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1 Introduction

With the discovery of the Higgs boson in 2012, the precise determination of its couplings
to all other standard model (SM) particles became a primary goal of particle physics. Of
special interest are quark-Yukawa couplings. In the SM, they are real and proportional to
the quark masses; any deviation from this relation would indicate physics beyond the SM.
Such new contributions to Yukawa couplings are often unavoidable in extensions of the SM
that predict new particles at the LHC.

Non-SM Yukawa interactions may in fact be related to the dynamics underlying baryo-
genesis. For instance, new sources of CP violation are required for electroweak baryogenesis
(see ref. [1] for a review). Various models of electroweak baryogenesis require a sizeable
phase in the top Yukawa. Naively, such a phase is ruled out by its contribution to the elec-
tric dipole moment (EDM) of the neutron. However, contributions of the other Yukawas
can cancel the contribution to EDMs without spoiling baryogenesis [2]. This motivates a
detailed study of CP-violating contributions to all Yukawa couplings.

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
0
8
0

In ref. [3], EDM constraints on the third generation (top, bottom, tau) Yukawa cou-
plings were presented and compared to bounds from Higgs production and decay at the
LHC (see ref. [4] for a more targeted collider study for the tau Yukawa). Presently,
anomalous bottom Yukawas are more stringently constrained by h→ bb̄ than by hadronic
EDMs [3]. EDM and collider constraints on the electron Yukawa were subsequently studied
in ref. [5]. A more generic approach was taken in a series of works [6–8], in which EDM
constraints on Higgs-quark and Higgs-gluon couplings were studied in the SM effective field
theory (EFT) approach. However, these analyses neglect logarithmically enhanced effects
that were shown to be large in ref. [3], and two-loop Barr-Zee contributions to the light
(up, down, and strange) Yukawas [9].

In the present work, we address CP violation in the bottom- and charm-quark Yukawas.
The leading-logarithmic (LL) analysis for the case of the bottom quark was performed in
ref. [3]. Although not discussed there, the residual perturbative uncertainty is significant,
exceeding the one in the non-perturbative hadronic matrix elements. Recent progress
in lattice determinations of these matrix elements [10–13] motivates a next-to-leading-
logarithmic (NLL) analysis in order to reduce the perturbative error of EDM predictions
for the case of beyond-the-SM CP violation in the bottom and/or charm Yukawa. We
calculate the complete anomalous dimension matrix for the mixing of CP-odd scalar and
tensor operators up to next-to-leading (two-loop) order, and apply our results for a phe-
nomenological study of CP violation in the bottom and charm Yukawa couplings.

This paper is organized as follows. In section 2 we define the effective theory needed for
our calculation, and present the calculation of the renormalisation-group (RG) evolution
of the Wilson coefficients in section 3. We illustrate the impact of our calculation on the
constraints on the CP phases in section 4, and conclude in section 5. The appendices con-
tain further details on our work. In section A we collect the requisite unphysical operators,
in section B we present all relevant renormalisation constants, and in section C we present
the full anomalous-dimension matrix. We discuss effect on our results of a change of the
renormalisation scheme in section D. Section E contains the expansion of the resummed
results.

2 Effective theory below the weak scale

Our starting point is a Lagrangian in which the Higgs particle couples to bottom or charm
quarks differently than in the SM. Such a modification can originate from TeV-scale new
physics that can be parameterised by higher-dimensional operators, e.g., dimension-six
operators of the form

H†HQ̄L,3H
†dR,3 . (2.1)

Here, H denotes the Higgs doublet in the unbroken phase of electroweak gauge symmetry,
while QL,3 and dR,3 represent the left-handed quark doublet and the right-handed down-
quark field of the third generation, respectively.

The presence of such operators induces anomalous couplings of the Higgs particle to
quarks in the electroweak broken phase. At leading order in the electroweak interactions
the above dimension-six operators lead to a modification of the SM Yukawa interactions
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which, for the bottom quark, can be conveniently parameterised as

Lhbb = −y
SM
b√
2
κbb̄ (cosφb + iγ5 sinφb) b h . (2.2)

Here, b denotes the bottom-quark field and h the physical Higgs field. Moreover, ySMb ≡
e√
2sw

mb
MW

is the SM Yukawa, with e the positron charge, sw the sine of the weak mixing
angle, and mb and MW the bottom-quark and W -boson mass, respectively. The real
parameter κb ≥ 0 parameterises modifications to the absolute value of the Yukawa coupling,
while the phase φb ∈ [0, 2π) parameterises CP violation and the sign of the Yukawa. The
SM corresponds to κb = 1 and φb = 0. Modifications of the charm-quark Yukawa can be
parameterised in an analogous way.

The parametrisation of pseudoscalar Higgs couplings solely via the interaction in
eq. (2.2) should be thought of as the dimension-four part of the so-called Higgs Effec-
tive Field Theory [14] or the electroweak chiral Lagrangian [15] in unitarity gauge for the
electroweak sector. In this sense, the SM extended by a pseudoscalar Higgs coupling is
not a renormalizable theory. However, as we consider in this work only loops induced by
the strong coupling, we do not encounter additional divergences since the operators of the
form (2.1) mix only into themselves under QCD [16]. This picture would change if one
considered higher-order electroweak corrections.

The basic idea underlying this work is to calculate the effect of CP-odd phases in the
Higgs Yukawa couplings of the bottom and charm quark on hadronic EDMs. EDMs receive
contributions from partonic CP-violating electric and chromoelectric dipole operators, with
coefficients dq and d̃q. They are traditionally defined via the effective Lagrangian valid at
hadronic energies µ ' 2GeV [17],

Leff = −dq
i

2 q̄σ
µνγ5q Fµν − d̃q

igs
2 q̄σµνT aγ5q G

a
µν + 1

3wf
abcGaµσG

b,σ
ν G̃c,µν , (2.3)

with σµν = i
2 [γµ, γν ], as well as T a the fundamental generators of SU(nc) with Tr[T a, T b] =

δab/2 and nc = 3 the number of colors. This Lagrangian also includes the purely gluonic
Weinberg operator [18]. Its contributions are subdominant because of its small nuclear
matrix elements [17, 19], but are kept for completeness.

CP-violating Yukawa couplings contribute to dq and d̃q via Barr-Zee-type diagrams [20]
with heavy-quark loops, see figure 1. The Weinberg operator is induced via a finite thresh-
old correction [21, 22]. In the case of a CP-violating bottom Yukawa, expanding the loop
functions for small bottom mass and matching directly onto the Lagrangian of eq. (2.3),
we find

dq ' −12eQqQ2
b

α

(4π)3

√
2GFmq κb sinφb xb

(
log2 xb + π2

3

)
,

d̃q ' 2 αs
(4π)3

√
2GFmq κb sinφb xb

(
log2 xb + π2

3

)
,

w ' −gs
αs

(4π)3

√
2GFxb κ2

b cosφb sinφb
(3

2 + log xb
)
,

(2.4)

up to higher orders in xb ≡ m2
b/M

2
h .
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Figure 1. Photonic and gluonic “Barr-Zee” diagrams with modified bottom-Yukawa coupling that
induce an EDM of the light quark q. See text for details.

However, as already noted in ref. [3], such a naive evaluation of the gluonic diagram
leads to an uncertainty of a factor of order five. The uncertainty is related to the ambiguity
in choosing the proper value of the strong coupling αs(µ); namely, at which dynamical scale
should it be evaluated — the weak scale, the bottom-quark mass, or the hadronic scale?
This scale dependence is related to logarithms of the large scale ratios and can be reduced
by resummation of the large logarithms, which is easiest performed in an effective theory
(EFT) framework. The LL series then reproduces the quadratic logarithm in eq. (2.4),
while also resumming all higher-order terms. The uncertainties after the LL resummation
are still large, at the order of two at the Wilson coefficient level. Hence, in this work we
extend the LL analysis of ref. [3] to NLL and discuss the remaining theory uncertainty
via the residual scale and scheme dependence in detail. In addition, we consider also
modifications of the charm-quark Yukawa.

