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We discuss scattering in a conformal field theory (CFT) via the conformal partial-wave analysis and the
Regge limit. The focus of this paper is on understanding an operator product expansion (OPE) with
Minkowski conformal blocks. Starting with a t-channel OPE, it leads to an expansion for an s-channel
scattering amplitude in terms of t-channel exchanges. By contrasting with Euclidean conformal blocks we
see a precise relationship between conformal blocks in the two limits without preforming an explicit
analytic continuation. We discuss a generic feature for a CFT correlation function having singular
FðMÞðu; vÞ ∼ u−δ, δ > 0, in the limit u → 0 and v → 1. Here, δ ¼ ðleff − 1Þ=2, with leff serving as an
effective spin and it can be determined through anOPE. In particular, it is bounded from above,leff ≤ 2, for all
CFTs with a gravity dual, and it can be associated with string modes interpolating the graviton in AdS. This
singularity is historically referred to as thePomeron.This bound is nearly saturated bySYK-like effectived ¼ 1

CFT, and its stringy and thermal corrections have piqued current interests. Our analysis has been facilitated by
dealing with Wightman functions. We provide a direct treatment in diagonalizing dynamical equations via
harmonic analysis over physical scattering regions.As an example thesemethods are applied to theSYKmodel.
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I. INTRODUCTION

Most current studies in conformal field theories (CFT) are
carried out in the Euclidean limit. This is particularly true
when using Euclidean conformal blocks (ECB) in exploiting
the consequences of conformal invariance [1–3]. Conversely,
a scattering process is intrinsically Minkowski [4–20].
Earlier studies in CFT scattering, first discussed for CFT
with gravity dual [11–13], mostly adopted an Euclidean
treatment and an analytic continuation is then performed
[14–18]. Recent interest in CFT in a Minkowski setting has
increased to warrant a more systematic and direct treatment.1

Such an approach provides a framework where one can
directly treat scattering problems, for example, inclusive
and exclusive high energy near-forward scattering,2

among others. Many phenomenological applications to
high energy physics at the LHC and HERA have been
carried out with encouraging successes.3 In this paper
we demonstrate a new method for directly computing
Minkowski conformal blocks (MCB) as well as elucidat-
ing details about the Minkowski conformal block expan-
sion relevant for arbitrary dimension.

A. Overview

This paper deals with the intersection of three some-
times disparate subjects: (1) conformal field theory, (2) ana-
lytic scattering amplitudes, and (3) string-gauge duality.
Because these three subjects often discuss similar methods,
for example conformal block expansion vs partial wave
expansion, using different formalism and notation-we
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1In the context of holography there is a history of directly
investigating Lorentz correlators of the gravity theory to learn
about thermal properties of the strongly coupled CFT. We are not
concerned with this approach in this paper, but rather focus on the
CFT directly regardless of a gravity dual.

2In literature this is often referred to as the “eikonal limit” or
the “Regge limit”.

3Many holographic models have been used to successfully
model collider physics. For a brief list of some applications that
directly investigate conformal properties see [15–17,19,21–28].
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outline here our approach to conformal scattering processes
that best illustrates these intersections.
A conformal approach to scattering processes was

initially developed through the AdS/CFT correspondence
[11–13], but it can be presented entirely in a CFT language
[14–18]. Both approaches are equivalent and each offer
separate intuitive frameworks. In this paper, we closely
follow the CFT approach,4 but describe physical insights it
can tell us about interpreting the gravity dual. A typical
example of conformal scattering is the off-shell photon
process

γ�ð1Þ þ γ�ð3Þ → γ�ð2Þ þ γ�ð4Þ; ð1:1Þ

which does not involve asymptotic states. The amplitude is
related to a time-ordered (T) four-point current correlator,
h0jTðJ 1J 2J 3J 4Þj0i.5 Our convention refers to scattering
from (1þ 3) to (2þ 4) as the s-channel. The t-channel
OPE, J 1J 2 ¼

P
α c12;αOα, can be expressed in terms of

MCB, GðMÞ
ðΔ;lÞ, as in Eq. (1.4). This ultimately leads to an

expansion for s-channel scattering amplitudes in terms
t-channel exchanges.6

Recently, high energy scattering in CFT has become
important for holographic models with black holes [29–31]
and the related SYK model [32–38]: understanding the
bounds of chaotic behavior and elucidating the flow of
information via thermodynamics. It has been explained in
[30] that understanding this behavior is equivalent to
examining high energy behavior of near-forward scattering
through the AdS/CFT correspondence following the for-
malism introduced in [11–13]. High energy scattering,
depicted in Fig. 1, involving a time-ordered four-point
correlator, can address stringy and thermal corrections to
scrambling times by calculating “out-of-time-ordered”
thermo-correlation functions, hWðtÞVð0ÞWðtÞVð0Þiβ, with
β the inverse temperature.
Near-forward scattering for a process like Eq. (1.1)

involves a small momentum transfer between 1 and 2,
with a small deviation in their directions of travel.7 The
process can best be illustrated by Fig. 1 where (1,2) (right-
movers) move near the forward light-cone and (3,4) (left-
movers) close to the backward light-cone. For simplicity,
consider conformal scalars, with pairwise equal conformal
dimensions Δ2 ¼ Δ1 and Δ3 ¼ Δ4. Due to conformal
invariance, we have

hTðRð1ÞRð2ÞLð3ÞLð4ÞÞi

¼ 1

ðx212ÞΔ1ðx234ÞΔ3
FðMÞðu; vÞ; ð1:2Þ

where FðMÞ depends only on invariant cross ratios, here
chosen8 to be

u ¼ x212x
2
34

x213x
2
24

; v ¼ x223x
2
14

x213x
2
24

; ð1:3Þ

with xij ¼ xi − xj and x2ij defined with Lorentzian
signature.
As is well known [1–3], one can express the invariant

function FðMÞðu; vÞ via a conformal block expansion

FðMÞðu; vÞ ¼
X
α

að1234Þα GðMÞ
α ðu; vÞ; ð1:4Þ

where GðMÞ
α ðu; vÞ are MCB, each associated with a con-

formal primary Oα entering into the t-channel OPE.
Eq. (1.4) defines the t-channel Minkowski conformal
block expansion. Most of our results will apply generically
to CFT’s of arbitrary dimension, but many techniques
are motivated by previous analyses of N ¼ 4 SYM.
Specifically for N ¼ 4 SYM, we focus on contributions
from single-trace conformal primaries. In general, con-
formal primaries can be organized according to their twists
τ0. The dimension Δ and spin l, are related by the relation

FIG. 1. Conformal compactification of the Minkowski light-
cone showing points taken to null infinity in the Regge limit. In
light-cone coordinates ðxþ; x−; x⊥Þ we take −xþ1 ∼ xþ2 → ∞ and
−x−3 ∼ x−4 → ∞, keeping xi⊥ fixed. Here x01 < x03 < 0 < x04 < x02.
With ð−x1; x2Þ approaching the forward light-cone and ð−x3; x4Þ
the backward light-cone, this will be referred to as a “double
light-cone limit”.

4We summarize briefly the AdS/CFT perspective in Appen-
dix B.

5In more intuitive notation that conforms with other literature,
we will sometimes write h0jTðJ 1J 2J 3J 4Þj0i as hTðRðx1Þ ×
Rðx2ÞLðx3ÞLðx4ÞÞi or hTðRð1ÞRð2ÞLð3ÞLð4ÞÞi.

6The word “channel” can refer to a scattering process or an
OPE. See Appendix A 1 for our conventions.

7Small with respect to the center of mass energy: jtj ≪ s.

8An alternative choice is u0 ¼ u=v and v0 ¼ 1=v, correspond-
ing to 1 ↔ 2 or 3 ↔ 4 interchange. We will return to this point in
Sec. II B.
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ΔαðlÞ ¼ lþ γαðlÞ þ τ0; ð1:5Þ

with γαðlÞ the anomalous dimension. In the absence of
interactions, γðlÞ ¼ 0. In this representation, the dynamics
lies in knowing all the participating conformal primaries,

Oα, and the associated “partial-wave coefficients,” að12;34Þα .
The partial-wave coefficient is real and factorizable,

að12;34Þα ∼ c12;αc34;α. An important focus of this paper is
to demonstrate how the formal sum, Eq. (1.4), can be
interpreted, through the use of a Sommerfeld-Watson
transform, as the principal series for an unitary representa-
tion of noncompact groups, Eq. (1.14), contrasting
Minkowski and Euclidean behavior.
We treat CFTs where FðMÞðu; vÞ can diverge at u → 0

but is polynomially bounded. Since GðMÞ is constructed
to be real, it follows that the contribution to Eq. (1.4)
from each conformal primary is also real. However, as a
scattering amplitude FðMÞðu; vÞ is in general complex. A
complex phase can emerge as a consequence of summing
over higher spins.9 Therefore, as a scattering problem, it
is equally important in addressing the issue of resum-
mation for OPEs in a Minkowski setting.10 In this vein,
conformal invariance has historically also been applied
to simplify the analysis for ladder-type integral equations
as is commonly done in resummations leading to high
energy Regge behavior [41–51]. By working with
Wightman functions, the absorptive part of forward
scattering amplitudes,11 our treatment leads to a simpler
diagonalization procedure for dynamical equations via
the appropriate harmonic analysis.
We show in this paper that a generic feature for CFT

correlation functions FðMÞðu; vÞ is its singular growth

FðMÞðu; vÞ ∼ u−δ; ð1:6Þ

in a double light cone limit (DLC)12

u → 0; v → 1; ð1:7Þ

with 1=2 > δ > 0. In Sec. III, this limiting behavior is
shown to allow MCB to be directly calculated by consid-
ering the corresponding boundary conditions for solutions
to a conformal casimir. The limit will be defined more
precisely in Sec. II where it is formulated as a double light-
cone limit.13 There are various ways to map conformal
cross ratios onto the light-cone. Some involve single light-
cone limits–like u → 0 in [39,56], or various double light-
cone limits corresponding to different physical regimes
[57–61]. For example, the conformal bootstrap program
examines, among other limits, crossing relations after
taking a double light-cone limit where u → 0, v → 0
asymmetrically as in [58].
By working directly in a Minkowski limit, we show δ ¼

ðleff − 1Þ=2 with leff serving as an effective spin. For all
CFTs with a gravity dual, this effective spin obeys an upper
bound [11],

leff ≤ 2; ð1:8Þ

In the case of N ¼ 4 SYM it can be associated with string
modes interpolating the graviton in AdS [11,27]. (See
Fig. 2.) This singularity is historically referred to as the

1 2 3 4

0.5

1.0

1.5

2.0

2.5

J

FIG. 2. Schematic form of the Δ − l relation at d ¼ 4 for twist-
2, (τ0 ¼ 2), at weak (λ ≪ 1) and strong coupling (λ ≫ 1). This
figure is similar to that from [11] where it was first introduced.

9Complex phases can also be generated through summing over
multiple trace primaries of low spins. This can lead to eikonal-
ization. See [12,18,39] for a discussion about eikonalization in
CFTs.

10In CFT bootstrap program (reviewed in [40]), the OPE
sums are typically truncated in all channels, thus the issue of
re-summation does not arise. However, this is a separate issue
from defining the region of convergence for conformal blocks
via a series expansion. As noted in [3], the region of
convergence for standard euclidean conformal blocks is re-
stricted to

ffiffiffi
u

p þ ffiffiffi
v

p
≤ 1. Continuation to the Minkowski

region necessarily requires going beyond the region of con-
vergence for euclidean OPE. Our treatment here avoids this
cumbersome step.

11To be precise, the absorptive part is a discontinuity.
In a coordinate space treatment this corresponds to a vacuum
expectation value of a double commutator, for example h0j½Rð2Þ;
Rð1Þ�½Lð4Þ; Lð3Þ�j0i, appropriate for Eq. (1.2) and non-zero
only in the physical region. An explicit example is that for
deep-inelastic scattering (DIS) which involves an OPE of
currents. See [52] for a review and Appendix D for connection
to this work.

12This limit can be thought of as a Regge limit, which is
normally formulated in the momentum space. With the momen-
tum space description comes a long history of phenomena
associated with Regge behavior. As illustrated in Fig. 1, this
limit can also be treated as a double light-cone limit in position
space. However, we caution that some authors use this label to
refer to broader limits, for example [20]. Our statement here will
be made more precise in Sec. III and also in Appendix A via a
Rindler-like parametrization [8,9].

13A similar limit to ours is explored in [53–55].
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Pomeron in both the context of QCD and for strongly
coupled gauge theories. For SYK-like 1-d effective CFT
[32–37], ðleff − 1Þ drives the Lyapunov behavior for
thermo-correlators, hWðtÞVð0ÞWðtÞVð0Þiβ, with Eq. (1.6)

becoming e−2πðleff−1Þt=β at t large. These models are nearly
maximally chaotic with the stringy and thermal deviations
being driven by this Regge limit effective spin.

B. Outline

This paper, including the major results, is organized as
follows:
In Sec. II we discuss the kinematics of near forward

scattering in a CFT where the relevant regime can be
described as a DLC. Understanding this limit and the
physical scattering regions are essential to the analysis in
Secs. III-V. The OPE in an Euclidean setting exploits
dilatation invariance leading to a single-scale scaling,
which specifies the relevant boundary conditions for
ECB. In contrast, in a Minkowski setting there can be
two scaling limits. It is useful to adopt a new parametriza-
tion where this scaling is easily expressed as

Dilatation∶ σ → ∞; ð1:9Þ

Boost∶ w → ∞: ð1:10Þ

The dilatation limit is characterized by a scaling parameter
σ, Eq. (2.15), which singles out the conformal primary of
leading twist. The second scaling parameter w, defined by
Eq. (2.14), relates to a Lorentz boost, specified by a
conformal rapidity y, as in Eq. (2.7), where

w ≃ 2=
ffiffiffi
u

p
∼ e2y: ð1:11Þ

From the s-channel scattering perspective, t-channel spin,
l, is conjugate to the rapidity [13]. In the scaling limit of
large rapidity, conformal symmetry manifests itself through
an effective spin as in Eq. (1.6). Eq. (1.6) is a generic
feature for the CFT correlation function FðMÞðw; σÞ, in the
limit w → ∞ with σ fixed.
In Secs. II B–II C we discuss crossing. To contrast

Minkowski t-channel OPE with s-channel OPE we use
the w, σ parameterization where the s-channel physical
region corresponds to 1 < w < ∞ and u-channel in
−∞ < w < −1. Of particular importance, we clarify why
the contribution from the stress-energy tensor in a t-channel
OPE, as well as its stringy correction in a dual description,
serves as the dominant contribution in the DLC limit.
In Sec. III we discuss conformal blocks themselves,

directly deriving MCB, and looking at relations to ECB and
their asymptotic behavior. More technical details are left to
Appendix C. For a t-channel OPE, MCB obey boundary
conditions

GðMÞ
ðΔ;lÞðu; vÞ ∼

ffiffiffi
u

p
1−l

�
1 − vffiffiffi

u
p

�
1−Δ

: ð1:12Þ

The limit u → 0 is to be taken first before v → 1, with
1 < 1−v

2
ffiffi
u

p < ∞. In contrast, for the corresponding limit of

u → 0 and v → 1 in an Euclidean OPE, conformal blocks
obey boundary conditions

GðEÞ
ðΔ;lÞðu; vÞ ∼

ffiffiffi
u

p Δð1 − vÞl: ð1:13Þ

This direct approach shows that the GðMÞ
ðΔ;lÞðu; vÞ are related

to, but not directly given by the analytic continuation

of GðEÞ
ðΔ;lÞðu; vÞ.14

While the conventional asymmetrical limits of taking
u → 0 first before v → 1 is useful to differentiate MCB
from ECB, we show in Sec. III D that a more symmetric
treatment, in terms of variable ðw; σÞ, allows us to general-
ize our approach in treating conformal blocks for general
dimension, d. It also helps elucidate their crossing proper-
ties, and allows a more explicit demonstration the con-
nection in the high energy limit to Euclidean AdSd−1 bulk
propagators. These generalizations allow a smooth tran-
sition to the interesting case of d ¼ 1.
In Sec. IV, we provide a more precise treatment on how

t-channel OPE, for s-channel scattering, should be inter-
preted. This involves identifying the principal series rep-
resentation for a non-compact group via a standard
harmonic analysis. Through a Sommerfeld-Watson resum-
mation, it is shown that FðMÞðu; vÞ takes on a Mellin-like
representation, Eq. (4.4). It follows that, in the physical
region, its imaginary part is given simply by

ImFðMÞðu; vÞ ¼
X
α

ZL0þi∞

L0−i∞

dl
2i

aðl;ΔαðlÞÞ

×GðMÞðl;ΔαðlÞ; u; vÞ: ð1:14Þ

By pushing the integration contour in Eq. (1.14) to the left,
contributions from singularities in the complex-l plane
become dominant in the high energy limit. The leading
contributions come from the family of conformal primaries
which interpolate the stress-energy tensor, ΔPðlÞ, with a
branch-point singularity at leff ≲ 2. For holographic the-
ories, the deviation from l ¼ 2 can be understood in terms
of stringy corrections for integrable theories and receives
additional temperature corrections in thermal theories.
We emphasize that ImFðMÞðu; vÞ has nonvanishing support
only in the s-channel and u-channel physical region,

14The literature often refers to the fact that the Lorentzian
version is proportional to the analytic continuation, but here we
spell out an exact relation.
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1 < jwj. In the region −1 < w < 1, the contour can be
closed to the right, leading to vanishing ImFðMÞðu; vÞ.
As a special application of this new approach, we turn in

Sec. V to CFT scattering in d ¼ 1 and SYK-like models.
We use the above Mellin representation to formulate the
relevant 4-pt correlator in Sec. VA and discuss the role of
effective spin for SYK-like models in Sec. V B. By taking
advantage of reparametrization invariance, an integral
equation for ImΓðwÞ15 is constructed in Eq. (5.24). We
stress that we formulate the model directly as a Minkowski
scattering problem, leading to an equation involving
ImΓðwÞ in the physical region only. This integral equation
can be diagonalized readily by exploiting the conformal
boost invariance. Using this approach, the integral equa-
tions involved can be used to derive simpler algebraic
relations as described in Sec. V B 1. For the case of SYK
models, the partial-wave amplitude is given as an integral
over a Legendre function of the second kind, Eq. (5.9). The
effective spin shows up as the right-most singularity of the
partial-wave amplitude, AðlÞ, Eq. (5.9), a pole at l ¼ 2 and
is analytic to the right.
We end in Sec. VI with a short summary and adding

further discussion on the role of spectral curves. (See
further discussion in Sec. B 2.) For the canonical AdS/CFT
correspondence, conformal invariance leads to spectral
curves, ΔðlÞ, that are symmetric under

ΔðlÞ ↔ d − ΔðlÞ: ð1:15Þ

Its importance for high energy scattering is discussed in
Sec. IV C for d ¼ 4 CFTs. This property can be seen in
Fig. 2, and plays an important role in determining the
effective spin. The effective spin can be obtained by solving
an equation involving anomalous dimension, [11,13]

γðleffÞ þ leff ¼ 0 ð1:16Þ

where γðlÞ is the analytically continued anomalous dimen-
sion. More generally, nonthermal deviation from l ¼ 2 can
be attributed to stringy corrections. Thermal theories
receive additional temperature dependent corrections. For
the graviton, Eq. (1.15) can be thought of as coming from
the AdS mass condition,16

Δðd − ΔÞ ¼ m2
AdS; ð1:17Þ

with nonthermal stringy corrections respect this symmetry.
The leading correction can be interpreted as introducing a
spin dependent mass m2

effðlÞ ∼ 2
ffiffiffiffi
λt

p ðl − 2Þ. For N ¼ 4

SYM, it can be shown that m2
effðlÞ admits a systematic

expansion about l ¼ 2,

m2
effðlÞ ¼

X∞
n¼1

βnðλtÞðl − 2Þn: ð1:18Þ

Eachcoefficient admits a strong coupling expansion in λ−1=2t ,
with leading behavior βnðλtÞ¼Oðλ1−n=2t Þ [19,62,64,65].
(See Eqs. (3.14–3.15) of Ref. [19].) Including thermal
corrections can introduce a new effective mass that breaks
the symmetry in Eq. (1.15). Nonetheless we believe one can
still apply the analysis starting from Eq. (1.16).
We have also included several appendices. These provide

more details than is normally done since, in spite of the
initial work of [11] more than a decade ago, scattering for
CFT remain unfamiliar to most CFT practitioners.
Additionally those interested in CFT scattering come from
a variety of backgrounds so we have aimed to be as self
contained as possible. In Appendix A we set channel
conventions and provide kinematic relations between
invariant cross ratios and position coordinates via a
Rindler-like parametrization [8,9] appropriate for the
DLC limit. Appendix B connects a conformal invariant
4-point function, FðMÞðu; vÞ, to an ordinary momentum-
space amplitude from the perspective of the AdS/CFT
conjecture. In Appendix C we clarify in greater details the
relation of MCB to the conventionally defined ECB.
Appendix D focuses on the application of CFT scattering
to DIS, focusing on exploiting the SOð1; 1Þ × SOð1; 1Þ
symmetry and connecting DIS to conformal methods.
Finally, in Appendix E a conventional Hilbert space treat-
ment for d ¼ 1 CFTs is carried out and extended to the case
of non-square-integrable, but power-behaved like Eq. (1.6),
functions. As explained in Secs. IV and V, this illustrates
that, through the Sommefeld-Watson transform via com-
plex angular momentum, the re-summed Minkowski OPE
can be interpreted as a (deformed) harmonic analysis over
noncompact group. We also outline the basics of the SYK
theory needed for interpreting Sec. V.
a. NOTE: Upon completing this work we were made

aware of [66], extending the work of Caron-Huot [67],
which has some overlap and similar conclusions as ours.
Other related works include [38,68–71]. It is useful to
briefly comment on the relation of this study to that of [67]
and [66]. The starting point of both [67] and [66] is CFT in
an Euclidean setting. One impetus for the study of CFT in
the Lorentzian limit is related to the question of chaos
bound, e.g., [30] and SYK model. In [67], CFT scattering
amplitude, M, is introduced by identifying it as a dis-
continuity of analytically continued Euclidean correlation
function, (e.g., Eq. (2.13) in [67]), which in turn leads to a

15Although ΓðwÞ is a CFT 4-point function we have changed
notation to make comparison with the d ¼ 1 literature simpler.

16It has been shown that for N ¼ 4 SYM, Δðd − ΔÞ is Borel
summable while Δ is not [62,63]. In this case, where the theory is
thought to be integrable, integrability techniques can be used to
determine this sum to high order. For a review of the procedure
and its application to the Pomeron, see [19]. One should be
careful when computing corrections to the spectral curve that the
expansion is well defined.

MINKOWSKI CONFORMAL BLOCKS AND THE REGGE … PHYS. REV. D 98, 086009 (2018)

086009-5



representation for its imaginary part, ImM, as a “double-
discontinuity,” (Eq. (2.14) of [67]), or, equivalently, a
double-commutator. Recognizing the importance of the
constraint imposed by the Regge asymptotics, the focus
has been to find a relation between the partial-wave
amplitude aðl;ΔÞ, analytically continued in complex l,
and ImM, leading to its key result, (Eq. (3.20) of [67]).
One important feature is the asymptotic boundedness in the
limit Rel → ∞. The procedure adopted followed a tradi-
tional Regge analysis in introducing Froissart-Gribov
representation.
Our direct study for Lorentzian CFT is motivated by that

of [11] where conformal Regge behavior can be derived,
and we discuss how a double-commutator, as the disconti-
nuity of a CFT scattering amplitude, can be related to a
t-channel OPE through a principal series representation,
e.g., Eq. (1.14). In a broader context, Eq. (1.14) itself can
be derived from the unitary irreducible representation of
the full noncompact SOð4; 2Þ, Eq. (4.8). In an Euclidean
setting, this leads to the principal series representation for
SOð5; 1Þ, Eq. (4.6). The importance of this relation has also
been emphasized in [66], and also earlier in [72]. In a
Regge context, it can be traced back to earlier work of M.
Toller [73]. The key dynamical assumption in our approach
is meromorphy in the complex Δ − l plane for the “partial-
wave amplitude,” aðl;ΔÞ, e.g., Eq. (4.7), which leads
formally to a t-channel OPE via spectral curves.
Our study here complements that of [67]. Eq. (1.14)

involves MCB, which can be introduced directly in a
Minkowski setting, as discussed in Sec. III, thus avoiding
the step of intricate analytic continuation. The ability to
close various complex contours require specifying bound-
edness of aðl;ΔαðlÞÞ for Rel large. The necessary
assumption involved is, in the end, equivalent to the
assumption of polynomial boundedness in the DLC limit,
Eq. (1.6), which is the main focus of our study. The close
relation between these two approaches can be brought out
more explicitly in the case of d ¼ 1, e.g. Eqs. (5.6), (5.9)
and (5.12). The issue of asymptotic boundedness can be
analyzed explicitly in terms of an elementary Hilbert space
treatment, which is carried out in Appendix E.

