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Particle physics models with extra dimensions of space (EDSs) and
branes shed new light on electroweak and ŕavor hierarchies with a rich TeV
scale phenomenology. This article highlights new model building issues with
EDSs and branes, arising in the framework of weakly nonlocal őeld theories.
It is shown that a brane-localized őeld is still delocalized in the bulk at
a small distance from the brane position: őelds localized on such distant
fuzzy branes are thus allowed to interact directly with suppressed couplings.
Directions for model building are also given: (i) with fuzzy branes, a new
realization of split fermions in an EDS is presented, naturally generating
ŕavor hierarchies; (ii) with a warped EDS, the usual warp transmutation of
a brane-localized mass term is revisited, where it is shown that the nonlocal
scale is also redshifted and provides a smooth UV cutoff for the Higgs
boson mass. This framework is expected to have natural UV completions
in string theory, but the possibility to embed it in recent UV complete
weakly nonlocal quantum őeld theories is commented.
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1. Introduction

Despite its great experimental success [1], the SM should not be the end
of the high-energy physics (HEP) story, since we have several good reasons to
go beyond the SM (BSM) [2]. From a bottom-up perspective, HEP models
based on local quantum őeld theories (QFTs) with extra dimensions of space
(EDSs) and branes were extensively used to solve or reformulate various
BSM issues, with a very rich phenomenology [3]. The price to pay for models
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where some SM őelds propagate in EDSs is that gauge theories are not
perturbatively renormalizable anymore. From a top-down perspective, these
constructions are usually considered as effective őeld theories (EFTs) that
may have UV completions in string theory [4, 5].

Since strings are 1D extended objects, string theory leads naturally to
nonlocal effects at the string scale Ms, such that these effects decrease
rapidly for distances larger than the string length ℓs = 1/Ms [6]. In the
perturbative worldsheet formulation, the modular invariance is at the ori-
gin of a UV/IR mixing induced by nonlocality [7, 8]. It reduces to a
worldline inversion symmetry in the particle limit, and one gets inőnite-
derivative operators in the effective Lagrangian that map the UV diver-
gences to IR ones [9ś11]. Moreover, T -duality implies nonlocality [12], and
little string theories are known to be quasilocal őeld theories [13]. In the
nonperturbative formulation offered by string őeld theory (SFT) [14], non-
locality is already manifest in the Lagrangian via inőnite-derivative op-
erators [15, 16]. Analyticity and unitarity follow from the Eőmov ana-
lytic continuation [17ś20]. During these recent years, such stringy non-
local effects have been implemented in 4D bottom-up models via expo-
nential form factors [21] in order to give some insights into the process
explaining how string theory softens the UV behavior in particle physics
[22ś29]. The reader could refer to Refs. [30, 31] for reviews on other appli-
cations in black hole physics and cosmology.

The purpose of this article is to investigate for the őrst time the interests
in such weakly nonlocal (WNL) effects in models with EDSs and branes.
In a local higher-dimensional EFT, thin1 (or δ-like) 3-branes are perfectly
acceptable objects in the worldvolume of which 4D őelds are trapped [32].
However, locality requires that the brane-localized interaction/kinetic terms
appear as pointlike in the transverse EDSs, which sometimes creates ill-
deőned situations [33ś40] and requires a careful mathematical treatment
[41ś47]. In a WNL framework, it is clear that point interactions on branes
are smeared by the delocalized vertices on δ-like branes. For instance, it has
been shown that WNL resolves the transverse singular behavior of δ-like
sources [48ś50] such as branes [51, 52].

This article proposes a set of new interesting possibilities relying on WNL
őeld theory that provide new paths to solve BSM issues in HEP models
with EDSs and branes. The analysis is restricted to toy models to focus
on the new features of weak nonlocality (WNL) at tree level: there is no
claim to have achieved realistic BSM scenarios. The goal is to highlight new
possible model building issues that could be used in realistic model building,
instead of discussing the detailed phenomenology of speciőc models. For

1 A thin or δ-like brane is a brane with zero thickness (in the regime of validity of the
EFT).
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that purpose, it is sufficient to limit the study to the example of SFT-like
form factors, motivated by a bottom-up approach towards UV completions
in string theory, but the developed methods can be extended to other WNL
form factors from some other nonlocal UV theories.

The article is organized as follows. In Section 2, a WNL toy model with
bulk and brane-localized scalar őelds is studied and the inclusion of gauge
symmetries is discussed. The goal is to provide, for the őrst time, tools
for building WNL braneworlds. Section 3 provides 2 possible applications of
WNL for bottom-up model building: (i) a split fermion scenario [53, 54] with
multiple fuzzy branes; (ii) a warped extra dimension [55] with a redshifted
WNL scale. The results are summarized in Section 4. In Appendix A, the
notations and conventions used in all sections are speciőed.

2. String-inspired nonlocal braneworlds

2.1. Weakly nonlocal scalar őelds

In SFT, if one truncates the tower of string excitations to its lowest level,
one is left with an EFT which has weakly nonlocal (WNL) form factors,
e.g. to study tachyon condensation in an open bosonic SFT [15, 16]. The
propagator has a single pole corresponding to a standard degree of freedom:
such an inőnite-derivative őeld theory is ghost-free by construction [21].
The WNL scale Λη = 1/η acts as a cutoff in momentum space, where the
stringy behavior of the particles starts softening the UV behavior of the
dynamics (Λη ∼ Ms). Actually, these peculiar toy models are UV őnite in
perturbative QFT computations [56], and the nonlocal scale is stable under
radiative corrections. They are thus reminiscent of the old WNL QFTs to
handle UV divergences [57]. In this section, such effects are implemented in
a bottom-up braneworld model.

2.1.1. Toy model

Fields and symmetries: Consider a 5D Euclidean (orbifolded) spacetime
E
5 = R

4×S1/Z2, where S1 is the circle of radius ρ. The őeld and symmetry
content of the WNL toy model are given in the following list:

Ð 1 real 5D scalar őeld Φ(x, y) (mass dimension 3/2) propagates into the
whole bulk and is even under the Z2 orbifold symmetry.

Ð 2 real 4D scalar őelds θ(x) and ω(x) (mass dimension 1) are localized
respectively on the branes at y = 0, πρ. From these 4D őelds, one
deőnes the localized “5D őeldsž Θ(x, y) = θ(x) δ(y) and Ω(x, y) =
ω(x) δ(y−πρ), which describe 4D degrees of freedom sharply localized
on the 3-branes.