To construct the effective Lagrangian originating from anomalous flavor-conserving,
CP-violating Higgs couplings to quarks we integrate out the heavy degrees of freedom of
the SM (the top quark, the weak gauge bosons, and the Higgs) and match onto an effective
five-flavor Lagrangian. EDMs are then induced by non-renormalizable operators that are
CP odd. The corresponding Lagrangian reads

Leff = −
√

2GF

∑
q 6=q′

∑
i=1,2

Cqq
′

i Oqq
′

i + 1
2
∑
i=3,4

Cqq
′

i Oqq
′

i

+
∑
q

∑
i=1,...,4

CqiO
q
i + CwOw

 ,
(2.5)

where the sums run over all quarks with masses below the weak scale (q, q′ = u, d, s, c, b).
The linearly independent operators are

Oqq
′

1 = (q̄q) (q̄′ iγ5q
′) , Oqq

′

2 = (q̄ T aq) (q̄′ iγ5T
aq′) , (2.6)

Oqq
′

3 = 1
2ε

µνρσ(q̄σµνq) (q̄′ σρσq′) , (2.7)

Oqq
′

4 = 1
2ε

µνρσ(q̄σµνT aq) (q̄′σρσT aq′) , (2.8)
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Oq1 = (q̄q) (q̄ iγ5q) , Oq2 = 1
2ε

µνρσ(q̄σµνq) (q̄ σρσq) , (2.9)

Oq3 = eQq
2

mq

g2
s

q̄σµνq F̃µν , Oq4 = −1
2
mq

gs
q̄σµνT aq G̃aµν , (2.10)

and

Ow = − 1
3 gs

fabcGaµσG
b,σ
ν G̃c,µν . (2.11)

The basis of all CP-odd operators is closed under the renormalisation group flow of both
QCD and QED as they both conserve CP.

In these equations, the γ5 matrix is defined by

γ5 = i

4!εµνρσγ
µγνγργσ , (2.12)

where εµνρσ is the totally antisymmetric Levi-Civita tensor in four space-time dimensions
with ε0123 = −ε0123 = 1, and we use the notation G̃a,µν = 1

2ε
µνρσGaρσ. We have included

the factor 1/2 in the contributions of the Oqq
′

3(4) operators to the effective Lagrangian to
account for the double counting implied by the sums in eq. (2.5). The non-standard sign
convention for Oq3 is related to our definition of the covariant derivative, eq. (A.3).

Note that whenever possible we defined the operators directly in terms of the Levi-
Civita tensors instead of γ5 matrices. This reduces the number of γ matrices entering the
computation of the anomalous dimensions. In d = 4 dimensions our definition is equivalent
to the usual one because of the relation

σµνγ5
[d=4]= − i2ε

µνρσσρσ , (2.13)

valid in d = 4. While such evanescent differences in the definition of the operators do not
affect the leading-order anomalous dimensions, they do affect the next-to-leading-order
results that we compute in this work. For further details regarding our treatment of γ5 see
section 3.2.

3 Renormalisation group evolution

Our goal is the summation of all leading and next-to-leading logarithms via RG improved
perturbation theory in the five-, four-, and three-flavor effective theory. The calculation
proceeds in several steps. First, we integrate out the Higgs and weak gauge bosons together
with the top quark at the electroweak scale, µ ∼Mh = 125.10GeV. After the RG flow, the
heavy (bottom and charm) quarks are integrated out at their respective masses, mb(mb) =
4.18GeV and mc(mc) = 1.27GeV (all numerical input values are taken from ref. [23]).
We then match to an effective three-flavor theory where only the light-quark operators
are present. Finally, we evaluate the Wilson coefficients in the three-flavor theory at
µstr = 2GeV where the hadronic matrix elements of the electric dipole operators are
given by the lattice calculations. The RG evolution between the different matching scales
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Figure 2. Sample tree-level Feynman diagrams contributing to the calculation of the initial condi-
tions of the RG evolution at the electroweak scale for the case of modified bottom-quark Yukawas
(indicated by the red square). Light quarks are denoted by the label q = u, d, s.

is computed using the appropriate anomalous dimensions, following the general formalism
outlined in ref. [24].

The actual calculation was performed with self-written FORM [25] routines, implement-
ing the two-loop recursion presented in refs. [26, 27]. The amplitudes were generated using
QGRAF [28].

3.1 Initial conditions at the weak scale

We augment the SM with flavor-conserving anomalous Higgs Yukawas parameterised as
in eq. (2.2) and at a scale µew ≈ Mh integrate out the heavy degrees of freedom of the
SM. Up to quadratic order in the strong coupling constant, we find the following non-zero
initial conditions for the Wilson coefficients at scale µew:

Cqq
′

1 (µew) = −κqκq′ cosφq sinφq′
mqmq′

M2
h

+O(α2
s) , (3.1)

Cqq
′

4 (µew) = αs
4π

(
3
2 + log µ

2
ew
M2
h

)
mqmq′

M2
h

κqκq′(cosφq sinφq′ + sinφq cosφq′) +O(α2
s) , (3.2)

Cq1(µew) = −
(

1 + αs
4π

(
9
2 + 3 log µ

2
ew
M2
h

))
m2
q

M2
h

κ2
q cosφq sinφq +O(α2

s) , (3.3)

Cq2(µew) = αs
4π

(
1
8 + 1

12 log µ
2
ew
M2
h

)
m2
q

M2
h

κ2
q cosφq sinφq +O(α2

s) , (3.4)

Cq3(µew) = −αs4π

(
3 + 2 log µ

2
ew
M2
h

)
m2
q

M2
h

κ2
q cosφq sinφq +O(α2

s) , (3.5)

Cq4(µew) = −αs4π

(
3 + 2 log µ

2
ew
M2
h

)
m2
q

M2
h

κ2
q cosφq sinφq +O(α2

s) . (3.6)

We see that if a single CP-violating Yukawa is switched on, e.g., the q-Yukawa with q = b, c,
then at tree-level only the operators Oq1 and Oq

′q
1 are induced by the anomalous Higgs

coupling to q, i.e., to bottom or charm quarks, see figure 2. At one loop, also the operators
Oq2...4 and Oqq

′

4 receive non-zero initial conditions (figure 3).
The quark masses in the expressions above are understood to be evaluated at the

matching scale µ = µew. Note that the one-loop expressions depend on the definition of
evanescent operators; our choice is given in appendix A. Our predictions of physical ob-
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Figure 3. Sample one-loop Feynman diagrams contributing to the calculation of the initial condi-
tions of the RG evolution at the electroweak scale for the case of modified bottom-quark Yukawas
(indicated by the red square). Light quarks are denoted by the label q = u, d, s.

servables does not depend on the renormalisation scheme to O(αs); we discuss the residual
scheme dependence in section 4.

3.2 Calculation of the anomalous dimensions

The RG evolution below the weak scale in the presence of the heavy quarks can be calcu-
lated from the mixing of the operators in eq. (2.5). The one-loop results are fully known
(see, e.g., ref. [29]). The two-loop mixing of the dipole operators has been presented in
refs. [30, 31]. As a cross check we have reproduced all these results in the literature (see ap-
pendix D for details). The two-loop mixing of the four-fermion operators among themselves
and into the dipole operators is presented here for the first time.

We calculate the anomalous dimensions by extracting the divergent parts of the inser-
tions of all operators into appropriate Greens functions (see figure 4 for sample diagrams
involving the bottom quark). We use dimensional regularisation, working in d = 4 − 2ε
space-time dimensions, and employ the method of infrared rearrangement (IRA) described
in ref. [32] to disentangle infrared from ultraviolet poles. For the whole computation we
work in generic Rξg gauge for SU(3)c, which provides further checks for the correctness of
the computation.

The appearance of γ5 in closed fermion loops requires special care, since the use of a
naively anticommuting γ5, with {γµ, γ5} = 0 for all µ (NDR scheme) is algebraically incon-
sistent if traces with γ5 have to be evaluated [33]. Since such traces appear in our calculation
we use Larin’s prescription [34] throughout: the Levi-Civita tensor appearing either in the
definition of γ5 or in the effective operators is taken outside the momentum integrals and
acts as a projector on the four-dimensional physical subspace after the momentum inte-
gration has been performed. The momentum integration, including the Dirac algebra, is
then performed in d space-time dimensions. The contraction of the Levi-Civita tensor with
the results of the momentum integrals generates several evanescent operators that affect
the two-loop anomalous dimensions in the usual way; they are listed in appendix A. No
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more than one Levi-Civita tensor appears in any diagram of the computation, so there is
no need to contract multiple tensors.

The RG flow of the Wilson coefficients is governed by the RG equation

dCt

d logµ = Ctγ with γ = αs
4πγ

(0) +
(
αs
4π

)2
γ(1) + . . . , (3.7)

where the superscript t denotes transposition and γ(0), γ(1) are the one- and two-loop
anomalous-dimension matrices, respectively. For our NLL analysis we require the two-loop
mixing of the four-quark operators among themselves and into the dipole operators.