II. THE DLC LIMIT

In this section, we spell out more precisely how
dilatations and Lorentz boosts can be related to the
dependence of conformal correlators on invariant cross
ratios in the limit u → 0 and v → 1, as in Eq. (1.7). The
causal relationship described in the introduction is depicted
in Fig. 3 and defines the s-channel scattering region. This
limit can of course be taken both in Euclidean and
Minkowski signatures. For an Euclidean OPE, this limit
involves only a single scale corresponding to a dilatation
under SOð5; 1Þ. The corresponding asymptotic boundary
conditions for ECB are given by (1.13). In a Minkowski
setting, however, because of the Lorentzian structure, the

same limit can involve two scales, one for Lorentz boost,
and the other for dilatation. As indicated in the introduction
this limit involves particles being scaled along forward and
backward light-cones and we we refer to this specific
double light-cone limit as the DLC. The relevant scaling
limit exploits the invariance under SOð1; 1Þ × SOð1; 1Þ, a
subgroup of the full conformal symmetry SOð4; 2Þ.
In Sec. II A we discuss the DLC limit more explicitly.

It is useful to adopt a Rindler-like parametrization,
Eqs. (2.3)–(2.4), fixing the phase space of s-channel
physical region. In Sec. II B, we discuss the related
DLC limit under crossing. In place of ðu; vÞ, we introduce
new sets of independent invariants, Eqs. (2.14) and (2.15),
which are not only more useful for the DLC limit, but also
simplify the description of s-u crossing. In Sec. II C, more
explicit connection to the near-forward scattering is dis-
cussed. We consider the contribution from the stress-energy
tensor, T μν, in a Minkowski setting, which in turn helps to
motivate boundary conditions for MCB, (1.12).
Additional details and definitions can be found in

Appendix A 2.

A. Kinematics

For both Euclidean and Minkowski settings, Eq. (1.7)
corresponds to the limit x212 → 0 and x234 → 0 and x2i → 0,
i ¼ 1, 2, 3, 4, with other invariants between left- and right-
movers fixed: L2 ≃ x213 ≃ x223 ≃ x224 ≃ x214 ¼ Oð1Þ. L pro-
vides a scale for the relative separation between left- and
right-movers,

ffiffiffi
u

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffi
x212x

2
34

q
=L2 → 0: ð2:1Þ

FIG. 3. (top) s-channel scattering, (middle) t-channel scattering,
and (bottom) u-channel scattering.
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Due to scale invariance, this is equivalent to increasing the
left-right separation,

L2 ≃ x2ij → ∞; i ¼ 1; 2; and j ¼ 3; 4; ð2:2Þ

while keeping fixed x212, x
2
34, and x2i , i ¼ 1, 2, 3, 4. For an

Euclidean OPE, the limit, (2.1) or (2.2), involves only a
single scale, L, corresponding to the aforementioned
dilatation under SOð5; 1Þ, which specifies boundary con-
ditions for ECB, Eq. (1.13).
In a Minkowski setting, because of the Lorentzian

structure, the same limit can involve two scales, one for
Lorentz boost, and the other for dilatation. Consider light-
cone coordinates, x ¼ ðxþ; x−; x⊥Þ, x� ¼ x0 � xL, with x⊥
its (d − 2)-dimensional transverse components. We shall
keep all xi spacelike, x2 ¼ −xþx− þ x2⊥ ¼ ð−x20 þ x2LÞ þ
x2⊥ > 0.
Focus first on the case d ¼ 2. For each coordinate, let us

define r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xþx−

p
> 0, which can parametrized by a

parameter ηi,
17

ri ¼ rðηiÞ ¼ μ0e−ηi : ð2:3Þ

The allowed range 0<ri <∞ corresponds to−∞<ηi <∞.
We shall refer to r as “conformal virtuality”18 and dilatation
in light-cone components, x� → λx�, corresponds to scal-
ing in conformal virtuality. In terms of parametrization
Eq. (2.3), it corresponds to a shift, η → η − log λ. For
d ¼ 2, ηi → ∞ sends x2i → 0. We can vary conformal
virtualities for left-movers, (3,4), and right-movers, (1,2),
independently by performing separate scaling transforma-
tions, leading to the desired limit (2.1) or (2.2).
To identify a Lorentz boost, we next introduce rapidity

variable, 0 ≤ y < ∞, for each coordinate. Consider first
the right-movers, ðx1; x2Þ. For time ordering, we keep
xþ1 < 0 and xþ2 > 0, and parametrize their light-cone
components as

x�i ¼ �εirie�yi ð2:4Þ

with ε1 ¼ −1, ε2 ¼ þ. Similarly, for the pair ðx3; x4Þ,
x�j ¼∓ εjrje∓yj , with ε3 ¼ −1 and ε4 ¼ þ, so that x−3 <
0 and x−4 > 0. Sending all rapidities yi → ∞, with ri fixed,
leads to Eq. (2.2). Therefore, one way to achieve this limit
is to perform a global Lorentz boost. For our purpose, it is
sufficient to fix a single global rapidity y for all four legs,
with y ¼ y1 ¼ y2 ¼ y3 ¼ y4.
In order to connect with Eqs. (2.1) and (2.2) for d ≠ 2,

it is now necessary to discuss the effect of transverse

coordinates. To simplify the discussion, we will adopt a
frame where xi;⊥ ¼ x2;⊥ and x3;⊥ ¼ x4;⊥ and with b⊥ ¼
x1;⊥ − x3⊥ as the relative separation between (1,2) and (3,4)
in the transverse impact space.19 In terms of the global
rapidity y and conformal virtuality ri for each coordinate,
cross ratios u and v take on relatively simple forms,
Eqs. (A7)–(A9). In the case of two pairs of equal conformal
virtuality, r1 ¼ r2 and r3 ¼ r4,

u ¼ 16

ðe2y þ 2Rð1; 3Þ þ e−2yÞ2

v ¼ ðe2y − 2Rð1; 3Þ þ e−2yÞ2
ðe2y þ 2Rð1; 3Þ þ e−2yÞ2 ð2:5Þ

where the transverse separation enters through

Rði; jÞ ¼ r2i þ r2j þ b2⊥
2rirj

: ð2:6Þ

with i ¼ 1 and j ¼ 3. The limit u → 0 can therefore be
achieved either by y → ∞ or b2⊥ → ∞ first. For near-
forward scattering, or the DLC limit, we consider the first
scenario of y → ∞ with b2⊥ fixed. The limit u → 0 there-
fore exploits the scaling limit of Lorentz boost. In this limit,
with conformal virtualities fixed, one also has v → 1.
Together, they correspond to the DLC limit, Eq. (1.7), as
promised.
For general unequal conformal virtualities, one finds, in

the limit of large rapidity,

w−1
0 ≡ ffiffiffi

u
p

=2 ≃
ðr1 þ r2Þðr3 þ r4Þ

2z12z34
e−2y; ð2:7Þ

σ0 ≡ 1 − v
2

ffiffiffi
u

p ≃
b2⊥ þ z212 þ z234

2z12z34
þOðe−2yÞ ð2:8Þ

where we have introduced a tentative set of variables, w0

and σ0, and have also introduced joint conformal virtual-
ities,20

z12 ¼
ffiffiffiffiffiffiffiffiffi
r1r2

p
; and z34 ¼

ffiffiffiffiffiffiffiffiffi
r3r4

p
: ð2:9Þ

We adopt w0 → ∞ and σ0 → ∞ as two independent
scaling limits, global boost and dilatation, which character-
izes the DLC limit for CFT. For d ≠ 2, the limit σ0 → ∞
generically corresponds to b2⊥ ≫ z12z34. For both d ¼ 2

and d ≠ 2 with b⊥ fixed, large σ0 corresponds to the limit
of small conformal virtuality, z12

z34
→ 0 or z34

z12
→ 0. This is

17The length scale μ0 is introduced for “visual” purpose, which
can be set to unity.

18We use this name as the quantity will play a similar role to
conventional virtuality which is an energy like quantity defined as
the off-shell energy of a particle.

19This ansatz is unnecessary but simplify our discussion here.
For related discussion, see [14–18].

20For convenience, we will have occasions to switch notation
with z12 ↔ z and z34 ↔ z̄ or z0, in anticipation of the ADS/CFT
connection.
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analogous to the “near massless” limit in a conventional
scattering limit.

B. Physical regions

To understand how CFT correlators can be used for
scattering, we need to comment on the kinematics of
physical regions and constraints due to s-u crossing for
hTðRð1ÞRð2ÞLð3ÞLð4ÞÞi. To simplify the discussion, we
consider correlators for four identical scalar conformal
primaries.
From Eqs. (2.5) and (2.15), more generally, from

Eqs. (A7)–(A9), the s-channel physical region corresponds
to 0 < u < 1 and 0 < v < 1. This is the causal structure of
Fig. 1. In terms of w0 and σ0 introduced in the previous
section, this becomes 1 < w0 < ∞ and 1 < σ0 < ∞. It is in
this regime we can examine a t-channel OPE.
A similar t-channel OPE applies to the u-channel, Fig. 5,

which can be found by interchanging either 1 ↔ 2 or
4 ↔ 3, leading to

u → u0 ¼ u
v
; and v → v0 ¼ 1

v
: ð2:10Þ

It is possible to adopt ðu0; v0Þ as an alternative choice for
cross ratios. This alternative choice leaves the limit of
interest (1.7) unchanged. Under such an exchange, we see
that the u-channel physical region, 0 < u0 < 1 and
0 < v0 < 1, corresponds to 0 < u < ∞ and 1 < v < ∞.
Therefore, variables ðu; vÞ transform asymmetrically under
s-u crossing,
As shown in [3], it is useful to change variables from u

and v to a pair of independent variables, ðx; x̄Þ, where

u ¼ xx̄; v ¼ ð1 − xÞð1 − x̄Þ: ð2:11Þ

In a Euclidean setting, x and x̄ are complex and x� ¼ x̄.
In a Minkowski setting, the s-channel physical region
corresponds to both x and x̄ real and positive with
0 < x < 1 and 0 < x̄ < 1. This corresponds to 0 < w0 ¼ffiffiffiffiffi
xx̄

p
< 1, 1 < σ0 ¼ ð ffiffiffiffiffiffiffiffi

x=x̄
p þ ffiffiffiffiffiffiffiffi

x̄=x
p Þ=2 < ∞. Under s-u

exchange, x → x0 ¼ − x
1−x and x̄ → x̄0 ¼ − x̄

1−x̄. From the
u-channel perspective, the range for x0 and x̄0 are
unbounded, ð−∞; 0Þ: s-u crossing remains asymmetrical.
In order to take a symmetric approach, it is useful to

introduce a new set of variables ðq; q̄Þ,

q≡ 2 − x
x

; and q̄≡ 2 − x̄
x̄

: ð2:12Þ

with the s-channel physical region corresponds to
1 < q; q̄ < ∞, and u-channel physical region corresponds
to −∞ < q, q̄ < −1. Under s-u crossing, one simply has
q → −q and q̄ → −q̄. In terms of these, cross ratios are
given by

u ¼ 4

ðqþ 1Þðq̄þ 1Þ and

v ¼ ðq − 1Þðq̄ − 1Þ
ðqþ 1Þðq̄þ 1Þ : ð2:13Þ

It will be useful to change variables one more time to
ðw; σÞ, which we will ultimately adopt in Sec. III D. These
parameters can be defined in terms of ðq; q̄Þ or more
directly from ðu; vÞ, by

w ¼ ffiffiffiffiffiffi
qq̄

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðuþ 2ð1 − vÞÞp

ffiffiffi
u

p

≃ 2
ffiffiffi
u

p −1; ð2:14Þ

σ ¼ qþ q̄
2

ffiffiffiffiffiffi
qq̄

p ¼ 1 − vffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðuþ 2ð1 − vÞÞp

≃
1 − v
2

ffiffiffi
u

p ; ð2:15Þ

The s-channel physical region now corresponds to 1 <
w < ∞ and 1 < σ < ∞. Under s-u crossing,

w → −w; and σ → σ: ð2:16Þ

Therefore, the u-channel physical region corresponds to
−∞ < w < −1 and 1 < σ < ∞. These variables, w and
σ, serve as the most symmetric variables for describing
scattering for CFT. In Eqs. (2.14)–(2.15), approximate
equalities hold in the DLC limit, i.e., w ≃ w0 and
σ ≃ σ0.
In what follows, we will use ðu; vÞ, ðq; q̄Þ and ðw; σÞ as

three equivalent sets of independent invariants for speci-
fying Minkowski conformal blocks, and they can be used
interchangeably.

C. Eikonal scattering

It has been shown [11–18] that the connected part of the

invariant function in a t-channel OPE, FðMÞ
connðu; vÞ, can be

related to the scattering amplitude for high energy near-
forward scattering at fixed virtualities,21 Tðs; t; z12; z34Þ.
This correspondence can best be made through an eikonal
phase, χðs; b⃗; z12; z34Þ,

χðs; b⊥; z12; z34Þ ↔ FðMÞ
connðu; vÞ; ð2:17Þ

21This is the traditional momentum-space virtuality. The
amplitude, Tðs; t; z12; z34Þ, can be a CFT or an AdS amplitude
for comparison. The results here do not require an AdS dual
amplitude, but our interpretation of the CFT correlation function
suggests that it is a natural extension. See Appendix B for a more
precise identification.
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with FðMÞ
connðu; vÞ expanded as a sum over t-channel single-

trace conformal primaries.22 A convenient way of intro-
ducing this eikonal phase is through a “shock-wave”
treatment for near-forward scattering [12,14,15,18]. (For
early developments on this front, see [74–80].) At a large
impact separation, χðs; b⃗; z12; z34Þ is small and can be
treated perturbatively,

Tðs; t; z12; z34Þ

∼ −iw
Z

d2b⃗eib⃗·q⃗½eiχðs;b⊥;z12;z34Þ − 1� ð2:18Þ

∼ w
Z

d2b⃗eib⃗·q⃗χðs; b⊥; z12; z34Þ þOðχ2Þ: ð2:19Þ

Here the eikonal is given in a mixed coordinate and
momentum representation. In performing Fourier trans-
forms for the light-cone components, large s receives
contribution from small u region only, or, equivalently,
large w region, and the relevant Fourier integrals can be
dropped. This representation can also be interpreted holo-
graphically as scattering in the AdS bulk [11–18]. In (2.17),
one has identified the small u limit with s large by the
reciprocal relation

2
ffiffiffi
u

p −1 ≃ w ⇔ ðz12z34sÞ=μ20; ð2:20Þ

where the scale μ20 introduced in (2.3) can now be used as a
global scale for scattering.23 It is important to emphasize
that the standard normalization we are adopting here
corresponds to

Tðs; t; z12; z34Þ ⇔ wFðMÞ
connðu; vÞ: ð2:21Þ

Therefore, the large w behavior for FðMÞ
conn differs from that

for Tðs; t; z12; z34Þ by one power of w or, equivalently, one
power of s. This extra factor of w corresponds to the
relativistic state normalization, leading to the conventional
optical theorem, σtotal ≃ ð1=sÞImTðs; 0; z12; z34Þ.24 As men-
tioned earlier, and motivated by the AdS/CFT convention,
in what follows we will switch from ðz12; z34Þ, to ðz; z̄Þ for
right- and left-movers for notational simplification.

A useful illustration is to consider the contribution from
the stress-energy tensor, T μν, having Δ ¼ d and l ¼ 2.
Since it couples through conserved currents, the amplitude
picks up a spin factor, s2, from the product of two large
coupling terms, involving ∂x−i

∂xþj
, i ¼ 1, 2 and j ¼ 3, 4.

This factor reflects the effect of longitudinal Lorentz
boost due to spin-2 exchange. This is consistent with the
expectation χ ≃ T=s ∼ sl−1. In addition to this spin factor,
at large separation, the amplitude is controlled by a scalar
propagator, hφðxÞφð0Þi ¼ 1=ðx2ÞΔ. Since both particles
are moving near their respective light-cones, the total
amplitude, after integrating over x� components [12], leads
to χðs; b⃗Þ ∼ sl−1

R
dxþdx−hφðxÞφð0Þi ∼ wl−1ð b2

2z12z34
Þ1−Δ,

where we have scaled the last expression on dimensional
grounds, as in Eq. (2.15). Explicit conformal invariance can
be achieved by expressing this as

χðs; b⃗Þ ∼ wl−1σ1−Δ ¼ wσ−ðd−1Þ ð2:22Þ

with l ¼ 2 and Δ ¼ d. This also agrees with what follows
holographically for one-graviton exchange in the bulk
based on AdS/CFT using Witten diagrams, as explained
in Appendix B.25 This stress-tensor example also serves as
the prototypical behavior expected in a Minkowski OPE
expansion,

GðMÞ
ðΔ;lÞðu; vÞ ∼ wl−1σ1−Δ; ð2:23Þ

as w → ∞ first and then σ → ∞. With Eqs. (2.14) and
(2.15), this corresponds to the boundary conditions for
Minkowski conformal blocks, Eq. (1.12).
Although this work is primarily concerned with the t-

channel OPE, a similar eikonal form can be found from
examining the s-channel OPE directly. Performing an OPE
in the s-channel one finds

FðMÞðu; vÞ ¼
X
h;h̄

asðh; h̄ÞGðMÞ
s ðu; vÞ; ð2:24Þ

with Δ ¼ hþ h̄ and J ¼ h − h̄. In the DLC limit, after
removing the identity conformal primary I, following
[17,81] this becomes iFðMÞðu; vÞ ¼ −i½eiχðs;b⊥;z;z̄Þ − 1�≃
χðs; b⊥; z; z̄Þ þOðχ2Þ. Although as shown above, this is

22A more exact treatment, the complete eikonalization sum,
requires keeping multiple trace contributions. See [11–18] for
further discussions.

23This identification can be done more formally, but it is
sufficient for our present purpose to have qualitative under-
standing as follows. In terms of momenta, since s ∼ pþ

1 p
−
3 ≃

pþ
2 p

−
4 , it scales with ðx−1 xþ3 Þ, ðx−2 xþ3 Þ, ðx−1 xþ4 Þ, ðx−2 xþ4 Þ as e−2y,

corresponding precisely the limit of large s. To fix the scale, we
identify s−1 with the average as μ20ðr1 þ r2Þðr3 þ r4Þe−2y.

24For a careful review on the derivation of this representation,
Eq. (2.19), see Secs. 3–4 of [30] where the formalism introduced
in [11] is also discussed. This is also summarized briefly in
Appendix B.

25See also [12]. It should be pointed out that the resulting
eikonal from the stress-energy tensor is purely real. When stringy
effect is taking into account, the eikonal turns complex, with
Imχ > 0 by unitarity and with Imχ=Reχ ≃ constant in the limit
w → ∞ first. This also necessitates in a broader discussion on the
order in taking w and σ large. This issue has been discussed
extensively in [13] and should be addressed also in application to
SYK-like models. In this paper, we focus only on tree-graph
contribution to the eikonal sum, and the limit is always taken with
w → ∞ first.
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most naturally interpreted as being dominated by t-channel
stress-energy tensor exchange.

III. MINKOWSKI CONFORMAL BLOCKS

The conformal partial-wave expansion can be traced
back to work of [82–88] and has been carried out more
recently in a series of papers by Dolan and Osborn [1–3].
Application of partial-wave expansions for non-compact
group has had a long history [45,73,89–93]. Recent works
on these expansions have been carried out exclusively in an
Euclidean framework, and Minkowski results are obtained
via careful analytic continuation. In this section we detail
explicitly how the MCB can be obtained directly by
understanding the boundary conditions of the conformal
block differential Casimir.

A. Definitions

Conformal blocks are eigenfunctions of a quadratic
Casimir,26 D,

DGΔ;lðu; vÞ ¼ CΔ;lGΔ;lðu; vÞ; ð3:1Þ

associated with an arbitration conformal transformation
acting on a scalar four-point function. The commutator
algebra of generators involved can be realized as differ-
ential operators in terms of conformal cross ratios,

D ¼ ð1 − u − vÞ∂vðv∂v þ aþ bÞ þ u∂uð2u∂u − dÞ
− ð1þ u − vÞðu∂u þ v∂v þ aÞðu∂u þ v∂v þ bÞ;

ð3:2Þ

where a ¼ −Δ12=2, b ¼ Δ34=2, and Δij ¼ Δi − Δj. We
consider the case where Δ1 ¼ Δ2 and Δ3 ¼ Δ4 so that
a ¼ b ¼ 0. Eigenvalues for the quadratic Casimir are then

CΔ;l ¼ ΔðΔ − dÞ=2þ lðlþ d − 2Þ=2: ð3:3Þ

While most prior treatments have considered ECB,
invariant under SOðdþ 1; 1Þ, MCB, invariant under
SOðd; 2Þ, have been addressed recently by analytically
continuing the Euclidean case. Here, we carry out a direct
treatment of MCB by imposing DLC boundary conditions,
Eq. (1.12). We first carry out a more traditional analysis in
Sec. III C–III C, and, in particular, point out that MCB as
defined are not given by a direct analytic continuation of
ECB. In Sec. III D, an alternative, more symmetric treat-
ment is carried out in terms of variables w and σ, (2.14)
and (2.15).

In the Lorentzian setting, ðΔ;lÞ serve as representation
labels for SOðd; 2Þ. Since this is noncompact, Δ and l can
be continuous. However, to make contact with the OPE, we
shall consider initially the situation where Δ is positive and
real, and l is a non-negative integer. We will return to the
question of restrictions on Δ and l from the perspective of
SOðd; 2Þ representation in Sec. IV.
For later convenience, we provide here two alternative

expressions for CΔ;l,

CΔ;l ¼ ðΔ̃2 þ l̃2Þ=2 − ðd2 − 2dþ 2Þ=4; ð3:4Þ

CΔ;l ¼ λþðλþ − 1Þ
þ λ−ðλ− − 1Þ þ ðd − 2Þλ−; ð3:5Þ

where Δ̃¼Δ−d=2, l̃¼lþðd−2Þ=2 and λ�¼ðΔ�lÞ=2.
From Eq. (3.4), there is a symmetry under Δ̃ ↔ −Δ̃, or
Δ ↔ d − Δ, and l̃ ↔ −l̄, or l ↔ −l − dþ 2. However,
boundary conditions for conformal blocks break these
symmetries. Representation (3.5) is particularly useful
when treating the case d ¼ 2, when (3.1) simplifies [3].
It is often useful to introduce Δ̃ ¼ Δ − ðεþ 1Þ and
l̃ ¼ lþ ε, with ε ¼ ðd − 2Þ=2.

B. Indicial analysis

As a second order partial differential equation, Eq. (3.1)
has removable singularities at u ¼ 0, 1,∞-and similarly for
v. Independent solutions can be specified by their behavior
at these singular points. Representations (3.4) and (3.5) also
suggest possible different variable separation procedure in
solving this partial differential equation. (See Appendix C
for more details).
As emphasized in the Introduction, and elaborated

further in Sec. II, we are interested in the DLC limit where
u → 0 and v → 1. A standard indicial analysis, with
GðΔ;lÞðu; vÞ ∼ upð1 − vÞq, leads to a manifold of possible
solutions, where pð2p−dÞþqð2pþq−1Þ¼CΔ;l. From
Eq. (3.4), the solution space is at least 4-fold degenerate.
The usual OPE restricts l to be a non-negative integer, Δ
real, and Δ > l, which is equivalent to λþ ≥ λ− ≥ 0. A
similar analysis has also be carried out in a related context
in [67].
Anticipating Eqs. (1.12) and (1.13), we consider the

following solutions:

ðaÞ p ¼ Δ − l
2

; q ¼ l;

ðbÞ p ¼ Δ − l
2

; q ¼ −ðΔ − 1Þ;

ðcÞ p ¼ ðd − ΔÞ − l
2

; q ¼ l;

ðdÞ p ¼ ðd − ΔÞ − l
2

; q ¼ ðΔ − dþ 1Þ: ð3:6Þ

26There is a quartic Casimir that can be used to construct
recurrence relations between conformal blocks in different
dimensions[3]. We use this below to relate results in even
(respectively odd) dimensions.
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Note that (c) and (d) are reflections of (a) and (b), under
Δ ↔ d − Δ, leading to mirror, or shadow, conformal
blocks. We will thus focus on case (a) and case (b) only.
As boundary conditions, these solutions can be rewritten as

ðaÞ GðEÞ
ðΔ;lÞðu; vÞ ∼ ð ffiffiffi

u
p ÞΔ

�
1 − vffiffiffi

u
p

�
l
;

ðbÞ GðMÞ
ðΔ;lÞðu; vÞ ∼ ð ffiffiffi

u
p Þ1−l

�
1 − vffiffiffi

u
p

�
1−Δ

: ð3:7Þ

We see that case (a) is that appropriate for Euclidean
conformal blocks, Eq. (1.13), and case (b) appropriate for
the Minkowski setting, Eq. (1.12). For both sets of
boundary conditions, the limit

ffiffiffi
u

p
→ 0 is taken first before

v → 1. Equivalently, both (a) and (b) in Eq. (3.7) corre-
spond to taking the limit

ffiffiffi
u

p
→ 0 with 1−vffiffi

u
p initially fixed,

and then taking the limit 1−vffiffi
u

p → ∞. Therefore, MCB and

ECB are solutions to the same partial differential equation,
defined with different boundary conditions, thus, in gen-
eral, they cannot be expressed simply as analytic continu-
ation of each other.

