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Within the framework of large momentum effective theory (LaMET), generalized parton distributions
(GPDs) can be extracted from lattice calculations of quasi-GPDs through a perturbative matching relation,
up to power corrections that are suppressed by the hadron momentum. In this paper, we focus on isovector
quark GPDs, including the unpolarized, longitudinally, and transversely polarized cases, and present the
one-loop matching that connects the quasi-GPDs renormalized in a regularization-independent momentum
subtraction scheme to the GPDs in MS scheme. We find that the matching coefficient is independent of the
momentum transfer squared. As a consequence, the matching for the quasi-GPD with zero skewness is
the same as that for the quasi-parton-distribution-function. Our results provide a crucial input for the
determination of quark GPDs from lattice QCD using LaMET.
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I. INTRODUCTION

Understanding the internal structure of nucleons has been
an important goal of hadron physics. For many decades, our
knowledge on the structure of nucleons has been mainly
relying on experimental measurements of their form factors
(FFs) and parton distribution functions (PDFs). The FFs
describe the spatial distribution of charge and current within
the nucleon and can be probed in elastic lepton-nucleon
scattering, while the PDFs characterize the longitudinal
momentum distribution of quarks and gluons in the nucleon
and can be measured in deep-inelastic scattering processes.

The proposal of generalized parton distributions (GPDs)
(for areview, see e.g., [1-3]) provides a novel opportunity to
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characterize the partonic structure of nucleons. As a gener-
alization of the PDFs to off-forward kinematics, the GPDs
contain a wealth of new information on nucleon structure.
They naturally encompass the FFs, PDFs as well as the
distribution amplitudes (DAs), and offer a description
of the correlations between the transverse position and
longitudinal momentum of quarks and gluons inside the
nucleon, thereby giving access to quark and gluon orbital
angular momentum contributions to the nucleon spin.
Experimentally, the GPDs can be accessed through hard
exclusive processes like deeply virtual Compton scattering or
meson production. Much effort has been devoted to meas-
uring such processes at completed and ongoing experiments
(HERA [4-9], COMPASS [10], JLab [11-14]) and will be
continued at planned future facilities such as EIC [15,16] and
EicC [17]. Given the complicated kinematic dependence of
GPDs, extracting them from the accumulated experimental
data is in general rather difficult, and one usually needs to
resort to certain models that allow for an extrapolation to
kinematic regions that are not accessible directly [18].

On the other hand, lattice effort of studying GPDs has
been mainly focused on the computation of their moments
[19-25]. The full distribution can be reconstructed in
principle if all their moments are known. However, the
number of moments that are calculable on lattice is very
limited, owing to power divergent mixing between different
moments operators and increasing stochastic noise for high
moments operators.

Published by the American Physical Society
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In the past few years, a new theoretical framework has
been developed to circumvent the above difficulties, which
is now known as the large momentum effective theory
(LaMET) [26,27]. According to LaMET, the GPDs can be
extracted from lattice QCD calculations of appropriately
constructed static-operator matrix elements, which are
named the quasi-GPDs. The quasi-GPDs are usually
hadron-momentum dependent but time independent, and
thus can be readily computed on the lattice. After being
renormalized nonperturbatively in an appropriate scheme,
the renormalized quasi-GPDs can then be matched onto the
usual GPDs through a factorization formula accurate up to
power corrections that are suppressed by the hadron
momentum [28,29].

Since LaMET was proposed, a lot of progress has been
achieved both with respect to the theoretical understanding
of the formalism [28—71] and the direct calculation of PDFs
from lattice QCD [33,38,45,46,48,72-82]. The prospects
of extracting transverse momentum dependent (TMD)
PDFs from lattice with LaMET has been investigated in
Refs. [83—-87]. In particular, a multiplicative renormaliza-
tion of both the quark [40,43,44] and gluon [69,70] quasi-
PDFs has been established in coordinate space. This allows
for a nonperturbative renormalization in the regularization-
independent momentum subtraction (RI/MOM) scheme
[88]. For the isovector quark quasi-PDFs, this has been
carried out in Refs. [45,55,77,80] (see also Refs. [42,46,76]).
The relevant hard matching kernel in the same scheme has
also been computed up to one loop [55,65,82]. Despite
limited volumes and relatively coarse lattice spacings, the
state-of-the-art nucleon isovector quark PDFs determined
from lattice data at the physical point have shown a
reasonable agreement [76,77,80] with phenomenological
results extracted from the experimental data [89-93]. Of
course, a careful study of theoretical uncertainties and lattice
artifacts is still needed to fully establish the reliability of the
results.