Ð The model has an exchange symmetry between the brane őelds θ(x) ↔
ω(x).
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String-inspired nonlocality: Following the standard construction of
string-inspired nonlocal őeld theories [21], the following 5D smeared őelds

S̃ = Φ̃, Θ̃, Ω̃ are deőned by acting an SFT-like smearing operator on the
local 5D őelds S = Φ,Θ,Ω, such that

S̃(x, y) = eη
2∆ S(x, y) . (1)

There is a UV scale ΛUV, which is identiőed with the usual UV cutoff of a
braneworld EFT in the local limit η → 0. In the case of the quasilocalized

5D őelds, one can also split them as Θ̃(x, y) = θ̃(x) δη(y) and Ω̃(x, y) =
ω̃(x) δη(y − πρ), with

s̃(x) = eη
2∆∥ s(x) , δη(y) = eη

2∆⊥ δ(y) , (2)

where s = θ/ω. These quasilocalized “5D őeldsž describe 4D degrees of
freedom localized on the 3-branes, with a penetration depth η in the bulk,
such that they have no KK-excitations. Note that, in general, each őeld
species (labeled i) has its own WNL length scale ηi, such that ∀i ̸= j, ηi ̸=
ηj . Moreover, since the 5D spacetime symmetries are locally broken to
the 4D ones at the őxed point positions, a given smeared őeld involved in
an interaction term on a brane should have a different WNL scale in the
directions parallel η∥ or transverse η⊥ to the brane, such that η∥ ̸= η⊥. For
simplicity, only 1 universal WNL length scale η is introduced in this model.
Action: The action of the 5D toy model is

S5D =

∫
d4x

∮
dy (LB + Lb + LBb + Lbb) , (3)

where

Ð LB is the bulk Lagrangian of the 5D őeld Φ(x, y), with a cubic self-
interaction term

LB =
1

2

[
−Φ∆∥Φ+ (∂yΦ)

2
]
+
λB
3!
Φ̃3 , (4)

where λB is a real coupling (mass dimension 1/2) that scales as
√
ΛUV;

Ð Lb is the free brane Lagrangian of the 4D őelds θ/ω(x)

Lb = δ(y)

(
−1

2
θ∆∥θ

)
+ δ(y − πρ)

(
−1

2
ω∆∥ω

)
; (5)
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Ð LBb is the bulkśbrane Lagrangian of the interaction terms between the
bulk őeld Φ(x, y) and the brane őelds Θ/Ω(x, y)

LBb =
λBb

2
Φ̃
(
Θ̃2 + Ω̃2

)
, (6)

where λBb is a real coupling (mass dimension −1/2) that scales as2

η
√
ΛUV;

Ð Lbb is the braneśbrane Lagrangian of the interaction terms between
the brane őelds Θ(x, y) and Ω(x, y)

Lbb =
λb
3!

(
Θ̃3 + Ω̃3

)
+
λbb
2

(
Θ̃ Ω̃2 + Ω̃ Θ̃2

)
, (7)

where λb and λbb are real couplings (mass dimension −1) that scales
as η2ΛUV.

Heat kernel: The above Lagrangians appear naively local in terms of the
local and smeared őelds. To understand why the inőnite-derivative feature
of the smearing operators introduces WNL, remember that the Gaussian

function δ
(d)
η is the kernel of the SFT-like smearing operator on R

d, cf.
Eq. (A.1). Consider the case where η ≪ ρ, such that one can neglect the
compactiőcation effects on the shape of the kernels, and one can use the
approximation E

5 ≃ R
5 as far as only WNL features are concerned. As a

consequence, the smeared őelds can be expressed as the convolution product

S̃(x, y) =
(
δ(5)η ∗ S

)
(x, y) (8)

that is involved in the interaction terms, where WNL is now manifest. In

the local limit η → 0, one gets the local őelds S̃(x, y) = S(x, y) as required,
since in the theory of generalized functions [58], one has the weak limit

lim
η→0

δ(5)η (x, y) = δ(5)(x, y) . (9)

2.1.2. KaluzaśKlein dimensional reduction

Local őelds: If the couplings are weak, one can perform a perturbative
analysis. From the bulk Lagrangian of Eq. (4), the free EulerśLagrange
equation in the bulk is ∆Φ(x, y) = 0, which is local in spacetime. As usual,

2 The scaling of the couplings of the brane-localized operators in the WNL model is
chosen to match the scaling of the corresponding local model when η → 0, cf. Sec-
tion 2.1.3.
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one can perform a KaluzaśKlein (KK) decomposition of the 5D őeld Φ(x, y)

Φ(x, y) =
∑

n

ϕn(x) fn(y) . (10)

The 4D őelds ϕn(x) describe an inőnite tower of KK-modes obeying the 4D
KleinśGordon equations. Each of them has a bulk wave function fn(y) de-
scribing the localization of the KK-mode along the EDS, with the Neumann
boundary conditions ∂yfn(0, πρ) = 0. There is a ŕat 0-mode and an inőnite
tower of excited modes, with the mass spectrum mn = n/ρ, n ∈ N, so one
can thus deőne the KK-scale as MKK = 1/ρ. The solutions for the bulk
wave functions are

f0(y) =

√
1

2πρ
, ∀n ∈ N

∗ , fn(y) =

√
1

πρ
cos

(
ny

ρ

)
. (11)

Smeared őelds: One can also deőne a KK-decomposition of the smeared

5D őeld Φ̃(x, y)

Φ̃(x, y) =

∞∑

n=0

ϕ̃n(x) f̃n(y) , (12)

with the smeared KK-őelds and wave functions

ϕ̃n(x) = eη
2∂2µ ϕn(x) , f̃n(y) = (δη ∗ fn) (y) , (13)

such that

f̃0(y) = f0(y) , ∀n ∈ N
∗ , f̃n(y) = exp

[
−
(
nη

ρ

)2
]
fn(y) . (14)

The mass spectrum of the KK-modes ϕ̃n(x) is still mn = n/ρ, and thus
ghost-free. Therefore, with ρ≫ η, only the KK-modes with n≫ 1 (i.e. with
mn ≫ Λη) have their smeared wave functions with a coefficient signiőcantly
suppressed with respect to the local case.