C. Explicit construction of MCB

We next focus on treating case (b) directly. The standard
procedure [1–3] is to change variables from ðu; vÞ to ðx; x̄Þ,
Eq. (2.11). In order to maintain explicit crossing symmetry,
we prefer to work first directly with new variables ðq; q̄Þ,
Eq. (2.12), where the differential operator for the Casimir
can again be written as a sum of terms, (as the case for
ðx; x̄Þ [3]), with Dðq; q̄Þ ¼ D0ðqÞ þD0ðq̄Þ þDε

1ðq; q̄Þ,
where ε ¼ ðd − 2Þ=2, with D0ðqÞ and Dε

1ðq; q̄Þ given by
Eqs. (C11) and (C13) respectively. With a ¼ b ¼ 0, (3.2),
D0ðqÞ takes on a simple form

D0ðqÞ ¼ ðq2 − 1Þ d2

dq2
þ 2q

d
dq

; ð3:8Þ

leading to second order ordinary differential equation
(ODE) for Legendre functions. More importantly, Dε

1 ¼ 0

at d ¼ 2. (Relation to the more traditional use of ðx; x̄Þ pair
[3] is also provided in Appendix C).
Boundary conditions in the DLC limit are specified by

taking u → 0 first before v → 1. In terms of q and q̄, two
possible approaches can be adopted: (1) an asymmetrical
limit taking either q → ∞ before q̄ → ∞ or the opposite,
and (2) a symmetrical treatment of w ¼ ffiffiffiffiffiffi

qq̄
p

→ ∞ before
taking σ ¼ ðqþ q̄Þ=2 ffiffiffiffiffiffi

qq̄
p

→ ∞. We will follow the asym-
metrical approach here and postpone the symmetrical
treatment to Sec. III D.
In an asymmetrical limit, the boundary condition for

MCB, Eq. (3.7) (b), becomes

GðMÞ
ðΔ;lÞðu; vÞ ∼ qð1−λþÞ< qλ−> ð3:9Þ

where q< is the smaller of the pair ðq; q̄Þ and q> the other,
as both q; q̄ → ∞. To proceed, we will first treat the case of
d ¼ 2 and d ¼ 4 before commenting on general d.

(i) d ¼ 2: Here ε ¼ 0 and the differential equations for
q and q̄ decouple. From Eq. (3.5), we choose

D0ðqÞgðqÞ ¼ λðλ − 1ÞgðqÞ; ð3:10Þ

with λ ¼ λ�, and similarly for D0ðq̄Þ. Each can be
reduced to standard hypergeometric differential
equations: the solution can be expressed as, for
1 < q < ∞,

gðqÞ ¼ ak̃2λðqÞ þ bk̃2ð1−λÞðqÞ ð3:11Þ

where

k̃2λðqÞ ¼ q−λ2F1ðλ=2þ 1=2; λ=2; λþ 3=2; q−2Þ

¼ 2λ
Γðλþ 1=2Þ
π1=2ΓðλÞ Qλ−1ðqÞ: ð3:12Þ

In the second line, QνðqÞ is simply the standard
Legendre functions of the second kind. Our nor-
malization corresponds to k̃2λðqÞ ≃ q−λ for q → ∞.

It remains to properly implement the desired
Minkowski boundary conditions, Eq. (3.9). If
1 < q < q̄ → ∞, choose a ¼ 0 for gðq<Þ and b ¼
0 for gðq̄>Þ. If 1 < q̄ < q → ∞ make the reverse
choice. This leads to

GðMÞ
ðΔ;lÞðu; vÞ ¼ k̃2ð1−λþÞðq<Þk̃2λ−ðq>Þ

¼ Γð3=2 − λþÞΓðλ− þ 1=2Þ
2l−1Γð1 − λþÞΓðλ−Þ

×Q−λþðq<ÞQλ−−1ðq>Þ; ð3:13Þ

in agreement with Eq. (3.9).
(ii) d ¼ 4: It is possible to recast this case into

one where q and q̄ equations again decouple as
done in [3] working with ðx; x̄Þ. The corresponding
solution is

GðMÞ
ðΔ;lÞðu; vÞ ¼ sgnðq̄ − qÞ

�
1

q> − q<

�
k̃2ð1−λþÞðq<Þ

× k̃2ðλ−−1Þðq>Þ

¼ 22−l
Γð3=2 − λþÞΓðλ− − 1=2Þ
Γð1 − λþÞΓðλ− − 1Þ

× sgnðq̄ − qÞ
�

1

q> − q<

�
×Q−λþðq<ÞQλ−−2ðq>Þ: ð3:14Þ

One can verify that Eq. (3.9) is again satisfied.
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(iii) General d: The d ¼ 1 case is of special interest
for SYK-like models, and will be discussed sepa-
rately in Sec. III D 3. For general d, it is not possible
to reduce the solution to a combination of simple
products of hypergeometric functions. However, an
iterative procedure will be discussed in Sec. III D by
treating ðq; q̄Þ symmetrically. One finds that the
general structure for the leading behavior in u → 0 is
shared for all d.
We stress here that the physical region of

s-channel scattering corresponds to 1 < q, q̄ < ∞,
where k̃2λðqÞ, Eq. (3.12), is real. It follows that

GðMÞ
ðΔ;lÞðu; vÞ is also real. However, since k̃2λðqÞ is

defined as a real analytic function, it can be
continued into the complex plane and acquire a
phase for general l. We will turn to this question in
Sec. IV, as well as in Appendix C.

The boundary conditions for the Euclidean conformal
blocks, Eq. (3.7) (a), can similarly be expressed as

GðEÞ
ðΔ;lÞðq; q̄Þ ∼ qλþ< qλ−> . The same approach as above then

leads to27

GðEÞ
ðΔ;lÞðu; vÞ ¼ k̃2λþðqÞk̃2λ−ðq̄Þ þ k̃2λþðq̄Þk̃2λ−ðqÞ; ð3:15Þ

for the d ¼ 2 case, and to

GðEÞ
ðΔ;lÞðu; vÞ ¼

1

q − q̄
ðk̃2λþðqÞk̃2ðλ−−1Þðq̄Þ

− k̃2λþðq̄Þk̃2ðλ−−1ÞðqÞÞ; ð3:16Þ

for the d ¼ 4 case.
In an Euclidean treatment, q and q̄ are complex con-

jugates, q� ¼ q̄, thus not independent. It has been sug-
gested that Minkowski conformal blocks are simply the
analytic continuation of Euclidean conformal blocks,
which changes the boundary conditions from Eq. (3.7)
(a) to (b). Appendix C gives the detailed relation between

GðMÞ
ðΔ;lÞðu; vÞ and GðEÞ

ðΔ;lÞðu; vÞ in terms of their analytic

structure. We will demonstrate explicitly that Eqs. (3.13)
and (3.14) are not given by a direct analytic continuation of
the corresponding ECB, Eqs. (3.15) and (3.16).
To state it more succinctly, in performing analytic

continuation from Euclidean to Minkowski limit, the
Euclidean boundary condition does not transform precisely
into that for Minkowski limit. For instance, for d ¼ 2,

starting with GðMÞ
ðΔ;lÞðu; vÞ and following normal path of

continuation, one arrives in the Euclidean region where

GðM;continuedÞ
ðΔ;lÞ ðu; vÞ
¼ ck̃2λþðq<Þk̃2λ−ðq>Þ þ dk̃2ð1−λþÞðq<Þk̃2λ−ðq>Þ ð3:17Þ

where c ¼ i
ffiffiffi
π

p Γð1=2−λþÞ
Γð1−λþÞ2 and d ¼ ð−1Þ1−λþ= cos πλþ. It

does not lead to GðEÞðu; vÞ. Conversely, an additional
prescription is required in relating ECB to the desired
MCB. This will be touched upon further in Sec. IV B.
Let us end by examining the constraints on FðMÞðu:vÞ

due to crossing symmetry. As mentioned earlier, for a
t-channel OPE, we are interesting in s-u crossing, which
corresponds to interchanging either 1 ↔ 2 or 4 ↔ 3. This
leads to, as already discussed in Sec. II B, u → u=v and
v → 1=v, or,

ðq; q̄Þ ⇔ ð−q;−q̄Þ; and

ðw; σÞ ⇔ ð−w; σÞ ð3:18Þ

Consider the OPE expansion (1.4), with l integer. From
Eq. (3.12), under s-u crossing,

GðMÞ
ðΔ;lÞðu; vÞ ¼ ð−1Þ1−lGðMÞ

ðΔ;lÞðu=v; 1=vÞ: ð3:19Þ

As we show more explicitly in the next section, this pattern
holds for all d.

D. Symmetric treatment

We next turn to a symmetric construction of MCB for
general d. This was first advocated for ECB in [3], starting
with ðx; x̄Þ, by shifting to new variables u ¼ xx̄ and
σ0 ¼ ð ffiffiffiffiffiffiffiffi

x=x̄
p þ ffiffiffiffiffiffiffiffi

x̄=x
p Þ=2. This approach was pursued

further in [94]. As explained in [3], this approach has
the advantage of being able to extend the boundary
condition, for ECB, Eq. (3.7) (a), to the region where
x ¼ Oðx̄Þ, and the desired boundary condition translates
into that in the limit σ0 → ∞.
We will begin with ðq; q̄Þ and focus on the conformal

blocks in the Minkowski limit. Recall that, for the DLC
limit, we are interested in first taking the w ¼ ffiffiffiffiffiffi

qq̄
p

≃ffiffiffi
u

p −1 → ∞ limit, with the resulting boundary condition
specified at σ ¼ ð ffiffiffiffiffiffiffiffi

q=q̄
p þ ffiffiffiffiffiffiffiffi

q̄=q
p Þ=2 ≃ σ0 → ∞. In what

follows, we shall adopt ðw; σÞ as two independent variables
with the physical region specified by 1 < w < ∞ and
1 < σ < ∞.28 We will mainly work this asymptotic limit,
but show a higher order expansion can be obtained formally
on an equal-footing for all d.
The differential operator D, Eq. (3.2), when expressed

in terms of ðw; σÞ, becomes a sum of three terms,

27The connection to the canonically defined functions in terms
of fx; x̄g is shown in Appendix C.

28As we shall demonstrate below, for holographic CFTs, this
allows a simpler representation connecting in the leading order to
the Euclidean AdSd−1 bulk-to-bulk propagator.
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D¼ðL0;wþL0;σþw−2L2Þ=2where L0;wðw∂wÞ, L0;σð∂σ; σÞ
and L2ðw∂w; ∂σ; σÞ are homogeneous in w,29

L0;wðw∂wÞ ¼ ðw∂wÞ2 þ dw∂w; ð3:20Þ

L0;σð∂σ; σÞ ¼ ðσ2 − 1Þ∂2
σ þ ðd − 1Þσ∂σ; ð3:21Þ

and

L2ðw∂w;∂σ;σÞ ¼ −ð2σ2 − 1Þðw∂wÞ2 þ ð4ðσ2 − 1Þ þ dÞw∂w

þ 4σðσ2 − 1Þw∂w∂σ

− ð2σ2 − 1Þðσ2 − 1Þ∂2
σ − ð6ðσ2 − 1Þ

þ ðd− 1ÞÞσ∂σ: ð3:22Þ

It thus suggests the following expansion for conformal
blocks,

GðMÞ
ðΔ;lÞðu; vÞ ¼ wsðg0ðσÞ þ w−2g1ðσÞ

þ w−4g2ðσÞ þ � � �Þ

¼
X∞
n¼0

ws−2ngnðσÞ: ð3:23Þ

Here, each gnðσÞ also depends on l, Δ and d, which will be
exhibited explicitly when necessary for clarity. They can be
found recursively, with the leading order term satisfying a
relatively simple D.E.,

L0;σg0ðσÞ ¼ ð2Cðl;ΔÞ − sðsþ dÞÞg0ðσÞ: ð3:24Þ

This differential operator, L0;σ, is of the same form as D0,
(3.8), and it will appear repeatedly under several contexts,
with solutions expressible in terms of hypergeometric
functions. (However, each case may impose a different
boundary condition. See Sec. III D 2 and Appendix C 1 for
further discussion.) We will treat solutions to (3.24) with
appropriate boundary conditions in Sec. III D 1.
Before proceeding to solving for g0ðσÞ, we mention

first the ease of exhibiting crossing under this symmetric
approach. As we shall demonstrate below, for Minkowski
conformal blocks, this corresponds to the choice s ¼ l − 1.
Under s-u crossing, w → −w and σ → σ, (3.23) leads to

GðMÞ
Δ;l ð−w; σÞ ¼ ð−1Þl−1GðMÞ

Δ;l ðw; σÞ: ð3:25Þ

As expected, it is odd for l even and even for l odd.

1. Leading order

In implementing separation of variables, Eq. (3.4) sug-
gests separating Δ and l dependences. A direct indicial

analysis at w → ∞ leads to several degenerate possibilities,
with s taking on (a) sa ¼ −Δ, (b) sb ¼ l − 1, (c) sc ¼
Δ − d, and (d) sd ¼ 1 − d − l. The corresponding solu-
tions to Eq. (3.24), labeled by g0a, g0b, g0c and g0d
respectively, are

ðaÞ ðL0;σ − lðlþ d − 2ÞÞg0aðσÞ ¼ 0

ðbÞ ðL0;σ − ðΔ − 1ÞðΔ − dþ 1ÞÞg0bðσÞ ¼ 0;

ðcÞ ðL0;σ − lðlþ d − 2ÞÞg0cðσÞ ¼ 0;

ðdÞ ðL0;σ − ðΔ − 1ÞðΔ − dþ 1ÞÞg0dðσÞ ¼ 0: ð3:26Þ

Note that indicial condition (c) is conjugate of (a), under
Δ ↔ d − Δ, (Δ̃ ↔ −Δ̃), leading to identical DE in σ,
thus corresponding to the respective shadow blocks.
Similarly, (d) is conjugate of (b) under l↔−l−ðd−2Þ,
(l̃ ↔ −l̃). We will therefore concentrate on case (a) and
(b). Of these two solutions, by switching back to u and v
and comparing to Eq. (3.7), we find that case (a) is
appropriate for Euclidean conformal blocks, and case
(b) is appropriate for the Minkowski limit.
Observe that these differential equations are even under

σ ↔ −σ. General solutions to these equations can be
expressed in terms of hypergeometric functions and we
need to impose the respective boundary conditions,
Eq. (3.7).30 Let us focus here on Eq. (3.26) (b). With
sb ¼ l − 1, the solution is

g0bðσ;Δ; dÞ

¼ σ1−Δ2F1

�
Δ − 1

2
;
Δ
2
;Δ −

d
2
þ 1; σ−2

�
; ð3:27Þ

with g0b real for σ > 1. For all d, at σ large,
g0bðσ;Δ; dÞ ∼ σ1−Δ, corresponding to

GðMÞ
ðΔ;lÞðu:vÞ ≃ wl−1g0bðσÞ ∼ wl−1σ1−Δ; ð3:28Þ

in the limit w → ∞ and σ → ∞, as promised. Solutions for
d ¼ 4 and d ¼ 2 can be expressed simply as

g0bðσ;Δ; 4Þ ¼
e−ðΔ−2Þξ

sinh ξ
; and

g0bðσ;Δ; 2Þ ¼ e−ðΔ−1Þξ: ð3:29Þ

Similarly, for d ¼ 3 and d ¼ 1, the solutions also
simplify to

29See [94] for a related treatment in “radial quantization”.

30For example, for g0aðσÞ, g0aðσÞ ≃ aσlð1þOðσ−2ÞÞ þ
bσ1−lð1þOðσ−2ÞÞ, as σ → ∞. For g0bðσÞ, one replaces l with
Δ. For case (a), sa ¼ −Δ, the solution is that appropriate for
Euclidean conformal blocks, with coefficient b ¼ 0. This leads to
polynomial solutions for integral l, e.g., for d ¼ 4, Gegenbauer
polynomials. As σ → ∞, GðEÞ

ðΔ;lÞðu:vÞ ≃ w−Δg0aðσÞ ∼ w−Δσl.
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g0bðσ;Δ; 3Þ ¼ QΔ−2ðσÞ; and

g0bðσ;Δ; 1Þ ¼ sinh σQð−1Þ
Δ−1ðσÞ

¼ dQΔ−1ðσÞ
dξ

: ð3:30Þ

Here QνðσÞ is the Legendre function of the second kind.
The case of d ¼ 1 is discussed in more detail in Sec. III D 3,
as it relates to SYK-like models.
Since d enters into the differential equation as a simple

parameter, the following relation holds:

d
dσ

g0bðσ;Δ − 1; d − 2Þ ¼ −ðΔ − 2Þg0bðσ;Δ; dÞ; ð3:31Þ

or, equivalently,

g0bðσ;Δ − 1; d − 2Þ ¼ ðΔ − 2Þ
Z

∞

σ
dσg0bðσ;Δ; dÞ:

ð3:32Þ

These relations hold for general d, thus allowing one to find
g0bðσ;Δ; dÞ for even and odd integral d iteratively given
g0bðσ;Δ; 2Þ and g0bðσ;Δ; 3Þ.
We also point out that Eq. (3.27) corresponds precisely to

an Euclidean bulk-to-bulk scalar propagator in AdSd−1, or
more precisely Hd−1, with conformal dimension Δ − 1.
Here Eq. (3.27) is derived purely from a CFT perspective,
with σ − 1 plays the role of a chordal distance or, in an
alternative mathematical usage, ξ ¼ cosh−1 σ is the geo-
desic in Hd−1. (See also Appendix B.) This connection is
meaningful physically only for d ≥ 2 but can be extended
formally to all d. As such, g0ðσ;Δ; dÞ is singular at σ ¼ 1,
consistent with our procedure of fixing a vanishing boun-
dary condition at σ ¼ ∞.
Lastly, with σ ¼ cosh ξ, Eq. (3.26) (b) can also be

expressed as

ð∂2
ξ þ ðd − 2Þ coth ξ∂ξ

− ðΔ − 1ÞðΔ − dþ 1ÞÞg0bðcosh ξÞ ¼ 0: ð3:33Þ

Introducing a reduced function fðξÞ, with g0bðcosh ξÞ ¼
ðsinh ξÞ−d−2

2 fðξÞ, one has

�
∂2
ξ − ðΔ − d=2Þ2 þ ðd − 2Þðd − 4Þ

4sinh2ξ

�
fðξÞ ¼ 0: ð3:34Þ

This simplifies for d ¼ 2 and d ¼ 4, leading to

fðξÞ ¼ e−jΔ−d=2jξ: ð3:35Þ

This agrees with the desired result given above, and also
serves as the leading term in a higher order expansion,

(C33) and (C34) respectively. For general d, the solution
can be expressed in terms of associated Legendre functions.

2. Higher order expansion

As mentioned in the introductory remarks for this
section, higher order expansion in (3.23) can be found
iteratively. Once the leading index, sb ¼ l − 1, is identified
and the corresponding solution g0bðσÞ is found, it is
possible to solve each expansion function gnðσÞ for
1 ≤ n. With (3.20) and (3.22), one finds

½L0;σ −m2ðl;ΔÞ�gnðσÞ ¼ JnðσÞ ð3:36Þ

with m2ðl;ΔÞ¼ðΔ−1ÞðΔ−dþ1Þ−2nð2n−d−2lþ2Þ.
The source for gn is JnðσÞ ¼ −L2ðlþ 1 − 2n;
∂σ; σÞgn−1ðσÞ. I.e., given in terms of gn−1ðσÞ. Therefore,
one can proceed iteratively.
Focusing on 1 < σ < ∞, Eq. (3.36) can be solved

formally via a standard Green’s function procedure with

gnðσÞ ¼
Z

∞

1

dσ0G0ðσ; σ0ÞJnðσ0Þ ð3:37Þ

where

½L0;σ −m2ðl;ΔÞ�G0ðσ; σ0Þ ¼ δðσ − σ0Þ: ð3:38Þ

For d ¼ 2 and d ¼ 4, since explicit solutions are already
known, we will instead demonstrate that they can be
reexpressed in the symmetric form, Eq. (3.23), in
Appendix C. For general d, care must be exercised in
defining appropriate boundary conditions. We will leave
the case of general d to a future study, and will focus next
on the case of d ¼ 1.

3. The case of d = 1:

Due to the existence of a kinematic constraint, the
leading order solution for d ¼ 1 requires additional exami-
nation. From the perspective of Euclidean SOðdþ 1; 1Þ
invariance, the physical region is bounded by ð1−vþuÞ≤
2

ffiffiffi
u

p
, with the equality holding at the kinematical boundary

[3]. This boundary also defines the d¼1 limit, which can
be expressed more usefully as

ffiffiffi
v

p ¼1−
ffiffiffi
u

p
. For Lorentzian

vectors, a similar analysis yields ð1 − vþ uÞ ≥ 2
ffiffiffi
u

p
, again

leading to a kinematical relation
ffiffiffi
v

p ¼ 1 −
ffiffiffi
u

p
as a

constraint for d ¼ 1. (See Appendix A 2 b.) In terms of
q and q̄, both cases lead to q ¼ q̄ and σ ¼ cosh ξ ¼ 1. It
follows that there is only one independent variable, instead
of two. Therefore for d ¼ 1, conformal blocks, as functions
of w and σ, must satisfy a constraint: ∂σGðw; σÞ ¼ 0. This
means that care must be taken when re-interpreting the
above results for the case of d ¼ 1.
There are two possibilities.

(a) The Euclidean option corresponds to keeping only
l ¼ 0, 1, and going to higher order expansion in w,
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GðEÞ
Δ;l¼0ðw; σ ¼ 1Þ ¼ w−Δ

X∞
n¼0

ga;nðσ ¼ 1Þw−2n:

ð3:39Þ

It is easily shown that, with d ¼ 1, ga=c;0ðσÞ being a
constant is a consistent solution to (3.26) for l ¼ 0, 1.

(b) The Minkowski option corresponds to having
Δ ¼ 0, 1, and

GðMÞ
Δ¼0;lðw; σ ¼ 1Þ ¼ wl−1

X∞
n¼0

gb;nðσ ¼ 1Þw−2n:

ð3:40Þ
It is also easily shown that gb=d;0ðσÞ being a constant is
a consistent solution to (3.26), with Δ ¼ 0, 1. In
Sec. V we show that this limit is more appropriate in
treating scattering for SYK-like 1-d models.

For both cases it is necessary to go beyond the leading
order to obtain the proper sums, Eqs. (3.39) and (3.40). In
terms of cross ratio, w, the residual symmetry for both cases
is Oð1; 1Þ, with dilation for case (a) and Lorentz boost for
case (b).
Let us treat case (b) first. We denote GðMÞ

Δ¼0;lðw; σ ¼ 1Þ
simply as GðMÞ

l ðwÞ and consider the limit d ¼ 1. The
series (3.40) can be obtained by working with an ODE

DwG
ðMÞ
l ðwÞ ¼ lðl − 1ÞGðMÞ

l ðwÞ, where Dw is obtained
from Dðd ¼ 1Þ by acting on functions of w only. A bit
of algebra then leads to

Dw ¼ ðw2 − 1Þ d2

dw2
þ 2w

d
dw

; ð3:41Þ

which is of identical form as Eq. (3.21), with d ¼ 3, and
also with Eq. (3.8), i.e., it is again that for Legendre
functions. It follows from Eq. (3.11), for w → ∞, there are
in general two independent solutions, leading to

GðMÞ
l ðwÞ ¼ ak̃2lðwÞ þ bk̃2ð1−lÞðwÞ ð3:42Þ

where k2lðwÞ is again given by Legendre function of
second kind, QlðwÞ, Eq. (3.12).
In Secs. VA, we consider Minkowski scattering, with the

physical region arranged to lie in the region 1 ≤ w ≤ ∞.
Therefore, our choice corresponds to a ¼ 1 and b ¼ 0. The
normalization corresponds to having conformal blocks

GðMÞ
l ðwÞ ¼ 21−l

Γð3=2 − lÞ
π1=2Γð1 − lÞQ−lðwÞ

≡ clQ−lðwÞ≡ Q̄−lðwÞ; ð3:43Þ

so that GðMÞ
l ðwÞ ≃ wl−1, with unit coefficient as w → ∞.

