18] Smarr formulae [16] can be systematically
obtained from Komar integrals [21]. These can be constructed using Wald’s formalism
following ref. [22], rewriting the volume integral terms as surface terms as explained in
ref. [23]. In that reference, though, the integrand of the surface integral was determined
after explicit evaluation of the Lagrangian density on a particular family of solutions. Here
we are going to show how that integrand can be found in general.6

Let us review the construction of the Komar charge and integral in refs. [22, 23]. It is
not difficult to see that, on-shell7 and for a Killing vector k that generates a symmetry of
the whole field configuration

J[k]=̇ıkL . (4.1)
6It is assumed, though, that we are restricting ourselves to solutions admitting a timelike Killing vector

with a Killing horizon.
7We are going to use the symbol =̇ for identities that only hold on-shell.
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On the other hand, for any vector field ξ, we have the off-shell (local) identity

J[ξ] = dQ[ξ] . (4.2)

Combining these two relations, we find that, on-shell and for a Killing vector k that gen-
erates a symmetry of the whole field configuration

dQ[k]− ıkL=̇0 . (4.3)

However, if k generates a symmetry of the whole field configuration,

0=̇£kL = dıkL , (4.4)

which implies the local existence of a (d− 2)-form ωk such that

dωk=̇ıkL . (4.5)

It follows that, under the aforementioned conditions,

d {Q[k]− ωk} =̇0 . (4.6)

and we can define the Komar integral over the codimension-2 surface Σd−2 ref. [23]

K(Σd−2) = (−1)d−1
∫

Σd−2
{Q[k]− ωk} . (4.7)

Smarr formulae for black-hole spacetimes are obtained by integrating the identity
eq. (4.6) on hypersurfaces Σ with boundaries at the horizon and spatial infinity ∂Σh (usu-
ally, the bifurcation surface) and ∂Σ∞, respectively upon use of Stokes theorem:

K(∂Σ∞) = K(∂Σh) . (4.8)

Using the techniques developed in refs. [5–7] and some of the results found in them,
we can readily find the Noether-Wald charge for axion-dilaton gravity:

Q[ξ] = ?(ea ∧ eb)Pξ ab − 4PmξFm . (4.9)

Here,
Pξ ab = ∇[aξb] . (4.10)

Also, the functions Pmξ can be understood as the parameters of compensating gauge
transformations of the 1-forms with the property that, when ξ = k, they satisfy the relations

dPmk = −ıkFm , (4.11)

that define the momentum maps associated to the Killing vector k and the gauge fields Am.
Although this is a gauge-invariant definition, these objects are defined up to an additive
constant. Since they can be interpreted as electrostatic potentials, the constant can be
determined by a sensible boundary condition, such as the vanishing of the potentials at
spatial infinity.

– 7 –
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In order to compute ωk, we have to determine the on-shell value of the Lagrangian
density L first, for a generic solution. In this case, it is enough to use the trace of the
Einstein equations eqs. (2.4a). In differential-form language, to take the trace we must
compute ea ∧Ea, taking into account that, for a p-form ω(p),

ea ∧ ıaω(p) = pω(p) . (4.12)

We get

ea ∧Ea = −2
{
− ? (ec ∧ ed) ∧Rcd + 2dφ ∧ ?dφ+ 1

2e
4φda ∧ ?da

}
= −2

{
L− 2e−2φFm ∧ ?Fm − 2aFm ∧ Fm

}
,

(4.13)

so

L=̇2e−2φFm ∧ ?Fm + 2aFm ∧ Fm = 2Fm ∧ Fm , (4.14)

and

ıkL=̇2ıkFm ∧ Fm + 2Fm ∧ ıkFm . (4.15)

In order to find ωk for general configurations, we are going to use the definition of the
(electric) momentum maps eq. (4.11) but we need to define their magnetic duals. Since,
by assumption, the dual field strengths are left invariant by the isometry generated by k,

0 = £kFm = dıkFm + ıkdFm=̇dıkFm , (4.16)

where we have used the Maxwell equations. Then, locally, there are functions Pmk (mag-
netic momentum maps) such that

dPmk=̇− ıkFm . (4.17)

Thus, upon use of the Maxwell equations and Bianchi identities,

ıkL=̇− 2dPmk ∧ Fm − 2Fm ∧ dPmk=̇d {−2PmkFm − 2FmPmk} = dωk , (4.18)

and the Komar charge is given by

Q[k]− ωk = ?(ea ∧ eb)Pk ab − 2 (PmkFm − PmkF
m) . (4.19)

Observe that the electromagnetic terms occur in a symplectic-invariant combination
now. This hints at the electric-magnetic (SL(2,R)) invariance of the Komar charge, a fact
that we will study in section 6. Before studying this invariance, we are going to check the
validity of this formula in the family of static black holes introduced in section 3 by direct
computation of the Komar integral.