2.1.3. Fuzzy versus δ-like brane

Fuzzy brane: Perhaps the most interesting aspects of WNL in brane-
worlds, compared to the 4D WNL őeld theories discussed in the literature,
are the new features of őelds localized on δ-like branes. Indeed, as the
brane-localized őelds have their interactions a bit delocalized in the bulk
with a penetration depth η, a δ-like brane does not appear anymore as a
singular object in the transverse dimensions but has a small width η: the
terminology of fuzzy brane is introduced. Therefore, WNL regularizes the
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transverse behavior of the branes and avoids the typical delicate problems
of EFTs with δ-like branes. It is instructive to consider the local limit of the
interaction terms of the toy model in Section 2.1.1.
Renormalized brane couplings: It is useful to remind that

∀N ∈ N
∗ , δNη (y) ∝ η1−N δη

(√
Ny
)
. (15)

If a brane-localized operator has a coupling α(η) ∝ ηN−1, one can deőne a
renormalized coupling αR ∈ R such that

lim
η→0

α(η) δNη (y) = αR δ(y) . (16)

In the following, one can thus formally perform the following replacement:

∀N ∈ N
∗ , δNη (y) 7→

η→0
δ(y) , (17)

with a renormalization of the coupling of the corresponding brane-localized
operator. One can check that the couplings of the toy models considered in
this article scale with powers of η which are consistent with this discussion
on renormalized couplings in the local limit η → 0. In the special case of
operators involving őelds localized on different fuzzy branes (which have a
trivial local limit), the scaling can be checked by considering an analogous
operator involving these őelds localized on the same fuzzy brane, and then
by taking the local limit.
Braneśbulk interactions: From Eq. (6), one can write the interaction
terms between bulk and brane őelds as

LBb =
λBb

2
Φ̃
[
δ2η(y) θ̃

2 + δ2η(y − πρ) ω̃ 2
]
. (18)

By integrating over the EDS, one gets the effective 4D Lagrangian of the
KK-modes ∮

dy LBb =
∞∑

n=0

λ
(n)
Bb

2
ϕ̃n

(
θ̃ 2 + ω̃ 2

)
, (19)

with the effective 4D couplings (mass dimension 1)

∀n ∈ N , λ
(n)
Bb = λBb

∮
dy f̃n(y) δ

2
η(y) . (20)

From Eqs. (A.1) and (14), one gets (with a natural coupling ΛBb ∼ η
√
ΛUV )

λ
(0)
Bb ∼ 1

4π

√
ΛUV

ρ
, ∀n ∈ N

∗ , λ
(n)
Bb ∼ 1

2π

√
ΛUV

2ρ
exp

[
−3

2

(
nη

ρ

)2
]
.

(21)
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Only the couplings λ
(n)
Bb to KK-modes with mn ≫ Λη are signiőcantly sup-

pressed via WNL. If one takes the local limit η → 0 in Eq. (18) and uses the
formal replacement in Eq. (17), one gets

LBb ∝
η→0

Φ
[
δ(y) θ2 + δ(y − πρ)ω2

]
, (22)

which is exactly the form of an interaction term in a local braneworld EFT
with a δ-like brane.
Braneśbrane interactions: From Eq. (7), one can write the interaction
terms between brane őelds as

Lbb =
λb
3!

[
δ3η(y) θ̃

3 + δ3η(y − πρ) ω̃ 3
]

+
λbb
2

[
δη(y) δ

2
η(y − πρ) θ̃ω̃ 2 + δη(y − πρ) δ2η(y) ω̃θ̃

2
]
. (23)

Same brane: One can take λb ̸= 0 and λbb = 0 to discuss the őrst term,
which can be rewritten as

∮
dy Lbb =

∮
dy L′

bb , (24)

where

L′
bb =

λ′b
3!

[
δ(y) θ̃ 3 + δ(y − πρ) ω̃ 3

]
, (25)

with the effective 4D coupling (mass dimension 1)

λ′b = λb

∮
dy δ3η(y) ∼

√
1

3

ΛUV

4π
(26)

by using Eq. (A.1), and with a natural coupling λb ∼ η2ΛUV. Therefore,
for an interaction term between 4D degrees of freedom localized on the
same fuzzy brane, the effect of WNL along the EDS is just to rescale3 the
coupling constant of the corresponding brane operator with respect to the
same interaction in a local model with a δ-like brane. Indeed, if one takes
the local limit η → 0 in Eq. (23) with the formal replacement in Eq. (17),
one obtains

Lbb ∝
η→0

[
δ(y) θ3 + δ(y − πρ)ω3

]
, (27)

whose localized őelds have the same singular transverse features as in the
Lagrangian of Eq. (25).

3 However, WNL cannot be used to generate a suppressed coupling with respect to
its natural value for interacting őelds localized on the same fuzzy brane since the
rescaling factor in Eq. (26) is not very small.
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Different branes: One considers λb = 0 and λbb ̸= 0 to discuss the second
term in Eq. (23), such that

∮
dy Lbb =

λ′bb
2

(
θ̃ω̃ 2 + ω̃θ̃ 2

)
, (28)

with the effective 4D coupling (mass dimension 1)

λ′bb = λbb

∮
dy δη(y) δ

2
η(y − πρ) ∼

√
1

3

ΛUV

4π
exp

[
−1

6

(
πρ

η

)2
]

≪
ρ≫η

1 ,

(29)
by using Eq. (A.1), and with a natural coupling λbb ∼ η2ΛUV. Therefore,
when ρ≫ η, it is possible to get naturally suppressed couplings between the
őelds localized on the different fuzzy branes: the transverse smearing kernels
δη(y) and δη(y−πρ) have a tiny overlap. Note that in the local limit η → 0,
one has λ′bb → 0, and one recovers that őelds localized on different δ-like
branes do not couple directly in a local EFT: one needs a bulk mediator őeld
for that purpose. Another way to obtain this result is by taking the local
limit η → 0 directly in Eq. (23) with the formal replacement in Eq. (17),
such that

Lbb ∝
η→0

δ(y) δ(y − πρ)
(
θω2 + ωθ2

)
= 0 since δ(y) δ(y − πρ) = 0 , (30)

because these 2 Dirac generalized functions have disjointed pointlike sup-
ports (ρ > 0).

2.2. Weakly nonlocal gauge őelds

2.2.1. 4D case in a nutshell

The difficulty for UV őniteness appears for gauge symmetries, since
it is not possible to smear interaction terms independently of the kinetic
terms [59]. The manifest gauge-invariant scheme proposed by Krasnikov [60]
(where gauge-covariant derivatives appear in the WNL form factors) is the
one that is used in string-inspired nonlocal models [22ś29]. For instance, a
string-inspired nonlocal YangśMills action has the form

SYM =
1

2g2

∫
ddx Tr

[
Fµν e

−η2D2
µFµν

]
, (31)

whereDµ is the 4D gauge-covariant derivative, Fµν is the 4D gauge-covariant
őeld strength, and g is the 4D gauge coupling constant. Such a theory is not
UV őnite because there is competition between the WNL form factors in the
kinetic and interaction terms. For SFT-like form factors, the perturbative



6-A2.10 F. Nortier

renormalization program fails4: the problem is that one wants to treat the
nonlocal form factor nonperturbatively while integrating out the full tower
of string excitations of the stringy UV completion that introduces UV/IR
mixing [7, 8]. One can thus use the nonlocal action to determine background
solutions in a semiclassical analysis. However, it is necessary to expand
perturbatively the form factor in order to have a meaningful local QFT
below the string scale (Λη ∼Ms)

e−η
2D2

µ ≃
K−1∑

k=0

1

k!