We shall also restrict Rel̃ > 0, (thus Rel > 1=2). From the
identity

πPlðzÞ
tanlπ

¼ QlðzÞ −Q−l−1ðzÞ; ð3:44Þ

one has PlðzÞ ¼ P−l−1ðzÞ, and Q−l has poles at non-
negative integers, l ¼ 0; 1;…. However, since cl ∼ 1=
Γð1 − lÞ, it follows Q̄−lðwÞ is analytic for Rel > 1=2.
For positive integral values, l ¼ n, n ¼ 1; 2;…,

GðMÞ
n ðwÞ ¼ dnPn−1ðwÞ ð3:45Þ

where dn ¼ π1=221−n ΓðnÞ
Γðn−1=2Þ.

Let us briefly return to case (a), appropriate for an
Euclidean treatment. As pointed out in [3], the solution
to the l ¼ 0 problem has a direct solution. Following

the same approach as above, one finds DwG
ðEÞ
Δ ðwÞ ¼

ðΔ̃2 − 1=4ÞGðEÞ
Δ ðwÞ ¼ ΔðΔ − 1ÞGðEÞ

Δ ðwÞ, leading to the
same result as given in [3], with w replaced by
x ¼ 2=ðwþ 1Þ. The solution can also be obtained from
that for the case (b), with Δ replacing l.

IV. MINKOWSKI OPE AND SCATTERING

Let us now return to discuss how OPE in a Minkowski
setting, Eqs. (4.4) and (1.14), can be applied to high energy
scattering. In this section, we focus on certain formal
steps necessary before Minkowski OPE can be applied. The
emphasis will be on first developing a Mellin-like repre-
sentation for the OPE sum so that it applies to the physical
scattering region.31 This formulation stresses the impor-
tance of a spectral curve, ΔðlÞ, and its relation to effective
spin, l�. An equally important and related issue discussed
is the relation between the t-channel OPE in a Minkowski
setting to the principal series for an unitary irreducible
representation32 of noncompactOð4; 2Þ, leading to Eq. (4.8).
Applications of dimensional reductions are discussed in
Appendix D for d ¼ 2 and the case of DIS, and in Sec. V for
d ¼ 1 scattering for SYK-like models.

A. Kinematics

Before applying (1.4) to high energy near-forward
scattering, it is important to address the issue of the phase
of FðMÞðu; vÞ. As pointed out in Sec. I, MCB, GðMÞ are real
valued functions over the physical region for s-channel
scattering where 1 < w < ∞ and 1 < σ < ∞. It follows
that the contribution to (1.4) from each conformal primary
is also real. As a scattering amplitude, however, FðMÞðu; vÞ
is in general complex. A complex phase emerges as a
consequence of re-summation. This can be carried via

31We emphasize that the discussion here focuses on Mellin
amplitudes that are distinct from the Mellin representation
discussed in [72,95–98].

32The case of d ¼ 1 provides an explicit illustration. This will
be carried out in Appendix E. A more detailed discussion for
d ≥ 2 will be reported separately.
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complex-l utilizing the technique of Sommerfeld-Watson
transform, which we turn to next. Through this procedure,
one also allows an natural continuation in w from the s-
channel where 1 < w < ∞ to the u-channel phyiscal region
where −∞ < w < −1. it is therefore useful to have a closer
examination of the symmetry involved under s-u crossing.
In the DLC limit, Feynman amplitudes and CFT corre-

lators have opposite parity under crossing. A crossing even
Feynman amplitude, T, corresponds to a CFT invariant
function FðMÞ which odd under s-u exchange. This is due to
the presence of the extra factor of w in T, for example,
Eq. (2.19). A general amplitude can have both components.
A 4-point function for identical conformal primaries is s-u
crossing symmetric. This corresponds to an even T, and
thus FðMÞðu; vÞ will be crossing odd: FðMÞðu; vÞ ¼
−FðMÞðu=v; 1=vÞ. It follows that if FðMÞðu:vÞ is antisym-
metric under s − u exchange, then, from Eq. (3.19), only
even l contribute. Conversely, for FðMÞðu; vÞ symmetric
under s − u exchange, only odd l contribute.
In this study, we are mostly dealing with scattering

amplitudes T which are crossing even. If we are more
explicit in identifying s-channel and u-channel amplitudes

separately by FðMÞ
s and FðMÞ

u , we have FðMÞ
s ðu; vÞ ¼

−FðMÞ
s ðu=v; 1=vÞ ¼ FðMÞ

u ðu0; v0Þ, with ðu0; v0Þ identified
with ðu=v; 1=vÞ. In what follows, we will always work

with s-channel amplitudes, FðMÞ
s , while dropping the sub-

script. When expressed in terms of variables ðw; σÞ and
analytically continued, one has

FðMÞðw; σÞ ¼ −FðMÞð−w; σÞ: ð4:1Þ

B. Sommerfeld-Watson transform

We begin by first regrouping the OPE in Eq. (1.4) as

Fðw; σÞ ¼
X
α

X
l

að12Þ;ð34Þl;α Gðw; σ;l;Δl;αÞ: ð4:2Þ

We have reexpressed the partial-wave amplitude as

að12Þ;ð34Þl;α , switched the dependence on cross ratios from
ðu; vÞ to ðw; σÞ and have also regrouped the sum in a form
which allows a resummation, leading to a representation
for Fðw; σÞ valid for w → ∞.
Consider the case where scattering amplitude is even

under crossing,33 thus Fðw; σÞ odd in w. From (3.25), the
sum is over even l only. Sommerfeld-Watson transform
corresponds to turning this discrete sum over l into an
integral over complex-l plane and then opening up the
contour into an integral along a vertical line. This vertical

line is chosen initially for convergence, leading to a Mellin-
like integral, i.e.,

X
l¼2n

→
X

l¼2n<L0

−
ZL0þi∞

L0−i∞

dl
2i

1 − eiπð1−lÞ

sin πl
: ð4:3Þ

We assume that Fðw; σÞ is polynomially bounded at
w ¼ ∞, i.e., jFðw; σÞj < OðwNÞ, thus N þ 1 < L0. This
allows one to represent FðMÞðw; σÞ by

FðMÞðw; σÞ ¼ FðMÞ
0 ðu; vÞ þ

ZL0þi∞

L0−i∞

dl
2i

×
−ð1þ e−iπlÞ

sin πl

×
X
α

aðl;ΔαðlÞÞGðl;ΔαðlÞ;w; σÞ; ð4:4Þ

The assumption of polynomial boundedness can also

translate into having að12Þ;ð34Þl;α analytic in l for Nþ1<l.

The residue FðMÞ
0 ðw; σÞ represents the original finite sum

with l < L0.
In Eq. (4.2), we have also separated the sum into a sum

over families of conformal primaries. This was described in
the introduction in discussing anomalous dimensions for
the leading twist conformal primaries. Conformal dimen-
sions for each family can be interpolated by their spins
continuously by ΔðlÞ, i.e., leading to a spectral curve.
There will be many families and each family is labeled by
an index α.34 The separation in Eq. (4.4) into two terms is at
first necessary due to possible existence of singularities for
Rel < L0. It is nevertheless interesting to note, since
F0ðw; σÞ is real, one always has

ImFðw; σÞ ¼
X
α

ZL0þi∞

L0−i∞

dl
2i

að12Þ;ð34Þðl;ΔαðlÞÞ

×Gðw; σ;l;ΔαðlÞÞ: ð4:5Þ

with L0 sufficiently large.
A brief discussion on various formal assumptions nec-

essary in carrying the above analysis is in order. Here we
summarize a few key points:
(a) There exists a unique analytic continuation away from

integral values for l while satisfying the constraint of

“Carlson’s theorem” [99,100], with að12Þ;ð34Þα ðlÞ poly-
nomially bounded as Rel → ∞. This, in general,
requires the separation of the sum over l into even

33In general, the sum can be separated into a sum of even spins
or another over odd spins. The case of crossing odd has been
treated in [19].

34In the absence of interactions, the label α is simply the twist,
τ0 ≡ Δ − l, and with additional index for other families of
conformal primaries of the same twist. For simplicity, we shall
keep in what follows only one family for each twist.
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and odd parts. Since we are dealing with an odd
amplitude, this step is not necessary.

(b) Eq. (4.5) corresponds to a sum over unitary irreducible
representations of the noncompact group Oðdþ 1; 1Þ,

Fðw; σÞ ¼
X
l

Z∞
−∞

dν
2π

aðl; νÞGðl; ν;w; σÞ: ð4:6Þ

This principal series combines a discrete sum in the
spin l and a Mellin transform in a complex Δ-plane,
with Δ̃≡ iν ¼ Δ − d=2. As stressed by Mack [72],
this representation should serves as a more general
starting point for CFT, with standard OPE a conse-
quence of this representation, (See (d) and (e) below
and also [72] for more discussions.)

(c) Conformal Regge theory assumes a meromorphic
representation in the ν − l plane, with poles specified
by the collection of allowed spectral curves,
ΔαðlÞ, e.g.,

aðl; νÞ ¼
X
α

rαðlÞ
ν2 þ Δ̃αðlÞ2

¼
X
α

rαðlÞ
2ν

�
1

νþ iΔ̃αðlÞ
þ 1

ν − iΔ̃αðlÞ

�
:

ð4:7Þ

The spectral curve associated with the energy-
momentum tensor plays the dominant role, with
ΔPð2Þ ¼ 4, and on which the Pomeron singularity
lies, as in Fig. 2.35

(d) To recover the standard conformal block expansion,
it is conventional to close the contour in the lower-half
ν-plane36 (equivalently, closing the contour in the
Δ-plane to the right) picking up only dynamical poles
in aðl; νÞ, at νðlÞ ¼ −iðΔðlÞ − 2Þ. It has also been
explained in [72] that this closing of contour is allowed
after separating the unitary representation function
Gðl;ν;w;σÞ¼GðþÞðl;ν;w;σÞþGð−Þðl;ν;w;σÞ, where
GðþÞðl; ν;w; σÞ ¼ Gð−Þðl;−ν;w; σÞ, with GðþÞ leading
to convergence in the lower ν-plane and Gð−Þ in the
upper ν-plane.37 Closing in either lower or the upper

ν-plane leads to Eq. (1.4), with að12Þ;ð34Þðl;ΔαðlÞÞ ¼
rαðlÞ and Gðw; σ;l;ΔαðlÞÞ ¼ iν−1GðþÞðl; ν;w; σÞ.
Summing over all α leads to a sum over allowed
conformal primaries, with dimension ΔαðlÞ and
spin l.

(e) By combining Eq. (4.6) with a Sommerfeld-Watson
transform for the angular momentum, it is possible to
formally represent the conformal invariant amplitude
FðMÞ in a double-Mellin form,38

Fðw; σÞ ¼ FReggeðw; σÞ −
Zi∞
−i∞

dl̃
2i

1þ e−iπl

sin πl

×
Zi∞
−i∞

dΔ̃
2πi

aðl; νÞGðl; ν;w; σÞ: ð4:8Þ

This representation can formally be regarded as the
principal series for a unitary irreducible represen-
tation for the non-compact group, SOð4; 2Þ, with
aðl;ΔiðlÞÞ an analytic function of l. The contour
is along the imaginary axis, distorted to include all
participating families of conformal blocks, appropriate
for describing amplitudes which are bounded at u ¼ 0

by a power ð1= ffiffiffi
u

p ÞN, or wN at w ¼ ∞. In pushing the
l-contour to Rel̃ ¼ 0, or Rel ¼ −ðd − 2Þ=2, the term
FReggeðw; σÞ corresponds to contribution coming from
all singularities in d=2 < Rel < L0. The contour
distortion allows one to include all participating
families of conformal blocks, appropriate for describ-
ing divergent amplitudes at w ¼ ∞.

(f) Finally, the above analysis also suggests a procedure to
resolve the issue of the connection between MCB and
ECB. A more desirable, top down approach is to first
construct the principle series for a unitary irreducible
representation of SOðd; 2Þ, i.e. finding Gðl; ν;w; σÞ in
Eq. (4.8). Then by reverse engineering, one arrives at
MCB and ECB, respectively. (See Sec. II of [19] for a
related discussion.)

C. Spectral curve

In Eq. (4.4), the integration contour can be pushed
further to the left, with pole contributions from the contour
passing j ¼ 2n cancelling that in F0ðw; σÞ. This can be
done until L0 < 0 thus removing F0 entirely. However,
one has to pick up contributions from possible l-plane
singularities for 0 < Rel < L0 which might enter through

35For more discussion see [11,19,26,27].
36Due to conformal invariance, the integrand is even in ν, or,

equivalently, symmetric in Δ ↔ 4 − Δ. The contour can be
closed either in the upper or the lower half ν-plane. The poles
in the upper half ν-plane corresponds to “shadow” operators.

37Such procedure was carried out in [11–13], based on a
treatment equivalent to keeping Minkowski conformal block
under the leading order approximation, Sec. III D 1. A simpler
example for this separation is Eq. (3.44), appropriate in treating
for d ¼ 1 and also used in traditional Regge analysis. A related
discussion has also been carried out recently [38] by identifying
Gð−Þ as corresponding to the shadow blocks.

38This procedure was first discussed byM. Toller in the context
of Lorentz symmetry, SOð3; 1Þ, [73,90,91,93]. See also a related
discussion for Oð4; 2Þ in [72]. We have also simplified the
analysis by keeping only crossing even contribution, l even in
Eq. (1.4). The contribution with l odd leads to the so-called
Odderon contribution, which has been discussed in [19,101,102].
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að12Þ;ð34Þðl;ΔαðlÞÞ and also that from the conformal block
through ΔPðlÞ. These contributions will be collectively
denote as AReggeðw; σÞ. In terms of l̃ ¼ lþ ðd − 2Þ=2, we
can shift the contour until the integration path is over
Rel̃ ¼ 0, or Rel ¼ −ðd − 2Þ=2, arriving at Eq. (4.8). For
d ¼ 4, the continuum corresponds to an integral along
the line Rel ¼ −1. (For d ¼ 3, the path is along
Rel ¼ −1=2, the traditional “background integral” in a
Regge representation.)
Let us turn next to ImFðw; σÞ. As one pushes the contour

to the line along Rel̃ ¼ 0, one finds that

ImFðw; σÞ ¼ ImFReggeðw; σÞ þ
X
α

Z−ðd−2Þ=2þi∞

−ðd−2Þ=2−i∞

dl
2i

× að12Þ;ð34Þðl;ΔαðlÞÞGðw; σ;l;ΔαðlÞÞ:
ð4:9Þ

Here let us examine the limit w → ∞. With Rel ¼
−ðd − 2Þ=2, the background integral is of the order
Oðw1þðd−2Þ=2Þ, and is bounded for 1 ≤ d. It follows that
a divergent contribution to Fðw; σÞ occurs only if there
exists a singularity in l in the regions −ðd − 2Þ=2 <
Rel < 2. This is entirely analogous to a conventional
Regge theory where the subdominant contribution from
the continuum is referred to as that from the background
integral.
Without dynamical inputs, it is not possible to specify

what singularities might exist in the region to the right of
Rel ¼ −ðd − 2Þ=2 for a general CFT. Let us consider first
N ¼ 4 SYM at d ¼ 4 and focus on the leading twist-two
contribution, which interpolates the stress-energy tensor,
with the associated spectral curve denotedΔPðlÞ. Based on
weak-coupling perturbation analysis, there exists at least
one singularity leff, to the right of l ¼ 1 [46–48]. This
enters through a branch point ofΔPðlÞ. At strong coupling,
the location of the corresponding singularity is bounded
from above, leff < 2. (See Fig. 2 for a schematic repre-
sentation.) The spectral curve in weak coupling can be
found by solving the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation, Eq. (D11) and, in strong coupling, via
AdS/CFT [11,103]. This singularity is historically referred
to as the Pomeron.
It can be shown that this singularity, in the immediate

neighborhood of l ¼ 2 and at large λ, is of the square-root
type [11,19,62,65]. Using the effective AdS mass intro-
duced in (1.18), i.e.,m2

effðlÞ ¼ −4þ ðl − leffÞB2ðl; λÞ the
leading λ spectral curve becomes

ΔPðlÞ ¼ 2þ Bðl; λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − leff

p
; ð4:10Þ

with Bðl; λÞ analytic at l ¼ 2. It follows that the leading
behavior as w → ∞ for the correlation functions F is

ImFðw; σÞ ∼ wleff−1

j lnwj3=2 : ð4:11Þ

As stressed in [11], for any d-dim CFT with a gravity
dual, this singularity can be associated with string modes
interpolating graviton in AdS. With m2ð2Þ ¼ 0, it follows
that its location is bounded from above,

leff < 2: ð4:12Þ

The deviation from leff ¼ 2, δ≡ 2 − leff > 0, can be
attributed to stringy corrections.
To demonstrate the generality of (4.10), let us recall that

for flat-space string theory, massless graviton lies on a
linear trajectory,

l ¼ 2þ ðα0=2Þt; ð4:13Þ

with
ffiffiffiffi
α0

p ¼ lstring providing a length scale. This can
be understood by the on-shell condition for graviton,
1 ¼ L0 ¼ L̄0 ¼ l=2 − ðα0=4Þt, where L0 and L̄0 are gen-
erators of dilation in a world-sheet treatment. Consider next
string living on a curved background, e.g., AdS5. In the
weak-curvature limit, l2

st=R2
ads ¼ 1=

ffiffiffi
λ

p
≪ 1, one has

1¼L0¼ L̄0≃l=2−ðα0=4R2
adsÞ∇̃2ðlÞ, with ∇̃2ðlÞ dimen-

sionless and ∇̃2ð2Þ ¼ Δð4 − ΔÞ, with stress-energy tensor
having conformal dimensionΔ ¼ 4. This leads to a leading
λ spectral curve condition

Δð4 − ΔÞ ≃ 2
ffiffiffi
λ

p
ðl − 2Þ; ð4:14Þ

which is parabolic, for ðl − 2Þ2 ≪ 1 and symmetric about
Δ ¼ 2, as dictated by conformal invariance. This relation is
an expansion in both λ−1=2 and ðl − 2Þ. It can next be cast
in the form (4.10), with

Bðl; λÞ ≃
ffiffiffi
2

p
λ1=4; ð4:15Þ

and the branch point at leff ¼ 2 − 2=
ffiffiffi
λ

p
.

As already stressed, Eq. (4.10) can be interpreted as
having an l-dependent effective AdS mass. For deformed
or thermal theories mass/momentum modes will be shifted.
For general d and/or deformed AdS-background, it can be
shown that

leff ¼ 2 − ðd=2Þ2=2
ffiffiffiffiffiffiffi
λeff

p
ð4:16Þ

where λeff may depend on temperature. We return to this
point in Secs. V and VI.

V. SCATTERING FOR CFT AT d = 1

The importance of the CFT 4-point function has
appeared recently in the study of CFTs dual to AdS spaces
with a black hole. This set up has become tantalizing for
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two main reasons: first, as a model of holography it is
relatively simpler than the canonical N ¼ 4 SYM duality
and one might be able to demonstrate more general aspects
of holography. Second, using the conformal symmetry on
the boundary one might learn about the information loss
paradox. In this section we apply Minkowski conformal
blocks to d ¼ 1 CFTs. The primary example of interest is
the SYK theory [32–34], however, as most of our results
apply to CFTs more generally, we refer to these as SYK-
like models.39 Here we address the issue of d ¼ 1 CFT
directly as a scattering problem where one explores the
SOð1; 1Þ Lorentz boost symmetry. The related CFT invari-
ant four point correlation function, expressed in terms
of appropriate cross ratio, ΓðwÞ, has a power behavior,
as w → ∞,

ΓðwÞ ≃ wleff−1; ð5:1Þ

with leff ≤ 2. The precise definition for the variable w is
given by Eq. (5.3), in analogy to that defined for d ≥ 2 in
Eq. (2.12). When leff → 2, this can be interpreted as
corresponding to dual graviton contribution which saturates
the chaos bound [29,30]. There are two challenging aspects
involved. The first is to find what kind of CFT leads to such
power-behavior. An equally challenging task is, given a
specific 1-d CFT, how best to identify the effective spin.
In this section, we will focus on the latter aspect.
The relevant kinematics for a 1-d scattering is dis-

cussed in Sec. VA where we provide a Mellin-like
representation for ΓðwÞ, as well as ImΓðwÞ, analogous
to Eq. (D7). In Sec. V B we examing the Schwinger-
Dyson equation for SYK-like models. This corresponds
to treating a set of Wightman functions for which the
integral equation simplifies since it involves only ampli-
tudes over physical scattering regions. This integral
equation can be diagonalized in l, and the associated
partial-wave amplitude, AðlÞ, can be then found alge-
braically. For these models, one can show that ΓðwÞ is
power-behaved, as in Eq. (5.1), and the leading effective
spin can be identified simply.
Our treatment parallels to that carried out in [35,37] but

differs significantly in how the relevant spectral analysis is
carried out. In working with ImΓðwÞ, we can in principle
deal only with the Hilbert space of square-integral func-
tions defined over half-line, 1 < w < ∞, instead of over the
whole line, −∞ < w < ∞, as done in [35,37]. This leads to
a significant simplification. In Appendix E, 1-d Green
function for Dw, Eq. (3.41), is discussed from a conven-
tional spectral analysis, before generalizing to the case
of functions which are polynomially bounded. Here, we
follow more directly the procedure of resummation per-
formed in the last section for d ≥ 2, starting with the result

of Sec. III D 3, which agrees with the result followed from a
Hilbert space treatment, Eq. (E12).

A. Kinematics

In analogy to the case of d ≥ 2, we consider a reduced
invariant 4-point function, Γ, as a function of a cross ratio
for the process 1þ 3 → 2þ 4. There are several options
for cross ratios,40e.g.,

τ ¼ t21t43
t23t41

or τc ¼
t13t42
t23t41

: ð5:2Þ

In 1-d, however, only one is independent due to the con-
straint jτcj þ jτj ¼ 1. Let us first adopt τ as the independent
variable. For s-channel scattering, 1þ3→2þ4, we require
t4, t2 > t3, t1. Without loss of generality, we consider the
causal limit of t4 > t2 > t1 > t3. Reparametrization invari-
ance allows one to keep three points fixed. We choose the
ansatz t4 ¼ ∞, t3 ¼ 0, t2 ¼ 1, with t1 ≡ t as the indepen-
dent variable, thus 0 ≤ t ≤ 1. In terms of invariant cross
ratios, τ ¼ 1 − t and τc ¼ t, and the s-channel physical
region corresponds to 0 ≤ τ ≤ 1, and τ þ τc ¼ 1.
The u-channel physical region, with 3 ↔ 4 inter-

changed, corresponds to τ → τ0 ≡ t12t34
t13t24

¼ τ=ðτ − 1Þ. The
u-channel physical region, 0 ≤ τ0 ≤ 1, then leads to
−∞ < τ < 0. In order to exhibit crossing more symmet-
rically, it is again convenient to adopt a new variable
[similar to Eq. (2.12)]

w≡ ð2 − τÞ=τ: ð5:3Þ

The s-channel physical region corresponds to

1 < w < ∞; ð5:4Þ

with u-channel region given symmetrically by −∞ <
w < −1.
Let us consider both the invariant amplitude, ΓðwÞ, and

its imaginary part in the s-channel physical region, ImΓðwÞ.
We assume that ΓðwÞ is polynomial bounded, jΓðwÞj < wN ,
at w ¼ ∞. As before, this invariant function has a factor of
w removed from the 4-point correlator, as in Eq. (2.19). For
correlators which are crossing even, ΓðwÞ will be crossing
odd, Γð−wÞ ¼ −ΓðwÞ. As shown in Sec. III D 2, eigen-
functions for the quadratic Casimir for 1-d scattering
processes can be chosen to be Legendre functions of the
second kind, G1dðwÞ ¼ Q̄−lðwÞ ¼ clQ−lðwÞ, with nor-
malization cl specified in Eq. (3.43).41 In terms of the

39For a brief description of the SYK theory relevant to this
work see Appendix E.

40We have switched to using a timelike coordinates, t and τ, to
emphasize that we are interested in the Lorentz boost symmetry
and to conform with the more standard notation found in the
literature. See also Appendix A 2 b.

