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Abstract We study cross sections for the exclusive diffrac-
tive leptoproduction of ρ-mesons, γ ∗ p → ρ p, within the
framework of high-energy factorization. Cross sections for
longitudinally and transversally polarized mesons are shown.
We employ a wide variety of unintegrated gluon distribu-
tions available in the literature and compare to HERA data.
The resulting cross sections strongly depend on the choice of
unintegrated gluon distribution. We also present predictions
for the proton target in the kinematics of the Brookhaven
EIC.

1 Introduction

The diffractive exclusive electroproduction of vector mesons
has been a very active field of study at the HERA collider at
DESY. Especially it has served as a testbed for the perturba-
tive QCD description of the Pomeron exchange mechanism
which drives diffractive and elastic processes [1,2]. New pre-
cise data, albeit in a different kinematic regime, are expected
to be taken at the Brookhaven electron-ion collider (EIC) in a
not too distant future [3,4]. In this work we focus on the elec-
troproduction of ρ-mesons, i.e. on the process γ ∗ p → ρp
at large virtuality Q2 of the photon and large γ ∗ p-system
center-of-mass energy W , with x � Q2/W 2 � 1.
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The large photon virtuality Q2 justifies the use of pertur-
bation theory. A diagrammatic representation of the pertur-
bative QCD factorization structure of the forward amplitude
is shown in Fig. 1. At large Q2 the transverse internal motion
of quark and antiquark in the ρ-meson can be integrated out,
and all information is contained in the distribution ampli-
tude (DA). The transverse momenta of gluons in the proton
must be fully taken into account by utilizing the unintegrated
gluon distribution (UGD). In the BFKL-approach the UGD is
obtained by convoluting the BFKL two-gluon Green’s func-
tion with the proton impact factor (IF).

The IF for the transition γ ∗(λγ ) → ρ(λρ) depends on
polarizations of photon and vector mesons. For the longi-
tudinal polarizations λγ = λρ = 0 the dominance of small
dipoles is evident, and the standard leading-twist distribution
amplitude appears. In the case of the transverse polariza-
tions the perturbative QCD factorization remains valid, but
higher-twist DAs are needed [5,6]. The difference between
the impact factors makes the polarization dependence of
diffractive production a sensitive probe of the UGD [7,8].
Previously, for the case of ρ-meson production ratios of the
forward amplitudes have been calculated in Ref. [8] and com-
pared to data from HERA. For the case of φ mesons the effect
of a finite strange quark mass on cross sections has been dis-
cussed in Ref. [9], where also relations of the so-called gen-
uine higher-twist DAs to weighted integrals over light-front
wave functions have been given.

In this work, we wish to extend the efforts of [7–9] to the
calculation of polarized ρ-meson production cross sections
(as opposed to ratios of amplitudes) for a variety of uninte-
grated gluon distributions, and compare the results to HERA
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Fig. 1 Diagrammatic representation of the amplitude for the exclusive
emission of a ρ meson in high-energy factorization. The off-shell impact
factor (upper part) is built up as a collinear convolution between the hard
factor for the photon splitting to a dipole and the non-perturbative ρ-
meson DA (sea-green blob). The UGD is given by the convolution of the
BFKL gluon Green’s function (yellow blob) and the non-perturbative
proton impact factor (red blob)

data. We will also give predictions for the kinematics relevant
for the Electron-Ion Collider EIC.

2 Polarized ρ-meson leptoproduction

The H1 and ZEUS collaborations have provided extended
analyses of the helicity structure in the hard exclusive pro-
duction of the ρ meson in ep collisions through the subpro-
cess

γ ∗(λγ )p → ρ(λρ)p. (1)

Here λρ and λγ represent the meson and photon helicities,
respectively, and can take the values 0 (longitudinal polariza-
tion) and ±1 (transverse polarizations). The helicity ampli-
tudes Tλρλγ extracted at HERA [10] exhibit the hierarchy

T00 � T11 � T10 � T01 � T−11, (2)

that follows from the dominance of a small-size dipole scat-
tering mechanism, as discussed first in Ref. [11], see also
[12]. As we previously mentioned, the H1 and ZEUS collab-
orations have analyzed data in different ranges of Q2 and W .
In what follows we will refer only to the H1 ranges (3),

2.5 GeV2 < Q2 < 60 GeV2,

35 GeV < W < 180 GeV, (3)

illustrating the framework to probe the ρ-meson leptopro-
duction as a way to test the UGDs [7,13,14] where polarized
cross sections will be the key observables.