(
−
D2
µ

Λ2
η

)k
+O

(
1

Λ2K
η

)
(32)

that can be handled as a usual EFT. The application to gravity follows an
analogous covariant scheme [64].

2.2.2. Compactiőed extra dimension

In the original braneworld models, the SM are 4D degrees of freedom lo-
calized on a 3-brane [32]. In the string model building [4, 5], D-brane stacks
(where open strings are attached) realize gauge symmetries in their world-
volume. In the following examples about WNL gauge theories, some stringy
UV completion is assumed: only SFT-like smearing effects are taken into
account, and the extra modiőcations due to the DiracśBornśInfeld nature
of a brane effective action are ignored.
Brane-localized gauge symmetries: Consider a toy 5D model with a
ŕat EDS and a 3-brane at y = 0, where are localized: (i) SU(NC) gauge
bosons5 Aaµ(x) with a ∈ J1, NCK and the WNL length scale ηg; (ii) NF

ŕavor of scalar őelds ϕi(x) in the fundamental representation of SU(NC)
with i ∈ J1, NFK and the associated WNL length scales ηi. The brane action
describing the minimal gauge interactions is (up to commutators of gauge-
covariant derivatives)

∫
dy dx

{
1

2g2
Tr
[
Fµν e

η2g(∂2y−D2
µ)Fµν

]
+

NF∑

i=1

(Dµϕi)
† eη

2

i (∂2y−D2
µ)Dµϕi

}
δ(y) .

(33)
The breaking of LorentzśPoincaré symmetries by the brane allows choos-
ing independent longitudinal and transverse form factors for the same őeld.

4 Even if 1-loop computations naively led to a UV-scale-invariant behavior [23, 24],
these QFTs violate Weinberg’s power counting theorem [61]: higher-loop 1PI dia-
grams are not under perturbative control and these WNL-QFTs are not renormaliz-
able by usual perturbative techniques [62, 63].

5 The case of an Abelian U(1) gauge őeld can be deduced easily from the non-Abelian
example.
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Since we deal with a brane-localized 4D gauge invariance, the transverse
smearing of the brane does not involve gauge-covariant derivatives, and one
has normalized Gaussian proőles

∫
dy eη

2
g∂

2
yδ(y) =

∫
dy eη

2

i ∂
2
yδ(y) = 1 . (34)

Therefore, even if the NF ŕavors of scalar őelds are smeared by a different
WNL length scale ηi, the coupling to brane-localized gauge bosons is ŕavor-
blind (as in the SM) without invoking some extra symmetry principle.
Bulk gauge symmetries: Higher-dimensional generalization of string-
inspired gauge invariant models is straightforward from the 4D literature.
For instance, consider again a 5D model with a ŕat EDS, where the SU(NF)
gauge bosons Aa

µ(x, y) minimally coupled to the NF scalar őelds Φi(x, y)
propagate into the bulk. The action is

∫
dy dx

{
1

2g2
Tr
[
FMN e−η

2
gD

2

MFMN

]
+

NF∑

i=1

(DMΦi)
† e−η

2

i D
2

MDMΦi

}
,

(35)
where DM is the 5D gauge-covariant derivative, FMN is the 5D gauge-
covariant őeld strength, and g is the 5D gauge coupling constant. Here,
5D LorentzśPoincaré and gauge invariance impose the same WNL form fac-
tor for all components of a 5D őeld and a ŕavor blind gauge coupling.
Braneśbulk gauge interactions: The last possibility is if the 5D scalar
őelds Φi(x, y) of the action in Eq. (35) are replaced by 4D scalars ϕi(x)
localized on a 3-brane at y = 0, such as

∫
dy dx

{
1

2g2
Tr
[
FMN e−η

2
gD

2

MFMN

]
+

NF∑

i=1

[
(Dµϕi)

† eη
2

i (D2
y−D

2
µ)Dµϕi

]
δ(y)

}
,

(36)
where the brane-localized kinetic terms for the bulk gauge őelds [65] are not
considered for simplicity. The difference with the brane action in Eq. (33)
is the 5D gauge symmetry that requires the dressing of the brane-localized
charge őelds by a cloud of gauge bosons that becomes relevant at the scales ηi.

2.2.3. Non-stringy UV completions

This last decade, another class of WNL őeld theories has received more
attention: these QFTs realize superrenormalizability or UV őniteness in pure
gravity and gauge theories in any number of spacetime dimensions [66ś75].
They interpolate between 2 local QFTs: a 2-derivative one in the IR and a
higher-derivative one in the UV. In order to avoid ghost-like degrees of free-
dom, the interpolating region is a nonlocal window: the inőnite-derivative
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form factors must be asymptotically polynomial in the UV for both imag-
inary and real energies. Instead of the SFT-like form factors, they allow
the quantum corrections to a WNL gauge theory to be under perturbative
control. Nevertheless, a ghost-free Higgs mechanism is a more subtle is-
sue [76, 77]. For that purpose, a recent recipe [78] allows building theories
which have the same spectrum and tree-level scattering amplitudes as their
local limit [79], such that WNL manifests only at the loop level and one can
build a ghost-free Higgs mechanism [80]. In this paper, we will not discuss
further these theories, but the interested reader could easily generalize the
discussion to other WNL theories.

2.3. Shadow extra dimensions

What happens if one wants to trust the WNL őeld theory above the
WNL scale? In Section 2.2.1, it was already discussed that for SFT-like form
factors, gauge theories are not under perturbative control in this simpliőed
framework. The following more speculative section will focus on a scalar
őeld that does not have this problem, and the case of the gauge theories
with a nonlocal window in Section 2.2.3 will be brieŕy mentioned.

In order to have a taste of the phenomenology of the KK-excitations with

WNL, it is useful to consider the smeared 4D őelds ϕ̃n(x) for the KK-modes,
which appear in the WNL interaction terms of the EFT after dimensional
reduction to 4D. In this class of WNL őeld theories, it is possible to rewrite
the Lagrangians and EulerśLagrange equations only in terms of the smeared
őelds [21], such that WNL then appears only in the kinetic terms of the
smeared KK-őelds

−1

2
ϕ̃n e

−2η2∂2µ
(
∂2µ −m2

n

)
ϕ̃n , (37)

such that one can easily extract their propagators

Πn

(
p2
)
=

−ie−2η2p2

p2 +m2
n

, (38)

which are exponentially suppressed in the UV, i.e. when p2 > Λ2
η, reŕecting

the UV opacity of such WNL őeld theories. Moreover, in Section 2.1.3, it
was shown that these KK-modes have also suppressed couplings with brane
őelds. Therefore, any contribution to a process from a KK-particle whose
mass is mn > Λη will be suppressed compared to a local model6.

