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Quark number susceptibility on the lattice, obtained by merely adding a μN term with μ as the chemical 
potential and N as the conserved quark number, has a quadratic divergence in the cut-off a. We show 
that such a divergence already exists for free fermions with a cut-off regulator. While one can eliminate 
it in the free lattice theory by suitably modifying the action, as is popularly done, it can simply be 
subtracted off as well. Computations of higher order susceptibilities, needed for estimating the location 
of the QCD critical point, then need a lot fewer number of quark propagators at any order. We show that 
this method of divergence removal works in the interacting theory.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The phase diagram of the strongly interacting matter described 
by Quantum Chromodynamics (QCD) has been a subject of intense 
research in the recent years. Usual weak coupling perturbative 
approach may work for sufficiently high temperatures. However, 
the gauge interactions are likely to be strong enough for tem-
peratures close to �QCD , the typical scale of QCD, necessitating 
strong coupling techniques. Lattice QCD is the most successful 
non-perturbative technique which has provided us with some in-
teresting results pertaining to the phase diagram. It is now fairly 
well known from independent lattice studies that the transition 
from the hadron to the quark gluon plasma phase at zero baryon 
density is a crossover [1–3]. At non-zero density, or equivalently 
nonzero quark chemical potential μ, one has to face a sign prob-
lem: quark determinant is complex. This does not allow for an 
importance sampling based Monte Carlo study. Several ways have 
been advocated in the recent years to circumvent the sign problem 
in QCD [4–7]. From perturbative studies of model quantum field 
theories with the same symmetries as QCD [8] and chiral model 
investigations at T << μ [9], a critical end-point is expected in 
the QCD phase diagram. If present, the critical-end point would 
result in the divergence of the baryon number susceptibility. Thus 
its Taylor expansion [7] at finite baryon density as a series in μB/T
can be used to compute the radius of convergence, and there-
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fore, an estimate of the location of the critical end-point [10,11]. 
First such estimates of the radius of convergence of the Taylor se-
ries have predicted the critical end-point to be at T E/Tc = 0.94
and μB/T E = 1.8(1) [11]. Recently, a study on a finer lattice has 
suggested the continuum limit to be around T E/Tc = 0.94(1), 
μB/T E = 1.68(5) [12]. In the heavy-ion experiments, the fluctu-
ations of the net proton number could act as a proxy for the 
net baryon number. The STAR experiment at Brookhaven National 
Laboratory has reported the measurements for the fluctuations of 
the net proton number for a wide range of center of mass en-
ergy 

√
s, of the colliding heavy ions between 7.7 and 200 GeV. 

At 
√

s = 19.6 GeV the experimental data are observed [13] to de-
viate from the predictions of the proton fluctuations for models 
which do not have a critical end-point, and is similar to the lat-
tice QCD-based predictions [14] for a critical point, signaling its 
possible presence. It would be thus important to have a thorough 
understanding of the systematics of the lattice QCD results and 
make them as much reliable as possible.

In addition to the usual suspects, such as continuum extrap-
olation or effects due to the finiteness of the lattice spacing, the 
scale-setting, and the statistical precision of the measurements, a 
key new important factor is that the radius of convergence esti-
mate requires ratios of as many higher orders of quark number 
susceptibilities (QNSs) as possible. Currently the state of the art is 
the eighth order QNS [10,11]. It is very important to verify whether 
the existing results are stable if ratios of further higher order of 
QNS are taken into account. In order to calculate the QNS of or-
der m, one has to take the mth-derivative of the free energy with 
respect to the quark chemical potential. Since the popular method 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of incorporating the chemical potential on the lattice is through 
exp(±μa) factors multiplying the forward and the backward tem-
poral gauge links respectively of the fermion operator [15,16], 
there is an ever increasing proliferation of terms of varying sign 
as m increases. Their large number as well as the large cancella-
tions amongst them at a specific order make it difficult to increase 
m beyond eight at present. Introducing the chemical potential by 
a μN-term, where N is the corresponding conserved charge, leads 
to both much fewer terms and lesser cancellations at the same m
[17], thereby reducing the computational cost up to 60% at eighth 
order; more savings ought to accrue by going to even higher or-
ders. Not only will this improve the precision of the location of the 
critical point but more precise Taylor coefficients and more terms 
in the Taylor expansion can potentially also lead to a better control 
of the QCD equation of state at finite baryon density which will be 
needed for the analysis of the heavy-ion data from the beam en-
ergy scan at RHIC as well as the future experiments at FAIR and 
NICA.