Below we collectively use the subscripts qq′ and q in the γ’s to indicate subblocks of
the full anomalous-dimension matrix. The ordering in each case is

Cqq′ = {Cqq
′

1 , Cqq
′

2 , Cq
′q

1 , Cq
′q

2 , Cqq
′

3 , Cqq
′

4 } , and Cq = {Cq1 , C
q
2 , C

q
3 , C

q
4} . (3.8)

With the definition of evanescent operators given in appendix A, we find the mixing among
four-fermion operators with two different flavors to be

γ
(1)
qq′→qq′ =



−16Nf
3 − 36 −5

2 −28
3

−5
9

1045
12 −

16Nf
3 −35

9

−28
3 −35

2 −16Nf
3 − 36

−35
9

1
4 −5

9

0 16Nf
3 − 24 0

32Nf
27 −

496
3

20Nf
9 − 190 32Nf

27 −
496
3

−35
2 0 2Nf

9 − 37
1
4

4Nf
81 + 10

9
5Nf
54 −

95
12

−5
2 0 2Nf

9 − 37
1045
12 −

16Nf
3

4Nf
81 + 10

9
5Nf
54 −

95
12

16Nf
3 − 24 1288

9 −
208Nf

27 −100
3

20Nf
9 − 190 −200

27 −100Nf
27 − 340

9


. (3.9)

We find for their mixing into four-quark operators with one quark flavor and into dipoles

γ
(1)
qq′→q =



0 0 0 −12mq′
mq

0 0 −16Qq′
Qq

mq′
mq

−5mq′
mq

0 0 0 −4mq′
mq

0 0 −16
3
Qq′
Qq

mq′
mq

−5
3
mq′
mq

0 0 −448Qq′
Qq

mq′
mq

0

0 0 128
3
mq′
mq

−92mq′
mq


. (3.10)
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Figure 4. Sample two-loop Feynman diagrams whose divergent parts contribute to the calculation
of the two-loop anomalous dimensions involving bottom quarks. The empty squares symbolize the
insertion of an effective operator. The diagrams of the kind shown in the middle panel, involving
three different quark flavors, vanish due to the odd number of Dirac matrices in the trace. Diagrams
of the kind shown in the right panel contain traces of Dirac matrices with γ5, which are treated in
the Larin scheme.

For the anomalous dimensions in the q → q sector we find

γ(1)
q→q =



65− 6Nf
Nf
54 −

19
12

848
27

1235
27

60− 40Nf
9

403
3 −

226Nf
27 −6976

9 −820
9

0 0 460Nf
27 + 100

9 0

0 0 112− 128Nf
27

449Nf
27 + 577

9


. (3.11)

The two-loop mixing among the dipole operators Oq3 and Oq4 has been calculated before; the
relation between our results and the literature is discussed in appendix D. All remaining
results are new.

The two-loop ADM that involve the Weinberg operator and do not necessarily vanish
are γ(1)

W→q, γ
(1)
W→qq′ , and γ(1)

W→W . They are not needed in our analysis, since the Weinberg
operator contributes only via a finite threshold correction, see section 3.3 (the two-loop and
three-loop self mixings of the Weinberg operator for the case of Nf = 0 have recently been
published for pure Yang-Mills theory in ref. [35]). All remaining subblocks are zero, i.e.,

γ
(1)
q→q′ = γ

(1)
q→qq′ = γ

(1)
q→q′q′′ = γ

(1)
qq′→q′′ = γ

(1)
qq′→q′q′′ = γ

(1)
qq′→q′′q′′′ = γ

(1)
q→W = γ

(1)
qq′→W = 0 .

(3.12)
The appearance of quark-mass ratios in these matrices is related to the explicit factors of
quark masses in eq. (2.10). These mass ratios are scale- and scheme independent to the
order we are working. They could, in principle, be avoided altogether by defining several
dipole operators with the same field content, but different quark mass factors.

For completeness, we collect the one-loop anomalous dimensions in appendix C.

3.3 Matching at the heavy-quark thresholds

If mq � mq′ , the dipole operators with external q-quark lines receive matching corrections
at the q′-quark threshold. (In practice, q′ = b or q′ = c.) We write the effective Lagrangian
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of the theory in which all heavy q′ quarks have been integrated out as

Leff = −
√

2GF

∑
q

∑
i=3,4

CqiO
q
i + CwOw + . . .

 . (3.13)

Here, q = u, d, s denotes one of the light quarks. CP-violating four-fermion operators
involving only light quarks are present in principle and denoted by the ellipsis; however,
their Wilson coefficients are suppressed by a power of mq/mq′ .

Let us call the theory with and without the q′ quark the f -flavor and (f − 1)-flavor
theories, respectively. At the threshold scale µf the amplitudes in both theories must match
each other; we write the equality between two general amplitudes in these theories as∑

i

Ci,f (µf )〈Oi〉f (µf ) =
∑
i

Ci,f−1(µf )〈Oi〉f−1(µf ) . (3.14)

Here, angle brackets denote appropriate matrix elements. We expand the Wilson coeffi-
cients and matrix elements in the strong coupling of the f -flavor theory:

Ci,f (µf ) = C
(0)
i,f + αs(µf )

4π C
(1)
i,f + . . . , (3.15)

〈Oi〉f (µf ) =
∑
j

(
δij + αs(µf )

4π r
(1)
ij,f + . . .

)
〈Oj〉(0)

f (µf ) , (3.16)

where the ellipses denote higher orders in the strong coupling constant. We expressed
the higher-order matrix elements in terms of tree-level matrix elements, denoted by the
superscript “(0)”, via the coefficients rij .

There are various subtleties to keep in mind when calculating the threshold correc-
tions. The strong coupling constant itself receives a non-vanishing threshold correction at
one loop,

α(f)
s (µf ) = α(f−1)

s (µf )
(

1 + α
(f−1)
s (µf )

4π
2
3 log

µ2
f

m2
q′

+ . . .

)
. (3.17)

Similarly, the gluon field renormalisation receives a non-zero threshold correction. Finally,
the anomalous dimensions of the dipole operators depend explicitly on the number of active
quark flavors. The quark masses, on the other hand, are affected only at the two-loop level
(see, e.g., ref. [36]).

By explicit calculation of various one-loop diagrams (see figure 5), we find, evaluating
eq. (3.14), the following non-zero threshold corrections

C
q,(1)
3,f−1 = C

q,(1)
3,f +

(
24Cqq

′,(0)
3,f (µf )mq′

mq

Qq′

Qq
− 2

3C
q,(0)
3,f (µf )

)
log

µ2
f

m2
q′
, (3.18)

C
q,(1)
4,f−1 = C

q,(1)
4,f +

(
4Cqq

′,(0)
4,f (µf )mq′

mq
− 2

3C
q,(0)
4,f (µf )

)
log

µ2
f

m2
q′
, (3.19)

C
(1)
w,f−1 = C

(1)
w,f −

4
3C

(0)
w,f (µf ) log

µ2
f

m2
q′
− 1

2C
q′,(0)
4,f (µf ) , (3.20)

as a power series in the strong coupling in the (f − 1)-flavor theory.
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Figure 5. Sample Feynman diagrams whose finite parts contribute to the calculation of the match-
ing corrections at the respective heavy-quark thresholds (shown here for the case of the bottom
quark).

4 Numerics

In the last three sections we presented all the ingredients needed to consistently perform
the resummation of large logarithms appearing in hadronic Barr-Zee-type diagrams from
flavor-conserving CP-violating Higgs Yukawas at NLL: the next-to-leading-order (NLO)
(one-loop) matching at the electroweak scale, the NLO (two-loop) anomalous-dimension
matrix, and the (one-loop) threshold corrections for the Wilson coefficients at the heavy-
quark thresholds. In this section, we implement the NLL evolution numerically and discuss
its impact on a set of hadronic EDMs. We first present values for the partonic Wilson
coefficients in dependence of the CP-violating phase and discuss the theoretical uncertainty
in detail. Then we give bounds on the phases using experimental input.

4.1 Wilson coefficients

To compute the effect of modified Yukawa couplings on hadronic EDMs, we need the
values of the induced Wilson coefficients of the electric dipole, chromoelectric dipole, and
Weinberg operators at the scale µstr = 2GeV where the matrix elements of these operators
are evaluated. We consider two cases: first, we only turn on a CP-violating bottom Yukawa
and second, only a CP-violating charm Yukawa.

The dependence on the matching scales µew and µb(c) of the dipole Wilson coeffi-
cients evaluated at scale µstr = 2GeV cancels at NLO in the expansion in αs.1 How-
ever, the RG evolution induces a residual dependence on these scales. This dependence
is formally of higher order in αs and can be used to assess the remaining theoretical
uncertainty of the prediction. In figure 6 we show the value of the dipole Wilson coeffi-
cients, evaluated at 2GeV, as a function of the electroweak matching scale, µew, varied
within Mh/2 ≤ µew ≤ 2Mh. The Wilson coefficients contain terms proportional to either
κb(c) sinφb(c)/M2

h or κ2
b(c) sinφb(c) cosφb(c)/M2

h . For the dipole operators, the latter terms
are subleading. For purposes of illustration we thus choose to plot the case φb(c) = π/2,
setting κb(c) = 1 and factoring out the global Higgs-mass dependence. Focusing first on
the Wilson coefficients Cq3 of the electric dipole operators (red lines), we see that the scale
dependence is both weak and barely reduced by going from LL to NLL. For the coefficients

1In our case, the Weinberg operator does not contribute at LL. Hence, there is no corresponding cancel-
lation to the order we calculated.