6 Note that the status of such transnonlocal states is not clear, and it was suggested
in Ref. [21] that no external states can be associated with them.
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Nevertheless, once the S-matrix elements are computed, there is the is-
sue of the Eőmov analytic continuation of the external momenta to real
energies [17ś20, 81ś86]. Then, the SFT-like smearing operator of the toy
model considered here is known to have a strong coupling problem for ener-
gies above Λη: S-matrix elements blow up at a high center-of-mass energy
in the WNL regime [83, 85]. Nevertheless, it was mentioned in Ref. [19]
that in a realistic SFT-derived model (well beyond this toy model), there is
compensation between different vertices such that this problem does not ap-
pear. Moreover, the qualitative results of this article should not be affected
if one takes another WNL form factor of the literature (beyond SFT), which
gives UV suppression in both real and imaginary time directions [83, 85], or
a gauge theory with a nonlocal window that exhibits a softened UV behav-
ior [66ś75].

As a consequence, in a realistic model, the effects of such KK-excitations
will be much more difficult to probe in an experiment. In full analogy with
the discussion in Ref. [22], the experimenters will see that the cross sections
predicted in the SM are suppressed for energies E > Λη, concluding in a
WNL UV completion of the SM. However, they will have more difficulties
observing the KK-tower if η ∼ ρ, and then concluding the existence of the
EDS. Note that in this particular case, WNL smears the brane all along the
EDS, such that the difference between bulk and brane őelds is meaningless:
all poles of the KK-excitations are in the UV opaque regime, and one should
better understand this UV regime of WNL-QFTs to be able to really discuss
the phenomenology of such shadow EDS. Moreover, in the case of a UV
completion in string theory, where Ms ∼ Λη, one expects that Regge exci-
tations also appear in the WNL regime, and one should use the full stringy
UV completion to study the phenomenology.

3. Bottom-up model building and applications

3.1. Flavor hierarchy from fuzzy branes

3.1.1. Split fermions in a nutshell

In the SM of particle physics, the observed fermion mass spectrum [1]
needs to introduce a very hierarchical pattern for the Yukawa couplings.
From a Dirac naturalness point of view, one can wonder why the Yukawa
couplings are so hierarchical, and why the CKM matrix appears so close
to the identity, since no particular texture is preferred in the SM. A related
issue is the smallness of the neutrino masses (of Dirac/Majorana type), which
involves another hierarchy with the charged leptons.

Among all the creative proposals to solve this ŕavor puzzle in the lit-
erature, one of them is the split fermion scenario, originally proposed by
Arkani-Hamed and Schmaltz (AS) in Ref. [53], with the őrst realistic model
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to solve the ŕavor puzzle in Ref. [54]. The central idea behind the AS pro-
posal (cf. Ref. [53] for details) is that the different species of SM fermions are
“stuckž at different points along at least 1 (ŕat) EDS, with the SM gauge
and Higgs őelds identiőed with the ŕat zero mode of bulk őelds. In this
way, the 4D effective Yukawa couplings are suppressed by the tiny overlap
between the wave functions along the EDS of the 2 chiral fermions and the
Higgs őeld. In the original AS model, the fermion zero modes are localized
by a background scalar őeld with a kink proőle along the EDS, i.e. a domain
wall.

The aim of Section 3.1.2 is to realize the AS idea, but without the need
for a domain wall in the 5D EFT to trap the chiral fermions. Each 4D
fermion is now localized on a different fuzzy 3-brane, such that they are
delocalized in the bulk by a Gaussian smearing form factor originating from
WNL. In the proposed class of WNL models, one considers a 5D Euclidean
spacetime E

5 = R
4 × [0, πρ], where the gauge and Higgs őelds propagate in

the bulk.

3.1.2. Multiple fuzzy branes

Toy model: In order to illustrate the above idea, it is enough to consider
a toy model with a real 5D Higgs-like scalar őeld H(x, y) with a potential
V (H), and Yukawa couplings to 2 brane-localized Weyl fermions of the op-
posite chirality, i.e. a 4D left/right-handed fermion ψL/R(x) localized on a
3-brane at y = yL/R. All these őelds have a mass dimension 3/2. As we will
see, the crucial feature of the model is that the Weyl fermions are smeared in
the bulk. Therefore, it is enough to assume that the WNL scales associated
with the fermion őelds are lower than the one associated with H(x, y) in
the bulk. Then, one can consider a 5D EFT where the WNL features of
the Higgs-like őeld decouple, and only the 4D fermion őelds are smeared by
WNL, with a universal WNL length scale η for simplicity.

Action: The smeared őelds Ψ̃L/R(x, y) are deőned in terms of the 5D local-
ized őelds ΨL/R(x, y) = ψL/R(x) δ(y − yL/R), such that

Ψ̃L/R(x, y) = eη
2∆ ΨL/R(x, y) = ψ̃L/R(x) δη(y − yL/R) , (39)

with

ψ̃L/R(x) = eη
2∆∥ ψL/R(x) , δη(y − yL/R) = eη

2∆⊥ δ(y − yL/R) , (40)

where δη(y) is well approximated by a 1D Gaussian function in Eq. (A.1) if
η ≪ ρ, and the brane positions are sufficiently far from the EDS boundaries.
The width of these Gaussian proőles along the EDS is given by the WNL
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length scale η, which plays the same role as the domain wall width in the
original AS model [53]. The 5D action is

S5D =

∫
d4x

πρ∫

0

dy (LH + LL + LR + LY ) , (41)

with the Lagrangians

LH =
1

2

[
−H∆∥H + (∂yH)2

]
− V (H) ,

LL/R = δ(y − yL/R)ψ
†
L/R(−i✓∂ )ψL/R ,

LY = −Y iΨ̃ †
LHΨ̃R + H.c. , (42)

where the real 5D Yukawa coupling Y has a mass dimension −3/2 and scales
as η

√
ℓUV, where ℓUV is some UV length scale deőned as the EFT UV cutoff

in the local limit η → 0.
Effective 4D hierarchy: By performing a KK dimensional reduction, the
5D Higgs-like őeld can be decomposed around its ŕat vacuum expectation
value (VEV) v in 4D KK-modes hn(x) (mass dimension 1), such that

H(x, y) =
v√
πρ

+
∑

n

hn(x) fn(y) , (43)

where v is a mass scale, the fn(y)s are the KK wave functions (mass di-
mension 1/2) associated to the KK-modes hn(x). The EDS is ŕat, so the
KK-scale is deőned as MKK = 1/ρ. As in the original AS model, V (H) is
chosen such that the 0-mode (identiőed with an SM-like Higgs boson) has a
ŕat wave function

f0(y) =

√
1

πρ
. (44)