As for the GPDs, there have been studies on the
perturbative matching of the isovector quark quasi-GPDs
[28,29], which are free from contributions of disconnected
diagrams and mixing with gluon quasi-GPDs. Such studies
were performed in a transverse momentum cutoff scheme
and therefore not well-suited for the lattice implementation.
In this paper, we reconsider the one-loop matching for
isovector quark quasi-GPDs in the RI/MOM scheme. The
results can be used to match the quasi-GPDs calculated in
lattice QCD and renormalized in the RI/MOM scheme onto
the GPDs in MS scheme.

The rest of the paper is organized as follows: in Sec. II,
we establish our definitions and conventions. In Sec. III, we
present a rigorous derivation of the factorization formula
for the isovector quark quasi-GPD based on operator
product expansion (OPE). Sections IV and V are devoted
to the RI/MOM renormalization and matching procedure,
respectively. We also explain how to obtain the matching

coefficients of DAs from the one-loop results of GPDs in
Sec. V. Our summary is given in Sec. VL

II. DEFINITIONS AND CONVENTIONS

The parent function for the quark GPDs, which we call
parent-GPD for simplicity, is defined from the Fourier
transform of the off-forward matrix element of a light-cone
correlator,

F(T,x, & t,p)
o £ —ix{~P*  plt QI r /- /- Q/
_/4ﬂe (P, "0, ¢)|P, Sy, (1)

where x€[-1,1], the light-cone coordinates (*=
(&'4£7)/V/2 with ¢ = (¢, %, &Y, ¢7), and the hadron state
[P, S") (|P”,S")) is denoted by its momentum and spin.
The parent-GPD is defined in the MS scheme and y is
the renormalization scale. The kinematic variables are
defined as

P//+ _P/+ A+
TP P 2P

A=P'—P, =A% ¢= (2)

where without loss of generality we choose a particular
Lorentz frame so that the average momentum

P//l,t _"_ P/lt

P
2

= (P',0,0, P?), (3)
and only consider the case with 0 < & < 1.

The light-cone correlator is given by the gauge-invariant
nonlocal quark bilinear

or.¢) = w(%) Law, <7_ —%)w(—%—) (4)

where I' = y*, y*ys, and ict+ = yty* correspond to the
unpolarized, helicity, and transversity parent-GPDs, respec-
tively. A is a Gell-Mann matrix in flavor space, e.g., A3
corresponds to flavor isovector (u — d) distribution. The
lightlike Wilson line is

&
W, ({7.87) = Pexp [—igs /

g

A+<n->dn-]. (5)

The GPDs are defined as form factors of the parent-GPD
(we follow the convention of Ref. [2]),

F(T,x,&1,p)
l _ _ _ _ A’f
:WM<P’“S”>{H (o £t )P+ ECx ) o)
_ PHAL _ g+ pil
H'(T ———+E(
+ ( ax’éat’/’t) MZ + ( ,x,f,l,ﬂ) M }
xu(P', ), (6)
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where [A F] =2ictA,, 2ysAT, and 2(y T AL — y-AT) for
=y, ytys, and uﬁl, respectively; M is the hadron
mass; H, E, H', and E' are the GPDs. Note that H' and E’
are nonzero only for transversity GPD.

To calculate the quark GPDs within LaMET, we consider
a quark quasi-parent-GPD defined from an equal-time
correlator’

F(T,x, & t,P%fi)

d 2P? ~
_/4; ixzP* v <P”,S”|O(F,Z)|P/,S/>, (7)

where [i is the renormalization scale in a particular scheme,
and N is a normalization factor that depends on the choice
of I'. For example, N = 2P* for I = y*. The nonlocal quark
bilinear

~ b4 z 2z b4
Iz)=y(= A =, —= —=
o =v(3)rew.(5.-5)w(-3) @
is along the z direction with a spacelike Wilson line
Z
Welerz) = pew fig, [“a@ae]. 0
21

The kinematic variables are similar to those in Eq. (2)
except that the “quasi” skewness parameter

Pi-P: A M2
SE ‘—:“0(?)’ (10)
Z

el

P" 4 P< T 2PF

which is equal to £ up to power corrections. From now on
we will replace & with & by assuming that the power
corrections are small.