2.1 Theoretical setup

In the high-energy regime, s ≡ W 2 � Q2 � �2
QCD, which

implies small x = Q2/W 2, the forward helicity amplitude
for the ρ-meson electroproduction can be written, in high-
energy factorization (also known as kT -factorization), as the
convolution of the γ ∗ → ρ IF, �γ ∗(λγ )→ρ(λρ)(κ2, Q2), with
the UGD, F(x, κ2). Its expression reads

Tλρλγ (s, Q2) = is

(2π)2

∫
d2κ

(κ2)2 �γ ∗(λγ )→ρ(λρ)(κ2, Q2)F(x, κ2),

x = Q2

s
. (4)

Defining α = κ2

Q2 and B = 2παs
e√
2
fρ , the expression

for the IFs takes the following forms (see Ref. [5] for the
derivation):

• longitudinal case

�γL→ρL (κ, Q; μ2) = 2B

√
N2
c − 1

Q Nc

∫ 1

0
dy ϕ1(y; μ2)

(
α

α + y ȳ

)
,

(5)

where Nc denotes the number of colors and ϕ1(y;μ2)

is the twist-2 DA which, up to the second order in the
expansion in Gegenbauer polynomials, reads [15]

ϕ1(y;μ2) = 6y ȳ

(
1 + a2(μ

2)
3

2

(
5(y − ȳ)2 − 1

))
;
(6)

• transverse case

�γT →ρT (α, Q;μ2) = (εγ · ε∗
ρ) 2Bmρ

√
N 2
c − 1

2NcQ2

×
{
−

∫ 1

0
dy

α(α + 2y ȳ)

y ȳ(α + y ȳ)2

×
[
(y − ȳ)ϕT

1 (y;μ2) + ϕT
A (y;μ2)

]

+
∫ 1

0
dy2

∫ y2

0
dy1

y1 ȳ1α

α + y1 ȳ1

×
[

2 − Nc/CF

α(y1 + ȳ2) + y1 ȳ2
− Nc

CF

1

y2α + y1(y2 − y1)

]

×M(y1, y2;μ2) −
∫ 1

0
dy2

∫ y2

0
dy1

[
2 + Nc/CF

ȳ1
+ y1

α + y1 ȳ1

×
(

(2 − Nc/CF )y1α

α(y1 + ȳ2) + y1 ȳ2
− 2

)
− Nc

CF

(y2 − y1)ȳ2

ȳ1

× 1

α ȳ1 + (y2 − y1)ȳ2

]
S(y1, y2;μ2)

}
, (7)

123



Eur. Phys. J. C (2021) 81 :846 Page 3 of 12 846

where CF = N2
c −1

2Nc
, while the functions M(y1, y2;μ2)

and S(y1, y2;μ2) are defined in Eqs. (12)–(13) of Ref. [6]
and are combinations of the twist-3 DAs B(y1, y2;μ2)

and D(y1, y2;μ2) (see Ref. [15]), given by

B(y1, y2;μ2) = −5040y1 ȳ2(y1 − ȳ2)(y2 − y1),

D(y1, y2;μ2) = −360y1 ȳ2(y2 − y1)

×
(

1 + ωA{1,0}(μ2)

2
(7 (y2 − y1) − 3)

)
.

(8)

In Eqs. (6) and (8) the functional dependence of a2, ωA{1,0},
ζ A

3ρ , and ζ V
3ρ on the factorization scale μ2 can be deter-

mined from the corresponding known evolution equations
[15], using some suitable initial condition at a scale μ0.

Note that the κ-dependence of the IFs is different in the
cases of longitudinal and transverse polarizations and this
poses a strong constraint on the κ-dependence of the UGD
in the HERA energy range. The main point will be to demon-
strate, considering different models of UGD, that the uncer-
tainties of the theoretical description do not prevent us from
some, at least qualitative, conclusions about the shape of the
UGD in κ .