In the 4D EFT obtained by integrating over the EDS, the action includes
the terms

S4D ⊃ −i
∫

d4x ψ† (✓∂ +mψ + y0 h0)ψ , (45)

where mψ = y0 v is the mass of the Dirac fermion

ψ(x) =

(
ψL(x)
ψR(x)

)
, (46)

and the effective 4D Yukawa coupling y0 (mass dimension 0) between ψ(x)
and h0(x) is given by the overlap

y0 = Y

πρ∫

0

dy f0(y) δη(y − yL) δη(y − yR) . (47)
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By assuming a natural 5D Yukawa coupling Y ∼ η
√
ℓUV, and an interbrane

distance r = |zL − zR| ≫ η, one gets

y0 ∼
1

2π

√
ℓUV

2ρ
exp

[
−1

8

(
r

η

)2
]
≪ 1 , (48)

by using Eqs. (A.1) and (44). Therefore, y0 is naturally exponentially sup-
pressed for sufficiently separated fuzzy branes.
Flavor hierarchy: Since the transverse Gaussian kernels of the fermions
have the same features as the bulk wave functions of the trapped fermions
in the original AS model [53], one can localize the fermions at the same
EDS points and reproduce the same mass matrix and mixing angles as in
Ref. [54] to explain the SM Yukawa hierarchy. For energies below the WNL
scale Λη, the phenomenology of this WNL model is completely identical to
an AS one, so one has the same constraints as in Ref. [54]. One needs to
probe the scale associated with the transverse Gaussian fermion proőles to
resolve the microscopic details of the model, e.g. fermions trapped inside a
domain wall or an intrinsic nonlocal UV theory (e.g. open strings attached
to D-branes). Note that for other WNL form factors, the transverse kernels
are not Gaussian anymore but are still sharply localized, so this qualitative
discussion still holds.
Intersecting branes: In top-down constructions, other interesting scenar-
ios are semirealistic string models with branes wrapping compact cycles that
intersect at nontrivial angles [87]: such models were intensively studied in
string phenomenology [5]. They give rise to several copies of chiral fermions
localized at the intersections, thus they offer a natural explanation of the
SM fermion generations. The computations of Yukawa couplings are done
in string theory. Therefore, the WNL framework offers for the őrst time an
EFT description of ŕavor models with branes intersecting at angles. Indeed,
in a local EFT with δ-like branes, one cannot describe Yukawa interactions
between őelds localized on different branes without matching contact inter-
actions with a full stringy computation (e.g. Refs. [88, 89]). The approach
proposed here allows a more bottom-up approach to model building with
intersecting brane since the use of an auxiliary domain wall to localize the
0-modes is not fair from the point of view of the UV completion.

3.2. Scale hierarchy from a string-inspired warped throat

3.2.1. Motivations

In an EFT with a UV cutoff ΛUV, the existence of an elementary Higgs-
like scalar őeld of massm≪ ΛUV is expected to require őne-tuning in the UV
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completion if the limit m → 0 does not enhance the number of symmetries
of the action, which is known as the gauge hierarchy problem [90]. WNL
őeld theories give a potential solution to this issue [22, 60, 91]: the radiative
corrections to the mass of the H0 boson scale as δM2

H ∝ Λ2
η, instead of

δM2
H ∝ Λ2

UV in the local SM. A light electroweak (EW) Higgs sector is then
natural if Λη is at the terascale, even if a larger new scale like the Planck
scale ΛP ≫ Λη ≳ MH exists7. Nevertheless, it does not explain the gauge
hierarchy ΛP ≫ Λη without extra ingredients.

The paradigm of warped EDSs, originally proposed by Randall and Sun-
drum (RS) in Ref. [55], offers a powerful scenario to considerably reduce the
őne-tuning issue of a light scalar, like theH0 boson. In the original RS model
(RS1) [55], the Higgs őeld of the EW theory is a 4D őeld localized at the IR
boundary (IR-brane) of a slice of a 5D anti-de Sitter (AdS5) spacetime (RS
throat). The scale ΛIR, at which gravity becomes strongly coupled on the
IR-brane, and the VEV of the EW Higgs őeld are exponentially redshifted
from the 5D gravity scale ΛUV ∼ ΛP on the UV-brane, by the AdS5 warp
factor: one could talk about the warp transmutation of scales. One needs
ΛIR at the terascale to avoid unnatural őne-tuning.

Attempts to UV complete the RS-like models in string theory exist, e.g.
with warped throat geometries à la KlebanovśStrassler [95], but it remains
very challenging to őnd a fully realistic construction [96]. Note that in
such string theory models, the geometry near the IR-tip of the throat is
not AdS5, but this does not spoil the RS mechanism of warp transmutation
of scales. After integrating out the Regge excitations, stringy effects can
be encapsulated into the 5D EFT through higher-dimensional operators,
and the extended features of the strings remain through WNL form factors.
The aim of Section 3.2.2 is to show that a warped EDS realizes the warp
transmutation of both the brane scalar mass and the WNL scale8. In order
to illustrate the mechanism, it is enough to focus on a toy model with a
real Higgs-like scalar őeld in the SFT-inspired WNL őeld theories, and it is
straightforward to generalize the discussion to more realistic WNL Higgs-like
models.

3.2.2. Warp transmutation of scales

Geometrical background: Let a model with a warped EDS compactiőed
on the orbifold S1/Z2 of a proper length πρ, i.e. a 5D Euclidean spacetime
with a metric as in Eq (A.3). The boundaries at y = 0 and y = πρ are called
UV- and IR-branes, respectively. It is assumed that this kind of background

7 Other higher-derivative őeld theories with similar results are the LeeśWick (LW)
theories [92ś94]: δM2

H ∼ M2

LW, where MLW is the mass of the őrst LW-partner.
8 For another mechanism of WNL scale transmutation without EDSs, cf. Ref. [97].
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can arise from some WNL extension of the EinsteinśHilbert gravity. The
5D reduced Planck scale, which is also the UV cutoff on the UV-brane, is
noted ΛUV.
IR-brane őeld: A 4D real scalar őeld H(x) (mass dimension 1) is localized
on the IR-brane with a quartic self-interaction. Since it is a braneśbrane in-

teraction, it is enough to consider a smeared őeld H̃(x), which is delocalized
only in the directions parallel to the IR-brane

H̃(x) = eη
2∆∥ H(x) . (49)

Indeed, as discussed in Section 2.1.3, a delocalization transverse to the brane
is equivalent to rescaling of the self-coupling λ ∈ R+ (mass dimension 0).
The brane action is