The quasi-GPDs are defined as form factors of the quasi-
parent-GPD,

F(F,x,f,t,Pz,ﬂ)

1 "noQn P 7z ~ [A7F]
N(P S H(L x, &0, P2 )T+ E(L x,E,1, P fi )4M

5 [ZAL] . [zPL]
+H’(F,x,§,[,//t)T{»E’(F,x,f,[”u)y }M(P/,S/)’
(11)

where H, E, H', and E' are the quasi-GPDs with support
x € (—00,00). Again, A’ and E' are nonzero only for
transversity quasi-GPD. In order to minimize operator
mixing on lattice, we choose I' = y’, y%ys, and ic** for
the unpolarized, helicity, and transversity quasi-GPDs

'We remind the reader that the tilde notation in GPD
community is usually referring to helicity GPDs. In this work,
we use tilde notation to specify quasi-GPDs.

[42,47], respectively, which all correspond to the same
normalization factor N = 2P".

According to LaMET [26,27], the quasi-GPDs and
GPDs are related through a factorization formula. For
example,

Iy " "yP*

- d il _
AT, x.£.1, P i) = / e (; f g L)H(F,y,é,r,m
+(’)<M2 t AQCD> (12)

P2 P2’ 2P2

where M?/P? and t/P? are kinematic power corrections;
Adcp/(x*P?) is the higher-twist correction. Since the

choice of I" corresponds to a unique I', we suppress the
label I in the matching coefficient Cr. Similar factorization
formulas also exist for A, E, and E'. Equation (12) with its
explicit form will be rigorously derived in the next section.

III. OPERATOR PRODUCT EXPANSION
AND THE FACTORIZATION FORMULA

In this section, we derive the explicit form of the
factorization formula for the quasi-GPDs using the OPE
of the nonlocal quark bilinear O(T’, z). The same method
has been used for the “lattice cross section” [94] and quasi-
PDF [58], which are both forward matrix elements of a
nonlocal gauge-invariant operator. In the case of nonsinglet
quasi-PDF, f)(yz,z,u) (e.g., in the MS scheme) can be
expanded in terms of local gauge-invariant operators in the
|z| = 0 limit [58],

_ > (—iz)" »
O(J/”, Z’”) — nZ:O |:Cn(ﬂ2Z2) Te}ll . e”” 0/40/41 Hn (M)
-+ higher-twist terms} , (13)

where ¢ = (0,0,0,1), up=2z2 C,=1+ O(a,) is the
Wilson coefficient, and OFo#1#x(y) is the only allowed
renormalized traceless symmetric twist-2 quark operators at
leading power in the OPE,

trace],
(14)

OFok-+41n (1) = Zoii (e, 1) [l/_/y(”OiBm - igﬂn)w _

where D = (D - D) /2. Here Z" +1(8 u) are multiplicative

MS renormalization factors and (uq - - - u,,) stands for the
symmetrization of these Lorentz indices. Similar technique
can be applied to gluon and singlet quark quasi-GPDs by
including the corresponding twist-2 operators on the right-
hand side of Eq. (13) as well as the mixing between quarks
and gluons. Such an extension has been done for the quasi-
PDF in Ref. [95].
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The multiplicative renormalization shown in Eq. (14) is
valid for the forward case only, as it is known that in the off-
forward case, OHoti-H+(y) can mix with other twist-2
operators with overall derivatives i0* according to the
renormalization group equation [96]

d
2 OQFHok1--Hy
War (u)

(/2]

- Zrnm [0 .

”2m+1

QMY D : iDMl// — trace],

(15)

where the anomalous dimension I' is an upper triangle
matrix. In off-forward matrix elements, the overall deriva-
tive i0* contributes a factor of the momentum transfer A¥.
As a result, the OPE in Eq. (13) cannot maintain its form
under evolution in y, so one has to choose the operator
bases to be the eigenvectors of Eq. (15) so that each of them
is multiplicatively renormalizable.