41The utility of using Legendre functions of the second kind to
describe ΓðwÞ has been noted by other authors studying the SYK
model [104]. Also see [105–107].
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Mellin representation, described in Sec. IV B, reparamet-
rization invariance leads to

ΓðwÞ ¼
X

0<l<L0;even

aðlÞQ̄−lðwÞ −
ZL0þi∞

L0−i∞

dl
2i

×
1þ e−iπl

sin πl
aðlÞQ̄−lðwÞ; ð5:5Þ

where N þ 1 < L0. For w large, from Eq. (3.43), the
Legendre function simplifies to Q̄−lðwÞ ≃ ×wl−1ð1þ
Oðw−2ÞÞ.
For its imaginary part, defined for 1 < w < ∞, the sum

over l < L0 does not contribute, and

ImΓðwÞ ¼ −
ZL0þi∞

L0−i∞

dl
2i

aðlÞQ̄−lðwÞ

¼ −
ZL0þi∞

L0−i∞

dl
2πi

ð2l − 1ÞAðlÞ tanlπ
π

Q−lðwÞ:

ð5:6Þ

where we have also brought the representation into a more
conventional form,42 with tanlπ

π Q−lðwÞ regular in l at
positive integers. By taking advantage of the identity in
Eq. (3.44), it is useful to simplify (5.6) further in terms of
Legendre function, PlðwÞ, with l complex and 1<w<∞,

ImΓðwÞ ¼
ZL0þi∞

L0−i∞

dl
2πi

ð2l − 1ÞAðlÞPl−1ðwÞ: ð5:7Þ

This follows from the fact that one can add terms under the
integral in (5.6) which will then vanish by closing contour
to the right. In applying to 1-d scattering, it is this Mellin
representation which will be particularly useful. As shown
in Appendix E, this representation can also be arrived at
through a Hilbert space treatment over 1 < w < ∞.
Making use of a standard orthogonality condition,

Z∞
1

PνðxÞQσðxÞdx ¼ 1

ðσ − νÞðσ þ νþ 1Þ ð5:8Þ

one has the following inversion formula

AðlÞ ¼
Z∞
1

dwImΓðwÞQl−1ðwÞ: ð5:9Þ

Conversely, we can examine the full amplitude,

ΓðwÞ ¼
X

2≤l<L0;even

AðlÞPl−1ðwÞ

−
ZL0þi∞

L0−i∞

dl
2i

1þ e−iπl

sin πl
ð2l − 1ÞAðlÞPl−1ðwÞ;

ð5:10Þ

and examine the continuation to the region −1 < w < 1,
away from the s,u-channel physical regions. From
Eq. (5.9), AðlÞ is polynomial bounded as Rel → ∞.
Similarly, Pl−1ðwÞ vanishes exponentially for Rel large
when −1 < w < 1. Closing the contour in Eq. (5.10) to the
right leads directly to a real amplitude

ΓðwÞ ¼
X

2≤l¼2n

ð2l − 1ÞAðlÞPl−1ðwÞ ð5:11Þ

with ImΓðwÞ ¼ 0.
Finally we note that a 4-point correlator symmetric

under s-u crossing, TðwÞ ¼ Tð−wÞ, can be defined by
TðwÞ ¼ wΓðwÞ. In continuing to the Euclidean region,
from Eq. (5.10), it takes on a more conventional form

TðwÞ ¼ wΓðwÞ ¼
X

0≤l;even
ð2lþ 1ÞBðlÞPlðwÞ ð5:12Þ

where

BðlÞ ¼ 2l − 1

2lþ 1
AðlÞ þ ðlþ 1Þ2

ð2lþ 1Þ2 Aðlþ 2Þ ð5:13Þ

with Að0Þ ¼ 0.43

B. Scattering for SYK-like models

In the low temperature limit of the SYK model there is a
near conformal symmetry that is both explicitly and
spontaneously broken. The theory is close to a 0þ 1
dimensional conformal theory. Within this approximation,
the invariant function Γ can be obtained by solving a
ladder-type Bethe-Salpeter equation,44 which can be rep-
resented schematically as

42Our notation here conforms to that adopted in Appendix E 2,
in particular, factoring out the term ð2l − 1Þ. A more natural
choice would be shifting l by one unit, leading to a more familiar
factor of 2lþ 1. We have not done so due to our choice of
maintaining symmetry about Rel̃ ¼ 0. for d ¼ 1, this corre-
sponds to Rel ¼ ð2 − dÞ=2.

43The final relation comes from the two-term recursion relation
Pnþ1ðwÞ ¼ wPnðwÞ − n2

4n2−1Pn−1ðwÞ. The contributions from
l ¼ 0 and l ¼ 2 require a more careful treatment. We defer
to the comments after Eq. (5.40).

44This type of integral equation has a long history of use in
particle physics. For a different example see Appendix D 3 where
it is discussed in the context of deep inelastic scattering.
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Γ ¼ Γ1 þ K0 ⊗ Γ ð5:14Þ

where Γ is a function of 4 coordinates: Γðt1; t2; t3; t4Þ. We
shall refer to models that admit such a representation as
SYK-like models. Reparametrization invariance allows
diagonalization of this integral equation. This has indeed
been carried out in [35–37], primarily in an Euclidean
setting. To make contact with the chaos bound, an
appropriate analytic continuation to the Minkowski setting
has to be performed.
As a scattering problem, Eq. (5.14) has the structure of a

“box-diagram,” and it can be expressed equivalently as an
analogous integral equation for its absorptive part, the
imaginary part of Γ in the physical region. Schematically,
this can be expressed as

ImΓ ¼ ImΓ1 þ K̃0 ⊗0 ImΓ ð5:15Þ

with the convolution, ⊗0, is over the physical region only.
We will discuss the integral equation, Eq. (5.14), as a

scattering problem in real time, and study its solution
in the high energy limit. As such, it is analogous to the
BFKL type integral equation when applied to DIS structure
functions, Appendix D. We will spell out more precisely
the nature of this integral equation after first discussing the
simplification due to reparatrization invariance, allowing
one to express Γ in terms of invariant cross ratios,
Eq. (5.18). Reparametrization invariance leads to a simpler
diagonalization procedure in arriving at the desired solution
in identifying the leading effective spin, l� which directly
controls the large-time behavior for Γ.
It is also instructive to express the solution to Eq. (5.15)

formally as an iterative sum,

ImΓ ¼
X∞
n¼1

ðImΓÞn; ð5:16Þ

ðImΓÞn ¼ K̃0 ⊗0 ðImΓÞn−1: ð5:17Þ

The process can be viewed as producing n-lumps of
particles, with K̃0 providing the relative probability of
producing an additional “lump.” Each lump is irreducible,
and the allowed intermediate states consists of n such
lumps, with n ¼ 1; 2; 3;…. This interpretation is analogous
to the case of d ¼ 2 forward scattering discussed in
Appendix D.
More precisely, Eq. (5.17) can be identified with the

early work of Amati, Fubini and Stangelini [43,45] in
constructing multiperipheral models (MPM) of particle
production. Their construction is equivalent to a Bethe-
Salpeter equation for the absorptive part of the forward
scattering amplitudes. Here ðImΓÞn ∝ jT2→nj2, where a
factorizable 2-to-n production amplitude, T2→n, leads to
a recursive relation, Eq. (5.17). Furthermore, consistency
requires that K̃0 ≥ 0, over the allowed phase region. Given

K̃0 for a specific model, the challenge is to carry out the
sum, Eq. (5.16). In exact analogy to the BFKL integral
equation, Eq. (D11), this integral equation can be solved by
diagonalization due to SOð1; 1Þ symmetry.

1. Kinematics of integral equation for ImΓ:
In order to understand the kinematics of the integral

equation for ImΓ, it is useful to first examine the
Schwinger-Dyson equation in d ¼ 1 for the full amplitude
Γ. Consider a theory defined in such a way that it is given
by a sum of ladder graphs, i.e. schematically it is analogous
to that for BFKL integral equation, Eq. (D12). For SYK-
like models, the integral equation can be written for an
amputated 4-point function, with labels corresponding to
“scattering” in the s-channel of 1þ 3 → 2þ 4. Explicitly,
Eq. (5.14) becomes

Γðt2; t1; t4; t3Þ ¼ Γ1ðt2; t1; t4; t3Þ

þ
Z

dt5dt6K0ðt2; t1; t6; t5ÞΓðt6; t5; t4; t3Þ:

ð5:18Þ

Similarly to the BFKL case, the ladder sum is in the t-
channel. The first term on the right corresponds to an
inhomogeneous contribution. The second term corresponds
to a convolution of the “2-particle irreducible” kernel,
K0ðt2; t1; t6; t5Þ, with the connected full amplitude,
Γðt6; t5; t4; t3Þ. Although the solution can also be expressed
formally in an iterative sum, Eq. (5.16), it is important to
emphasize that the integration is over all values of t5 and t6.
Some regions do not correspond to physical scattering, with
K0 taking on negative values. Reparametrization invariance
dictates that K0ðt2; t1; t6; t5Þ is a function of a cross ratio.
For SYK like models, define

K0 ¼ ð1=α0ðqÞÞ
�
t21t65
t25t61

=
t15t62
t25t61

�
2=q

¼ ð1=α0ðqÞÞ
�

τk
1 − τk

�
2=q

; ð5:19Þ

where α0ðqÞ ¼ 2πq
ðq−1Þðq−2Þ tan ðπ=qÞ, with 4 ≤ q < ∞. We have

expressed K0, which is derived in an Euclidean treatment,
such that K0 > 0 over the physical region of 0 < τk < 1.
As mentioned above, it is necessary to treat different
kinematic regions differently, as done in [35]. However,
we are interested in treating this as a generic scattering
problem for 1-d CFT, but will not address here the question
of how this type of model can arise from a more
fundamental perspective.45

45In moving to a Minkowski setting, the kernel should acquire
an additional phase. We will return to this question below.
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The structure of the integral equation for ImΓ is the same
as for the full amplitude Γ, except the integration region
in Eq. (5.18) has to be restricted to the physical region. For
1-d, it is possible to express both Γ and ImΓ in terms of a
single cross ratio. We will initially adopt τ, Eq. (5.2), as
the independent variable and use the ansatz described at the
beginning of Sec. VA. For the integrand in Eq. (5.18), we
can construct invariants analogous to τ: τk ¼ t21t65

t25t61
and

τ0 ¼ t65t43
t63t45

. In terms of these invariants

dt5dt6 →
dτkdτ0ffiffiffiffi

D
p ; ð5:20Þ

where the Jacobian is given by Dðτ;τ0;τkÞ¼4ðτ−2 þ
τ−2k þτ0−2Þþ4ððττ0Þ−2þðτ0τkÞ−2þðττkÞ−2Þ−6ðτ−1þτ−1k þ
τ0−1Þþ3. The restriction to the physical region, for ImΓ,
corresponds to enforcing the constraint D ≥ 0.
As discussed in Sec. VA, a more symmetric treatment

for the physical scattering region can be carried out by
working with variable w ¼ 2−τ

τ , with s-channel physical
region 1 < w < ∞ and correspondingly −∞ < w < −1 for
the u-channel. More directly, it can be shown that

w ¼ 2 − τ

τ
¼ t212 þ t234 − ðt̄12 − t̄34Þ2

2t12t34
: ð5:21Þ

where t̄ij ¼ ðti þ tjÞ. Again, for the integrand in Eq. (5.18),
we can construct

wk ¼
2 − τk
τk

¼ t212 þ t256 − ðt̄12 − t̄56Þ2
2t12t56

w0 ¼ 2 − τ0

τ0
¼ t256 þ t234 − ðt̄56 − t̄34Þ2

2t56t34
; ð5:22Þ

with 1 < wk < ∞ and 1 < w0 < ∞ for s-channel physical
regions and −∞ < wk < −1 and −∞ < w0 < −1 for
u-channel physical regions, for 1þ 5 → 2þ 6 and 5þ
3 → 6þ 4 processes respectively. The region will further
be restricted by the requirement that the Jacobian of
transformation from t5 and t6 to wk and w0 be real. It is
not difficult to check that the Jacobian is given by
dt5dt6 →

dwkdw0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̄ðw;wk;w0Þ

p , where D̄ðw;wk; w0Þ takes on a stan-

dard form of a “triangle function,”

D̄ðw;wk; w0Þ ¼ w2 þ w2
k þ w02 − 1 − 2wwkw0: ð5:23Þ

The condition of integrating over physical region cor-
responds to D̄ðw;wk; w0Þ > 0, with 1 < jw0j, jwkj < w. The
condition for physical scattering, designated by θþðD̄Þ,
further restricts 1 ≤ wk, w0 ≤ w, with contributions from
u-channel, −∞ < wk; w0 < −1, folded into the 1 < wk,
w0 < w by symmetry. Introducing Lorentz boost parame-
ters, cosh β ¼ w, cosh βk ¼ wk and cosh β0 ¼ w0, the

constraint due to the Jacobian can also simply be expressed
as a triangle inequality, 0 < βk þ β0 ≤ β, which respects the
proper time-ordering. It follows that the integral equation
for ImΓðwÞ, Eq. (5.16), in the s-channel physical region can
be expressed as

ImΓðwÞ¼ ImΓ1ðwÞþ
Zw
1

Zw
1

dwkdw0θ
þðDÞffiffiffiffi
D

p K̃0ðwkÞImΓðw0Þ;

ð5:24Þ

which is one of our key results.
Let us turn next to the integral kernel K̃0ðwkÞ and its

relation to the corresponding kernel K0ðwkÞ for the full
amplitude. In higher dimensions, K̃0 would be appropriate
discontinuities of K0 across various physical regions. For
CFT, these discontinuities are all equal, up to a constant
numerical factor. We will therefore replace K̃0 in Eq. (5.24)
by K̃0ðwkÞ ¼ CK0ðwkÞ. with K0 real and positive, given by
Eq. (5.19), in the s-channel scattering region of
1 < wk < ∞. For 1-d, to keep track of the contributing
phases, we need to take account of time-ordering across
two edges of the ladder. Denote the signs for t53 and t64 by
�. There are 4 distinct time orderings: ðþþÞ, ð−−Þ, ðþ−Þ,
and ð−þÞ, which contribute to ImΓðwÞ in the s-channel.46

For SYK-like models, the combined contribution becomes
C ¼ ðe−iπ=q þ eiπ=qÞðe−iπ=q þ eiπ=qÞ� ¼ 4 cos2ðπ=qÞ, with
C real and positive. This amounts to adopting an approach
using a retarded propagator, as done in [37]. It follows that

K̃0ðwkÞ ¼
21þ1=qðq − 1Þðq − 2Þ

q2Γð1þ 2=qÞΓð1 − 2=qÞ
× ðwk − 1Þ−2=qθðwk − 1Þ: ð5:25Þ

This shall serve as our ansatz for SYK-like models.

2. Diagonalization:

We proceed first to a general solution to this integral
equation for ImΓðwÞ, Eq. (5.24), taking advantage of our
analysis in Sec. VA. Just like the situation for d ≥ 2, we
will consider the class of problems where Γð−wÞ ¼ −ΓðwÞ
and ΓðwÞ is polynomially bounded as w → ∞. It follows
that ImΓðwÞ can be represented by an inverse Mellin
transform, Eq. (5.7). A similar representation can be written
for the kernel,

K̃0ðwkÞ ¼
ZL0þi∞

L0−i∞

dl
2πi

ð2l − 1ÞkðlÞPl−1ðwkÞ: ð5:26Þ

46In contrast, for the integral equation for the full amplitudes,
depending on the counting schemes, there are many more
configurations to consider in an Euclidean treatment [35,37].

TIMOTHY G. RABEN and CHUNG-I TAN PHYS. REV. D 98, 086009 (2018)

086009-22



and also for the inhomogeneous term, Γ1. The inversion
formula is given by Eq. (5.9), and, for the kernel and the
inhomogeneous term,

kðlÞ ¼
Z∞
1

dwQl−1ðwÞK̃0ðwÞ; ð5:27Þ

A1ðlÞ ¼
Z∞
1

dwQl−1ðwÞImΓ1ðwÞ ð5:28Þ

We emphasize again, for both A1ðlÞ and kðlÞ, the integrals
are over the physical regions only. With kðlÞ given by a
single integral, Eq. (5.27), this is a significant simplification
when compared to the comparable treatment involving the
full amplitude, Γ [35,37].
Let us apply the integral transform

R∞
1 dwQl−1ðwÞ to

Eq. (5.24). The left-hand side leads to AðlÞ. With the help
of the identity [108–110]

Z∞
1

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðw;wk; w0Þp θðþÞðDÞQlðwÞ ¼ QlðwkÞQlðw0Þ

ð5:29Þ

valid for Rel > 1, the nontrivial term on the right can be
diagonalized as kðlÞAðlÞ, thus leading to

AðlÞ ¼ A1ðlÞ þ kðl; qÞAðlÞ: ð5:30Þ

The ability to reduce the integral equation, Eq. (5.24), to an
algebraic equation by a rather straight-forward analysis is
another one of our key results. This process is analogous to
that carried out in [108–110]. The treatment here corre-
sponds to an harmonic analysis by nonunitary representa-
tion of SOð1; 1Þ.
From this diagonalized equation, the partial-wave ampli-

tude AðlÞ can be found simply,

AðlÞ ¼ A1ðlÞ
1 − kðl; qÞ ð5:31Þ

with kðlÞ given by Eq. (5.27). This in turn allows one to
recover ImΓ via Eq. (5.7) and/or the full amplitude Γ more
directly from via Eq. (5.5).

3. Identifying the leading intercept l�

The leading effective spin, leff , corresponding to the
rightmost singularity of AðlÞ, can be found by the con-
dition

kðleff ; qÞ ¼ 1; ð5:32Þ

where kðlÞ is given by Eq. (5.27). Let us focus on SYK-
like models where the kernel K̃0ðwÞ is given by Eq. (5.25).
This leads to

kðl; qÞ ¼ 21þ2=qðq − 1Þðq − 2Þ
q2Γð1þ 2=qÞΓð1 − 2=qÞ Iðl; qÞ; ð5:33Þ

where we have exhibited its dependence on the parameter
q, with Iðl; qÞ given by a single integral

Iðl; qÞ ¼
Z∞
1

dwðw − 1Þ−2=qQl−1ðwÞ: ð5:34Þ

This integral converges for 0 < 1–2=q < Rel at w ¼ 1 and
w ¼ ∞. Therefore, kðl; qÞ is analytic to the right
of Rel ¼ 1–2=q.
It is easy to check that kð2; qÞ ¼ 1, therefore AðlÞ has a

pole at l ¼ 2. This can also be verified by evaluating
Ið2; qÞ ¼ R

∞
1 dwðw − 1Þ−2δQ1ðwÞ via a contour integral.

For general l, 0 < 1–2=q < Rel, the integral Iðl; qÞ can
also be evaluated explicitly by expanding Ql−1ðwÞ and

summed up to Iðl; qÞ ¼ 2−2=qðΓð1 − 2=qÞÞ2 Γðl−1þ2=qÞ
Γðlþ1−2=qÞ.

This leads to

kðl; qÞ ¼ Γð3 − 2=qÞ
Γð1þ 2=qÞ

Γðl − 1þ 2=qÞ
Γðlþ 1 − 2=qÞ ; ð5:35Þ

which agrees with that found earlier [35–37]. The ampli-
tude AðlÞ is thus

AðlÞ¼ Γð1þ2=qÞΓðlþ1−2=qÞ
Γð1þ2=qÞΓðlþ1−2=qÞ−Γð3−2=qÞΓðl1þ2=qÞ
×A1ðlÞ: ð5:36Þ

As a further check, for l ¼ 2ðnþ 1Þ, n ¼ 1; 2;…, with
q ¼ 4, and A1ðlÞ ¼ kðlÞ,

AðlÞ ¼ 6
ðnþ 3=4Þ2

n
; ð5:37Þ

which agrees with Eq. (4.23) of [35], up to a normalization
constant. Note that AðlÞ is singular at n ¼ 0, correspond-
ing to leff ¼ 2.
Since kðl; qÞ is monotonic in Rel and vanishing at

Rel ¼ ∞, leff ¼ 2 is the leading singularity to the right of
Rel ¼ 1. From Eq. (5.7), one has, as w → ∞,

ImΓðwÞ → γwþOðw1−2=qÞ: ð5:38Þ

with γ given by residue of AðlÞ at l ¼ 2. Corrections to the
leading order comes from a singularity at l ¼ 1–2=q,
driven by the Born term, ImΓ1. For the full amplitude,
Eq. (5.38) corresponds to having a leading behavior
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ΓðwÞ ≃ −π−1γw½logð1 − wÞ þ logðw − 1Þ�
þ γ0wþOðw1−2=qÞ; ð5:39Þ

with γ0 given by residue of ðl − 2ÞAðlÞ at l ¼ 2. The
emergence of log is perhaps puzzling. It is mathematically
necessary due to the fact that ImΓðwÞ grows linearly with
w. This is also related to the fact that Eq. (5.37) is singular
at n ¼ 0. To clarify this issue further, we turn next to a brief
discussion on the continuation into the region jwj < 1,
conformal symmetry breaking, and stringy corrections.

C. Analyticity and corrections

Let us end this section with several additional comments.
(a) Hilbert space treatment: Our treatment for ImΓðwÞ

can be framed in the context of an harmonic analysis
over the noncompact group, SOð1; 1Þ, as carried out in
Appendix E. We begin first with a spectral analysis
over the Hilbert space of square-integrable functions
over the interval ð1;∞Þ, Sec. E 1. The framework is
next extended to allow functions which are polyno-
mially bounded at w ¼ ∞, in Sec. E 2, leading to the
representation (5.6)–(5.7). As explained in [108–110],
this can be regarded as an harmonic analysis by
nonunitary representation of SOð1; 1Þ.
Let us contrast our scattering treatment with other

related Euclidean treatments, for example that of
[35,37], which can also be framed in a Hilbert space
treatment. In [37], one first considers the space of
functions defined over 0 < τ < 2, which corresponds to
0 < w < ∞. It is then extended to the whole range in τ
by symmetry. With w ¼ ð2 − τÞ=τ, this corresponds to
reflecting w ↔ −w, leading to the whole range
−∞ < w < ∞. As a consequence, eigenfunctions con-
tain log-singularities at τ ¼ 1 (w ¼ 1). In contrast, our
eigenfunctions, (E5)–(E6), are defined over the interval
ð1;∞Þ. In order to extend their treatment to include
functions which are more singular at τ ¼ 1, e.g.,
ðτ − 1Þ−N , N > 0, (∼jwjN as jwj → ∞Þ, it is implicit
that an extension of the standard spectral analysis also
has to be made. Therefore, our treatment here is in some
sense no less general than that carried out in [35,37].

(b) Continuation to Euclidean region: Given ImΓðwÞ, for
the region 1 < jwj < ∞, let us examine the specifica-
tion of the full amplitude ΓðwÞ. From Eq. (5.10), it is
possible to extend ΓðwÞ to the complex w-plane, as a
real analytic function with branch cuts for 1 < jwj. For
the case of Eq. (5.38), one can initially choose 2 <
L0 < 4. In continuing to the region −1 < w < 1, the
contour can be closed to the right, Eq. (5.11), arriving at

ΓðwÞ ¼ Ā2wþ
X

2<l;even

ð2l − 1ÞAðlÞPl−1ðwÞ

¼ Ā2wþ
X

3≤l̄;odd

ð2l̄þ 1ÞAl̄þ1Pl̄ðwÞ ð5:40Þ

In closing the contour, one finds ImΓðwÞ ¼ 0 in the
region jwj < 1, as indicated earlier. In the first line on the
right, Ā2 a constant, is a priori unspecified. The second
line is a rewrite of the first, with l̄ ¼ l − 1 and Al̄þ1

summed only over l̄ odd integers. This is precisely
the ordinary Legendre expansion for square-integrable
functions over ð−1; 1Þ where ΓðwÞ ¼ −Γð−wÞ.
Under normal circumstance, the sum over l̄ can be

extended to l̄ ¼ 1, with Ā2 ¼ 3Að2Þ given by the
analytic continuation of AðlÞ to l ¼ 2. However, this
is not a necessity.47 For SYK-likemodels, the situation is
more robust since AðlÞ has a pole at l ¼ 2. From
Eq. (5.5), there is a double-pole at l ¼ 2, leading to
logrithmic behavior. Lastly, we note that Eq. (5.40) can
again be converted to a symmetric function, TðwÞ,
via Eq. (5.12).

(c) Conformal symmetry breaking: The existence of a
pole at l ¼ 2, as explained in [35,37], is due con-
formal invariance, and it corresponds to the existence
of a goldstone mode. For SYK models, this mode is
unphysical and should be removed. There are several
scenarios to consider. One possibility is simply to
define the theory with this mode removed. For
example, in Eq. (5.40), setting Ā2 ¼ 0, as is done in
[35]. In this case, it is possible to reverse the procedure
in resumming Eq. (5.40) for the limit w → ∞, leading
to Eqs. (5.38) and (5.39) with γ ¼ 0. Analytically, this
can be accomplished by introducing an extra zero to
AðlÞ, e.g., AðlÞ ∼ l − 2, leading to γ ¼ 0 and γ0 ≠ 0.
This will not alter the eigenvalue condition for
kð2; δÞ ¼ 1. As a consequence, this “weak breaking”
scenario does note alter the feature that leff ¼ 2; it
leads to a situation where the log term in Eq. (5.39) is
removed. A stronger modification to the kernel is
required in order to change leff from 2.