In this paper, we discuss whether such a linear in μ approach 
is viable or has unsurmountable problems by comparing with the 
usual exponential in μ method. In Section 2, we revisit the num-
ber density for non-interacting fermions in the continuum using a 
cut-off regulator. We point out that divergences appear already in 
the continuum free theory when the cut-off regulator is taken to 
infinity contrary to the common knowledge. We then discuss an 
approach to tackle this divergence in the free theory. By perform-
ing continuum extrapolation of the second and fourth order QNS 
for quenched QCD for the linear in μ method, we validate it in 
Section 3. This is the most important result of our paper. We dis-
cuss its possible consequences and the extensions to higher order 
QNS.

2. Thermodynamics of non-interacting fermions

QCD thermodynamics can be derived from its partition func-
tion, written in the path integral formalism [18] as,

Z =
∫

DAμDψ̄Dψ

× e
∫ 1/T

0 dτ
∫

d3x
[
−1/2 Tr(F2

μ,ν )−ψ̄(γμ(∂μ−igAμ)+m−μγ4)ψ
]
, (1)

where ψ , ψ̄ and Aμ represent the quark, anti-quark and the gluon 
fields respectively, whose the color indices are not written explic-
itly above. μ is the chemical potential for the net quark number 
with the corresponding conserved charge being 

∫
d3xψ̄γ4ψ . Gen-

eralizations to various conserved flavor numbers is straightforward. 
For simplicity, we will consider only a single flavor with the bary-
onic chemical potential μB = 3μq . Appropriate derivatives of Z
lead to various thermodynamical quantities, e.g., the quark num-
ber density, or equivalently (1/3) the baryon number density, is 
defined as,

n = T

V

∂ lnZ
∂μ

|T =fixed (2)

Earlier attempts to discretize the above theory to investigate the 
finite baryon density physics on a space–time lattice revealed 
μ-dependent quadratic divergences in the number density and the 
energy density when the chemical potential is introduced in the 
quark Dirac operator by multiplying it with the corresponding con-
served charge on the lattice. These divergences, which appear as a 
μ/a2 term in the expression for the lattice number density with 
a as the lattice spacing, are present even if the gauge interactions 
are absent. Through explicit calculation of the number density for 
non-interacting fermions on the lattice, it was then shown [15,16,
19] that suitable modification of the μN term in the action, elimi-
nates these divergent terms on the lattice, and yields a finite a → 0
continuum limit. Numerical studies of the QNS for the interacting 
theory subsequently confirmed that once the free theory diver-
gences are thus eliminated, no further divergences arise [20,21]. 
A succinct way to describe all the various actions is to introduce 
functions f (μa)[g(μa)] as the multiplying factors for the forward 
(backward) timelike gauge fields on the lattice. While for the naive 
discretization, f = 1 +aμ and g = 1 −aμ leads to a divergent bary-
onic susceptibility in the continuum limit, the choice f = exp(aμ)

and g = exp(−aμ) does not.
Clearly since all derivatives of f and g are nonzero for the ex-

ponential case, whereas only the first derivative is nonzero for the 
linear case, higher order QNS are a lot simpler for the latter. Fur-
thermore, for fermions with better chiral properties such as the 
Overlap fermions or the Domain Wall fermions, the exponential 
form leads to a loss [22] of the exact chiral symmetry on lattice 
for nonzero μ. Indeed the only chiral symmetry preserving form 
these fermions have for finite μ and a is the linear form [23]. 
This motivates us to revisit the issue of the nature and origin of 
these divergences when the chemical potential enters linearly in-
stead of the exponential form. As we show below, the divergences 
are present for the continuum free fermions as well, and the lattice 
regulator simply faithfully reproduces them. While one can employ 
the freedom of lattice action to eliminate them, it is not necessary. 
Indeed, one can perhaps employ simpler subtraction methods to 
eliminate them, as we demonstrate in this paper.