At leading logarithmic (LL) accuracy, Eq. (15) is
diagonalized by the conformal operators [96,97],

Mg Ty, = = 11, OFOF1Hn ()
D-n-D
= (in - O)"ppCy/? <%>l/f—traces, (16)
n-d+n-0

where n* is an arbitrary four vector, and Cy/*(n) is the
Gegenbauer polynomial. Beyond LL, the conformal oper-
ators start mixing with each other, but Eq. (15) can still be
diagonalized with the “renormalization group improved”
conformal operators [96,98]

n, n ..n O/”O}tl'””"(ﬂ)

Ho'tHy

.D—n-D
—ZBnm [m -0)" in?nﬂ(%)w—traces],

n-0+n-0
(17)

where 5, = 1.

As a result, the nonlocal operator O(y%, z, ) should be
generally expanded in terms of these improved conformal
operators with modified kinematic factors.

For ug=u, =---=p, =+, the off-forward matrix
element of the conformal operator O#o#1--#x (1) is given by

n+l

PIOT T Tl
<P’I(13+)”W*C3/z<g+%§+>wl )
— e [ e (3)ro
—eroe |

ldyC3/2<§>F(}’+,y’§at’M), (18)
1

which is also known as the Gegenbauer moments.

Using Lorentz covariance, we

Hi = ""=HUp =2,

have for ug=

n+l

(P02 ()| P)

p—

1
dyCy/? @) F(yt,y, & tp)
1

(19)

where M2, t < P?, and we have used A - P = 0. The power
corrections originate from the subtracted traces in the
kinematic part of the matrix element, and their exact form
will be derived in the future.

Based on Eq. (19), we have the leading-twist approxi-
mation of the off-forward matrix element of O(y%, z, ),

(P'|O(y*.z, p)|P)

= 2P Z Cn(uzzz F (_ZPZ) Z Bnm(ﬂ)i
-0 m=0

/dyC%/z((:)F(r*,y,f,t,u)
-1

M* 1
4_ C) (}};z_y };Ev Zzl\%x:[):>7

Z Z

(20)

where F,(—zP%) are partial wave polynomials whose
explicit forms are known in the conformal OPE of
current-current correlators for the hadronic light-cone
distribution amplitudes [99]. The higher-twist terms con-
tribute to O(z*Agcp)-

The polynomiality of C;, 3/2 allows us to define for m < n,

nC;/2<y> _ n<5)"c,§{2<y>s nCl <’5> 21
3 ;)= g) =Yl (21)

where C), is also a polynomial that satisfies

1
C (x) = x"CY? (-) . (22)
X
If we define the matching coefficients as
= (xy m d(EzP?) pepe ( w
Cql -2 == —/—e’é N Cu =5 (E2P7)?
et = [T (e

F (—ész)i:Bnm(ﬂ) / e @)
m=0 -1
x & p\_ [dyzP) AyPez N s
G N e WA (e

n=0

F (—szZ)Z)Bnm(u) /_ jdyCIn (g)

(23)

(szz)2>
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then we can Fourier transform Eq. (20) from z to xP* to
obtain the quasi-GPD and its factorization formula

- Idy _ (xy u
F(}/Z,x7§’t’PZ’l,{):/ _Cyz(_7_7—>F(y+’y’§7t7/’t>

—1 ¢ & ELPt
+0<A1f22 ;Z,Aflfg), (24)
= [0 (o) Fr v
olmwmi) @

where the second form in Eq. (25) is postulated in
Refs. [28,29]. Since xP* is the Fourier conjugate to z,
the higher-twist contribution of O(z*Agcp) in Eq. (20)
should be of O(Agcp/(x*P2)) in momentum space with an
enhancement at small x. Such enhancement at small x, as
well as a 1/(1 — x) factor, was also found to exist in the
power corrections from renormalon ambiguities in the OPE
of quasi-PDFs [71]. Based on Eqgs. (24) and (25), we can
infer that the matching coefficients for the quasi-GPDs H,
H', E, and E' must be the same.

For the helicity and transversity quasi-GPDs, y* in
Eq. (13) is replaced by y*y° and ic“t, respectively, and
the local twist-two operators OFo¥1#» are also replaced
accordingly. This will change the kinematic factors in
Egs. (18)—(20), as their tensor structure involves the spin
vector of the external state, but it does not affect the form of
OPE in Eq. (20), nor that of the factorization formulas in
Egs. (24) and (25).