(d) Stringy corrections: On the other hand, the model can
be embellished by considering stringy corrections as
discussed in [37], and, more generally, in [30]. In this
case, one has leff < 2, which leads to

ΓðwÞ → γ0½−ð1 − wÞlell−1 þ ðw − 1Þlell−1�
þOðw1−2=qÞ; ð5:41Þ

as w → ∞. It follows that the log-term in Eq. (5.39) is
again removed. In analogy with N ¼ 4 YM, it is
tempting to refer to this singularity as due to stringy
corrections, as the 1-d Pomeron [112]. However, as
discussed in the next section, thermal effects must be
taken into account.

47In a traditional Regge treatment, if this were to happen, it
would correspond to the theory not being uniquely defined by the
analytic S-matrix [99], AðlÞ would contain a Kronecker-delta
term, and the theory would require “Castillejo-Dalitz-Dyson”
(CDD) poles. See [111] for a historical discussion.
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VI. DISCUSSION AND SUMMARY

In this paper we have focused on scattering in CFTs, for
example off-shell photon-photon scattering, through an
OPE with Minkowski conformal blocks. We review the
major results here and discuss future connections and
applications.
This paper consists of three main components. The first

part, directly defining and calculating MCB, is shown in
Secs. III. MCB are solutions to the quadratic Casimir for
the product of scalar conformal primaries. We show how
“scattering along light-cones,” also realized by taking a
double light-cone limit as discussed in Sec. II, selects a
natural basis for MCB satisfying a different set of boundary
conditions from that for Euclidean conformal blocks. Due
to the difference in boundary conditions, MCB are not
given by a direct analytic continuation but only related to
the ECB.
In an Euclidean setting, the DLC limit involves a single

scale, dilatation, leading to a single scaling limit. In a
Minkowski setting, there are two scaling limits: dilatation
and boost. The dilatation limit is characterized by a
parameter σ → ∞, and the second scaling limit, w → ∞,
is analogous to a Lorentz boost. Dilatation leads to scaling
dependent on the conformal dimensionΔ, Eq. (2.23), while
the Lorentz boost leads to a dependence on an effective spin
leff , Eq. (1.16). When a 4-point correlator is expressed in
terms of invariant cross ratios, for example Fðu; vÞ in
Eq. (1.2), these two scaling limits allow one to explore the
consequence of the residual symmetry, Oð1; 1Þ ×Oð1; 1Þ.
The second part deals with the application of Minkowski

OPE for formal scattering processes. We explain how a
t-channel OPE leads to a description for s-channel scatter-
ing amplitudes in terms of contributions from t-channel
conformal primaries. In the DLC limit, the leading con-
tribution comes from the stress-energy tensor. For a realistic
phenomenological treatment, stringy, and sometimes ther-
mal, corrections must be included. This requires summing
contributions from the t-channel OPE via the Sommerfeld-
Watson transformation. This is discussed in Sec. IV, leading
to a complex l-plane representation, (1.14), as well as a
double-Mellin representation in complex-Δ and complex-l,
Eq. (4.8).
The third part turns to specific applications. The simplest

phenomenological application, which directly explores the
residual SOð1; 1Þ × SOð1; 1Þ symmetry, is deep inelastic
scattering (DIS). Both formal and phenomenological
aspects, like the BFKL program, are summarized in
Appendix D. In Sec. V we focus on scattering for 1-d
SYK-like models. We show how MCB can be used to
simplify the dynamics for these models and how the
leading effective spin, associated with the chaos bound,
can be identified.
We conclude here with a more detailed discussion on

how stringy correction to leff for SYK-like models can be
framed through AdS=CFT along the formalism introduced

in [11–13]. This issue has been previously addressed in
[30] and [37,38]. We add further discussion by exploring
the consequences of SOð1; 1Þ × SOð1; 1Þ symmetry via the
spectral curve, ΔðlÞ, for the leading twist conformal
primaries interpolating the stress-energy tensor. This was
explored in Sec. IV.
The importance of spectral curve for scattering in CFT

can best be illustrated via DIS. It is well known that
anomalous dimensions of the leading twist-2 conformal
primaries of conformal dimension Δ and spin l, OΔ;l,
controls the large q2 dependence for the moments of
structure functions. For example, for F2ðx; q2Þ, for q large,
Ml ¼ R

1
0 x

l−2F2ðx; q2Þdx ∼ q−γl , as in Eq. (D16), where
γl ¼ ΔðlÞ − l − d=2. Due to crossing symmetry, only
even l enters. (See Appendix D for kinematic details.)
The positivity constraint, Eq. (D9), for general d, leads to
ΔðlÞÞ ≥ d=2. The second scaling is related to the limit
x → 0 (Eγ → ∞). Again, for F2, this leads to Eq. (D14).
The effective spin can be found by solving an eigenvalue
condition Eq. (1.16) [11,13], which can be expressed
more explicitly as ΔðleffÞ ¼ 2, which saturates the pos-
itivity bound.
It is useful to provide additional discussion on the

importance of the spectral curve, ΔðlÞ, for the leading
twist conformal primaries interpolating the stress-energy
tensor. This is most illuminating in the context of the
AdS=CFT. In Sec. IV C, we have shown how, for string
theories, world-sheet conformal invariance can be enforced
by L0 ¼ L̄0 ¼ 1. This constraint can be enforced by per-

forming a spectral analysis for the propagator G ¼ δL0 ;L̄0
L0þL̄0−2

,

from which ΔðlÞ can be extracted. Due to conformal
invariance, it is symmetric under

ΔðlÞ ↔ d − ΔðlÞ; ð6:1Þ

for general d. (See Fig. 2, for d ¼ 4.) In terms of the
Poincaré patch, this follows simply from z ↔ z−1

symmetry.
In flat space, this propagator, in a momentum space

representation, leads to the Regge trajectory interpolating
the graviton, Gðt;lÞ ¼ 1

l−2−ðα0=2Þt, i.e. lðtÞ ¼ 2þ α0t=2,
with mass-shell condition corresponding to poles for even
l ¼ 2n, n ¼ 1; 2;…. Consider next strings propagating
over AdS5. In the weak curvature limit, this turnsGðlÞ into,
as a differential operator [11], GðlÞ ¼ 1

l−2þðα0=2R2
adsÞ∇2ðlÞ,

where α0=R2
ads ¼ 1=

ffiffiffi
λ

p
and ∇2ðlÞ is the tensor Laplacian.

For l ≃ 2, after a similarity transformation, ∇2ðlÞ reduces
to the scalar Laplacian, ∇2

0, with eigenvalue ðd=2Þ2 þ ν2,
−∞ < ν < ∞, leading to a spectral representation in l,

GðlÞ ¼
Z

∞

−∞

dν
2πi

jψðνihψðνÞj
l − 2þ ð1=2 ffiffiffi

λ
p Þðν2 þ d2=4Þ ð6:2Þ
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This corresponds to a continuous spectrum, −∞<l<leff ,
with leff ¼ 2 − d2

8
ffiffi
λ

p , i.e., a branch cut in the complex

l-plane over ð−∞;leffÞ. With Δ ¼ d=2þ iν, this corre-
sponds to the desired spectral curve,48 i.e., for d ¼ 4,
Eq. (4.10), with Bðλ;lÞ ≃ ffiffiffi

2
p

λ1=4. More explicit spectral
analysis can be carried out in a momentum representation,
with t ¼ −ðp1 − p2Þ2, given by (B7).
An alternative spectral representation in t can also be

obtained in terms of regular Bessel function, (B2). At
integral l, they correspond to momentum space represen-
tation of bulk-to-boundary propagators. In the DLC limit
where p1 − p2 ≃ q⊥ is asymptotically transverse, perform-
ing a 2-dim Fourier transform, one finds, up to a factor of
ðzz̄Þ2, a reduction to a scalar propagator,

Gðcosh ξ;lÞ ¼ e−ðΔðlÞ−2Þξ

sinh ξ
ð6:3Þ

with cosh ξ ¼ ðz2 þ z̄2 þ b2⊥Þ=2zz̄, i.e., a formal solution
expressible in terms of geodesic ξ on H3. At l ¼ 2 and
d ¼ 5, other than the extra factor ðzz̄Þ2, this is nothing but
the scalar AdS3 bulk-to-bulk propagator.
Let us turn next to thermo-CFT-correlators and treat it

similarly via AdS=CFT by considering a black-hole back-
ground. For d ≥ 3 we can write the metric as [113],

ds2 ¼ R2
eff

z2

�
ð1 − zdþ1Þdτ2 þ

Xd
i¼1

dx2i þ ð1 − zdþ1Þ−1dz2
�

ð6:4Þ

where we have scaled the horizon to z ¼ 1. A similar
spectral analysis in t and in l can be carried out, extending
the treatment of [114]. Interestingly, the spectral in t is
now discrete, with t ¼ m2

n > 0, n ¼ 0; 1;…, and is analytic
for t < 0,

Gðt; β; z; z̄;lÞ ¼
XΨnðz;lÞΨ�

nðz̄;lÞ
m2

nðlÞ − t
: ð6:5Þ

For l ¼ 2, these correspond to tensor glueballs calculated
in [114]. There is a finite mass gap, with m2

0 > 0.
For t > 0, the spectrum in l is also discrete for l > 0,

which, when combined with Eq. (6.5), leads to Regge
trajectories, lnðtÞ, n ¼ 0; 1;…. However, for t < 0, the
t-dependent term in the Laplacian turns repulsive, and the
spectrum in l is continuous. This leads to branch cut at
ð−∞;leffÞ,

leff ¼ 2 − ðd=2Þ2=2
ffiffiffiffiffiffiffi
λeff

p
ð6:6Þ

where we have introduced an effective ’t Hooft coupling,
λeff ≡ ðReff=lstringÞ4. (This branch cut also persists for
t > 0.) A similar expression for leff has also been arrived
in [30] and [37]. In particular, [37] finds that λeff should be
temperature dependent. We defer to a future study on how
our analysis can be framed accordingly [115].
We end by pointing out that we have focused in Sec. V,

on the large w behavior for ImΓ, with the real part given by
dispersion relation. However, in “lifting” the model to
higher dimensions, the relation between the real part and
the imaginary part becomes more complex. In [13], in the
Regge limit, it was pointed out that the limit of large s and
large impact parameter, b, do not commute. Our study here
takes the limit s large before b is allowed to be large,
corresponding to the limit u → 0 with ð1 − vÞ= ffiffiffi

u
p

initially
fixed. It is nevertheless interesting to examine the large s
limit, but fixed, and taking b large. In that case, one regains
the single gravity exchange, with a cutoff in impact space
controlled by the lowest tensor glueball mass, m0,

Gðb⃗; z; z̄;l ¼ 2Þ ∼ e−m0jb⃗j ð6:7Þ
with m0 scaled by the inverse temperature β [13]. It is
equally important to recognize that this mass does not
directly determine49 the stringy correction to leff .
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APPENDIX A: MORE ON DLC KINEMATICS

Here we provide more detail on many of the specific
kinematic details, notations, and conventions, that are used
throughout the main text.

48For N ¼ 4 SYM, by taking advantage of integrabililty,
Eq. (4.10) represents a systematic expansion at strong coupling
and low spin. Using this approach it has been possible to calculate
the Pomeron and Odderon, associated with the anti-symmetric
tensor, Bμν, intercepts to several high orders in 1=

ffiffiffi
λ

p
[19]. 49For a possibly different perspective, see [30].
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1. Channels

An unfortunate side effect of a long history of literature
is that similar syntax confusingly gets used to refer to
different things. In an effort to clear up confusion, in this
brief appendix we would like to highlight two different
uses of the channel of a scattering process that are used in
the text. We refer to the channel of a scattering process, for
example s-channel scattering, as a reference to incoming
and outgoing particles. Once a scattering channel is
defined, the rest follow. This can be seen in Fig. 3. A
single scattering process can be written in terms of different
OPE combinations as seen in Fig. 4. Note that in a CFT,
these contributions are not summed; a single OPE pre-
scription describes the entire correlation function. Finally
we note that the s-channel process and u-channel process
can involve a similar t-channel OPE structure as in Fig. 5.

2. Rindler coordinates for the DLC limit

In this Appendix, we review the Rindler-like hyperbolic
coordinate parametrization which is used extensively in
Sec. II. We consider here s-channel scattering approaching
the DLC limit.
Consider LC coordinates, x ¼ ðxþ; x−; x⊥Þ, x� ¼

x0 � xL. Our convention for different time signatures is

x · y ¼
(
− 1

2
ðxþy− þ x−yþÞ þ x2⊥ Minkowski

1
2
ðxþy− þ x−yþÞ þ x2⊥ Euclidean

: ðA1Þ

For the Minkowski case, x spacelike implies x2¼
−xþx−þx2⊥>0 and xþx−<0. For a 4-point Minkowski
correlator, LC components can be parametrized by a
conformal virtuality, Eq. (2.3), and conformal rapidity,
Eq. (2.4)

x1 ¼ ð−r1ey1 ; r1e−y1 ; x1;⊥Þ;
x2 ¼ ðr2ey2 ;−r2e−y2 ; x2;⊥Þ;
x3 ¼ ðr3e−y3 ;−r3ey3 ; x3;⊥Þ;
x4 ¼ ð−r4e−y4 ; r4ey4 ; x4;⊥Þ; ðA2Þ

where the time and longitudinal coordinates are explicitly,

x01 ¼ −r1 sinh y1; xL1 ¼ −r1 cosh y1;

x02 ¼ r2 sinh y2; xL2 ¼ r2 cosh y2;

x03 ¼ −r3 sinh y3; xL3 ¼ r3 cosh y3;

x04 ¼ r4 sinh y4; xL4 ¼ −r4 cosh y4: ðA3Þ

Sending all rapidities yi → ∞, with xi⊥ fixed, leads
to (2.2).

a. Relating to invariant cross ratios for general d:

For invariants, we have, for general d, with transverse
coordinates x⊥;i kept for d > 2,

u ¼ x212x
2
34

x213x
2
24

¼ ½cosh y12 þ Rð1; 2Þ�½cosh y34 þ Rð3; 4Þ�
½cosh ȳ13 þ Rð1; 3Þ�½cosh ȳ24 þ Rð2; 4Þ�

ðA4Þ

v ¼ x223x
2
14

x213x
2
24

¼ ½cosh ȳ23 − Rð2; 3Þ�½cosh ȳ14 − Rð1; 4Þ�
½cosh ȳ13 þ Rð1; 3Þ�½cosh ȳ24 þ Rð2; 4Þ�

ðA5Þ

where

yij ¼ yi − yj; ȳij ¼ yi þ yj; bij ¼ x⊥i − x⊥j;

Rði; jÞ ¼ r2i þ r2j þ b2ij
2rirj

: ðA6Þ

FIG. 4. s-channel scattering involving (top) an s-channel OPE,
(middle) a t-channel OPE, and (bottom) a u-channel OPE.

FIG. 5. The t-channel OPE for the (top) s-channel scattering
process and (bottom) u-channel scattering process are related.
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To simplify the discussion, we will adopt a frame where
xi;⊥ ¼ x2;⊥ and x3;⊥ ¼ x4;⊥, i.e., b12 ¼ b34 ¼ 0, with b⊥ ¼
x1;⊥ − x3⊥ as the relative separation between (1,2) and (3,4)
in the transverse impact space.
In terms of the global rapidity y and virtuality ri for each

coordinate, cross ratios u and v take on relatively simple
forms, For all yi taking on a global value y, thus yij ¼ 0 and
ȳij ¼ 2y,

u ¼ x212x
2
34

x213x
2
24

¼ ½ðr1 þ r2Þ2=ðr1r2Þ�
ðe2y þ 2Rð1; 3Þ þ e−2yÞ� ;

×
½ðr3 þ r4Þ2=ðr3r4Þ�

½ðe2y þ 2Rð2; 4Þ þ e−2yÞ� ðA7Þ

≃ð ffiffiffiffiffi
r1

p þ ffiffiffiffiffi
r2

p Þ2ð ffiffiffiffiffi
r3

p þ ffiffiffiffiffi
r4

p Þ2e−2y þOðe−4yÞ; ðA8Þ

v ¼ x223x
2
41

x213x
2
42

¼ ½e2y − 2Rð1; 3Þ þ e−2y�
½e2y þ 2Rð2; 3Þ þ e−2y� ;

×
½ðe2y − 2Rð2; 4Þ þ e−2yÞ�
½e2y þ 2Rð1; 4Þ þ e−2yÞ� ðA9Þ

≃1þOðe−2yÞ; ðA10Þ

where the transverse separation enters through Rði; jÞ. In
the case of two pairs of equal virtuality, r1 ¼ r2 and
r3 ¼ r4, these can further be simplified, leading to (2.5).
The limit u → 0 can therefore be achieved either by y → ∞
or ri → 0, or by b2⊥ → ∞ first. For near-forward scattering,
or the DLC limit, we consider the first scenario of y → ∞
with ri and b2⊥ fixed. The limit u → 0 therefore exploits the
scaling limit of Lorentz boost.
It is straight forward to calculate the combination 1−vþu

2
ffiffi
u

p .
The physical region is constraint to satisfy

1 − vþ u ≥ 2
ffiffiffi
u

p ðA11Þ

As an illustration, we consider the limit where r1 ¼ r2 and
r3 ¼ r4, where one finds

1 − vþ u
2

ffiffiffi
u

p ¼ 2 coshð2yÞRð1; 3Þ þ 4

2 coshð2yÞ þ Rð1; 3Þ ; ðA12Þ

leading to (2.15) in the limit y → ∞.

b. d = 1

By keeping only time components xð0Þi , from (A3), one
has for cross ratios,

u ¼ x212x
2
34

x213x
2
24

¼ ðr1 sinh y1 þ r2 sinh y2Þ2
r1 sinh y1 − r3 sinh y3Þ2

;

×
ðr3 sinh y3 þ r4 sinh y4Þ2
ðr2 sinh y2 − r4 sinh y4Þ2

v ¼ x223x
2
41

x213x
2
42

¼ ðr2 sinh y2 þ r3 sinh y3Þ2
ðr1 sinh y1 − r3 sinh y3Þ2

×
ðr1 sinh y1 þ r4 sinh y4Þ2
ðr2 sinh y2 − r4 sinh y4Þ2

: ðA13Þ

It is easy to check that equality for (A11) holds, leading
to ð1 − ffiffiffi

u
p Þ2 ¼ v, or 1 ¼ ffiffiffi

u
p � ffiffiffi

v
p

. Therefore, only one
cross ratio is independent.
Since each coordinate now has only a single component,

we consider cross ratios defined in (5.2). From (A3),
keeping parametrization for ti ¼ xð0Þi , one has

τ ¼ t21t43
t23t41

¼ ðr1 sinh y1 þ r2 sinh y2Þ
ðr2 sinh y2 þ r3 sinh y3Þ

;

×
ðr3 sinh y3 þ r4 sinh y4Þ
ðr1 sinh y1 þ r4 sinh y4Þ

;

τc ¼
t13t42
t23t41

¼ ðr1 sinh y1 − r3 sinh y3Þ
ðr2 sinh y2 þ r3 sinh y3Þ

×
ðr2 sinh y2 − r4 sinh y4Þ
ðr1 sinh y1 þ r4 sinh y4Þ

: ðA14Þ

One easily checks that

τ þ τc ¼ 1: ðA15Þ

As expected, there is only one independent cross ratio.
Lastly, for Eq. (5.3), one has

w ¼ 1þ 2
ðr3 sinh y3 − r1 sinh y1Þðr4 sinh y4 − r2 sinh y2Þ
ðr2 sinh y2 þ r1 sinh y1Þðr4 sinh y4 þ r3 sinh y3Þ

ðA16Þ

For either t3 < t1 < t2 < t4 or t1 < t3 < t4 < t3, one
has 1 < w < ∞.

APPENDIX B: SCATTERING IN CFT
AND HOLOGRAPHY

In order to infer the desired boundary condition for
Minkowski conformal blocks, (1.12), we need to consider
scattering amplitudes at high energy and large but fixed
impact separation. The amplitude, in a “shock-wave”50

treatment, can be characterized by an eikonal phase,
χðs;b⃗;z12;z34Þ. At a large impact separation, χðs;b⃗;z12;z34Þ

50The shockwave set up was originally formulated by ’t Hooft
and Dray [116,117].
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is small and can be treated perturbatively, i.e., Eq. (2.19).
This representation can also be interpreted holographically
as scattering in the AdS bulk [11–13,18]. Here we provide a
short summary, following that done in [19], with some
notational changes adopted in the current paper.

1. Impact parameter representation and holography

Consider the Fourier transform of the connected corre-
lation function defined in (1.2),

hO1ðp1ÞO2ðp2ÞO3ðp3ÞO4ðp4Þic
¼ ð2πÞ4δð4Þ

�X
pj

�
iTðp1; p2; p3; p4Þ: ðB1Þ

The amplitude TðpjÞ can be expressed as a function of
Mandelstam invariants s, t, and p2

j . The Regge limit
corresponds to s large, which defines a light-cone
direction, with t < 0 and p2

j fixed. In this limit, the
momentum transfer is asymptotically transverse, with t ¼
ðp1 þ p2Þ2 ≈ −q2⊥. In a coordinate representation, this
corresponds to the DLC limit, discussed in Sec. II and
explained further in Appendix A 2. Using conformal
symmetry, it is possible to express the amplitude TðpjÞ as

Tðs; t; p2
i Þ ≈

Z
dz
z5

dz0

z05
Φ1ðz; p2

1ÞΦ2ðz; p2
2ÞKðs; t; z; z̄Þ

×Φ3ðz̄; p2
3ÞΦ4ðz̄; p2

4Þ; ðB2Þ

where Kðs; t; z; z̄Þ corresponds to a Pomeron-Regge kernel
which in the Regge limit admits an impact parameter
representation, [14–17]

Kðs; t; z; z̄Þ ¼ ðzz̄Þ2s
Z

d2b⊥
4π2

eiq⊥·b⊥F ðS; σ0Þ; ðB3Þ

with b⊥ the two-dimensional impact parameter. The
amplitude F ðS; σ0Þ encodes all dynamical information
and, due to conformal symmetry, depends only on the

variables S ¼ zz̄s and σ0 ≃
z2þz̄2þb2⊥

2zz̄ , (2.8). It is important to
note that the conformal representation (B3) of the ampli-
tude is valid for any value of the coupling constant, since
it relies only on conformal invariance. The same repre-
sentation was obtained through direct AdS=CFT consid-
erations, [11–13], leading to an identical Regge kernel,
Kðs; b⊥; z; z0Þ. Up to irrelevant constants, this kernel is
related to T ðS; σ0Þ by

Kðs; b⊥; z; z̄Þ ∼ ðzz̄Þ2sF ðS; σ0Þ: ðB4Þ

The Regge limit is now S → ∞ with fixed σ0.
We have therefore two representations of the correlation

function in the Regge limit. One derived from the CFT
analysis in position space FðMÞðu; vÞ, given by Eqs. (1.2)

and (4.4), and another from a computation in momentum
space with a clear geometrical interpretation as a scattering
process in AdS, given by Eq. (2.19). This establishes a
dictionary where, in the Regge limit,

FðMÞðu; vÞ ↔ F ðS; σ0Þ
¼ N−2ðzz̄Þ−2s−1Kðs; b2⊥; z; z̄Þ: ðB5Þ

We will also identified, as done in Sec. II, w ≈ 2
ffiffiffi
u

p −1 ↔

S ¼ zz̄s and 1−v
2
ffiffi
u

p ↔ σ ¼ cosh ξσ0 ≃
b2⊥þz2þz̄2

2zz̄ . More details

can be found in [19]. It is also possible to carry out a more
formal analysis in establishing this equivalence [16] and a
useful more recent review can also be found in [30]. It
suffices to emphasize the exact equivalence of the two
approaches to identify the spectral curve, ΔðlÞ in Fig. 2,
which serves as the common link between them.