2.1. Continuum free fermions

Results for the continuum free fermions are easily found in 
textbooks [18]. We review them below solely with the idea of 
pointing out explicitly the μ-dependent divergences present in 
them. For simplicity, we consider only massless fermions though 
this derivation can be easily extended for finite mass. The expres-
sion for the number density for free fermions is easily obtained 
from the definitions above as

n = 4iT
∞∑

j=−∞

∫
d3 p

(2π)3

(ω j + iμ)

p2 + (ω j + iμ)2

≡ 4iT
∞∑

j=−∞
F (ω j,μ) , (3)

where p2 = p2
1 + p2

2 + p2
3 and ω j = (2 j + 1)π T . Here we choose 

the gamma matrices to be all Hermitian as is common in lattice 
studies. The continuum convention followed in the standard texts 
has only γ4 as Hermitian and the other gamma matrices are anti-
Hermitian. The expression in Eq. (3) can be evaluated by the usual 
trick of converting the sum over energy states to a contour in-
tegral. The Matsubara frequencies lie on the real ω-axis. Following 
[18] again, one can employ an infinitesimally small contour around 
the each pole on the real ω axis to represent the ω j -sum, and ob-
tain

2π T
∑

j

F (ω j,μ)

= Ltε→0

⎡
⎢⎣

∞+iε∫
−∞+iε

F (ω,μ)dω

eiω/T + 1
+

−∞−iε∫
∞−iε

F (ω,μ)dω

eiω/T + 1

⎤
⎥⎦ . (4)

The line integrals in Eq. (4) can in turn be written in terms of con-
tours in the upper and lower complex ω planes. Using the exact 
identity,
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Fig. 1. The contour diagram for calculating the number density for free fermions at 
zero temperature. P denotes the pole.

F (ω,μ)

eiω/T + 1
= F (ω,μ) − F (ω,μ)

e−iω/T + 1
, (5)

the line integral in the Imω > 0 plane at infinity can be made 
convergent. The number density expression at finite temperature 
and density is,

n = 2i

π

⎡
⎣ ∮

Im ω<0

F (ω,μ)dω

eiω/T + 1
−

∮
Im ω>0

F (ω,μ)dω

e−iω/T + 1

+
∞∫

−∞
F (ω,μ)dω

⎤
⎦ .

(6)

We note that the last term of the above expression contributes 
to number density at all temperatures, T and μ and has only 
μ-dependence. The first two terms yield the usual Fermi–Dirac 
distribution functions. These have no ultraviolet divergences [24]
since the ultraviolet modes are exponentially suppressed. In order 
to examine the last term in detail, let us write it explicitly:

n = 4i

∞∫
−∞

dω

2π

d3 p

(2π)3

(ω + iμ)

p2 + (ω + iμ)2
. (7)

Under a variable transformation ω + iμ = ω′ , it can be recast as

n = 4i

∞+iμ∫
−∞+iμ

dω′

2π

d3 p

(2π)3

ω′

p2 + ω′ 2
. (8)

In order to compute the integral carefully, we impose a cut-off �
on all the four momenta and use the contour in the complex ω
plane in Fig. 1, leading to

n = 2i

∫
d3 p

(2π)3

×
⎡
⎣−i�(μ − p) −

(∫
2

+
∫
4

+
∫
1

)
dω

π

ω

p2 + ω2

⎤
⎦ . (9)

While the first term arises from the residue of the pole of the 
integrand enclosed by the contour, the last three terms in the 
Eq. (9) arise from closing the contour. The line integral 1 is iden-
tically zero because the integrand is an odd function. The sum of 
the line integrals 2 and 4 is∫

2+4

= − 1

2π
ln

[
p2 + (� + iμ)2

p2 + (� − iμ)2

]
. (10)

Since � >> μ, � being the cut-off, expanding the logarithm and 
retaining the leading term,
∫
2+4

= − 4iμ�

2π(�2 + p2)
. (11)

It is straightforward to do the remaining momentum integrals in 
Eq. (9). The first term leads to the usual μ3 term. However, the 
sum of the two line integrals 2 and 4 in Eq. (11) yields a μ�2

divergence in the expression for number density as below,

−
∞∫

0

dp

2π3

4μp2�

�2 + p2
= −4μ�

�∫
0

dp

2π3

[
1 − �2

�2 + p2

]

= −2μ�2

π3

[
1 − π

4

]
.