The two matching coefficients in Egs. (24) and (25) are

related to each other by
y H
-,=, = 26
<§ ¢’ fPZ> e

Cpl=,2—
(ynyZ> ‘5

The factorization formulas are similar to the evolution
equations for the GPD [100,101]. Notably, at zero skew-
ness &£ = 0, we have

- Idy X u
F(y%, x,0,1,P%, u :/ —Cz<_,0,—>F yt.v.0.6u
( ) 1 |y| 14 y sz ( )

1‘/[2 t A2CD
+o(—,—, Q ) (27)
P2 Pl P2

where the matching kernel C,:(x/y,0,u/(yP?)) is exactly
the same matching coefficient for the MS quasi-PDF [58],
even when 7 # 0. Moreover, in the forward limit £ — 0 and
t — 0, Eq. (27) is exactly the factorization formula for the
MS quasi-PDF [58].

On the other hand, in the limit £ - 1 and ¢t — 0, we
obtain the factorization formula for the quasi-DA,

F(yt,x,1,t=0,P% )

. H
—/]dycyz<x,y,ﬁ Fyt,y,1,t=0,p)
A
(’)<M QCD>’ (28)

2 ,2p2
Pz Pz

whose explicit form has been postulated in Refs. [38,59,102].

The same procedure described above also applies to the
I' = y' case. This finishes our derivation of the factorization
formula for the isovector quark quasi-GPD, which will
enable us to identify the matching coefficients from the
one-loop calculation in Sec. V.

IV. RENORMALIZATION

Following the strategy in Ref. [102], the UV divergence
of the quasi-GPD only depends on the operator O(T", z), not
on the external states. We can choose the same renormal-
ization factor as the one for the quasi-PDF [55,65]. For each
value of z, the RI/MOM renormalization factor Z is
calculated nonperturbatively on lattice by imposing the
condition that the quantum corrections of the correlator in
an off-shell quark state vanish at scales {fi} = {p* =

—y%,pz = p%} [42,55]

(p|O.z,a)|p)
<p|0(r, <5 a)|p>tree {i}

Z(T.z.a, pg, p}) = . (29)

where 0(F,z, a) is the discretized version of O(F, Z) on
lattice in Eq. (8) with spacing a; the bare matrix element
(p|O(T",z,a)|p) is obtained from the amputated Green’s
function A(T, z, a, p) of O(,z, a), which is calculated on
lattice, with a projection operator P for the Dirac matrix

(p|O(T.z,a)|p) = Tr[A(T.z,a, p)P].  (30)

In a systematic calculation of GPD, we start with the bare
matrix element of the nonlocal quark bilinear on lattice

- 1 -
h<r7 Zyé? t? PZ, a) - N<P”, S”lO(F, 2, a)|P/7 S/> (31)

After performing RI/MOM renormalization and taking the
continuum limit, the renormalized matrix element is

ilR<F, Za 57 t7 PZ,”R’ p%)
— liII(l)Z_l(F,Z7a,ﬂR’pﬁ)E(r’Z’é’ 6Pt a), (32)
a—

which is to be Fourier transformed into the x-space
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F(T,x. &1, P, ug. pf)

dz .-
_ p: / Ziemzf’ F(To2 6, Po g, pl). (33)

Next, we need to disentangle the terms with different
kinematic dependencies to extract quasi-GPDs from F.
Finally, we match quasi-GPDs in the RI/MOM scheme to
GPDs in MS scheme according to Eq. (12). Note that the
continuum limit has been taken after the RI/MOM renorm-
alization, we can therefore calculate the matching coef-
ficient in the continuum as the result is regularization
independent. For simplicity, we choose dimensional regu-
larization in our calculation. The one-loop result will be
presented in the next section.

V. ONE-LOOP MATCHING COEFFICIENT

When the hadron momentum P* is much greater than M
and Agcp, the RMOM quasi-GPD can be matched onto

the MS GPD through the factorization formula [55,58]

A(T.x, &1, P* ug. p)
ldy X é yPZ yPZ =
:/]mcr<_’_’r7—’ Z H(F’y’é’t’ﬂ)

yy K Pr
M? ¢ A2CD
+O< = ) (34)
P2 P2 2P§

where r = u%/(p%)?. Here we have chosen the explicit form
of factorization in Eq. (25). To obtain the matching coef-
ficient, we calculate their on-shell massless quark matrix
element in perturbation theory by replacing the hadron states
in Egs. (1) and (7) with the quark states carrying momentum
p+A/2and p— A/2 with p* = (p',0,0, p*).