– 8 –
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5 Checking the Smarr formula for static axion-dilaton black holes

Now we want to compute the Komar integrals over the bifurcation sphere on the horizon
and over a sphere at spatial infinity for the static axion-dilaton black holes introduced in
section 3. Thus, we are interested in the θϕ components of the integrand only. We compute
them term by term and we recover the normalization factor (16π)−1. First,

? (ea ∧ eb)Pk ab = 1
2
√
|g|
εµνρσ∇µkνdxρ ∧ dxσ , (5.1)

and, for these solutions

∇µkν = δt[µδν]r∂re
2U , (5.2a)

?(ea ∧ eb)Pk ab = −r2∂re
2U sin θdθ ∧ dϕ . (5.2b)

The electric and magnetic momentum maps can be taken to be

Pmk = Amt , Pmk = Amt , (5.3)

and, the second term in the Komar charge eq. (4.19) is (only θϕ components)

−2 (PmkFmθϕ − PmkF
m
θϕ) = −2

{
Amt

[
e−2φ (?Fm)θϕ + aFmθϕ

]
−AmtF

m
θϕ

}
(5.4)

=
{

2R2e−2φAmt∂rA
m
t + 4eφ∞ (Amt − aAmt)=m(Γm)

}
sin θ .

Integrating over a 2-sphere of constant radius r, we get

K(S2
r) = 1

4r
2∂re

2U − 1
2R

2e−2φAmt∂rA
m
t − eφ∞ (Amt − aAmt)=m(Γm) . (5.5)

At infinity, only the first term contributes, giving

K(S2
∞) = M/2 . (5.6)

Over the bifurcation sphere,8 the first term gives ST = r0/2, but we have to evaluate
carefully the second and third terms. We introduce some notation:

A ≡ λ∞r + λ∗∞Υ , B ≡ r + Υ , ⇒ λ = A/B . (5.7)

The second term in eq. (5.5) is

−1
2R

2e−2φAmt∂rA
m
t = 1

2R2|r+Υ|2 [ΓmB+c.c]
[
−2|r+Υ|2<e(Γm)+4=m(Γm)=m(Υ)r

]
= 1

2R2 [Γm(Γm+Γm∗)B+c.c] (5.8)

+ r

R2|r+Υ|2 [iΓm(Γm−Γm∗)B+c.c]=m(Υ) .

8Actually, it is enough to set r = r+.
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Using the relation eq. (3.4) it is not hard to see that at r = r+

iΓm(Γm − Γm ∗)B(r+) + c.c = −1
2R

2(r+)=m(Υ) . (5.9)

Then,

−1
2R

2e−2φAmt∂rA
m
t

∣∣∣∣
r+

= 2|Γ|2r+ −M |Υ|2

2R2(r+) − (Mr+ − 2|Γ|2)
2R2(r+) <e(Υ)− r+[=m(Υ)]2

2|r+ + Υ|2

= r−
4 + <e(Υ)

4 − r+[=m(Υ)]2

2|r+ + Υ|2 . (5.10)

The third term in eq. (5.5) is

−eφ∞ (Amt − aAmt)=m(Γm) = −e
2φ∞

R2 [Γm(A− aB) + c.c.]=m(Γm)

= −e
−2(φ−φ∞)

R2 [iΓmB + c.c.]=m(Γm) (5.11)

= 1
2|r + Υ|2

[(
M<e(Υ) + 2|Γ|2

)
r +M |Υ|2 + 2|Γ|2<e(Υ)

]
.

Combining these two partial results at r = r+ and operating, we get
r−
4 −

<e(Υ)
4 +

(
M<e(Υ) + 2|Γ|2 − [=m(Υ)]2

)
r+ +M |Υ|2 + 2|Γ|2<e(Υ)

2|r+ + Υ|2

= r−
4 + <e(Υ)

(
2Mr+ + 4|Γ|2 − |r+ + Υ|2

)
+ 2

(
2|Γ|2 − [=m(Υ)]2

)
r+ + 2M |Υ|2

4|r+ + Υ|2

= r−
4 +

<e(Υ)
(
2Mr+ − r2

+ + 4|Γ|2 − |Υ|2
)

+ 2
(
2|Γ|2 − |Υ)|2

)
r+ + 2M |Υ|2

4|r+ + Υ|2

= r−
4 +

2<e(Υ)r+r− + r2
+r− − |Υ)|2r−

4|r+ + Υ|2

= r−
2 ,

(5.12)

which gives the Smarr formula proposed in section 3, eqs. (3.15).

6 Charges, potentials and S duality

The static axion-dilaton black holes introduced in section 3 are the most general black
holes in that class according to the no-hair theorems because they have the maximum
number of independent parameters (moduli λ∞ and conserved charges M,Γm) allowed by
it. Hence, we have proven the validity of the Smarr formula in this theory for static black
holes. However, we have to rewrite it in terms of the potentials and charges.