– 11 –



J
H
E
P
0
7
(
2
0
2
1
)
0
8
0

80 120 160 200 240

µew [GeV]

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
M

2 h
×
C
q i
(µ

st
r)

[G
eV

2
]

Bo�om: u-quark dipoles

Cu3 : LL
Cu3 : NLL

Cu4 : LL
Cu4 : NLL

80 120 160 200 240

µew [GeV]

Bo�om: d/s-quark dipoles
C
d/s
3 : LL

C
d/s
3 : NLL

C
d/s
4 : LL

C
d/s
4 : NLL

80 120 160 200 240

µew [GeV]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

M
2 h
×
C
q i
(µ

st
r)

[G
eV

2
]

Charm: u-quark dipoles

Cu3 : LL
Cu3 : NLL

Cu4 : LL
Cu4 : NLL

80 120 160 200 240

µew [GeV]

Charm: d/s-quark dipoles
C
d/s
3 : LL

C
d/s
3 : NLL

C
d/s
4 : LL

C
d/s
4 : NLL

Figure 6. Residual dependence of the dipole Wilson coefficients on the electroweak matching
scale. The upper two panels show the effect of a modified bottom Yukawa, the lower two panels
the effect of a modified charm Yukawa. The left plots correspond to operators with external up
quarks, while the right plot show operators with down-/strange-quark external legs. In all cases
the Wilson coefficients are evaluated in the three-flavor theory at the hadronic scale µstr = 2GeV,
for φb(c) = π/2 and κb(c) = 1.

Cq4 of the chromoelectric dipole operator (blue lines) the scale dependence δCq4/C
q
4 is re-

duced by factor of approximately five. In all cases, however, the shift from the LL to the
NLL results is substantial and larger than indicated by the residual scale dependence of
both the LL and NLL result.

It is interesting to note that the RG evolution, in the case of a modified charm Yukawa,
leads to a small Wilson coefficient of the electric dipole operator, such that the contribution
to the hadronic EDMs at low scales is completely dominated by the chromoelectric dipole
operator.

Next, we consider the residual dependence on the matching scale at which the heavy
quark is integrated out. Similarly to figure 6, in figure 7 we show the Wilson coefficients at
2GeV, this time varying the heavy-quark matching scales within 2.5GeV ≤ µb ≤ 10GeV
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Figure 7. The same as figure 6, but the dependence on the matching scale at the bottom- and
charm-quark thresholds is shown.

and 1GeV ≤ µc ≤ 2.5GeV. While the scale dependence of the electric dipole coefficients
Cq3 is still mild (red lines), the chromoelectric coefficients Cq4 (blue lines) show a large
residual scale dependence that is barely reduced in going from LL to NLL. Again, all
Wilson coefficients show a large shift when including the NLL corrections.

While the large scale dependence at NLL can be partly understood by the appearance
of many new, non-zero electroweak initial conditions at NLO (cf. eqs. (3.1)–(3.6)), the
large shift is mainly due to the large numerical values of the entries in the NLO anomalous-
dimension matrix (see, e.g., eq. (3.10)). This suspicion is borne out by expanding the result
of the RG evolution about the bottom-quark matching scale, illustrating the size of the
higher-order corrections; see appendix E for the explicit results of this expansion.

One may then wonder whether these large entries in the anomalous-dimension matrix
are an artefact of a badly chosen renormalisation scheme. In fact, as discussed for instance
in refs. [37, 38], these entries depend on the definition of evanescent operators. Needless to
say, this scheme dependence cancels up to the order to which the calculation is performed.
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Nevertheless, the residual scheme dependence can, in principle, be large. We have tested
this by converting our anomalous dimension to different schemes chosen such that many of
the large entries vanish. While the residual scale dependence is indeed somewhat smaller
in these schemes, the central values of the Wilson coefficients strongly depend on the
choice of scheme, taking values in approximately the same range as indicated by the scale
dependence of the results in our original calculation.

All these observations hint at a slow convergence of the perturbation series. We
therefore adopt the following prescription for the numerical values of the Wilson coeffi-
cients, including our best estimate of the associated remaining theory uncertainty: we
obtain the “central values” of the Wilson coefficients as the value for µew = Mh and
µb(c) = mb(c)(mb(c)) and assign as the theory uncertainty either half the range of the NLL
scale variations, or half the shift between LL and NLL, whichever is larger.

We then find the three-flavour Wilson coefficients, evaluated at 2GeV, of electric dipole,
chromoelectric dipole, and Weinberg operators to be:

Cu3,f=3(2GeV) =
[
(a3u ±∆a3u)κq sinφq + (b3 ±∆b3)κ2

q sinφq cosφq
] GeV2

M2
h

,

Cd,s3,f=3(2GeV) =
[
(a3d ±∆a3d)κq sinφq + (b3 ±∆b3)κ2

q sinφq cosφq
] GeV2

M2
h

,

Cu,d,s4,f=3(2GeV) =
[
(a4 ±∆a4)κq sinφq + (b4 ±∆b4)κ2

q sinφq cosφq
] GeV2

M2
h

,

Cw,f=3(2GeV) =
[
(aw ±∆aw)κq sinφq + (bw ±∆bw)κ2

q sinφq cosφq
] GeV2

M2
h

.

(4.1)

Here, the subscripts q = b, c refer to the cases of the bottom and charm quark, respectively.
The values for the a and b coefficients and their respective uncertainties are given, for the
two cases, in the second and third columns of table 1. We see that in both cases the residual
uncertainty on the dipole Wilson coefficients is of the order of 30%, while the contributions
induced by the Weinberg operator have larger uncertainties. They could potentially be
reduced by a next-to-next-to-leading-logarithmic calculation.

4.2 Bounds on CP phases from hadronic EDMs

In this section we derive constraints on new CP-violating phases in the bottom or charm
Yukawa under the simplifying assumption that only one such phase is present. A global
fit for the general case including constraints from the LHC will be presented in a future
publication [39].

We start with a generic parameterisation of a nuclear dipole moment, X, as

dX = dX(fX,i, ai, bi) . (4.2)

Here, the fX,i with i = 1, . . . , n are the hadronic input parameters entering the prediction
of the given dX . We denote their uncertainties by ∆fX,i. The ai, with i = 3u, 3d, 4, w,
and bi, with i = 3, 4, w, are defined in section 4.1 and given in table 1. They parameterise
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Bottom Case Charm Case
a3u ±∆a3u 0.125± 0.034 (6.78± 2.00)× 10−3

a3d ±∆a3d 0.115± 0.028 (1.55± 0.49)× 10−2

a4 ±∆a4 −0.311± 0.076 (−6.25± 1.58)× 10−2

aw ±∆aw (4.10± 2.50)× 10−3 (4.10± 2.05)× 10−3

b3 ±∆b3 (−1.66± 1.35)× 10−4 (−2.00± 3.68)× 10−5

b4 ±∆b4 (1.84± 0.36)× 10−3 (−2.71± 3.36)× 10−4

bw ±∆bw (−1.63± 1.00)× 10−2 (−3.41± 1.69)× 10−3

Table 1. Numerical values for the coefficients a and b and their respective uncertainties as defined
in eq. (4.1).

the Wilson coefficients that contribute to dX if either the bottom or the charm quark
Yukawa is modified. By standard quadratic error propagation we compute the total theory
uncertainty

∆dthX =


n∑
i=1

(
∂dX
∂fX,i

∆fX,i

)2

︸ ︷︷ ︸
≡(∆dhadronic

X )2

+
∑
j=1

(
∂dX
∂aj

∆aj

)2

+
∑
j=1

(
∂dX
∂bj

∆bj

)2

︸ ︷︷ ︸
≡(∆dshort-distance

X )2



1
2

. (4.3)

To derive the allowed confidence level (CL) intervals from the measurements of dipole
moments and to combine them we construct a χ2 function of two parameters, κq, φq or
equivalently of κq sinφq, κq cosφq:

χ2(κq, φq) =
∑
X

(dobsX − dX)2

(∆dexpX )2 + (∆dhadronicX )2 + (∆dshort-distanceX )2 , (4.4)

where we have neglected the tiny SM contribution to any EDM. The allowed 68.27% CL
region for the two-parameters are then given by the region χ2(κq, φq)− χ2

min ≤ 2.30.
The relation between the coefficients dq, d̃q, and w in eq. (2.3) and the Wilson coeffi-

cients in the three-flavour EFT is

dq(µ) =
√

2GF
Qqe

4παs
mq C

q
3(µ)− 12eQqQ2

b

α

(4π)3

√
2GFmq κb sinφb xb

(
log2 xb + π2

3

)
,

d̃q(µ) = −
√

2GF
1

4παs
mq C

q
4(µ) ,

w(µ) =
√

2GF
1

4παs
Cw(µ) .