2. AdSd − 1 bulk-to-bulk propagator
and the Pomeron intercept

A more precise relation discussed above can best be
illustrated by the well-known example of one graviton-
exchange contribution through AdS/CFT. The contribution
is proportional to the traceless-transverse bulk-to-bulk
graviton propagator in AdS5, which can be identified with
the leading contribution to the eikonal, (2.19). In the near
forward limit, the momentum transfer is small and trans-
verse to the LC, and one finds, the net contributions reduces
to,51

χ ≃ ðzz̄sÞl−1Gads3ðσ;l;ΔÞ and

Gads3ðσ;l;ΔÞ ¼
e−ðΔðlÞ−2Þξ

sinh ξ
ðB6Þ

with l ¼ 2 and Δð2Þ ¼ 4 for graviton in d ¼ 4. Gads3 is the
Euclidean AdS3 scalar propagator for conformal dimension
Δ − 1, with σ ¼ cosh ξ related to the chordal distance.
As explained in Sec. VI, one can begin by restricting the

string propagator G ¼ δL0 ;L̄0
L0þL̄0−2

on AdS5 to the graviton

sector. In strong coupling, it can be reduced to that
involving scalar AdS Laplacian 1

l−2þð1=2 ffiffi
λ

p Þ∇2
0

. In a momen-

tum-space representation, one has ∇2
0 ¼ ∇2

0;radial − z2t and
∇2

0;radial ¼ z5∂zz−3∂z. A self-adjoint spectral analysis can
be carried out in l with t < 0 and also in t with l > 2.
For AdS5, one finds [11–13], with t < 0,

Gðt; z; z̄; jÞ ¼ ðzz̄Þ2
R4
ads

Z
dν
2πi

KiνðqzÞKiνðqz̄Þ
l − 2þ ð1=2 ffiffiffi

λ
p Þðν2 þ d2=4Þ ;

ðB7Þ

51The transition from AdS5 to AdS3 propagator can be
understood best in a momentum treatment. See [12,13].
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with d ¼ 4. Here KiνðqzÞ is the modified Bessel function,
where q ¼ ffiffiffiffiffi

−t
p

, and it corresponds to the scalar bulk-to-
boundary propagator in the momentum representation.
Note that this representation can be expressed in form
given earlier, (4.7). With Δ ¼ ðd=2Þ þ iν and d ¼ 4, this
corresponds to the desired spectral curve, ΔðlÞ ≃ 2þffiffiffi
2

p
λ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − leff

p
. Alternatively, one can carry out a spec-

tral analysis in t, while holding j > 2, leading to [11–13],

Gðl; z; z̄; tÞ ¼ ðzz̄Þ2
R4
ads

Z∞
0

dk2
JΔ̃ðlÞðzkÞJΔ̃ðlÞðz̄kÞ

k2 − t − iε
; ðB8Þ

where Δ̃ðlÞ ¼ ΔðlÞ − 2. One finds that Gðl; z; z̄; tÞ has a
continuous spectrum for 0 < t.
Finally in the DLC limit where p1 − p2 ¼ q⊥ is asymp-

totically transverse, performing a (d-2)-dim Fourier trans-
form, one finds

Gðz; z̄;lÞ ¼ ðzz̄Þ2
R4
ads

Gadsðd−1Þ ðσ;l;ΔÞ ðB9Þ

with Gadsðd−1Þ ðσ;l;ΔÞ given earlier, i.e., a formal solution
expressible in terms of geodesic ξ on Hd−1. At l ¼ 2 and
d ¼ 5, other than the factor ðzz̄Þ2R−4

ads, this is nothing but the
scalar AdS3 bulk-to-bulk propagator. For general l, it
corresponds to having AdS mass, m2ðlÞ, (1.18).

APPENDIX C: MINKOWSKI CONFORMAL
BLOCKS AND ANALYTICS CONTINUATION

1. Useful mathematical facts

We summarize several useful facts relating to hyper-
geometric DE. First, differential equation for associated
Legendre functions, Pμ

νðqÞ or Qμ
νðqÞ, is

ð1 − q2Þ d
2PðqÞ
dq2

− 2q
dPðqÞ
dq

þ
�
ðνðνþ 1Þ − μ2

1 − q2

�
PðqÞ ¼ 0: ðC1Þ

We will work here mostly with μ ¼ 0, leading to either
PνðqÞ or QνðqÞ, depending on appropriate boundary
conditions. More generally, Eq. (3.26) (b), is of the form

ð1 − q2Þ d
2PðqÞ
dq2

− ðd − 1Þq dPðqÞ
dq

þm2PðqÞ ¼ 0: ðC2Þ

It can be shown to correspond to the DE for AdSd−1
propagator, onHd−1, with geodesics ξ ¼ cosh−1 q and AdS
mass, m. They can be related to hypergeometric DE by a
change of variable. For instance, in terms of y ¼ q2, it leads
to the standard DE, εðdÞ ¼ ðd − 2Þ=2,

yð1 − yÞ d
2FðyÞ
dy2

þ ½c − ðaþ bþ 1Þy� dFðyÞ
dy

− abFðyÞ ¼ 0 ðC3Þ

with a ¼ εðdÞ=4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðdÞ2=4þm2

p
=2, b ¼ εðdÞ=4 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðdÞ2=4þm2
p

=2 and c ¼ 1=2.
For general values of a, b, c, the regular solution at y ¼ 0

is denoted by the standard notation of 2F1ða; b; c; yÞ ¼
ΓðcÞ

ΓðaÞΓðbÞ
P

n
ΓðnþaÞΓðnþbÞ

ΓðnþcÞ
yn

Γðnþ1Þ. However, we are interested in
the region 1 < y < ∞. Two independent solutions can be
chosen as

F1;∞ðyÞ ¼ y−aFða; a − cþ 1; a − bþ 1; y−1Þ ðC4Þ

F2;∞ðyÞ ¼ y−bFðb; b − cþ 1; b − aþ 1; y−1Þ ðC5Þ

Since ab < 0, adopting the convention a > 0, the solution
where PðqÞ vanishing at q → ∞ corresponds to F1;∞ðq2Þ,

q−2aF

�
a; aþ 1

2
; 2a −

d − 4

2
; q−2

�
: ðC6Þ

In particular, for d ¼ 3, this leads to QνðqÞ, with
ν ¼ −1=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þm2

p
,

QνðqÞ ¼ π1=2
Γðνþ 1Þ
Γðνþ 3=2Þ ð2qÞ

−ðνþ1Þ

× F

�
νþ 1

2
;
ν

2
þ 1; νþ 3

2
;
1

q2

�
: ðC7Þ

Alternatively, in terms of z ¼ ðqþ 1Þ=2, the resulting
DE also take on the same form, with a ¼ εðdÞ=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðdÞ2=4þm2

p
, b ¼ εðdÞ=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðdÞ2=4þm2

p
and c ¼

ðεðdÞ þ 1Þ=2. For d ¼ 3, one has, for 1 < z < ∞,

QνðzÞ ¼ π1=2
Γðνþ 1Þ

Γðνþ 3=2Þ ð2zÞ
−ðνþ1Þ

× F

�
νþ 1; νþ 1; 2νþ 2;

1

z

�
: ðC8Þ

This leads to a useful identity in changing variable from z to
q ¼ 2z − 1, which, more generally, corresponds to the
identity

Fða;b;2b;wÞ ¼
�
1−

w
2

�
−a
F

�
a
2
;
aþ 1

2
;bþ 1

2
;

w2

ð2−wÞ2
�
:

ðC9Þ

2. Standard differential equation for conformal blocks

The Casimir differential operator, Dεða; bÞGðu; vÞ ¼
CΔ;lGðu; vÞ, can be expressed, either in terms of ðx; x̄Þ
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or ðq; q̄Þ, as a sum of terms [3], Dεða; bÞ ¼ D0ða; bÞ þ
D̄0ða; bÞ þDε

1. The first term involves x or q,

D0ða; bÞ ¼ x2ð1 − xÞ d2

dx2
− ðaþ bþ 1Þx2 d

dx
− abx

ðC10Þ

¼ ðq2 − 1Þ d2

dq2
þ 2ðqþ aþ bÞ d

dq
−

2ab
qþ 1

ðC11Þ

and the same for D̄0ða; bÞ with x̄ and q̄ replacing x and x̄n,
respectively. The mixed term, Dε

1, is

Dε
1 ¼ 2ε

xx̄
x − x̄

ðð1 − xÞ∂x − ð1 − x̄Þ∂ x̄Þ ðC12Þ

¼ 2ε
1

q − q̄
ððq2 − 1Þ∂q − ðq̄2 − 1Þ∂ q̄Þ ðC13Þ

where ε ¼ ðd − 2Þ=2. Here a and b stand for more general
four point function where a ¼ −Δ12 and b ¼ Δ34=2. We
will restrict in what follows to the case where a ¼ b ¼ 0.
Solutions to D0ðxÞfðxÞ ¼ λðλ − 1Þf can be expressed in

terms of hypergeometric functions, i.e., with fðxÞ¼xλf̄ðxÞ,
DE for f̄ðxÞ becomes

xð1 − xÞf̄00ðxÞ þ ð2λ − ð2λþ 1ÞxÞf̄0ðxÞ − λ2f̄ðxÞ ¼ 0;

ðC14Þ

i.e., again in the hypergeometric form, Eq. (C3). A general
solution can be expressed as

fðxÞ ¼ ak2λðxÞ þ bk2ð1−λÞðxÞ ðC15Þ

where

k2λðxÞ ¼ xλ2F1ðλ; λ; 2λ; xÞ: ðC16Þ
The corresponding differential equation in terms of

variable q is

ð1 − q2Þ d
2gðqÞ
dq2

− 2q
dgðqÞ
dq

þ λðλ − 1ÞÞgðqÞ ¼ 0 ðC17Þ

with boundary condition specified at q → ∞. This is
precisely that for Legendre function of the second kind,
Eq. (C3). A general solution can also be expressed in terms
hypergeometric functions, e.g., k̃2λðqÞ, Eqs. (3.11)–(3.12).
Eq. (C3), valid for jqj > 1, is particularly useful in con-
sidering continuation from 1 < q < ∞ to −∞ < q < −1.

3. Comparison with analytically continued
Euclidean conformal blocks

It has been suggested that Minkowski conformal
blocks are simply an appropriate analytic continuation of

Euclidean conformal blocks, which changes the boundary
conditions in Eq. (3.7) from (a) to (b). We demonstrate
below that Eq. (3.13) and Eq. (3.14) are not given by a
direct analytic continuation of the corresponding ECB,
Eq. (3.15) and Eq. (3.16).
The discussion for analytic continuation is normally

framed in terms of variables x and x̄. One can easily
transition from ðq; q̄Þ to ðx; x̄Þ, with

k2λðxÞ ¼ k̃2λðqÞ; ðC18Þ

due to the identity, Eq. (C9), where z ¼ x−1. We examine

more closely here the relation of between GðMÞ
ðΔ;lÞðx; x̄Þ and

GðEÞ
ðΔ;lÞðx; x̄Þ in terms of their analytic structure in x and x̄. It

should be emphasized that, by treating x and x̄ as
independent complex variables, one necessarily extends
beyond the Euclidean limit where x̄ ¼ x�. For Minkowski
limit both x and x̄ are real but independent. To examine
their possible connection, both x and x̄ are to be treated as
independent complex variables. In order to make this
demonstration explicit, we will focus on the case of
d ¼ 2. The case d ¼ 4 can also be dealt with explicitly.
It is sufficient to examine the analytic structure of k2λðxÞ

as one circles around its branch point at x ¼ 1, or
equivalently, at x ¼ ∞, while holding x̄ fixed. It is useful
to expose square-root singularities at x ¼ 1 and x ¼ ∞ by a
mapping

ρ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ¼ x

ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p Þ2 ðC19Þ

This map exposes a double-sheet structure (See Fig. 6). In
general ρ maps the first sheet of x, denoted as the physical
sheet, to the region within the unit circle, jρj < 1, and the
second sheet in x, analytically continued through the cut
ð1;∞Þ, to the region jρj > 1, outside of the unit circle. For
x ¼ 0, on the physical sheet sheet, ρ ≃ 0. On the other
hand, when continued to the second sheet, the limit x →
xII → 0 maps ρ ≃ 4=xII → ∞. This map exposes a double-
sheet structure. In general ρ maps the first sheet of x,
denoted as the physical sheet, to the region within the unit
circle, jρj < 1, and the second sheet in x, analytically
continued through the cut ð1;∞Þ, to the region jρj > 1,
outside of the unit circle. For x ¼ 0, on the physical sheet
sheet, ρ ≃ 0. On the other hand, when continued to the
second sheet, the limit x → xII → 0 maps ρ ≃ 4=xII → ∞.
Therefore, to understand the analytic continuation, it is
simpler working directly with the variable ρ.
It is useful to again relate both MCB and ECB directly to

hypergeometric functions. The differential operator D0

simplifies in terms of ρ. For d ¼ 2 it becomes

D0 ¼
ρ2

1 − ρ2
d
dρ

ð1 − ρ2Þ d
dρ

; ðC20Þ
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and the relevant eigenvalue condition becomes

ρ2

1 − ρ2
d
dρ

ð1 − ρ2Þ d
dρ

¼ λðλ − 1ÞGðρÞ: ðC21Þ

It is convenient to introduce new notation,Kαðρ2Þ¼k2αðxÞ.
From Eq. (C21), one finds Kαðρ2Þ ¼ ρα2F1ð1=2; α;
αþ 1=2; ρ2Þ. In terms ofKαðρ2Þ, the Minkowski conformal
block, for d ¼ 2, is given by

GðMÞ
ðΔ;lÞðx; x̄Þ ¼ Kð1−λþÞðρ2>ÞKλ−ðρ2<Þ ðC22Þ

where ρ< is the small of ðρ; ρ̄Þ, and ρ> the other. In contrast,
for the Euclidean conformal block,

GðΔ;lÞ
ðEÞ ðx; x̄Þ ¼ Kλþðρ2ÞKλ−ðρ̄2Þ þ Kλþðρ̄2ÞKλ−ðρ2Þ ðC23Þ

We stress, for both Eq. (C23) and Eq. (C22), we are, for
now, restricted to the region jρj < 1 and jρ̄j < 1 so that x
and x̄ remain on the physical sheet. The advantage of using
Kαðρ2Þ over k2αðxÞ lies in the fact that analytic continuation
to the second sheet in x simply corresponds to moving
outside of the unit circle, ρ ¼ 1.
Let us focus on the analytic continuation of Eq. (3.15).

For convenience, we will analytically continue x from the
first sheet to the second sheet, x → xII → 0, with x̄ → 0 on
the first sheet. In terms of Eq. (C23), this corresponds to
taking ρ → ∞ and ρ̄ → 0. That is, in continuing x from first
sheet to second sheet, x → xII → 0,

ρ → ρ∞ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xII

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xII

p ¼ 1

ρ

¼ xII
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − xII
p Þ2 → ∞: ðC24Þ

The analytically continued ECB becomes

GðE;continuedÞ
ðΔ;lÞ ðxII; x̄Þ ¼ Kλþð1=ρ2ÞKλ−ðρ̄2Þ

þ Kλþðρ̄2ÞKλ−ð1=ρ2Þ ðC25Þ

This can be converted via the inversion identity, Eq. (5.9),
to a simpler representation amenable to expansions about

xII ¼ 0 and x̄ ¼ 0. The continued conformal block consists
of four groups of terms,

GðcontinuedÞ
ðΔ;lÞ ðx; x̄Þ ¼

X
i;1;2;3;4

GðiÞ
ðΔ;lÞðx; x̄Þ; ðC26Þ

each with unique small x and x̄ behavior

Gð1Þ
ðΔ;lÞðx; x̄Þ ∼ ð ffiffiffiffiffi

xx̄
p Þð1−lÞðx=x̄Þð1−ΔÞ=2; ðC27Þ

Gð2Þ
ðΔ;lÞðx; x̄Þ ∼ ð ffiffiffiffiffi

xx̄
p Þð1þlÞðx=x̄Þð1þΔÞ=2; ðC28Þ

Gð3Þ
ðΔ;lÞðx; x̄Þ ∼ ð ffiffiffiffiffi

xx̄
p ÞΔðx=x̄Þl=2; ðC29Þ

and Gð4Þ
ðΔ;lÞðx; x̄Þ ∼ ð ffiffiffiffiffi

xx̄
p ÞΔðx=x̄Þ−l=2: ðC30Þ

Of these, only the first term has the desired dependence,
Eq. (3.9). Therefore, an analytically continued ECB does
not lead to the desired Minkowski conformal block.
As another check on the fact that GðMÞðx; x̄Þ and

GðEÞðx; x̄Þ are related but not directly given via analytic
continuation, it is instructive to carry out the following
exercise by starting with our GðMÞ as defined on the
“second sheet” and analytically continued it back to the
first-sheet and then compare withGðEÞðx; x̄Þ. This can again
be done by using ρ-representation by first continuing from
ρ>II ¼ 0 to ρ∞. Next making use of inversion formula,
Eq. (5.9), to bring it back to a representation amenable
to an expansion around x> ¼ 0. Consider, for d ¼ 2,
GðMÞðx; x̄Þ ¼ k2ð1−λþÞðx>IIÞk2λ−ðx<Þ. One finds,

GðM;continuedÞ
ðΔ;lÞ ðx; x̄Þ ¼ ak2λþðx>Þk2λ−ðx<Þ

þ bk2ð1−λþÞðx>Þk2λ−ðx<Þ ðC31Þ

where a ¼ i
ffiffiffi
π

p Γð1=2−λþÞ
Γð1−λþÞ2 and b ¼ ð−1Þ1−λþ= cos πλþ. It

does not lead to GðEÞðx; x̄Þ.

4. Symmetric treatment

Once the leading index γb ¼ 1 − l is identified, it is
possible to solve each expansion function gnðσÞ iteratively.
We will not do it here in general except for the case of
d ¼ 1. For d ¼ 2 and d ¼ 4, since explicit solutions are
already known, we will instead demonstrate that they can
be re-expressed in the symmetric form, Eq. (3.23).
Let us begin with Eq. (3.13) and Eq. (3.14). With d ¼ 2

and consider the case q̄ > q, expanding hypergeometric
functions leads to an expansion

GðMÞ
ðΔ;lÞðw; σÞ ¼ wl−1eð1−ΔÞξ ×

X∞
n¼0

anq−2n
X∞
m¼0

bmq̄−2m

ðC32Þ

FIG. 6. ρ plane indicating regions of xI and xII .
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with an and bm given by the standard coefficient functions.
By regrouping, this can be reexpressed as

GðMÞ
ðΔ;lÞðw; σÞ ¼ wl−1eð1−ΔÞξ

X∞
n¼0

ðweξÞ−2n
X2n
p¼0

cpepξ ðC33Þ

with cp given by a finite sum of products arbs, with
rþ s ¼ n. Turning next to the case of d ¼ 4 and consider
again the case q̄ > q. One finds,

GðMÞ
ðΔ;lÞðw; σÞ ¼ wl−1 e

ð2−ΔÞξ

sinh σ

X∞
n¼0

ðweξÞ−2n
�X2n

p¼0

c0pepξ
�
:

ðC34Þ
with coefficients c0n again given by a finite sum.

APPENDIX D: DEEP INELASTIC
SCATTERING (DIS)

In Sec. II A we saw that a Lorentz boost plus dilatation
correspond to a SOð1; 1Þ × SOð1; 1Þ subgroup of the full
conformal transformations, SOð4; 2Þ. It has long been
known that approximate Oð2; 2Þ symmetry is an important
feature of QCD near-forward scattering at high energies
[118]. To exemplify this, let us turn first to deep inelastic
scattering (DIS), which corresponds to a measurement of a
total cross section, σtotalγ�p , for a virtual photon with momen-
tum q scattering off of a proton of momentum p. The
measure of photon “off-shellness,” characterized by 1=q2, is
referred to as its virtuality. This serves as the scale in probing
short-distance behavior of the product of two local currents
involved. There also exists another scale in the problem, the
photon energy,Eγ . The limit of q2 andEγ both large, with the
ratio x ∼ q2=Eγ → 0, leads to another scaling behavior.
These scalings are related through the t-channel OPE for
electromagnetic currents JμðxÞJνð0Þ. To be more explicit,
it is described in [52] that anomalous dimensions of the
leading twist conformal primaries,OΔ;l, control the large q2

dependence for themoments of hadronic structure functions.
In this appendix we first review the direct amplitude
calculation of DIS structure functions, revealing a Mellin
representation. Next we apply the approach of Sec. IV to
extract BFKL and Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) physics. Finally we examine the BFKL-
DGLAP integral equation itself which is analogous in
treatment to techniques used in evaluating SYK-like models.

1. Direct computation

We provide below a brief review, following that of [52],
with some notational change adopting that used in this
paper. We are focused on the limit q2 → ∞ with x ¼ q2=s
fixed.52The hadronic tensor is Uμνðp; qÞ, defined as the

Fourier transform of the current commutator, hpj½JμðxÞ;
Jνð0Þ�jpi, and it can be written in terms of two scalar
structure functions, Uα, Uμν ¼ U1ðx; q2Þðgμν − qμqν

q2 Þ þ
U2ðx; q2Þðpμ þ qμ

2xÞðpν þ qν
2xÞ: Through the optical theorem,

Uα can be identified as the imaginary part of the forward
virtual Compton scattering Tμνðp; q;p0; q0Þ, i.e. in the limit
p ¼ p0 and q ¼ q0. In this limit, Tμν has a Lorentz covariant
expansion similar to that of Uμν, with structure functions
T αðx; q2Þ replacing Uαðx; q2Þ. Treating Uαðx; q2Þ as real-
analytic functions of x with a branch cut over ½−1; 1�, the
relation between the two structure functions is

Uαðx; q2Þ ¼ 2πImT αðx; q2Þ: ðD1Þ

These discontinuities can also directly be related to σT and
σL for transverse and longitudinal off-shell photons: for
example U2ðx; q2Þ ¼ ðq2=4π2αemÞðσT þ σLÞ.
Let us focus on T 2ðx; q2Þ. (A similar analysis can also be

carried out for T 1.) The s-channel physical region corre-
sponds to 1 < x−1 < ∞, with U2ðx; q2Þ ¼ 2πImT 2ðx; q2Þ.
As a real-analytic function of x−1, T 2ðx; q2Þ is odd and
has symmetric branch cuts for 1 < jxj−1 < ∞. We can
reexpress T 2 through a dispersion integral in x−1,

T 2ðx; q2Þ ¼ 2x
π

R
1
0 dx

0 U2ðx0;q2Þ
x2−x02 . The full amplitude can

then be expanded for 1 < jxj as T 2ðx; q2Þ ¼ ð2=πÞ ×P
n¼1;2;��� uð2n; q2Þx1−2n where

uðl; q2Þ ¼
Z

1

0

dxxl−2U2ðx; q2Þ: ðD2Þ

Note that, initially, uðl; q2Þ is defined for l ¼ 2; 4;…,
corresponding to even moments MnðqÞ of U2. As an
integral over the U2, the imaginary part of T in the
s-channel physical region, it also defines an analytic
function53 of l, regular for 2 ≤ Rel.
Equation (D2) also corresponds to the Mellin transform

of U2 with respect to x−1. It follows that, for 0 < x < 1,
U2ðx; qÞ can be recovered via an inverse Mellin transform,

U2ðx; q2Þ ¼
ZL0þi∞

L0−i∞

dl
2πi

x1−luðl; q2Þ: ðD3Þ

with 2 − ε < L0 < 2. With uðl; q2Þ bounded for
Rel → ∞, the full amplitude can be represented for
−1 < x < 1 as T 2ðx;qÞ¼−

R L0þi∞
L0−i∞

dl
2πi

1þe−iπl
sinπl x1−luðl;qÞ.

Correspondingly, (D3) defines a distribution with

52Here q2 > 0 for spacelike q.

53We assume that U2ðx; qÞ < Oðx−1Þ at x ¼ 0, consistent with
the requirement of energy-momentum conservation, i.e., the
uð2; qÞ integral is finite. It follows, for the inverse transform,
Eq. (D3), L0 can be chosen so that 2 − ε < L0 < 2, with ε
infinitesimal. For a related discussion, see [119].
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U2ðx; q2Þ ¼ 0 for 1 < jxj < ∞. Eq. (D1) can be considered
as the starting point of a “primitive” t-channel OPE.
Therefore the Mellin-representation for T 2ðx; q2Þ corre-
sponds to a Sommerfeld-Watson resummation introduced
earlier, with Eq. (D3) providing the imaginary part in the
s-channel scattering region, 0 < x < 1.