At tree level, the GPDs and quasi-GPDs are

HO(T,x,&,t) = HO(, x,&,t, p?) = 8(1 —x), (35)

H'O) — f0) — gO) — E0O) — gr0) — F0) — 0. (36)

At one-loop order, (") and H)) are nonzero and not
equal, so their next-to-leading order (NLO) matching
kernel is nontrivial; since A’(") = H'("), a two-loop calcu-
lation is needed to extract the NLO matching kernel; EM,
EW, E'M and E'D vanish for massless quarks, which

agrees with the GPD quark-target model calculation [103].

For massive quarks, E(V) = E1) £ 0 and E'(V = E'() £ 0
|
t Z 1
Gi(r', x,&) = Gi(rys,x, &) = - -1
x+£& x—1
G, (ic*+,x, &) = — In
R PV [ETAFE:

according to Refs. [28,29], so the NLO matching kernel for
EM and E'D can only be extracted from the two-loop
matrix elements in massive quark states. This can be a cross
check of the factorization formulas in Egs. (24) and (25),
which, however, is beyond the scope of this work.

In order to combine the “real” and “virtual” contributions
(defined in Ref. [55]) in a compact form at one-loop level,
we introduce a plus function defined as

/_ " aslh(]. o) = / " dh(x)lg(x) - 9(D). (37

with two arbitrary functions A (x) and g(x) which could be
piecewise. h(x) can have a single pole at x = 1, whereas
g(x) is regular at x = 1. By taking the limit p’ — p?, we
obtain the matching kernel for the gauge-invariant bare
quasi-GPD and MS GPD in a quark,

C()<Fx§p ”) AT, x. &1, p7 il )
u

- H(l)(f, X, & 1, €), (38)

where the subscript B denotes “bare” and the UV divergence
is regulated by dimensional regularization (D = 4 — 2eyy);
the IR divergences in I:Ig) and H") are regulated by ¢ and
dimensional regularization (D = 4 — 2¢yr), and canceled out
in C](;); there is still UV divergence remaining due to the
virtual contribution for transversity GPD. The results are

cll ><r el u)
u'u
. c , )
:fl (F»xvéap_) +5r,i6:l6(1—x>as F|:___|_1n<lu_,2>i|’
HJ)+ ¥ Euv u
(39)
where 9, is the Kronecker delta,
Gl (r’ X, é) x < —5
7 <r N Pz> aCr | GoCox&p/u) x| <é
AN 2z ) G5(T,x, & pi/u) E<x<1’
-G(I, x,¢) x>1
(40)
and
X I+x x—1
T2 ! +(§ = =¢). 41
TAETIRE) L i (a1)
+ (& = =), (42)
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(x+ (I —x+2) [ 4(1—x)*(x+)(p) x+& -
Gy(y', x,& p*/u) = In -1+ In 43
8 R = -2 "1 )
x+¢
Gy(rys, x. &, p*/u) = Go(y', x, &, p*/u) + . 44
2(rfrs.x. & p*/u) = Gao(y'. x. & p*/u) Bi1 o (44)
: x+€& 4(1 = x)*(x + &) (p*)? ] 26 E—x
G,(ic%t, x, &, p* = In -1 + In , 45
it/ (1—X)(1+é){ (E—0p? -2 " -x 4
1 2 2 2 4 /2 _ £2 1— z\2 2
Gy (' 3. &, p ) = —— 52 [m L (2 I 1] = > nite (46)
(I-x)(1-¢&) p 26(1-&) x=¢
- X
G3(rys. x.& p*/u) = Ga(v'. x. &, p*/p) + 21——52’ (47)
. 2(x — &) 4y/x* = E(1 - x)(p*)? 3 x+¢
G(ic™t, x, & p*/u) = In 1| + In . 48
! S i—an-2) 2 LN “8)
|
Some technical details of the calculation are provided in the et P° MR
Appendix. The above calculation has been carried out in T\ R
momentum space. In principle, the same result can be
obtained from calculations in coordinate space and then [ ( (x—1)+1, r>]
taking a Fourier transform. For examples in the case of +
meson DA and nucleon PDF, see Refs. [71,104]. However, a,Cr 1 /ﬁe
as noticed in [58,71], the step of taking Fourier transform is + 51“,16“5(1 - x) ar |~ % +In AR (49)

highly nontrivial.