The DAs ϕT
1 (y;μ2) and ϕT

A (y;μ2) in Eq. (7) encompass
both genuine twist-3 and Wandzura–Wilczek (WW) contri-
butions [6,15]. The former are related to B(y1, y2;μ2) and
D(y1, y2;μ2); the latter are those obtained in the approxi-
mation in which B(y1, y2;μ2) = D(y1, y2;μ2) = 0, and in
this case read1

ϕT WW
A (y; μ2) = 1

2

[
−ȳ

∫ y

0
dv

ϕ1(v; μ2)

v̄
− y

∫ 1

y
dv

ϕ1(v; μ2)

v

]
,

ϕT WW
1 (y; μ2) = 1

2

[
−ȳ

∫ y

0
dv

ϕ1(v; μ2)

v̄
+ y

∫ 1

y
dv

ϕ1(v; μ2)

v

]
.

(9)

The other interesting point will be the extension of infor-
mation, collected by the helicity-amplitude analysis, reach-
able from the calculation of the cross section. As a matter of
fact, the expressions for the polarized cross sections σL and
σT , calculated using Eqs. (5), (6) in Eqs. (4) and (7), (8) in
Eq. (4), respectively, are

σL (γ ∗ p → ρ p) = 1

16πb(Q2)

∣∣∣∣T00(s, t = 0)

W 2

∣∣∣∣
2

, (10)

σT (γ ∗ p → ρ p) = 1

16πb(Q2)

∣∣∣∣T11(s, t = 0)

W 2

∣∣∣∣
2

, (11)

1 For asymptotic form of the twist-2 DA, ϕ1(y) = ϕas
1 (y) = 6y ȳ,

these equations give ϕ
T WW, as
A (y) = −3/2y ȳ and ϕ

T WW, as
1 (y) =

−3/2y ȳ(2y − 1).

where b(Q2) in Eqs. (10) and (11) is the diffraction slope,
for which we adopt the parametrization [16]:

b(Q2) = β0 − β1 log

[
Q2 + m2

ρ

m2
J/ψ

]
+ β2

Q2 + m2
ρ

, (12)

fixing the values of the constants as follows: β0 = 6.5
GeV−2, β1 = 1.2 GeV−2 and β2 = 1.6. In Fig. 2, we
compare the parametrization of Eq. (12) with the data of
the H1-collaboration from Ref. [10]. Above, we took into
account only the helicity conserving amplitudes. These dom-
inate the diffractive peak at small t , and hence also the inte-
grated cross section of interest. While the impact factors for
the helicity flip transitions γ ∗(T ) → ρ(L) with �λ = ±1
and γ ∗(T ) → ρ(T ′) with �λ = ±2, are available within
the higher-twist factorization approach [5,6], a discussion
of the t−dependent cross section or the polarization density
matrix of ρ-mesons would require also a generalization to
off-forward UGDs and goes beyond the scope of this work.

The advantage of considering polarized cross sections
relies on the possibility to constrain not only the shape
and the behavior of results, but also the normalization, now
essential and which is clearly irrelevant for the evaluation
of the helicity-amplitude ratio T11/T00. Although all UGDs
described in Sect. 3 present fixed values for their parameters,
the ABIPSW model, one of the first UGD parametrization
adopted in phenomenological analysis [17], was defined up to
the overall normalization. As regards the helicity-amplitude
ratio T11/T00, results for the ABIPSW UGD model show a
fair agreement with data [6], this suggesting that the shape,
controlled by the M parameter (see Eq. (13)), has been
already guessed. The best value of the normalization param-
eter can be obtained via a simple global fit to experimental
data of both polarized cross sections, σL and σT .

3 UGD models used in the present study

We have considered a selection of several models of UGD,
without pretension to exhaustive coverage, but with the aim
of comparing (sometimes radically) different approaches. We
refer the reader to the original papers for details on the deriva-
tion of each model and limit ourselves to presenting here just
the functional formF(x, κ2) of the UGD as we implemented
it in the numerical analysis.