SH =

∫
d4x

∮
dy δ(y − πρ)

√
g

[
−1

2
H
(
∆∥ − µ2H

)
H +

λ

4!
H̃4

]
, (50)

with the mass parameter µ2H ∈ R. SH is invariant under the Z2 trans-
formation H(x) 7→ −H(x). When µ2H ≥ 0, H(x) is a KleinśGordon őeld
(vanishing VEV), whereas, for µ2H < 0, it has a nonvanishing VEV that
spontaneously breaks the Z2 symmetry, like a Higgs őeld for a continuous
gauge symmetry. The choice of an SFT-like form factor is not important
for the qualitative statements of this section, e.g. one can instead consider
another UV-damped form factor.
Bulk őeld: A 5D scalar őeld Φ(x, y) (mass dimension 3/2) propagates all
along the EDS and interacts with the brane őeld H(x), such that the 5D
action is

S5D =

∫
d4x

∮
dy

√
g [LB + δ(y − πρ)Lb] , (51)

with the bulk Lagrangian

LB =
1

2

[
−Φ∆∥Φ+ (∂yΦ)

2
]
, (52)

and the brane Lagrangian

Lb = λΦH ÕΦ ÕH . (53)

The brane-localized generic operators ÕΦ and ÕH involve the smeared őelds

Φ̃(x, y) = eη
2∆∥ Φ(x, y) (54)

and H̃(x), respectively, and the coupling λΦH ∈ R is weak. Note that for
simplicity, the őelds are smeared only in the directions parallel to the IR-
brane, and this choice is allowed by the spacetime symmetries at the brane
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position. Considering instead a sufficiently narrow fuzzy IR-brane (i.e. with
a proper width ≪ ρ) would change nothing to the qualitative discussion on
the warp transmutation of scales which is discussed in the following. The
goal of this spinless bulk őeld is just to model some generic 5D őeld coupled
to a brane-localized scalar (the spin degrees of freedom of this bulk őeld are
irrelevant for the following discussion).
Warp transmutation of scales: By using the same method as in Sec-
tion 2.1.2, the study of the KK dimensional reduction to 4D of the free local
őeld Φ(x, y) can be found in Ref. [98] in the case of an RS throat. The

KK decomposition of the smeared őeld Φ̃(x, y) is formally the same as in
Eq. (12), where the smeared KK-mode interaction is

ϕ̃n(x) = eη
′2∂2µ ϕn(x) , (55)

where η′ = 1/Λ′
η, with Λ′

η = e−A(πρ) Λη. One needs also to rescale the
brane őeld H(x), in order to get a canonically normalized kinetic term [55]:
h(x) = e−A(πρ)H(x), such that the 4D action involving only the őeld h(x) is

Sh =

∫
d4x

[
−1

2
h
(
∂2µ − µ2h

)
h+

λ

4!
h̃4
]
, (56)

where µh = e−A(πρ) µH . For a warp factor satisfying A(πρ) ≫ 1, both µ2H
and Λη appear redshifted from their natural 5D values: this result generalizes
the warp transmutation of the RS1 model to the case of the WNL scale9.
It is also useful to introduce the redshifted nonperturbative scale ΛIR =
e−A(πρ) ΛUV on the IR-brane. In the following, the scale hierarchy of the
model is studied in the particular case of an RS throat.
RandallśSundrum throat: It is instructive to discuss the particular case
of an Euclidean RS throat10 (i.e. a slice of EAdS5), where A(y) = ky with
the curvature scale k < ΛUV. The KK-scale is thus MKK = e−A(πρ) k. The
class of WNL theories of gravity considered here are the ones where one
gets the usual 5D EinsteinśHilbert gravity of the RS1 model for energies
E ≪ ΛUV ∼ ΛP. In the following application, only the case of k/Λη ≤ 1
will be considered, such that ΛP/ΛUV should still be of the same order of
magnitude as in the RS1 model. As discussed in Ref. [99] in the local RS1
model, the couplings between the 4D őelds localized on the IR-brane and the
KK-modes become nonperturbative at the scale ΛIR, which is interpreted as
the UV cutoff of the EFT on the IR-brane.

9 For the warped throats in string theory, where ℓs ∼ η, the mass threshold of the
Regge excitations is also redshifted [96], which means that the string scale Ms is
indeed warped down, and it conőrms the consistency of the results of this article
from a top-down approach.

10 This example is just to illustrate the proposed mechanism with a well-known warp
factor, but it is not crucial for the claims of this article to have an RS throat.
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Scale hierarchy: In order to further discuss the scale hierarchy in this
WNL RS1 model, one can introduce the following quantities:

κk =
k

ΛUV
=
MKK

ΛIR
, κµ =

|µH |
ΛUV

=
|µh|
ΛIR

, κη =
Λη
ΛUV

=
Λ′
η

ΛIR
, (57)

such that

Ð In order to be in the classical regime for the background metric, one
needs κk ≪ 1. In practice, a mild hierarchy κk ∼ 10−1 or 10−2 is
sufficient.

Ð The natural value of κµ depends on the sensitivity of |µH | on the higher
scales η and/or ΛUV.

Ð 3 benchmark points will be considered for κη, i.e. κη → ∞, κη = 1,
and κη = κk.

Note that both Λη and k are stable under radiative corrections (as well as
their redshifted quantities). A mild hierarchy with ΛUV is then natural from
a technical naturalness point of view (no őne-tuning), but not from a Dirac
naturalness one (i.e. one may want to explain this mild hierarchy by a UV
mechanism).
Benchmark limit κη → ∞: By keeping ΛUV őxed, it means that the WNL
scale Λη decouples, and one gets a local RS-like model, so the radiative
corrections δµ2h to µ2h scale as [55, 99]

δµ2h ∼ Λ2
IR ⇒ κµ ∼ 1 (naturalness) . (58)

For a realistic model of EW symmetry breaking, H(x) is promoted to the
Higgs őeld in the EW theory. When the RS1 model was published in
1999 [55], ΛIR could be as low as few TeV with kπρ ≃ 34. Nowadays,
since MKK is constrained by the LHC to be at the TeV scale [1], there is a
little hierarchy problem, which is usually worse than in other BSM scenarios
based on a new symmetry because κk ≪ 1 ⇒ ΛIR ≫ 1 TeV and |µh| ∼ ΛEW.
Benchmark point κη = 1: The WNL scale Λη is redshifted to Λ′

η on the
IR-brane. Any őeld localized on the IR-brane will then give contributions
to δµ2h such that [22]

δµ2h ∼ Λ′2
η ⇒ δµ2h ∼ Λ2

IR ⇒ κµ ∼ 1 (naturalness) . (59)