We observe that the bare matching coefficients forI" = y/,
¥7s, and ic*+ reduce to that for the quasi-PDFs [58,82]
when £ =0 even if 7 # 0. One can also obtain the bare
matching coefficients of DAs [102] by crossing the external
state with the following replacement & — 1/(2y — 1),
x/& = 2x — 1, and the external momentum p* to p*/2 [28].

Next we need the counterterm of the quasi-GPD in
RI/MOM scheme. As we argued in Sec. IV, we can use the
renormalization factor for the quasi-PDF to renormalize the
quasi-GPD, which leads to the one-loop RI/MOM counter-
term [55,65]

where r = u%/(p%)?; f2(T, x, r) is the real part of the off-
shell quark matrix element of the quasi-PDF calculated at
the subtraction point {fi}; the last term which contains
Ori16(1 — x) is the conversion factor between RI/MOM
and MS schemes for the local operator O(T", 0). We choose
Landau gauge, which is convenient for lattice simulation,
and project out the coefficient of I' (also known as the
minimal projection according to [65]) to obtain f,. The
results for different spin structures are [65,82],

_32r(2r+}§5(rx 8))((2:2())62641»E§)x + —?Er+832/2r(x 4)3 tan— ﬁ x> 1
foly'xr) = asziF 5(3,'37)?_4“”; + 3{:832/’2"(*4)6) tan~'/r — 1 O<x<l1, (50)
e~ s B 5T % <0
S e R S A i S
forirs.x.r) = %2? i ey an V= 1 0<x<1 (51)
T e ) e an ] x <0
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=y

2(13—)() + (r—1)(rrjfc+4x2) + (r:rl-)g%;(_xr—xl) tan”' Yo x> 1
falic®t, x, r) = “fzip e ey tan TV = 1 0<x<1. (52)
— 5 (r—1)(rrj§+4x2) - (r:rlﬁf&r—xu tan™! Y=L x <0
Finally, combining Eqs. (39) and (49), we obtain the one-loop matching coefficient Cr.,
G (xen 2 L) —a -+ ¢ (rone 2 B ) -l (roxn 222 4 o) (53
K Pr K H Pr H
then making the replacements x — x/y, £ = &/y, and p* — yP? [55,58], we obtain Cr in Eq. (34),
i) ) DR G )
yy " Pr y yy M Pr Pr \Y +
+5FML5<1 —%) %m(}@ +0(ad). (54)

VI. SUMMARY

Within the framework of LaMET, we have derived the
one-loop matching coefficients that connect the isovector
quark quasi-GPDs renormalized in the RI/MOM scheme to
GPDs in the MS scheme. The calculation was performed
for the unpolarized, longitudinally, and transversely polari-
zed cases defined with I = ', y%ys, and ic**, respectively.
We also presented a rigorous derivation of the factorization
formula for isovector quark quasi-GPDs based on OPE.
The matching coefficient turns out to be independent of the
momentum transfer squared ¢. As a result, for quasi-GPDs
with zero skewness the matching coefficient is the same as
that for the quasi-PDE. Our results will be used to extract
the isovector quark GPDs from lattice calculations of
the corresponding quasi-GPDs. This work can also be
extended to gluon and singlet quark quasi-GPDs.
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APPENDIX

In this Appendix, we present some technical details in
calculating the following dimensionless integral that arises
from the vertex diagram in Fig. 1:

A A
k=3 | yE+3
00000000
p—k

A A
P—35 | y Pt 35
FIG. 1. One-loop vertex diagram for the quark quasi-GPD.
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N 1 L=y,
I, (X,ff):/ dy1/ dy,
0 0

N(y1.y>)
+ =1+ 1=y + (L+ &)y, }rre’
(A1)

X
{yint

where N is a function of Feynman parameters y; and y,
and n is the power of the denominator of the integrand;

= —t/(p*)?. In unphysical regions (x < —¢& and x > 1),
the integral has no 1/e pole so that it can be easily
calculated by setting € = 0. However, this is not the case
in the Efremov-Radyushkin-Brodsky-Lepage (|x| < &)
and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (£ < x < 1)
regions where there are IR divergences.