3.1 An x-independent model (ABIPSW)

The simplest UGD model is x-independent and merely coin-
cides with the proton impact factor [6]:

F(x, κ2) = A

(2π)2 M2

[
κ2

M2 + κ2

]
, (13)
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Fig. 2 Q2-dependence of the diffractive slope for the exclusive ρ-
meson leptoproduction (Eq. (12)) compared to the H1 data from Ref.
[10]

where M corresponds to the non-perturbative hadronic scale,
fixed as M = 1 GeV. The constant A is irrelevant when we
consider the ratio T11/T00 for the ρ-meson leptoproduction,
but it becomes essential to calculate cross sections. There-
fore, we determined it by a global fit to all available data for
polarized cross sections, getting A = 148.14 GeV2, with a
relative uncertainty below 0.05%.

3.2 Gluon momentum derivative

This UGD is given by

F(x, κ2) = dxg(x, κ2)

d ln κ2 (14)

and encompasses the collinear gluon density g(x, μ2
F ), taken

at μ2
F = κ2. It is based on the obvious requirement that, when

integrated over κ2 up to some factorization scale, the UGD
must give the collinear gluon density. We have employed
the CT14 parametrization [18], using the appropriate cutoff
κmin = 0.3 GeV (see Section III A of Ref. [8] for further
details).

3.3 Ivanov–Nikolaev (IN) UGD: a soft-hard model

The UGD proposed in Ref. [19] is developed with the purpose
of probing different regions of the transverse momentum. In
the large-κ region, DGLAP parametrizations for g(x, κ2) are
employed. Moreover, for the extrapolation of the hard gluon
densities to small κ2, an Ansatz is made [20], which describes
the color gauge invariance constraints on the radiation of soft
gluons by color singlet targets. The gluon density at small
κ2 is supplemented by a non-perturbative soft component,
according to the color-dipole phenomenology.

This model of UGD has the following two-component
form:

F(x, κ2) = F (B)
soft (x, κ

2)
κ2
s

κ2 + κ2
s

+ Fhard(x, κ
2)

κ2

κ2 + κ2
h

,

(15)

where κ2
s = 3 GeV2 and κ2

h = [1+0.047 log2(1/x)] 1
2 GeV2.

The soft term reads

F (B)
soft (x, κ

2) = asoftCF Nc
αs(κ

2)

π

(
κ2

κ2 + μ2
soft

)2

VN(κ),

(16)

with μsoft = 0.1 GeV. The parameter asoft = 2 gives a mea-
sure of how important is the soft part compared to the hard
one. On the other hand, the hard component reads

Fhard(x, κ
2) = F (B)

pt (κ2)
Fpt(x, Q2

c)

F (B)
pt (Q2

c)
θ(Q2

c − κ2)

+Fpt(x, κ
2)θ(κ2 − Q2

c), (17)

where Fpt(x, κ2) is related to the collinear gluon parton dis-
tribution function (PDF) as in Eq. (14) and Q2

c = 3.26 GeV2

(see Section III A of Ref. [8] for further details). We refer
to Ref. [19] for the expressions of the vertex function VN(κ)

and of F (B)
pt (κ2). Another relevant feature of this model is

given by the choice of the coupling constant. In this regard,
the infrared freezing of strong coupling at leading order (LO)
is imposed by fixing �QCD = 200 MeV:

αs(μ
2) = min

⎧⎪⎪⎨
⎪⎪⎩

0.82,
4π

β0 log

(
μ2

�2
QCD

)
⎫⎪⎪⎬
⎪⎪⎭

. (18)

We wish to stress that this model was successfully tested
in the unpolarized electroproduction of vector mesons at
HERA.