(4.5)

In the expression for dq above we have included the electroweak contribution of eq. (2.4).
From this we obtain the neutron EDM as

dn
e

= (1.1± 0.55)(d̃d + 0.5 d̃u) +
(
guT
du
e

+ gdT
dd
e

+ gsT
ds
e

)
± (22± 11)wMeV , (4.6)
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where the matrix elements of the electric dipole operator are parameterised by guT =
−0.24(3), gdT = 0.85(8), gsT = −0.012(18). These values are calculated using lattice QCD
with 2 + 1 active flavors and are converted to the MS scheme at 2GeV [40, 41] (see ref. [42]
for a Nf = 2 + 1 + 1 result). By using the lattice values of the three-flavour theory we
include the effect of threshold corrections associated to the charm quark. To capture this
effect in the four-flavour theory the matrix elements of four-quark operators with charm
quarks would also need to be evaluated via lattice methods. The hadronic matrix elements
of the chromoelectric dipole and the Weinberg operators are estimated using QCD sum
rules and chiral techniques [17, 19]. Notice that the sign of the hadronic matrix element
of the Weinberg is not known, and thus the allowed CL intervals will depend on it. For
prospects on obtaining the latter via lattice calculations see refs. [12, 13].

The experimental 90% CL exclusion bound obtained in ref. [43] is |dn| < 2.9 ×
10−26 e cm. Using the central values of the Wilson coefficients in table 1 and the two-
parameter χ2 we compute the allowed 68.27% CL intervals for the bottom- and charm-
quark cases. The label “signw” indicates whether the sign of the Weinberg-operator con-
tribution in eq. (4.6) is taken to be positive or negative. We show the CL intervals for
the cases in which: i) no theory uncertainty is included (no theory error label), ii) only
the short-distance theory uncertainty is included (with short-distance theory error label)
iii) the short-distance theory uncertainty is added in quadrature with the present theory
uncertainties of the hadronic input (with theory error label). For brevity we introduce the
short-hand notation sinφb(c) ≡ sb(c) and cosφb(c) ≡ cb(c). For the bottom case we find the
allowed 68.27% CL regions to be:

κb|sb|
√

1 + 0.40κbcb + 0.040κ2
bc

2
b ≤ 3.5 [signw = −, no theory error] , (4.7)

κb|sb|
√

1 + 0.49κbcb + 0.0037κ2
bc

2
b ≤ 3.8 [signw = −, with short-distance theory error] ,

(4.8)

κb|sb|
√

1 + 5.4κbcb − 0.27κ2
bc

2
b ≤ 12 [signw = −, with theory error] , (4.9)

κb|sb|
√

1− 0.39κbcb + 0.037κ2
bc

2
b ≤ 3.1 [signw = +, no theory error] , (4.10)

κb|sb|
√

1− 0.45κbcb + 0.0082κ2
bc

2
b ≤ 3.4 [signw = +, with short-distance theory error] ,

(4.11)

κb|sb|
√

1− 1.5κbcb − 0.054κ2
bc

2
b ≤ 6.4 [signw = +, with theory error] . (4.12)

For the charm case we find:

κc|sc|
√

1 + 0.53κccc + 0.069κ2
cc

2
c ≤ 21 [signw = −, no theory error] , (4.13)

κc|sc|
√

1 + 0.78κccc + 0.047κ2
cc

2
c ≤ 25 [signw = −, with short-distance theory error] ,

(4.14)

κc|sc|
√

1− 0.31κccc + 0.024κ2
cc

2
c ≤ 13 [signw = +, no theory error] , (4.15)
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κc|sc|
√

1− 0.35κccc + 0.011κ2
cc

2
c ≤ 14 [signw = +, with short-distance theory error] ,

(4.16)

κc|sc|
√

1− 0.61κccc − 0.010κ2
cc

2
c ≤ 19 [signw = +, with theory error] . (4.17)

Due to the large theory uncertainties there is no 68.27% CL interval for the case signw = −
when the full theory uncertainties are included.

Other hadronic EDMs give, in principle, complementary bounds. For instance, the
contribution to the mercury EDM is given by [19]

dHg
e

= −1.8× 10−4(4+8
−2
)(
d̃u − d̃d

)
. (4.18)

Using the current upper experimental 95% CL bound |dHg| < 3.1 × 10−29 e cm [44] we
compute the allowed 68.27% CL intervals from the two-parameter χ2. The presently large
hadronic uncertainty in eq. (4.18) does not constrain the parameter space at the 68.27%
CL. We thus include only the theory uncertainties associated to short-distance dynamics
in our bounds. For the bottom case we find the allowed 68.27% CL regions to be:

κb|sb|
√

1− 0.012κbcb + 0.000035κ2
bc

2
b ≤ 8.9 [no theory error] , (4.19)

κb|sb|
√

1− 0.014κbcb + 0.000037κ2
bc

2
b ≤ 9.6 [with short-distance theory error] . (4.20)

For the charm case we find

κc|sc|
√

1 + 0.0087κccc + 0.000019κ2
cc

2
c ≤ 44 [no theory error] , (4.21)

κc|sc|
√

1 + 0.010κccc − 0.000056κ2
cc

2
c ≤ 48 [with short-distance theory error] . (4.22)

We see that even if we neglect the present theory uncertainties the constraints from mercury
EDM cannot compete with the ones from the neutron EDM.

It is instructive to compare the constraints obtained from hadronic EDMs to the con-
straints from the bound on the electron EDM, obtained recently by the ACME collabora-
tion. The contribution of a modified bottom Yukawa to the electron EDM can be easily
obtained by the substitutions Qq → Qe and mq → me in eq. (2.4), and similarly for a
modified charm Yukawa. Using the ACME result, |de| < 1.1× 10−29 e cm (90% CL) [45],
we compute the corresponding allowed intervals. The electron EDM depends solely on
the combination κq sinφq, which is thus constrained by a one-parameter χ2 function to
be κb|sb| ≤ 0.32 and κc|sc| ≤ 0.82 at the 68.26%CL for the bottom- and charm-quark
case, respectively. To compare with the neutron and mercury EDM allowed two-parameter
68.26%CL intervals we also list the corresponding ones for the electron EDM:

κb|sb| ≤ 0.48 [no theory error] , (4.23)
κc|sc| ≤ 1.2 [no theory error] . (4.24)

Since for the electron EDM there is no hadronic input, the theory uncertainties originate
solely from higher electromagnetic corrections and are small.2 We see that currently the

2Our bound on the bottom Yukawa seems consistent with the one recently obtained in ref. [46].
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bound from the electron EDM is stronger than the one from the neutron EDM. However,
both experimental progress and the anticipated lattice calculations will strengthen the
bounds from neutron and other hadronic EDMs. The combination of leptonic and hadronic
EDMs can also be used as a strategy to disentangle effect of having multiple CP-violating
Yukawas.

We illustrate the results of this section for the bottom- and charm-quark cases in
figures 8 and 9, respectively. We show in colour the allowed 68.26% CL regions of the two-
parameter space for different EDMs. In the plots on the left we take the two parameters
to be κb(c) sinφb(c) and κb(c) cosφb(c); in the plots on the right we choose the parameters
to be κb(c) and φb(c). In the upper plots we have included no theory uncertainties; in the
lower ones we folded in the theory uncertainties associated to short-distance dynamics.

5 Conclusions

We presented the complete two-loop QCD anomalous-dimension matrix for the mixing
of CP-odd scalar and tensor operators in an EFT valid below the electroweak-symmetry
breaking scale. We used the results to perform a next-to-leading-logarithmic RG analysis
of the Wilson coefficients from the weak scale to the hadronic scale of 2GeV, calculating
also the requisite finite matching corrections at the heavy-flavor thresholds.

We applied our calculation to a new-physics scenario where new, flavor-conserving, CP-
violating phases appear in the Higgs Yukawa couplings to the bottom or charm quark. We
calculated the initial conditions at the weak scale up to NLO, and solved the RG equations
to compute the induced coefficients of the CP-violating electric and chromoelectric dipole
operators and the Weinberg operator in the three-flavor EFT at the hadronic scale 2GeV.

We find large shifts, as well as a large residual scale and scheme dependence of the
dipole Wilson coefficients at next-to-leading-logarithmic order. We interpret this as a hint
of a slowly converging perturbation series.

The dipole and Weinberg operators contribute to the electric dipole moment of the
neutron and mercury. Assuming a Peccei-Quinn-type solution to the strong CP problem
we can then derive constraints on the modified Yukawa couplings from the experimental
bound on the neutron EDM. These constraints are currently not as strong as those derived
from measurements of the electron EDM, but will play an important role in future global
fits to modified Higgs Yukawas. This is true in particular in light of the progress expected
in lattice calculations of the hadronic matrix elements, and future improvements regarding
the experimental bounds on various hadronic EDMs.
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A Unphysical operators

Unphysical operators enter our calculation in two different ways. They are needed in order
to project all off-shell Greens functions, and they arise as counterterms in intermediate
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Figure 9. The same as figure 8, but for the case of anomalous CP violating charm-quark Yukawas.

steps of the calculation. They are called “unphysical” because they vanish either via the
equations of motion (e.o.m.) of the quark fields for onshell external states, or via algebraic
relations that are valid in d = 4, but not in d 6= 4.