As an example, we evaluate the integral with N =1
and n = 3/2. After integration over y,, the remaining
integrand denoted as F(y;,e) contains hypergeometric
functions ,F;. We identify the divergent part of F(y,¢)
|

7 (1-x)
2 —1+2e+elng— FTiEm)
(1-x)

R

-1 +28+£ln4/(1+§>

Finally, we have

1
g ey x<—¢
R AE-)(148)
1 =) [S 2+1In e .»:)} x| < &
13/2(x,§) = (1-2) .
_m[g 2+1In (1;:)} E<x<1
1
= (F=E) x> 1
(A5)

More generally, when calculating the vertex diagram in
Fig. 1, we encounter integrals similar to Eq. (A1) with
numerator of the integrand replaced by polynomials of y,

Y2

0 1

(1=¢,0)

FIG. 2.
singularities are denoted by cross.

yiT(1 = 2e — 2eln(1 = €))|y, —1=2

as A(e)/y1 ™ in the limit of ¢ — 0, and then separate it out
from the integral
|
“,
e—0 0

1
1%/2()575) = / dy, {F(yl,e) —Al(i]
0 Vi
where the first term is convergent so that we can set € = 0
before the integration. We suppress x, & and ¢ dependen-
cies of F and A for simplicity.

In Fig. 2, the singularities are shown in integration

regions. We use Pfaff transformation to extract the diver-
gent part

Ale)

(A2)

ZFi(a,b;c;z) = (1 —z2)7%F, (a, c— bw;z—%) (A3)

We obtain

x| < ¢
ey (A4)

= §<x<1‘

and y,. After integrating out y,, we obtain Appell hyper-
geometric function F;. In this case, to separate the
divergent part, we need Euler transformation

Fi(a:p.B'r:x.y)

Rt (O )

In the following, we list integrals used in our calculation:
(1) Inunphysical region x < —¢&, there is no divergence.

o I=x |1-x x+¢ x—=¢
Il/2_1—§zln Py +2§(1+§)ln (A7)
Y2
1
(0,558 ®
0 IKX\Z' 1 n
(1 57 )

Integration in Efremov-Radyushkin-Brodsky-Lepage (left) and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (right) regions: the
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Iyl _ 1 + 1 In 1—x
W AE(1-9(x=¢) 2(1+9(1-¢)? |x—¢
1 x—=¢&
TRE1 e are (A8)
By =Bl (A9)
v x—3xE+428 1—x 1—x
A = e (R (e [ P
E+x x—¢
+8§3(1—|—§)lnx+§’ (A10)
1?%2 - Iﬁ%/zh:—»—s’ (A11)
oy _ 1 1 —x 1 —x
Be = aea—e fan— e e
X+2xE+E |x-¢&
TRE e lxel (A12)
(2) In Efremov-Radyushkin-Brodsky-Lepage region
x| <&, I3, and I;%z are divergent.
. x+E& 1662 1-x. 1+¢
e g e et A
1 2 E-x1+9
Be=Triog™ -y 0 MY
wo_ 2 1 85(1+¢)
br T T g e T M T 8]
(A15)
P x+¢& 2(1 —x) In 2E(1 —x)
Wore(1-8)  (1-8? (Y-’
(A16)

(=9t

32 = 7 &1 +§)2
_20=x 1 81 +o
firerle ST I-vx o)
(A17)
Y2 __ x+€
U Tk (A18)

3) In Dokshitzer—Gn'bov-Lipatgv—Altarel]zi—Parisi re-
gion £ < x < 1, Iﬁ‘/z, Iﬁjz, Ig‘/z, and Igjz are diver-

gent.

0o x—&  x+é l—x1 4(1=E) /x> =&
2ToH1-8) aE 1-8 " (l-x)

(A19)

noo 17X A20
3/2 — 2(1 _ é) 3/2° ( )
2 l-x

B =358 b (A21)
v (1-x)? 2(1 —x)

b a—grhe g AP
o (1-x)? 1 2(1-x)

13/2 - 2(1 4 6)2 3/2 t/(l _|_§)2 ’ (A23)

gy = 20 =) (A24)

= ri-gy

(4) In unphysical region x > 1, the integrals are the
same as functions in another unphysical region

but with an overall minus sign, 75" (x > 1) =

—If(y"”)(x < —¢). See Eq. (A5) for an example.
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