3.4 Hentschinski–Sabio Vera–Salas (HSS) model

This model, originally used in the study of DIS structure func-
tions [21], takes the form of a convolution between the BFKL
gluon Green’s function and a LO proton impact factor. It has
been employed in the description of single-bottom quark pro-
duction at the LHC [22], to investigate the photoproduction
of J/� and ϒ in [23–25] and to study the forward Drell–
Yan invariant-mass distribution [26]. We implemented the
formula given in Ref. [22] (up to a κ2 overall factor needed
to match our definition), which reads

F(x, κ2, Mh) =
∫ ∞

−∞
dν

2π2 C �(δ − iν − 1
2 )

�(δ)
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Fig. 3 Q2-dependence of the longitudinally polarized cross section,
σL , for all the considered UGD models, at W = 75 GeV together with
the HERA data (left upper panel) and at W = 20, 30, 50 GeV for EIC

(the remaining panels). Uncertainty bands represent the effect of vary-
ing a2(μ0 = 1 GeV) between 0.0 and 0.6

×
(

1

x

)χ
(

1
2 +iν

) (
κ2

Q2
0

) 1
2 +iν

×
{

1 + ᾱ2
s β0χ0

( 1
2 + iν

)
8Nc

log

(
1

x

)

×
[
−ψ

(
δ − 1

2
− iν

)
− log

κ2

M2
h

]}
,

(19)

where β0 = 11Nc−2N f
3 , with N f the number of active quarks

(put equal to four in the following), ᾱs = αs
(
μ2

)
Nc

π
, with

μ2 = Q0Mh , and χ0(
1
2 + iν) ≡ χ0(γ ) = 2ψ(1) − ψ(γ ) −

ψ(1 − γ ) is (up to the factor ᾱs) the LO eigenvalue of the
BFKL kernel, with ψ(γ ) the logarithmic derivative of the
Euler Gamma function. Here, Mh plays the role of the hard
scale which in our case can be identified with the photon
virtuality,

√
Q2. In Eq. (19), χ(γ ) (with γ = 1

2 + iν) is the
NLO eigenvalue of the BFKL kernel, collinearly improved
and BLM optimized. It reads

χ(γ ) = ᾱsχ0(γ ) + ᾱ2
s χ1(γ )

−1

2
ᾱ2
s χ

′
0(γ ) χ0(γ ) + χRG(ᾱs, γ ), (20)

with χ1(γ ) and χRG(ᾱs, γ ) given in Section 2 of Ref. [22].
This UGD model is characterized by a peculiar parametriza-

tion for the proton impact factor, whose expression is

�p(q, Q2
0) = C

2π�(δ)

(
q2

Q2
0

)δ

e
− q2

Q2
0 , (21)

which depends on three parameters Q0, δ and C which were
fitted to the combined HERA data for the F2(x) proton struc-
ture function. We adopted here the so-called kinematically
improved values (see Section III A of Ref. [8] for further
details) and given by

Q0 = 0.28 GeV, δ = 6.5, C = 2.35. (22)
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Fig. 4 Q2-dependence of the transversely polarized cross section, σT ,
for all the considered UGD models, at W = 75 GeV together with the
HERA data (left upper panel) and at W = 20, 30, 50 GeV for EIC (the

remaining panels). Uncertainty bands represent the effect of varying
a2(μ0 = 1 GeV) between 0.0 and 0.6

3.5 Golec–Biernat–Wüsthoff (GBW) UGD

This UGD parametrization derives from the effective dipole
cross section σ̂ (x, r) for the scattering of a qq̄ pair off a
nucleon [27],

σ̂ (x, r2) = σ0

{
1 − exp

(
− r2

4R2
0(x)

)}
, (23)

through a reverse Fourier transform of the expression

σ0

{
1 − exp

(
− r2

4R2
0(x)

)}
= 2π

Nc

∫
d2κ

κ4 αsF(x, κ2)

× (1 − exp(iκ · r)) (1 − exp(−iκ · r)) , (24)

αsF(x, κ2) = Ncκ
4σ0

R2
0(x)

4π2 e−κ2R2
0(x), (25)

with

R2
0(x) = 1

GeV2

(
x

x0

)λp

(26)

and the following values

σ0 = 23.03 mb, λp = 0.288, x0 = 3.04 · 10−4. (27)

The normalization σ0 and the parameters x0 and λp > 0 of
R2

0(x) have been determined by a global fit to F2(x) in the
region x < 0.01.

3.6 Watt–Martin–Ryskin (WMR) model

This model is based on the idea that the κ dependence of the
UGD comes from the last step of the evolution ladder.