A.1 E.o.m.-vanishing operators

These operators have matrix-elements that vanish via the e.o.m. of the quark field. The
following two gauge-invariant ones enter our computation at the two-loop level:

N q
1 = mq

2g2
s

q̄

[←
/D
←
/D iγ5 + iγ5 /D /D

]
q ,

N q
2 = mq

2g2
s

q̄

[←
/D
←
Dσ γµγνγρ − γµγνγρDσ /D

]
qεµνρσ .

(A.1)
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Additionally, the following operators, which are not gauge-invariant, are also required in
intermediate steps to determine all counterterms and project the off-shell amplitudes

N q
γ1 = − imqeQq

2g2
s

q̄

[ ←
/D /Aiγ5 − iγ5 /A /D

]
q ,

N q
γ2 = − imqeQq

2g2
s

q̄

[ ←
/D Aσγµγνγρ + γµγνγρAσ /D

]
qεµνρσ ,

N q
g1 = + imq

2gs
q̄

[ ←
/D /Giγ5 − iγ5 /G /D

]
q ,

N q
g2 = + imq

2gs
q̄

[ ←
/D Gσγµγνγρ + γµγνγρGσ /D

]
qεµνρσ ,

Nggg = 1
gs
fabcGµ,aG̃bµν(DρG

ρν)c .

(A.2)

The covariant derivative acting on quarks is defined as

Dµ ≡ ∂µ − igsT aGaµ + ieQqAµ , (A.3)

with Qq the quark electrical charge. Accordingly, the gluon field-strength tensor is

Gaµν ≡ ∂µGaν − ∂νGaµ + gs f
abcGbµG

c
ν . (A.4)

The covariant derivative acting on color octets is given by

Dab
µ ≡ ∂µδab − gsfabcGcµ . (A.5)

A.2 Evanescent operators

Next we list the evanescent operators that enter our computation at one and two-loop
order. The leading-order anomalous dimension does not depend on their definition, but
the next-to-leading-order one does.

In the q–q–A sector we require the operator

Eqγ = eQq
4

mq

g2
s

q̄{σµν , iγ5}q Fµν −Qq3 . (A.6)

Analogously, in the q–q–G sector we require the operator

Eqg = −1
4
mq

gs
q̄{σµν , iγ5}T aq Gaµν −Q

q
4 . (A.7)

Notice that in eqs. (A.6) and (A.7), as well as in those that follow, we have defined
the γ-algebra structure in terms of anticommutators with γ5, i.e., {Γ, iγ5}. This ensures
that the operators are self-conjugate not just in d = 4 dimensions but also in d = 4 − 2ε
dimensions.
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The evanescent operators required in the q–q′ sector read

Eqq
′

1 = 1
2(q̄γ[µγν]q) (q̄′{γ[µγν], iγ5}q′) +Oqq

′

3 ,

Eqq
′

2 = 1
2(q̄γ[µγν]T

aq) (q̄′{γ[µγν], iγ5}T aq′) +Oqq
′

4 ,

Eqq
′

3 =
[
(q̄γ[µγν]γ

[ργσ]q) (q̄′γ[µγν]γ[τγυ]q′) + (q̄γ[ργσ]γ[µγν]q) (q̄′γ[τγυ]γ[µγν]q′)
]
ερστυ

− 48(Oqq
′

1 +Oq
′q

1 ) + 16Oqq
′

3 ,

Eqq
′

4 = 1
2
[
(q̄γ[µγν]γ

[ργσ]T aq) (q̄′γ[µγν]γ[τγυ]T aq′)

+(q̄γ[ργσ]γ[µγν]T
aq) (q̄′γ[τγυ]γ[µγν]T aq′)

]
ερστυ

− 48(Oqq
′

2 +Oq
′q

2 ) + 16Oqq
′

4 ,

Eqq
′

5 = 1
2(q̄γ[µγνγργσ]q) (q̄′{γ[µγνγργσ], iγ5}q′)− 24Oq

′q
1 ,

Eqq
′

6 = 1
2(q̄γ[µγνγργσ]T

aq) (q̄′{γ[µγνγργσ], iγ5}T aq′)− 24Oq
′q

2 ,

Eqq
′

7 = 1
2(q̄γ[µγνγργσγτγυ]q) (q̄′{γ[µγνγργσγτγυ], iγ5}q′) ,

Eqq
′

8 = 1
2(q̄γ[µγνγργσγτγυ]T

aq) (q̄′γ[µγνγργσγτγυ], iγ5}T aq′) ,

Eqq
′

9 = 1
2
[
(q̄γ[µγνγργσ]γ

[τγυ]q) (q̄′γ[µγνγργσ]γ[ζγξ]q′)

+(q̄γ[τγυ]γ[µγνγργσ]q) (q̄′γ[ζγξ]γ[µγνγργσ]q′)
]
ετυζξ + 48Oqq

′

3 ,

Eqq
′

10 = 1
2
[
(q̄γ[µγνγργσ]γ

[τγυ]T aq) (q̄′γ[µγνγργσ]γ[ζγξ]T aq′)

+(q̄γ[τγυ]γ[µγνγργσ]T
aq) (q̄′γ[ζγξ]γ[µγνγργσ]T aq′)

]
ετυζξ + 48Oqq

′

4 .

(A.8)

The square brackets denote antisymmetrisation normalized as

γ[µ1,...,µn] ≡
1
n!
∑
σ

(−1)σγµσ(1) . . . γµσ(n) .

In the q–q sector they read

Eq1 = (q̄T aq)(q̄iγ5T
aq) +

(1
4 + 1

2nc

)
Oq1 + 1

16O
q
2 ,

Eq2 = 1
2(q̄σµνT aq)(q̄σρσT aq)εµνρσ + 3Oq1 −

(1
4 −

1
2nc

)
Oq2 ,

Eq3 = 1
2(q̄γ[µγν]q) (q̄{γ[µγν], iγ5}q) +Oq2 ,
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Eq4 = 1
2(q̄γ[µγν]T

aq)(q̄{γ[µγν], iγ5}T aq)− 3Oq1 +
(1

4 −
1

2nc

)
Oq2 ,

Eq5 = 1
2
[
(q̄γ[µγν]γ

[ργσ]q) (q̄γ[µγν]γ[τγυ]q) + (q̄γ[ργσ]γ[µγν]q) (q̄γ[τγυ]γ[µγν]q)
]
ερστυ

− 96Oq1 + 16Oq2 ,

Eq6 = 1
2
[
(q̄γ[µγν]γ

[ργσ]T aq) (q̄γ[µγν]γ[τγυ]T aq)

+(q̄γ[ργσ]γ[µγν]T
aq) (q̄γ[τγυ]γ[µγν]T aq)

]
ερστυ

− 24
(

1− 2
nc

)
Oq1 + 2

(
5− 4

nc

)
Oq2 ,

Eq7 = 1
2(q̄γ[µγνγργσ]q) (q̄{γ[µγνγργσ], iγ5}q)− 24Oq1 ,

Eq8 = 1
2(q̄γ[µγνγργσ]T

aq) (q̄{γ[µγνγργσ], iγ5}T aq) + 6
(

1 + 2
nc

)
Oq1 + 3

2O
q
2 ,

Eq9 = 1
2(q̄γ[µγνγργσγτγυ]q) (q̄{γ[µγνγργσγτγυ], iγ5}q) ,

Eq10 = 1
2(q̄γ[µγνγργσγτγυ]T

aq) (q̄{γ[µγνγργσγτγυ], iγ5}T aq) ,

Eq11 = 1
2
[
(q̄γ[µγνγργσ]γ

[τγυ]q) (q̄γ[µγνγργσ]γ[ζγξ]q)

+(q̄γ[τγυ]γ[µγνγργσ]q) (q̄γ[ζγξ]γ[µγνγργσ]q)
]
ετυζξ

+ 48Oq2

Eq12 = 1
2
[
(q̄γ[µγνγργσ]γ

[τγυ]T aq) (q̄γ[µγνγργσ]γ[ζγξ]T aq)

+(q̄γ[τγυ]γ[µγνγργσ]T
aq) (q̄γ[ζγξ]γ[µγνγργσ]T aq)

]
ετυζξ

− 144Oq1 + 12
(

1− 2
nc

)
Oq2 .