Note that the leading diverging �3-contribution, present for μ = 0, 
is the same for the line integrals 2 and 4, and does cancel. It is the 
non-leading μ-dependent term which leads to the �2 divergence 
above. This divergence shows up if one uses Pauli–Villars method 
as well. One then has to introduce additional Pauli–Villars fields 
to cancel this μ�2 divergence from the free energy distinct from 
those which are required to cancel the usual �4 divergence.

Similarly, the lattice as a cut-off regulator for the free theory 
also leads to μa−2 divergence. Using nonzero T as the regulator, 
following the method outlined in [18], yields the contributions of 
only the two terms in Eq. (6). This choice of the regulator does not 
permit the T -independent term of Eq. (6). Such a choice of reg-
ulator is, however, not feasible for lattice QCD computations, and 
indeed, many other interacting theories. In order to obtain physi-
cally meaningful result, the contribution of the line integrals 2 and 
4 has to be subtracted off. This free theory subtraction, though 
μ-dependent is analogous to the subtraction from the pressure at 
T �= 0, commonly used on the lattice in the equation of state com-
putations. We show in the next section that no further divergences 
are observed once the free theory divergence is subtracted from 
the quark number susceptibilities.

3. Quenched results on the lattice

The analytical proof of Refs. [15,16,25] for the lack of diver-
gences in the quark number susceptibility in the exponential μ
case, outlined briefly above in the previous section, was for non-
interacting fermions. No equivalent proof exists for the interacting 
fermions even for the exponential case. On the other hand, it is 
easy to check that for staggered quarks, the chiral symmetry is 
maintained for μ �= 0. For the linear μ case, one even deals with 
conserved baryonic currents on the lattice, aμ being the coefficient 
of the conserved baryon number on the lattice. One therefore ex-
pects no further divergences to arise, and no extra renormalization 
needed, after switching on the gauge interactions in either case. 
This was explicitly checked by numerical simulations in the expo-
nential (indeed, generically for any f · g = 1) case for QCD in the 
quenched approximation [21,27]. It was proposed in Refs. [17,26], 
and again demonstrated for the non-interacting fermions, that the 
spurious and divergent terms arising in the linear μ case can be 
evaluated and explicitly subtracted. Clear tests of such a proposal 
for the interacting case are that the continuum limit of a → 0 of 
the so-subtracted quark number susceptibilities should i) exhibit 
no additional divergences and ii) yield the same result as for the 
exponential μ form. In this section, we report results of our these 
numerical tests for the linear μ case in quenched QCD and ver-
ify that it passes both the tests, as expected. The choice of the 
quenched approximation was governed by the fact that the cor-
responding published available results [21,27] for the exponential 
case make it simpler to compare.
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On an N3 ×NT lattice, the temperature is given by T = 1/(NT a), 
where a the lattice spacing is governed by the gauge coupling 
β = 6/g2. We employ standard Wilson plaquette action for the 
gauge fields and use the staggered quarks for our susceptibility 
determinations with the corresponding Dirac matrix D(aμ) given 
by

D(μ)xy =
3∑

i=1

[
ηi U i(x)δx,y−î − ηi U

†
i (y)δx,y+î

]

− (1 − μa)η4U †
4(y)δx,y+4̂

+ (1 + μa)η4U4(x)δx,y−4̂ + maδx,y. (12)