The situation is thus the same as for the local RS-like models (κη → ∞).
Benchmark point κη = κk: In this case, η ∼ k ≪ ΛUV (it may be possible
that a UV mechanism sets this mild hierarchy). The radiative corrections
δµ2h to µ2h, from the 4D őelds localized on the IR-brane, will give [22]

δµ2h ∼ Λ2
h ⇒ δµ2h ∼M2

KK ⇒ κµ ≪ 1 (naturalness) . (60)
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In a realistic model with the Higgs őeld of the EW theory, even if ΛIR ≫MH ,
the Higgs boson mass is protected above the redshifted WNL scale Λ′

η. With
κη = κk, one gets a shadow-warped EDS, which should reduce the little
hierarchy problem in RS-like models if Λ′

η is at the TeV scale, which seems
to be roughly the current constraints, at least in the toy 4D models of the
literature [22, 100]. Nevertheless, a complete realistic model is needed for a
quantitative statement of the possible remaining őne-tuning, which should
be sensitive to the form of the WNL form factor.

4. Conclusion

In this article, new possibilities for model building with EDSs and branes
have been presented based on the amazing features of string-inspired non-
locality. In Section 2, a WNL braneworld action has been studied for the
őrst time. In this 5D toy model, it has been shown that WNL smears the
interactions of 4D őelds localized on a δ-like 3-brane, such that one can talk
about a fuzzy brane. It is then possible that 4D őelds localized on 2 different
fuzzy branes can interact, which is not possible in a local 5D EFT unless
they are identiőed with the quasilocalized zero modes of some 5D őelds [40].
Therefore, in a WNL framework, it is possible to have quasilocalized 4D
modes which do not come with the KK-excitations [46]: this is a rather
unique feature of WNL braneworlds that distinguishes them from their local
cousins. Moreover, the KK-excitations of bulk őelds whose masses are above
the WNL scale have sizable suppressed couplings with the brane-localized
őelds. If the WNL scale coincides with the KK-scale, one thus expects to be
able to suppress the effect of the KK-excitations on the observables, com-
pared to the local braneworld models (shadow EDS). Nevertheless, a better
understanding of the phenomenology of this UV nonlocal regime is needed
to make solid conclusions.

In Section 3.1, an application of fuzzy branes to ŕavor physics is pro-
posed. Inspired by the AS models of split fermions [53], suppressed effective
4D Yukawa couplings are realized by localizing Weyl fermions on different
fuzzy brane with a bulk Higgs, such that one should be able to reproduce the
same phenomenology as in Ref. [54]. It also offers an accurate EFT frame-
work for intersecting brane models. One can imagine other applications in
BSM models where feeble interactions are important, such as in dark matter
and hidden sectors.

In Section 3.2, a model with a warped EDS has been considered. A 4D
scalar őeld is localized on the IR-brane, and it has been shown that both the
mass of the scalar őeld and its WNL scale undergo a warp transmutation
à la RS. This feature provides a built-in perturbative UV cutoff to stabilize
physical scales provided by a Higgs mechanism, such as in the standard EW
theory.
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Appendix A

Notations and conventions

Ð The WNL őeld theories considered in this article must be deőned on
spacetime with the Euclidean signature (++ · · ·+). Indeed, when one
computes S-matrix elements, only the momenta of the external states
are analytically continued to the Minkowskian signature (− + · · ·+)
à la Eőmov in order to preserve unitarity [17ś20, 81ś86].

Ð The Gaussian function δ
(d)
η (ξ) on R

d with d ∈ N
∗ (noted simply δη(ξ)

when d = 1) can be expressed as the kernel11 of an inőnite-derivative
operator

∀ξ ∈ R
d , δ(d)η (ξ) = eη

2∆d δ(d) (ξ) =

(
1

4πη2

)d/2
exp

(
−
∥∥∥∥
ξ

2η

∥∥∥∥
2
)
,

(A.1)
where ∆d is the Laplacian on R

d, ∥ · ∥ is the Euclidean norm, and the
Dirac generalized function12 δd(ξ) on R

d (of mass dimension d, and
noted simply δ(ξ) when d = 1) is normalized as

∫
ddξ δ(d)(ξ) = 1 . (A.2)

Ð In this study, the analysis is limited to spacetimes with 1 ŕat/warped
EDS, whose metric can be put in the form

ds2=gMN (y) dx
MdxN =gµν(y) dx

µdxν+dy2 , gµν(y)= e−2A(y) δµν ,
(A.3)

where µ ∈ J0, 3K, M ∈ J0, 4K, and e−A(y) is the warp factor. One has
A(y) = 0 in the ŕat case, and A(y) is an increasing function in the
warped case. In this choice of coordinate system, both the determinant
of the 5D metric and the one of the induced metric on a 3-brane at
the coordinate y are given by g = e−8A(y). The 5D Laplacian can thus
be split as

∆ = ∆∥ +∆⊥ , (A.4)

11 Usually called the heat kernel.
12 Generalized functions are also usually called distributions in the literature [58].
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such that when it acts on a scalar őeld Φ(x, y), one has

∆∥Φ = gµν(y) ∂µ∂νΦ = e2A(y)∂2µΦ , (A.5)

and

∆⊥Φ =

√
1

g
∂y (

√
g ∂yΦ) = e4A(y) ∂y

(
e−4A(y) ∂yΦ

)
, (A.6)

where ∂2µ = ∂µ∂µ is the Laplacian on R
4.

Ð The orbifold S1/Z2 is obtained by modding out the circle S1 of radius
ρ ∈ R

∗
+ by the group Z2, cf. Ref. [3]. A point on S1 is labeled by

the coordinate y ∈ (−πρ, πρ]. There are 2 őxed points localized at
y = 0, πρ, which have the features of δ-like 3-branes. This orbifold is
topologically equivalent to the interval [0, πρ]. The Dirac generalized
function δ(y) (mass dimension 1) on the circle S1 is normalized as

∮
dy δ(y) = 1 . (A.7)

Ð The 4D Euclidean Dirac matrices are taken in the Weyl representation

γµ =

(
0 −iσ−µ
iσ+µ 0

)
, (A.8)

with

σ±µ = (∓i, σi) , {γµ, γν} = 2δµν , (A.9)

where (σi)i∈J1,3K are the 3 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.10)

A 4D Euclidean Dirac spinor ψ can be decomposed into its chiral
components

ψ =

(
ψL

ψR

)
. (A.11)

The operator ✓∂ is deőned as

✓∂ψ(x)=γµ∂µψ(x) , ✓∂ψL(x)=σ
+
µ ∂µψL(x) , ✓∂ψR(x)=σ

−
µ ∂µψR(x) .

(A.12)
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