(A.9)

In simplifying the color algebra, we use the following standard relation for the generators
of SU(nc): ∑

a

T aijT
a
kl = 1

2δilδjk −
1

2nc
δijδkl . (A.10)

Consequently, Fierz relations on the Lorentz structures, valid in d = 4, need to be applied
on the operators with T a’s to show that they are evanescent.
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A.3 Operators related to the infrared rearrangement

The last class of unphysical operators arises because our infrared rearrangement breaks
gauge invariance in intermediate steps of the calculation. At the renormalizable level this
method generates one gauge-variant operator corresponding to a gluon-mass term, i.e.,

L ⊃ 1
2ZIRAm

2
IRAG

a
µG

µ, a . (A.11)

The “gluon mass”, mIRA, is completely artificial and drops out of all physical results,
and ZIRA is an additional renormalisation constant [32]. At the non-renormalizable level
the one-loop insertions of the dimension-five and dimension-six operators can also induce
gauge-invariant operators that are relics of the infrared rearrangement. For our calculation,
the only relevant ones are the following three

P q = mq
m2

IRA
g2
s

q̄iγ5q ,

P qγ = eQqm
2
IRA

2g2
s

q̄{ /A, iγ5}q ,

P qg = −m
2
IRA

2gs
q̄{/G, iγ5}q .

(A.12)

B Renormalisation constants

To obtain the two-loop anomalous dimension of the physical sector we need certain one-
loop renormalisation constants involving unphysical operators. We collect them in this
appendix. We use the following standard notation for their expansion in αs and ε

Zx→y =
∑
k

k∑
l=1

αks
(4π)kεlZ

(k,l)
x→y . (B.1)

In MS, the mixing of evanescent operators into physical also includes finite terms [47], thus
in this case the ε expansion starts with l = 0. The subscripts x and y symbolize sets of
Wilson coefficients, for which we use the following notation and standard ordering:

q = {Cq1 , C
q
2 , C

q
3 , C

q
4} ,

qq′ = {Cqq
′

1 , Cqq
′

2 , Cq
′q

1 , Cq
′q

2 , Cqq
′

3 , Cqq
′

4 } ,

Eq = {CEq1 , CEq2 , CEq4 , CEq6} ,

Eqq
′ = {C

Eqq
′

1
, C

Eqq
′

2
, C

Eq
′q

1
, C

Eq
′q

2
, C

Eqq
′

3
, C

Eqq
′

4
} ,

Eqγg = {CEqγ , CEqg} ,

P q = {CP q , CP qγ , CP qg } ,

N q = {CNq
1
, CNq

2
, CNq

γ1
, CNq

γ2
, CNq

g1
CNq

g2
} .

(B.2)
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The first necessary input is the mixing of the physical operators into all the evanescent
operators that are generated at one-loop. Using the same subscript notation as above, the
renormalisation constants read

Z
(1,1)
q→Eq =


0 0 1 0
0 −8 0 −1

2

0 0 0 0
0 0 0 0

 , Z
(1,1)
qq′→Eqq′ =



0 1 0 0 0 0
2
9

5
12 0 0 0 0

0 0 0 1 0 0
0 0 2

9
5
12 0 0

0 0 0 0 0 −1
2

0 0 0 0 −1
9 −

5
24


,

Z
(1,1)
q→Eqγg

=


2 2
24 24
0 0
−16

3
11
3

 .

(B.3)

The remaining mixings of physical operators into evanescent operators are all zero at one-
loop. Furthermore, the finite part of the mixing of evanescent into physical operators is
subtracted by finite counterterms [47]. They read

Z
(1,0)
Eq→q =


−5

8 −
3
32 0 0

−9
2

1
8 0 0

169
36 −

11
48 −

16
3

2
3

22 −235
18 −

128
3

16
3

 , Z
(1,0)
Eqq′→qq′ =



0 4 0 0 0 0
8
9

5
3 0 0 0 0

0 0 0 4 0 0
0 0 8

9
5
3 0 0

0 0 0 0 0 −8
0 0 0 0 −16

9 −
10
3


,

Z
(1,0)
Eqγg→q

=

0 0 0 0
0 0 −8

9
11
18

 .

(B.4)

The remaining finite mixings of evanescent into physical operators are zero.
Furthermore, we need the mixing constants of the physical operators into the operators

arising from infrared rearrangement; they are found to be

Z
(1,1)
q→P q =


−10 −2 −2
24 −24 −24
0 0 0
−16 0 0

 , Z
(1,1)
qq′→P q =



0 0 0
0 0 0

−12mq′
mq

0 0
0 0 0
0 0 0
0 0 0


. (B.5)
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All other mixing constants of physical into the IRA operators are zero. Special care must
be taken to obtain the mixings like Z(1,1)

qq′→P q′ . Apart from the obvious q ↔ q′ interchange
also the ordering of the operators in the collective blocks is relevant. For example

Z
(1,1)
qq′→P q′ =



−12 mq
mq′

0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


.

Finally, we need the mixing constants of the physical operators into the e.o.m.-vanishing
operators. They are uniquely fixed by the q → q, q → qγ, and q → qg Greens functions and
we have verified that their values are consistent with the renormalisation of the qg → qγ

and qg → qg Greens functions. We find

Z
(1,1)
q→Nq =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−8

3 −
2
9 0 0 0 3

8

 . (B.6)

The two-loop anomalous dimension matrix is given in terms of the one- and two-loop
renormalisation constants by

γ(1) = 4Z(2,1) − 2Z(1,1)Z(1,0) − 2Z(1,0)Z(1,1) + 2β0Z
(1,0) . (B.7)

The quadratic poles of the two-loop diagrams are fixed by the poles of the one-loop dia-
grams via

Z(2,2) = 1
2Z

(1,1)Z(1,1) − 1
2β0Z

(1,1) , (B.8)

where β0 = 11
3 nc −

2
3Nf . As a check of our calculation, we computed these poles directly

and verified that they satisfy eq. (B.8).
In our calculation we needed various field and mass renormalisation constants up to

two-loop level, and we have calculated them explicitly. Writing the expansion

Zr =
∑
k

k∑
l=1

αks
(4π)kεlZ

(k,l)
r , (B.9)

with r = q,m, gs, G, u,mIRA denoting the quark field, quark mass, strong coupling, gluon
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field, ghost field, and artificial gluon mass renormalisation, respectively, we find

Z(1,1)
q = −(n2

c − 1)
2nc

ξg , (B.10)

Z(1,1)
m = −3(n2

c − 1)
2nc

, (B.11)

Z(1,1)
gs = −11

6 nc + 1
3Nf , (B.12)

Z
(1,1)
IRA = −nc4 (1 + 3ξg)− 2Nf , (B.13)

Z
(1,1)
G =

(13
6 −

1
2ξg

)
nc −

2
3Nf , (B.14)

Z(1,1)
u = nc(3− ξg)

4 , (B.15)

(2,2)
q =

(
n2
c − 1

) [
n2
c(2ξg + 3)− ξg

]
8n2

c

ξg , (B.16)

Z(2,2)
m = −

(
n2
c − 1

) (
9− 31n2

c + 4ncNf
)

8n2
c

, (B.17)

Z(2,2)
gs = 121

24 n
2
c −

11
6 ncNf + 1

6N
2
f , (B.18)

Z
(2,2)
G =

(
−13

8 −
17
24ξg + 1

4ξ
2
g

)
n2
c +

(1
2 + 1

3ξg
)
ncNf , (B.19)

Z(2,1)
q = −

(
n2
c − 1

) [
n2
c

(
ξ2
g + 8ξg + 22

)
− 4ncNf + 3

]
16n2

c

, (B.20)

Z(2,1)
m =

(
n2
c − 1

) (
9− 203n2

c + 20ncNf
)

48n2
c

, (B.21)

Z(2,1)
gs = −17

6 n
2
c −

1
4nc

Nf + 13
12ncNf , (B.22)

Z
(2,1)
G =

(59
16 −

11
16ξg −

1
8ξ

2
g

)
n2
c −

(7
4nc −

1
2nc

)
Nf , (B.23)

with ξg the gauge fixing parameter in generalized Rξ gauge. Our renormalisation constants
agree with the results in the literature [48] if one bears in mind that the original papers
contain some typographical errors.

C The one-loop anomalous dimensions

Using the same notation as in the previous section, we decompose the anomalous dimension
matrix of the physical sector in subblocks. The anomalous dimension matrices γx→y admit
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a perturbative expansion in the strong coupling constant,

γ = αs
4πγ

(0) +
(
αs
4π

)2
γ(1) + . . . . (C.1)

The one-loop anomalous dimension matrix is given in terms of the renormalisation con-
stants by

γ(0) = 2Z(1,1) . (C.2)

The explicit results read

γ(0)
q→q =


−10 −1

6 4 4
40 34

3 −112 −16
0 0 −34

3 + 4
3Nf 0

0 0 32
3 −38

3 + 4
3Nf

 , (C.3)

γ
(0)
qq′→q =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −48Qq′

Qq

mq′
mq

0
0 0 0 −8mq′

mq


, (C.4)

γ
(0)
qq′→qq′ =



−16 0 0 0 0 −2
0 2 0 0 −4

9 −
5
6

0 0 −16 0 0 −2
0 0 0 2 −4

9 −
5
6

0 −48 0 −48 16
3 0

−32
3 −20 −32

3 −20 0 −38
3


, (C.5)

γ
(0)
W→q =

(
0 0 0 6

)
, (C.6)

γ
(0)
W→W = −8 + 8

3Nf . (C.7)

All other physical subblocks are zero at one-loop. Our one-loop results for the physical
sector agree with the results in the literature [29, 49, 50], after accounting for the different
normalisation of the operators and the different conventions in the covariant derivative.