Here ma is the quark mass and η’s are the usual staggered fermion 
phases. Our quenched QCD configurations were generated by using 
the Cabibbo–Marinari pseudo-heatbath algorithm with three SU(2) 
subgroup update per sweep using the Kennedy–Pendleton updat-
ing method. We chose to simulate at two different temperatures 
and quark masses on a variety of lattice sizes, as listed in Table 1, 
by selecting suitable β values [21,27] such that T was held con-
stant as NT (or equivalently a) was increased (decreased). This 
enabled us to make a continuum limit extrapolation at both the 
temperatures. We quote the temperatures in the units of the crit-
ical temperature Tc corresponding to the first order transition for 
SU(3), defined by using the order parameter, the Polyakov loop. Al-
though we do not need it explicitly anywhere below, we mention 
that Tc = 276(2) MeV [28] in the continuum limit, using the string 
tension value to be 425 MeV to set the scale. Noting from Eq. (12)
that only the first derivative with respect to aμ, D ′ , is nonzero, 
the quark number susceptibility for this linear chemical potential 
action is:

χ20 = T

V

[
〈tr(−D−1 D ′D−1 D ′)〉 + 〈tr(D−1 D ′)2〉

]
(13)

This expression is similar to that in Ref. [10] but without the D ′′
term which is identically zero here, as are further higher deriva-
tives with respect to μ. Our notation is same as in Ref. [10] to 
facilitate comparison of our numerical results below. The traces in 
the above expression were computed stochastically using Gaussian 
random vectors. From the Monte Carlo time evolution of the differ-
ent operators that enter the susceptibility computation, including 
the two terms above separately, we estimate that the autocorrela-
tion length is much less than 1000 sweeps. In order to ensure that 
our measurements are statistically independent, they were done on 
configurations1 separated by 1000 heatbath sweeps and excluding 
the first 5000–10 000 sweeps for thermalization. Such Nconfigs con-
figurations, which varied from 24–100, were employed to obtain 
the thermodynamic averages. The details of the number of random 
vectors and number of configurations used at each quark mass and 
temperature, are summarized in Table 1.

As discussed in the previous section, the choice of D(aμ) in 
Eq. (12) leads to a QNS with a term ∝ 1/a2 for the free case. 
At each value of lattice cut-off, we computed numerically the co-
efficient for this 1/a2-term for non-interacting fermions on the 
corresponding N3 ×∞ lattice and subtracted it from the computed 
values of the susceptibility in the interacting case. If there are no 
additional divergences in the interacting theory, one expects the 
continuum extrapolation in 1/N2

T ∼ a2 performed on these sub-
tracted values of the susceptibilities to have a smooth limit. On 
the other hand, if further divergences do exist in the interacting 
theory then the 1/a2 or equivalently for a fixed temperature the 

1 The configurations generated were rotated to the zero Polyakov loop sector to 
make them similar to full QCD.
Table 1
The parameters for the lattice simulations.

T m/Tc β N NT Nconfigs Nrvec

1.25Tc 5.788 16 4 100 500
6.21 24 8 50 500

0.1 6.36 30 10 60 500
6.505 36 12 24 500

1.25Tc 5.788 16 4 100 500
0.01 6.21 24 8 48 500

6.36 30 10 68 500
6.505 36 12 24 500

6.0609 16 4 100 400
6.3331 32 6 50 400

2Tc 0.1 6.45 24 8 80 400
6.75 22 10 80 400

Table 2
The continuum extrapolation results for the second and fourth order diagonal sus-
ceptibility.

Observable m/Tc T /Tc c1 c3

1.25 0.838(8) 9.1(2)
0.1

χ20/T 2 2 0.94(5) 10(1)

0.01 1.25 0.839(8) 9.4(2)

1.25 0.58(1) 14.9(8)
χ40 0.1

2 0.50(2) 12(2)

N2
T dependent term would survive and increase rapidly to blow up 

in the continuum limit.
The results for the dimensionless second order susceptibility 