2. Reduction to d = 2

Let us turn next to a CFT description. For the 4-point
correlator, the forward limit, t ¼ 0, corresponds to inte-
grating FðMÞðw; σÞ, Eq. (4.4) over impact space. Because
of conformal invariance, b2⊥ enters only through σ, it
follows that, from Eq. (2.15), the amplitude at t ¼ 0, with
fixed conformal virtualities, is a total derivative. The
contribution at b⃗ ¼ ∞ vanishes, and the total contribution
becomes54 Tðs;0;z;z̄Þ¼4πðzz̄ÞsPð12ÞðzÞPð34Þðz̄ÞWðw;σ0Þ,
where Wðw; σ2Þ is a 2-d reduced function of w and
σ2 ¼ σðz; z̄; b⃗ ¼ 0Þ ¼ z2þz̄2

2zz̄ ,

Wðw; σ2Þ ¼
Z

d2b⊥
2πzz̄

FðMÞðw; σÞ

¼
Z∞
σ2

dσFðMÞðw; σÞ: ðD4Þ

Kinematically, this represents a reduction in dimension
from d ¼ 4 to d ¼ 2 and is analogous to the application of
Eq. (3.32). It follows from Eq. (4.4) that it also admits a
Mellin-like representation

Wðw; σ2Þ ¼ W0ðw; σ2Þ −
X
α

ZL0þi∞

L0−i∞

dl
2πi

×
1þ e−iπl

sin πl
að12Þ;ð34Þα ðlÞKαðw; σ0;lÞ: ðD5Þ

where Kαðw; σ2;lÞ is a reduced Minkowski conformal
block,

Kαðw; σ2;lÞ ¼
Z∞
σ2

dσGαðw; σ;lÞ: ðD6Þ

Since að12Þ;ð34Þα ðlÞ, χαðw; σ2;lÞ, and W0ðw; σ2Þ are real,
the imaginary part of Wðw; σ2Þ is again given by a Mellin-
like representation

ImWðw; σ2Þ ¼
X
α

ZL0þi∞

L0−i∞

dl
2i

að12Þ;ð34Þα ðlÞχαðw; σ2;lÞ:

ðD7Þ

We stress that Eq. (D7) is a new feature for Minkowski
OPE. It occurs whenever one deals with an inclusive cross
section which is related to a discontinuity in the forward
limit. From a CFT perspective, one is now working with
Wightman functions. This analysis can be generalized to
treating other more involved inclusive processes [21].
In addition, since Eq. (D7) is related to a cross section, a

positivity constraint applies. In the Regge limit of w → ∞
and σ2 large, we can keep the leading order for χαðw; σ2;lÞ.
As in Eq. (3.32), it becomes χαðw; σ2;lÞ ≃ wl−1h0ðσ2;ΔαÞ,
where, from (3.32) for d ¼ 4,

h0ðσ2;ΔÞ ¼
Z∞
σ2

dσg0ðσ;Δ; 4Þ ¼
e−ðΔ−2Þξ

Δ − 2
: ðD8Þ

Focusing on the leading twist-two contribution to a total
cross section, with Δα ¼ ΔPðlÞ, we find a positivity
constraint requiring

ΔPðlÞ ≥ 2: ðD9Þ

From Eq. (4.10), one has the promised upper bound

leff ≤ 2: ðD10Þ

The extra factor ðΔpðlÞ − 2Þ−1 also changes the power of
lnw in Eq. (4.11) from −3=2 to −1=2. This is an enhance-
ment which can also be attributed to the positivity condition
at t ¼ 0 mentioned above.55

It is now clear that, in treating DIS as a CFT scattering
process, several essential steps must be followed. To extract
the DIS cross section, it is necessary (1) to approach the
forward limit of t ¼ 0 and (2) to take the imaginary part of a
4-point CFT amplitude.

3. BFKL-DGLAP equation

SOð2; 2Þ invariance for QCD can be illustrated by a
joint-integral-differential equation of BFKL-DGLAP
[46–51] and its solution. These lead to a Δ − l spectral-
curve from which the effective spin can be extracted. The
BFKL program [46,47] demonstrates the interrelation
between the scaling behavior in longitudinal boost: the
effective spin and the anomalous dimensions control the
scaling under dilatation for moments of DIS structure
functions as we see below.

54We also mention, for DIS, we have Ws having symmetry
ð−1Þs−1. More generally, the reduction of one power of s reverses
the symmetry pattern for each.

55This also has an interesting phenomenological consequence
for DIS distribution, [27].
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Let us focus on the DIS structure function U2, introduced
above. The BFKL-DGLAP integro-differential equation
corresponds to summing dominant contributions to the DIS
cross section in the multiperipheral region. This summation
is based on a series of approximations-“leading-log”, “kT-
factorization”, etc.—and, in its integral form, it can be
expressed as

U2ðx; q2Þ ≃ Uð1Þ
2 ðxÞ þ

Z1
x

dx0
Z∞
0

dq0

q0
R̃ðx; x0; q2; q02Þ

× U2ðx0; q02Þ ðD11Þ
We will refer to this as the BFKL-DGLAP equation. A
corresponding (Bethe-Salpeter) integral equation can
also be written for the full amplitude, H, symbolically
expressed as

H ¼ Hð1Þ þR ⊗ H; ðD12Þ

with Uð1Þ
2 ¼ ImHð1Þ and R̃ ¼ ImR. One advantage of

working with U is the fact that the integration in
Eq. (D11) is over physical region only. The solution,
formally expressed as U2ðx; q2Þ ¼

P
n U2ðnÞðx; q2Þ, corre-

sponds to summing dominant contributions to the DIS
cross section in the multiperipheral region.56 Each term in
the sum, U2ðnÞðxÞ, can be associated with the cross section
for the production of n gluons. This simplification becomes
particularly useful when we discuss SYK-like 1-d CFT
models in Sec. V B.
Approximate boost and dilatation invariance are

reflected by the fact that the kernel is a function of x=x0
and q=q0 for x, x0 ≪ 1 and q0 ≪ q, q0. If one extends
this to the whole physical range, the integral equation can
be solved by a double Mellin-Fourier transform with
respect to x−1, as in Eq. (D3), and η ¼ log q respectively,
leading to

U2ðx; q2Þ ¼
ZL0þ∞

L0−i∞

dl
2πi

x1−l
Z∞
−∞

dν
2π

e−iνηfðl; νÞ: ðD13Þ

The simplest approximation has Rðx; x0; q2; q02Þ →
R0ðx=x0Þ ≃ constant, leading to uðl; νÞ ¼ 1

ν2þε2
u1ðlÞ

1−R0ðlÞ,
where R0ðlÞ ¼ λðl − 1Þ−1. With uðl; qÞ having a pole
at leff ¼ 1þ λ, this leads to Regge behavior at small-x,

U2ðx; q2Þ ∼ x1−leff : ðD14Þ

Furthermore, U2 is q-independent, corresponding to naive
Bjorken scaling, with vanishing anomalous dimension,
γn ¼ 0. In a more refined treatment by taking into account
q2-dependence properly, one finds [120,121]

uðl; νÞ ≃ rðlÞ
νþ iGðl; νÞ þ regular terms ðD15Þ

Here we focus on the singularities in the lower-half ν-plane,
appropriate for q large. At l ¼ n, uðn; νÞ has a pole at
ν ¼ −iγn, where the anomalous dimension is obtained by
solving: γn ¼ Gðn; iγnÞ. There can be multiple solutions,
but we only retain the lowest solution for each l. This leads
to DGLAP-like evolution equation for MnðqÞ with
n ¼ 2; 4;…,

−
dMnðqÞ
d log q

≃ γnMnðqÞ → MnðqÞ ∼ q−γn ðD16Þ

as q → ∞. This characterizes the dilatation symmetry as
realized in DIS. In particular, γ2 ¼ 0, due to energy-
momentum conservation.
Since l enters as a continuous parameter, it is possible to

consider γðlÞ as an analytic function of l. This defines a
spectral curve, ΔðlÞ≡ γðlÞ − l − d=2. If one shifts ν
by il, one can formally express the singular part of
Eq. (D15) as

uðl; νÞ ≃ r0ðlÞ
ν2 þ Δ̃ðlÞ2

where ν → ν − il and Δ̃ ¼ Δ − 2. Note that we have
endowed fðl; νÞ certain analyticity and symmetry struc-
ture, similar to that in Eq. (4.7). In particular, due to
conformal invariance, after inversion to lðΔÞ, one has
dlðΔÞ
dΔ ¼ 0 at Δ ¼ 2. It follows that the spectral curve ΔðlÞ
has a square-root branch point at leff , which can be found
by solving

ΔðleffÞ ¼ 2: ðD17Þ

Due to the presence of this singularity, one finds

U2ðxÞðx; qÞ ≃ x1−leff=j log xj1=2: ðD18Þ

In weak coupling, one generically has [46–48]

leff ¼ 1þOðλÞ: ðD19Þ

In contrast, at strong coupling, as shown in Sec. IV C, one
finds, leff ¼ 2 −Oð1= ffiffiffi

λ
p Þ. For both limits, Eq. (D18) is

the consequence of boost invariance for DIS.

56We have made use of gluon-dominance by dropping quark-
contributions as well as other technical simplification in order to
bring the equation into a manageable form. Therefore, Eq. (D11)
should be interpreted as a schematic representation. For more
realistic discussion, see [46–51,120,121].
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APPENDIX E: HILBERT SPACE TREATMENT
FOR d = 1 CFT

1. Minkowski Green’s functions: Spectral analysis

Before discussing the case where functions are poly-
nomially bounded, let us first take a closer look at our
presentation of Eq. (5.7) for the Hilbert space of square-
integrable functions, i.e. the space of functions with a
standard inner product,

hfjgi ¼
Z∞
1

dwfðwÞ�gðwÞ: ðE1Þ

The differential operator −Dw, Eq. (3.41), can be expressed
directly in a positive self-adjoint form, − d

dw ðw2 − 1Þ d
dw,

which follows from an effective 1-d action S ¼R
∞
1 dw½ðw2 − 1Þf0ðwÞ2 þm2fðwÞ2�. Self-adjointness also
requires −Dw must act on functions bounded at w ¼ 1 and
w ¼ ∞. More generally, a Green’s function, Gðw;w0Þ, for
−Dw þm2,�
−

d
dw

ðw2 − 1Þ d
dw

þm2

�
Gðw;w0Þ ¼ δðw − w0Þ; ðE2Þ

can be found directly by the Wronskian method.57 The
desired Green’s function is simply given by

Gðw;w0Þ ¼ Pνþðw<ÞQνþðw>Þ; ðE3Þ

where νþ ¼ −1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1=4

p
and, as usual, w< ¼

ðw;w0Þmin and w> ¼ ðw;w0Þmax. PνðwÞ and QνðwÞ are
Legendre functions of the first and second kind discussed
earlier.
It is also instructive to arrive at the same answer by a

spectral analysis to illustrate the noncompactness involved.
Consider first m2 ¼ 0. The eigenvalue problem can be
expressed as�

−
d
dw

ðw2 − 1Þ d
dw

�
PðwÞ ¼ λPðwÞ; ðE4Þ

with λ > 0. Eigenfunctions at w ∼þ∞ are oscillatory
in ξ ¼ cosh−1 w, PðwÞ ∼ ei�kξ, with wave-number k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 1=4

p
. With eigenfunctions also bounded at w ¼ 1,

the spectrum for −Dw is positive and continuous, with
λ ¼ k2 þ 1=4, 0 < k < ∞. The corresponding eigenfunc-
tions are Legendre functions, P−1=2þikðwÞ ¼ P−1=2−ikðwÞ.

With index taking on values −1=2þ ik, these are also
known as toroidal or ring functions.
It is worth noting that our analysis is comparable to that

done in [35,37] in treating SYK model, but yet differs in a
significant detail. In [37], the Hilbert space deals with
functions, in terms of variable τ, Eq. (5.2), defined over
(0,2). (The range is extended to ð−∞;∞Þ by symmetry.)
The range (0,2) in τ corresponds to 0 < w < ∞. In our
treatment, by restricting w to the range ð1;∞Þ, the spectrum
for Dw is strictly positive and continuous. There is no
accompanying discrete spectrum involved. Our ability to
take advantage of this simplification is part due to our
ability to deal with the absorptive part, ImΓðwÞ, for a
scattering process.
The eigenfunctions P−1=2þikðwÞ ¼ P−1=2−ikðwÞ satisfy

orthonormal and completeness conditions,

Z∞
1

dwP−1=2−ikðwÞP−1=2þik0 ðwÞ

¼ 1

k tanh πk
δðk − k0Þ; ðE5Þ

and
Z∞
0

dkk tanh πkP−1=2−ikðwÞP−1=2þikðw0Þ

¼ δðw − w0Þ: ðE6Þ

It follows that the desired propagator, with m2 ≠ 0, is

Gðw; w0Þ ¼ 1

2

Z∞
−∞

dkk tanh πk

×
P−1=2þikðwÞP−1=2þikðw0Þ

k2 þ 1=4þm2
: ðE7Þ

where we have extended the integration over −∞<k<∞,
with P−1=2−ikðwÞ¼P−1=2þikðwÞ. By replacing P−1=2þikðw0Þ
by the identity in Eq. (3.44), it separates the above
representation into two integrals, one involving
Q−1=2þikðw0Þ and another Q−1=2−ikðw0Þ. We can now
analytically continue each integral into the complex k-
plane. Consider the case 1 < w < w0 < ∞. Since
Q−1=2−ikðw0Þ vanishes as w0 ik−1=2 as Imk → ∞, it domi-
nates over P−1=2þikðwÞ and the contour can be closed in the
upper-half plane, picking up a pole contribution at
k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þm2

p
. For the term involving Q−1=2þikðw0Þ,

the contour can be closed in the lower half plane, yielding
an identical contribution. This can be repeated for
1 < w0 < w < ∞. Together they lead to the same result
by the direct computation using a Wronskian approach,
Eq. (E3), as expected.

57Dw is the same as L0;σ , Eq. (3.21), evaluated for d ¼ 3, with
solutions given by Legendre functions. A similar treatment
can also be carried out for L0;σ, d ≠ 3, acting on reduced
functions f̃ðwÞ ¼ ðw2 − 1Þðd−3Þ=2fðwÞ, leading to appropriate
associated Legendre functions. We will treat this more general
case elsewhere.
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As a direct application of Eqs. (E5) and (E6), every real,
square-integrable function, FðwÞ, defined over 1 < w < ∞,
can be expressed as

FðwÞ ¼
Z∞
−∞

dk
2π

kfðkÞP−1=2þikðwÞ: ðE8Þ

The transformed function fðkÞ is real and antisymmetric,
fð−kÞ ¼ −fðkÞ,

fðkÞ ¼ π tanh k
Z∞
1

dwFðwÞP−1=2þikðwÞ: ðE9Þ

2. Mellin-like representation and
polynomial boundedness

We now address the important case where FðwÞ is not
square-integrable but polynomially bounded. This can be
handled by either working with a reduced function, for
example F̃ðwÞ ¼ w−LFðwÞ, or adopting a deformed rep-
resentation for Eq. (E8). We will adopt the latter approach,
which can be seen to correspond to a Sommerfeld-Watson
resummation from the OPE context.
We begin by first reexpressing Eq. (E8) by a change of

variable from k to l ¼ l0 þ ik, with f̃ðlÞ ¼ fðkÞ. The
choice of this constant l0 is arbitrary. We shall choose l0 ¼
1=2 so that the integral path in Eq. (E8) corresponds to
Rel̃ ¼ 0, with l̃ ¼ l − 1=2, for d ¼ 1.58

For a square-integrable function FðwÞ ∼Oðw−1=2−εÞ, the
transform f̃ðlÞ is analytic in the strip 1=2 − ε < Rel <
1=2þ ε. It is convenient, using Eq. (3.44), to separate f̃ðlÞ
into two pieces, f̃ðlÞ ¼ f̃þðlÞ − f̃−ðlÞ, and f̃−ðlÞ ¼
f̃þð−lþ 1Þ, where

f̃þðlÞ ¼
Z∞
1

dwFðwÞQl−1ðwÞ; and

f̃−ðlÞ ¼
Z∞
1

dwFðwÞQ−lðwÞ: ðE10Þ

With PlðwÞ ¼ P−lþ1ðwÞ, the contribution from f̃þ and f̃−
are equal, leading to a new representation involving f̃þðlÞ
only,

FðwÞ ¼
Z1=2þi∞

1=2−i∞

dl
2πi

ð2lþ 1Þf̃þðlÞPl−1ðwÞ; ðE11Þ

SinceQlðwÞ ∼ w−l−1, it follows that f̃þðlÞ is analytic in
the right-half l-plane, 1=2 < Rel, and f̃−ðlÞ is analytic
in the left half-plane, Rel < 1=2. Applying the identity in
Eq. (3.44) to Pl−1 above, we see the term coming from
QlðwÞ can be dropped in closing the contour to the right,
leading to

FðwÞ¼−
Z1=2þi∞

1=2−i∞

dlð2l−1Þ
2πþ1

f̃þðlÞ
tanlπ
π

Q−lðwÞ; ðE12Þ

where the factor tanlπ above plays the same role of cl in
Eq. (3.43), rendering the integrand finite at positive integral
values for Rel > 1=2.
Let us now turn to functions which grow with w. To deal

with functions which grow with w as a power, it is possible
to enlarge the Hilbert space [91,93], and, for the class
of functions which are polynomially bounded FðwÞ ¼
OðwL0Þ, the region of analyticity for f̃þðlÞ gets pushed
out to the right. In other words, L0 < Rel < ∞. It is
possible to define fþðlÞ as an analytic function by

fþðlÞ≡
Z∞
1

dwQl−1ðwÞFðwÞ; ðE13Þ

initially for L0 < Rel, and then analytically continue in the
region to the left of Rel ¼ L0. The function FðwÞ can be
recovered by

FðwÞ¼−
ZL0þi∞

L0−i∞

dl
2πi

ð2l−1ÞfþðlÞ
tanlπ
π

Q−lðwÞ: ðE14Þ

This is precisely what we have arrived at earlier via
Minkowski OPE analysis, (5.6). As also mentioned earlier,
an equivalent representation, which we will make use of in
Sec. V B, is Eq. (5.7). If fþðlÞ contains a singularity at leff
where 1=2 < leff < L, e.g., a pole, by pulling the contour
in (E14) to the left passing to pole, one finds FðwÞ diverges
at w → ∞ as

FðwÞ ¼ Oðwleff−1Þ: ðE15Þ

3. AdS2=CFT1 duality

In recent years, much work has been done to elucidate
the duality between some string theory in AdS2 and CFT in
d ¼ 1. Pure Einstein gravity in two dimensions has no
propagating degrees of freedom, but if other fields are
included in the theory, there can be interesting dynamics.
Most of the interesting work has been aimed at resolving
issues with the black hole information loss paradox. (For
reviews see [122–124]) Maldacena [113] pointed out that d

58From Eq. (E8), a more natural choice is l0 ¼ −1=2, which
would lead to an expressions more familiar in form to a d ¼ 3
partial wave expansion. Our choice corresponds to a shift from l
to l − 1.
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dimensional theories with eternal black holes in anti-de
Sitter space can have interesting consequences for the
information loss paradox; the past boundary could be
decomposed into two copies of the boundary CFT and
initial states could be thought of as a thermal ensemble of
two CFT states. The object of interest is often called a
thermofield double (TFD) state

jTFDi ¼ Z−1=2
X
n

e
−βEn
2 jEniCFTL ⊗ jEniCFTR ; ðE16Þ

where the two copies are called left and right. Importantly,
although separate conformal transformations can be
performed that leave the L/R density of states,

ffiffiffi
ρ

p ¼
Z−1=2P

ne
−βEn
2 jEniCFT ⊗ jEniCFT, invariant, it was pointed

out [125] that these transformations can affect the proper-
ties of entangled states as they fall into a black hole.
Of critical importance is to understand how information

sent in from the boundary becomes “smeared” across the
horizon as quanta falls into the black hole. Classical
dynamics describes such a system as chaotic; a sensitive
dependence upon initial conditions describes a situation in
which final state information is smeared on a mathemati-
cally dense phase space. To this end, scrambling of
infalling quanta can be defined via a maximal Lyapunov
exponent, λL. This can be determined by considering an
out-of-time correlator59

hW†
RðtÞV†

Lð0ÞWLðtÞVRð0Þiβ ∼ 1 − α̃eλLt þOðα̃Þ ðE17Þ

for small α̃. Here the index β indicates that it is a thermal
correlation function, and α̃ is a constant that encodes
information.60 The scrambling time can then be defined
as the time when the exponential becomes order one,

t� ¼
1

λL
lnðSÞ ðE18Þ

for an entropy S.
The correlator Eq. (E17)61 probes chaotic behavior.62 It

can be calculated from the gravitational theory [29,30].

A key element to the calculation is that the operator WðtÞ
can be seen to create a shock wave [116,117]. This shock
wave can be interpreted as a boosting scattering particles
by expð2πt=βÞ to arbitrary high energies.63 The result is
that Eq. (E17) can be described by high energy elastic
eikonal scattering at fixed impact parameter b, similar
to that described in [12,14,15,18,127,128] and shown
in Eq. (2.19).
Finally we emphasize that while the thermofield double

approach, Eq. (E16), to calculating Eq. (E17) has been
convenient in gravitational literature, it is not the only
approach that can be used. Consider a d ¼ 1 CFT.64 At
finite temperature, a thermal correlator can be related to a
vacuum correlator via a conformal transformation of the
form fðtÞ ¼ expð2πt=βÞ. The invariance of conformal
correlation functions then leads to

hO1ðt1ÞO2ðt2Þ…i ¼
���� dfdt

����Δ1

t¼t1

���� dfdt
����Δ2

t¼t2

…

× hO1ðfðt1ÞÞO2ðfðt2ÞÞ…iβ: ðE19Þ

a. SYK theory Most of the discussion in this work
applies generally to CFTs of arbitrary dimension. While
these results are more general, without a specific theory
the details of particular dynamic behavior can be hard to
suss out. For integrable theories the canonical nontrivial
example is that of the well-known duality between string
theory on AdS5 × S5 and N ¼ 4SYM, which is conjec-
tured to be integrable.65 For chaotic systems with black
holes, holographic examples have been harder to
come by.
In this vein, much recent attention has been given to the

Sachdev-Ye-Kitaev (SYK) model, first proposed by Kitaev
in a series of talks [32–34]. The details of this theory were
quickly expanded upon in [35–38,105–107,130–135]. The
boundary theory of this model is a many body system of
Majorana fermions with an all-to-all four point interaction
J . In the low temperature limit66 the system is approx-
imately conformal. The full 2-pt function of the theory can
be found using a Schwinger-Dyson equation. The four
point function can found using a Bethe-Salpeter equation
which involves a ladder like exchange process as in
Eq. (5.14). In this theory, calculation of Eq. (E17) leads

59It was pointed out in [126] that this correlator can be
considered a quantum variant on the Loschmidt echo. [126] then
goes on to propose a cold-atom qubit set up that could be used to
experimentally such correlations.

60α̃ should be a function of the entropy. A common definition
is for α̃≡ 1=B, Where B is the number of bits of information. For
holographic theories, α̃ ∼ 1=N2.

61Often in the literature a similar correlator is defined with
different operator ordering and operators living on different initial
state CFTs. These various 4 point correlators are all related via
analytic continuation by continuing various operators by β=2
around the imaginary time thermal boundary Sβ. An example can
be seen in Eq. (E20).

62It should be noted that this requires a chaotic system. For
example, in integrable models, as in the d ¼ 2 Ising model, the
behavior of Eq. (E17) will not be seen [31].

63In principle, for late enough times, this can boost particles to
the string or Planck scales.

64A similar procedure exists for d ¼ 2 CFTs as described in
[31]. Here a separate holomorphic and antiholomorphic con-
formal transformation exist for the two degrees of freedom.

65This is backed up by a large library of literature. In the
large N limit, some sectors of the theory have been shown to be
exactly integrable. For a comprehensive review see [129].

66An effective coupling λ ¼ βJ interpolations between a
holographic λ ≫ 1 limit where the theory is nearly conformal
and a thermal λ ≪ 1 limit where the conformal symmetry is
broken.
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to a Lyapunov exponent λL ¼ 2π=β with corrections
coming from Regge string effects, longitudinal string
spreading, and non-linear interactions. This calculation
can be done from the perspective of the bulk string theory
using the approach of [30]. The bulk process is described
by an eikonal scattering whose dominant contribution can
be traced to the BPST Pomeron. In both cases the ΔðlÞ
spectral curve plays an important role as the conformal
weight of the dominant OPE contribution for the conformal
theory and as the Virasoro operator dimension for the bulk
theory.
We should take a moment to emphasize that both of the

above approaches in the literature follow one path: define
the correlation function in the euclidean limit, calculate
the correlator, then carefully analytically continue to the
Minkowski region by adding an imaginary piece to the
Euclidean time.67 For a finite temperature conformal

transformation fðtÞ ¼ expð2πt=βÞ as in Eq. (E19) this
process can be outlined as

correlator∶

Dðt4ÞCðt3ÞBðt2ÞAðt1Þ
imaginary time order∶

hDðfðt4 ¼ tÞCðfðt3 ¼ 0ÞÞ
Bðfðt2 ¼ tÞÞAðfðt1 ¼ 0ÞÞi
Lorentz correlator∶

hDðfð4iεÞfðtÞÞCðfð3iεÞfð0ÞÞ
Bðfð2iεÞfðtÞÞAðfðiεÞfð0ÞÞi: ðE20Þ

In the end we arrive at the time ordered process we are
interested in in this paper ð1; 3Þ → ð2; 4Þ as in Eq. (1.2).
The advantage of our approach is that, by taking advantage
of boundary conditions, one can directly write down the
Minkowski solution without having to carefully do the
analytic continuation.
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