D Change of renormalisation scheme

The (three-loop) mixing among the dipole operators Oq3 and Oq4 has already been calculated
in the literature [31] (see ref. [30] for the earlier two-loop result for the CP-even dipole
operators). In this section we show that our results are consistent with these calculations.
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There are three main differences between our calculation and the earlier ones: (i) the
definition of the physical operators differs in d space-time dimensions, (ii) the calculation
in ref. [31] has effectively been performed in the NDR scheme whereas ours in the “Larin”
scheme, and (iii) a different normalisation of the operators with factors of quark masses
and the strong coupling has been chosen. Here we show that there is a unique change of
the renormalisation scheme that transforms our result into that of refs. [30, 31].

To address (i), we perform a redefinition of our basis of physical operators as follows:3

O′
q
3 ≡ O

q
3 + Eqγ = eQq

4
mq

g2
s

q̄{σµν , iγ5}q Fµν ,

O′
q
4 ≡ O

q
4 + Eqg = −1

4
mq

gs
q̄{σµν , iγ5}T aq Gaµν .

(D.1)

All other physical operators are unchanged, i.e. Q′i ≡ Qi. The resulting operators corre-
spond, in the NDR scheme, to the operators used in refs. [30, 31], up to a normalisation
(see below).

To address (ii), we mimick the results obtained in the NDR scheme by redefining the
evanescent operator Eqg to be:

E′
q
g ≡ Eqg + 4

47εO
q
3 −

19
94εO

q
4 , (D.2)

with all other operators unchanged. The coefficients in front of the physical operators are
uniquely determined by the requirement to reproduce the anomalous dimensions of the
dipole operators in the literature.

Finally, to address (iii) we take care of the different overall normalisation of the oper-
ators as follows. If we write the shifted renormalisation constants as Z ′ = ρZ, where

ρ = 1 + αs
4περ

(1,1) +
(
αs
4πε

)2(
ρ(2,2) + ερ(2,1)) , (D.3)

then the shifted ADMs are given by

γ′(0) = γ(0) + 2ρ(1,1) , γ′(1) = γ(1) + 4ρ(2,1) . (D.4)

Combining this shift with the change of physical and evanescent operators specified above
(see, e.g., ref. [51] for the general expressions), we can reproduce both the one- and two-
loop mixing of the dipole operators in refs. [30, 31]. The mixing of four-fermion into dipole
operators, on the other hand, cannot be calculated in the NDR scheme. For completeness,

3The lattice results used in our numerics have been converted to the NDR-MS scheme at the one-loop
level [40]. If, in the future, the two-loop conversion of the lattice results becomes available, one should
perform the change of scheme discussed in this appendix for our analysis.
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we provide the full physical two-loop anomalous dimension matrix in the primed basis:

γ
(1)
qq′→q =



0 0 32
27
mq′
mq

−640
47

mq′
mq

0 0 40
141

mq′
mq
− 16Qq′

Qq

mq′
mq

−800
141

mq′
mq

0 0 32
27
mq′
mq

−264
47

mq′
mq

0 0 40
141

mq′
mq
− 16

3
Qq′
Qq

mq′
mq

−110
47

mq′
mq

0 0 −448Qq′
Qq

mq′
mq

0

0 0 2976
47

mq′
mq

−20932
141

mq′
mq


, (D.5)

γ(1)
q→q =



65− 6Nf
Nf
54 −

19
12

26896
1269

81211
1269

60− 40Nf
9

403
3 −

226Nf
27 −339776

423 −65780
423

0 0 460Nf
27 + 100

9 0

0 0 368
3 −

224Nf
27 −380Nf

9 + 623
27


. (D.6)

The matrix γ(1)
qq′→qq′ does not change by our redefinition of operators.

E Expanding the renormalisation group

To gain a better understanding of our results, and as an additional check of our calculation,
we expand the full solution of the RG equations about the bottom-quark threshold (the
procedure for the charm quark is analogous).

Keeping only the leading nonvanishing terms and including the QED contribution,
eq. (2.4), we find for the electric dipole

dq =
√

2GF
Qqemq

g2
s

Cq3(mb)

'
√

2GF
Qqemq

g2
s

− 12Q2
b

ααs(mb)
(4π)2 κb sinφb xb

(
log2 xb + π2

3

)

+
(
αs(mb)

4π

)3
Cqq′(0)

1 (Mh)
γ

(0)
1,qq′→4,qq′γ

(0)
4,qq′→4,qγ

(0)
4,q→3,q

48 log3 xb

+ C
qq′(0)
1 (Mh)

γ
(0)
1,qq′→4,qq′γ

(1)
4,qq′→3,q + γ

(1)
1,qq′→4,qγ

(0)
4,q→3,q + γ

(1)
1,qq′→3,qq′γ

(0)
3,qq′→3,q

8 log2 xb

+Cqq
′(1)

4 (Mh)
γ

(0)
4,qq′→4,qγ

(0)
4,q→3,q

8 log2 xb


=
√

2GFQqemq κb sinφb xb

×
{
−12Q2

b

α

(4π)3

(
log2 xb + π2

3

)
− 32

9
α2
s(mb)
(4π)4 log3 xb + 32

3
α2
s(mb)
(4π)4 log2 xb

}
,

(E.1)
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where the superscripts “(0)” and “(1)” denote the tree-level and one-loop contributions to
the initial conditions of the Wilson coefficients at the weak scale (we omit here the small
logarithmic contributions ∝ log(µ2

ew/M
2
h)). Using αs(mb) ∼ 0.22, the ratio of QED to LL

to NLL is roughly 1 : −9 : −4. We see (as observed already in ref. [3]) that the contribution
of the photonic Barr-Zee diagram is negligible. We also see that the NLL correction is quite
large, about half the size of the LL contribution.

The leading terms in the expansion of the solution for the RG equations for the chro-
moelectric dipole, on the other hand, should exactly reproduce the logarithmic parts of the
result in eq. (2.4) (the constant term is of next-to-next-to-leading logarithmic order and
can only be reproduced, within EFT, by a three-loop calculation). Indeed, we find

d̃q = −
√

2GF
mq

g2
s

Cq4(mb)

' −
√

2GF
mq

g2
s

(
αs(mb)

4π

)2
Cqq′(0)

1 (Mh)
γ

(0)
1,qq′→4,qq′γ

(0)
4,qq′→4,q

8 log2 xb

− Cqq
′(0)

1 (Mh)
γ

(1)
1,qq′→4,q

2 log xb

−Cqq
′(1)

4 (Mh)
γ

(0)
4,qq′→4,q

2 log xb


= 2αs(mb)

(4π)3

√
2GFmqκb sinφbxb log2 xb + 0 .

(E.2)

As expected, the leading contribution to the LL reproduces the quadratic logarithm in
eq. (2.4), while leading contribution to the NLL result vanishes.

This means, in turn, that the NLL corrections to d̃q start at relative order αs/(4π), with
large anomalous-dimension prefactors of (γ(0)

1,qq′→1,qq′γ
(1)
1,qq′→4,q + γ

(0)
1,qq′→4,qq′γ

(1)
4,qq′→4,q)/8 =

47 and (γ(1)
1,qq′→4,qγ

(0)
4,q→4,q + γ

(1)
1,qq′→4,qq′γ

(0)
4,qq′→4,q)/8 = 404/9, multiplied by the LO initial

condition −1, and (γ(0)
4,qq′→4,qγ

(0)
4,q→4,q + γ

(0)
4,qq′→4,qq′γ

(0)
4,qq′→4,q)/8 = 56/3, multiplied by the

NLO initial condition 3/2. Therefore, these constitute sizeable relative corrections, with
ratio 1 : −0.6 between the LL and the NLL contributions. Needless to say that in our
numerics we use the full solution of the RG equations, where all large logarithms are
resummed to leading and next-to-leading order.

For completeness we give the also expansion of the Dicus result [52]:

w =−
√

2GF
gs

Cw(mb)

'−
√

2GF
gs

(
αs(mb)

4π

)2
−1

2C
q(0)
1 (Mh)

γ
(0)
1,q→4,q

2 log xb


=−

√
2GF

gs(mb)αs(mb)
(4π)3 κ2

b sinφb cosφb xb log xb .

(E.3)

This reproduces the logarithmic term in eq. (2.4).
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