χ20/T 2, after the subtraction of the free results at 1.25Tc and 
2Tc are displayed in Fig. 2 for the same physical quark mass 
m/Tc = 0.1, and in the left panel of Fig. 3 for the smaller m/Tc =
0.01. For a comparison, we also plotted the available data from 
[27] of the same quantity at 1.25Tc calculated using the conven-
tional exponential method, in the left panel of Fig. 2. The cut-
off effects in the exponential method are larger than the linear 
method. The difference reduces on finer lattices, thus converging 
to the same continuum limit, in agreement with expectations from 
universality. On general grounds, we expect χ20/T 2 should behave 
as

χ20

T 2
= c1(T ) + c2(T )N2

T + c3(T )

N2
T

+O(1/N4
T ) (14)

Since the values of the second order susceptibilities reduce with 
increasing NT in all the plots, there is clearly no sign of any di-
vergence in the interacting theory with c2(T ) = 0. This is so ir-
respective of the temperature, and even after lowering the quark 
mass by a factor of 10. Our results for the least squares fit of the 
data for the coefficients c1 and c3 are summarized in Table 2. For a 
proper comparison with the earlier data [27], we also included the 
NT = 4 points at both the temperatures. A measure of how good 
the least squares fit represents the data is given by a quantity R2. 
It is defined as the ratio of the sum of squares in the fit model 
to the total sum of squares. The value of R2 = 1 would therefore 
represent the best fit. The values for our fit at 1.25Tc and 2Tc for 
m/Tc = 0.1 are R2 = 0.9982 and R2 = 0.9625 respectively and that 
for m/Tc = 0.01 is R2 = 0.9977. We also tried fits with a logarith-
mic term in Eq. (12) of the form ln(1/N2

T ) both in place of, and in 
addition to, the 1/N2

T term. While the former seems strongly un-
favoured, with an increase in χ2 by a factor of three to five, the 
latter is only marginally ruled out. Additional lattices with larger 
NT are needed to be definitive for the latter case. Thus either only 
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Fig. 2. The second order susceptibility at 1.25Tc (left panel) and 2Tc (right panel) for m/Tc = 0.1. For comparing the cut-off effects we also include the available data from 
[27] for the same quantity, calculated with the conventional exponential method. It is shown by squares in the left panel of the figure.

Fig. 3. The second order susceptibility at 1.25Tc shows no divergence in our method even for m/Tc = 0.01 (left panel). Right panel displays the continuum extrapolated 
results for the diagonal fourth order susceptibility for m/Tc = 0.1 at two different temperatures.
a power law divergence or only a logarithmic divergence is ruled 
out from our present data. As seen in Fig. 2, our continuum ex-
trapolated values are in agreement with the corresponding results 
obtained using the exponential in μ action [27] at these tempera-
tures. We also verified that there is no mass dependent divergent 
term in the expression for the second order susceptibility by per-
forming a similar continuum extrapolation using a different bare 
quark mass of m/Tc = 0.01, as shown in left panel of Fig. 3. The 
second order off-diagonal susceptibility is identical in both the lin-
ear and the exponential method. Since it is zero for free fermion, 
no additional subtraction is necessary for the linear case.

Calculations for free fermions show that the fourth order quark 
number susceptibility has no divergent contributions but an ad-
ditional finite contribution in the continuum limit for the linear 
μ-case. Adopting the same procedure for it as well, we subtract 
the additional obtained free contribution from the correspond-
ing (quenched) lattice QCD determination. For the fourth order 
susceptibility, there are one diagonal and two off-diagonal com-
ponents. Following the convention of [10], these can be written 
as,

χ40 = T

V

[〈O1111 + 6O112 + 4O13 + 3O22 +O4〉
− 3〈O11 +O2〉2] ,

χ22 = T

V

[
〈O1111 + 2O112 +O22〉 − 〈O11 +O2〉2 − 2〈O11〉2

]
,

χ31 = T

V
[〈O1111 + 3O112 +O13〉 − 3〈O11 +O2〉〈O11〉] , (15)