The charges which are quantized in this theory are not the components of Γm, but

pm ≡ 1
8πG(4)

N

∫
Fm = eφ∞=m(Γm)/G(4)

N , (6.1a)

qm ≡
1

8πG(4)
N

∫
Fm = eφ∞

[
e−2φ∞<e(Γm) + a∞=m(Γm)

]
/G

(4)
N . (6.1b)
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According to the discussions in refs. [5–7], the potentials can be identified, up to a nor-
malization factor, with the momentum maps Pmk and Pmk evaluated over the black-hole
horizon:

Φm ≡ 2 Pmk|rh
, (6.2a)

Φm ≡ 2 Pmk|rh
, (6.2b)

and they are guaranteed to be constant at least over the bifurcation sphere BH, according
to the restricted, generalized zeroth laws.9 We normalize them to vanish at infinity for the
asymptotically-flat solutions we are interested in.

Therefore,
1

16πG(4)
N

∫
S2
∞

2 (PmkFm − PmkF
m) = 0 , (6.3a)

1
16πG(4)

N

∫
BH

2 (PmkFm − PmkF
m) = 1

2 (Φmqm − Φmp
m) . (6.3b)

On the other hand, on general grounds and in the static case,

− 1
16πG(4)

N

∫
S2
∞

?(ea ∧ eb)Pk ab = M/2 , (6.4a)

− 1
16πG(4)

N

∫
BH

?(ea ∧ eb)Pk ab = ST , (6.4b)

and the Smarr formula takes the general form10

M = 2ST + Φmqm − Φmp
m . (6.5)

While our definitions of charges and potentials seem to be identical to those in refs. [13,
14], we get a different sign for the last term. The scaling arguments explained in refs. [17, 18]
indicate that the sign should be a plus if we define Φm = ∂M/∂qm. We can always add
a sign to our definition of Φm to make it coincide with that definition, but we are going
to argue that a relative minus sign between the last two terms is the natural sign if we
take into account that the Smarr formula should be invariant under the dualities of the
theory. These always act on the vector fields of a 4-dimensional theory through a symplectic
embedding [40].

In this particular case, it is convenient to define the symplectic vector of field strengths
as follows: (

FM
)
≡
(
Fm
Fm

)
, (6.6)

since the action of a SL(2,R) ∼Sp(2,R) duality transformation

S ≡
(
SMN

)
=
(
α β

γ δ

)
, (6.7)

9This result may be extended to the complete event horizon using the arguments in ref. [41].
10A previous derivation of a Smarr formula in this theory was made in ref. [39] and our results should be

compared with those in that reference.
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on them and on the axidilaton takes a simpler form:

F ′M = SMNFN , λ′ = αλ+ β

γλ+ δ
, αδ − βγ = 1 . (6.8)

It follows from the definitions that(
PMk

)
≡
(
Pmk

Pmk

)
,

(
ΦM

)
≡
(

Φm

Φm

)
,

(
QM

)
≡
(
qm
pm

)
, (6.9)

transform as the SL(2,R) vector FM .
An important property of the duality group SL(2,R) is that it is isomorphic to Sp(2,R)

since the condition

SMPΩMNS
N
Q = ΩPQ , (ΩMN ) =

(
0 1
−1 0

)
, (6.10)

also implies αδ−βγ = 1 for the matrix S. Thus, the combination of potentials and charges
occurring in the Smarr formula eq. (6.5)

Φmqm − Φmp
m = QMΦNΩMN (6.11)

is manifestly SL(2,R) ∼ Sp(2,R)-invariant. The explicit calculation of this term in section 5
is a proof of this invariance.

7 Discussion

In this paper we have shown how the momentum maps introduced in refs. [5–7] in the
context of black-hole thermodynamics can be used to express the Komar integral obtained
in the context of Wald’s formalism [22] as a surface integral in a manifestly covariant way,
generalizing the results of [17, 18, 23]. We have also shown how, in its turn, this integral
can be used to derive a Smarr formula which is manifestly symplectic invariant. We have
checked this formula explicitly in the most general family of static axidilaton black holes,
constructed in ref. [25]. It is trivial to extend these results to theories with more scalars
and more complicated kinetic matrices (period matrices in the language of N = 2 theories).

Symplectic invariance is a property to be expected of a general Smarr formula because
this relation is just a relation between physical parameters occurring in the metric, which
is symplectic invariant. It is, nevertheless, surprising, how this property of the Smarr
formula and of the Komar integral from which it is derived, arises from a combination
of the Noether-Wald charge and the on-shell Lagrangian density which are not separately
symplectic invariant. The lack of symplectic invariance of the Noether-Wald charge leads
to a non-invariant first law ref. [5] in which the terms containing the variations of the
magnetic charges are not present. This was to be expected because Wald’s formalism is
based on gauge symmetries and there is no gauge symmetry associated to the conservation
of magnetic charges (at least in the standard, off-shell, formulation of electromagnetism
and its generalizations). It is, nevertheless, somewhat unsatisfactory.11 It is also somewhat

11It is also problematic because this is the only formalism that can be applied to theories of higher order
in the curvature.
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unsatisfactory that there is no natural place in Wald’s first law for terms proportional to
the variations of the asymptotic values of scalars [14] since these are not associated to
gauge symmetries either. Work on these problems is in progress.
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