where the operators On satisfy the identities O′
n = On+1 and 

Oi j = Oi · O j and so on. The number density is given by n =
T 〈O1〉/V . O2 = tr(−D−1 D ′D−1 D ′) was the source of the diver-
gence in χ20, which was cured by employing O2 − Ofree div, as 
2
discussed above. In order to be consistent, a subtraction of such 
a constant from O2 in the expressions above should also be done. 
It can be easily verified that such a substitution in the expres-
sions above does not change them at all since all the free theory 
divergence terms arising out of it cancel in each expression. This 
is, of course, consistent with the fact the direct computation of 
the free diagonal susceptibility χ40 has no divergence in the con-
tinuum limit for the linear μ-case either. It does have a constant 
a0 term as an artifact though in the term coming from O4. In-
deed, it is clear that due to dimensional reasons any difference 
between the linear and exponential case must be a constant for 
O4. Moreover, all On for n > 4 will only differ by terms which 
vanish in the continuum limit, being of order an−4. Thus the still 
higher susceptibilities must all agree in the continuum limit with 
the exponential μ-case. Inspired by the success for the second or-
der susceptibility, we computed the O4 for free fermions at the 
same temperature and subtracted it from the value obtained for 
the quenched theory at that temperature in order to eliminate 
the a0 term artifact. Our results for different NT are displayed 
in the right panel of Fig. 3. These results for χ40 also show a 
convergence with increasing NT . Thus there are indeed no addi-
tional divergences in the continuum limit, as anticipated. More-
over, the subtraction of the unphysical artifact appears to have 
been done correctly on each lattice size. The continuum results 
for the exponential case are not available in the literature to fa-
cilitate a comparison unlike Fig. 2. The results do show a con-
verging trend though. The results for the continuum extrapolation 
are tabulated in Table 2. In all these fits the NT = 4 data has 
not been considered since it clearly stands out of the trend. The 
R2 for these fits are 0.996 and 0.978 at 1.25Tc and 2Tc respec-
tively.

For the off-diagonal susceptibilities at fourth order, the free the-
ory artifacts are again zero so no subtraction are expected. Indeed, 
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Fig. 4. The fourth order off-diagonal susceptibility χ22 (left panel) and χ31 (right panel) for m/Tc = 0.1.
we observe this to be true for χ22 in Fig. 4. For χ31 in the right 
panel of the same figure, it appears somewhat difficult to draw any 
definite conclusions although a finite continuum limit is suggested.

4. Summary

Investigations of QCD at finite density, and in particular of the 
QCD critical point, gain from using the canonical Lagrange mul-
tiplier type linear chemical potential term in the fermion actions 
on the lattice. Preservation of exact chiral invariance on the lattice 
seems feasible [23] only for such a linear term for the overlap and 
the domain wall fermions. The higher order quark number sus-
ceptibilities needed for locating the critical point using the Taylor 
expansion approach are easier to compute in the linear case as 
well. However, it is known [15,16,19,25] since long that the linear 
term leads to O(1/a2) divergences in the baryon number suscepti-
bility. We have shown that such a divergence exists already in the 
continuum for a gas of free fermions, and therefore, lattice merely 
faithfully reproduces it. Using simulations of the quenched QCD 
with the staggered fermions, we have verified that once the free 
theory divergence is explicitly subtracted out, the susceptibility has 
no additional divergence in the continuum limit. This is only to be 
expected since the conserved charge, or number density, does not 
get renormalized in an interacting theory. Furthermore, its extrap-
olated value in the continuum agrees very well at two different 
temperatures with the similar continuum results for the fermion 
action using terms exponential in μ, which by construction is free 
from any such divergences. The higher order susceptibilities were 
also shown to be free of divergences in quenched QCD, and it 
was argued why this was to be expected. Further work is clearly 
needed to check that this conclusion hold for the theory with 
dynamical quarks as well, although one expects the maximum pos-
sible difference to arise in the importance of the logarithmic term 
whose numerical significance may not be felt even with the cur-
rent best precision.

An important consequence of our study is that this would en-
able computation of the higher order QNS in a significantly shorter 
time and with better control of errors, thereby enabling use of ra-
tios of still higher order QNS in locating the QCD critical point and 
for a more precise equation of state at finite baryon density. These 
could also be exciting for the heavy ion experiments which have 
already reported preliminary hints of a possible critical point and 
are beginning to probe the finite density region in the ongoing and 
future programs.
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