The UGD introduced in Ref. [28] reads

F(x, κ2, μ2) = Tg(κ
2, μ2)

αs (κ
2)

2π

∫ 1

x
dz

×
[∑

q

Pgq (z)
x

z
q

(
x

z
, κ2

)
+ Pgg(z)

x

z
g

(
x

z
, κ2

)
�

(
μ

μ + κ
− z

)]
,

(28)

123



Eur. Phys. J. C (2021) 81 :846 Page 7 of 12 846

100 101 102

Q2 [GeV2]

10−2

10−1

100

101

102

σ
L
/
σ

T
(Q

2
)

W = 75 GeV

0.0 < a2(μ0) < 0.6

μ0 = 1 GeV

LExA v0.4.6

γ∗ + proton → ρ0 + proton

ABIPSW
BCRT
GBW
HSS

IN
WMR
Gluon mom.
HERA data

100 101 102

Q2 [GeV2]

10−2

10−1

100

101

102

σ
L
/
σ

T
(Q

2
)

W = 50 GeV

0.0 < a2(μ0) < 0.6

μ0 = 1 GeV

LExA v0.4.6

γ∗ + proton → ρ0 + proton

ABIPSW
BCRT
GBW
HSS

IN
WMR
Gluon mom.

100 101 102

Q2 [GeV2]

10−2

10−1

100

101

102

σ
L
/
σ

T
(Q

2
)

W = 30 GeV

0.0 < a2(μ0) < 0.6

μ0 = 1 GeV

LExA v0.4.6

γ∗ + proton → ρ0 + proton

ABIPSW
BCRT
GBW
HSS

IN
WMR
Gluon mom.

100 101 102

Q2 [GeV2]

10−2

10−1

100

101

102

σ
L
/
σ

T
(Q

2
)

W = 20 GeV

0.0 < a2(μ0) < 0.6

μ0 = 1 GeV

LExA v0.4.6

γ∗ + proton → ρ0 + proton

ABIPSW
BCRT
GBW
HSS

IN
WMR
Gluon mom.
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between 0.0 and 0.6

where the term

Tg(κ
2, μ2) = exp

(
−

∫ μ2

κ2
dκ2

t
αs(κ

2
t )

2π

×
(∫ z′max

z′min

dz′ z′ Pgg(z′) + N f

∫ 1

0
dz′ Pqg(z′)

))
,

(29)

gives the probability of evolving from the scale κ to the
scale μ without parton emission. Here z′max ≡ 1 − z′min =
μ/(μ + κt ); N f is the number of active quarks. This UGD
model depends on an extra-scale μ, which we fixed at Q.
The splitting functions Pqg(z) and Pgg(z) are given by

Pqg(z) = TR [z2 + (1 − z)2],
Pgg(z) = 2CA

[
1

(1 − z)+
+ 1

z
− 2 + z(1 − z)

]

+
(

11

6
CA − N f

3

)
δ(1 − z),

with the plus-prescription defined as
∫ 1

a
dz

F(z)

(1 − z)+
=

∫ 1

a
dz

F(z) − F(1)

(1 − z)
−

∫ a

0
dz

F(1)

(1 − z)
.

(30)

3.7 Bacchetta–Celiberto–Radici–Taels (BCRT) distribution

We include in our analysis the unpolarized distribution part
of the set of leading-twist T -even transverse-momentum-
dependent (TMD) gluon PDFs calculated in Ref. [29] (see
also Ref. [30]), suited for studies in wider kinematic ranges
at new-generation collider machines, such as the EIC [4],
HL-LHC [31], and NICA-SPD [32]. One has

F(x, κ2) = κ2
∫ ∞

M
dMX ρX (MX ) f̂ g1 (x, κ2; MX ), (31)

Here, f̂ g1 (x, κ2; MX ) stands for the distribution of unpo-
larized gluons in an unpolarized proton, calculated in the
so-called spectator-model approximation, namely where the
remainders of the proton after gluon emission are treated as
a single spin-1/2 spectator particle of mass MX
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f̂ g1 (x, κ2; MX ) =
[(

2Mxg1(κ
2) − x(M + MX )g2(κ

2)
)2

×[
(MX − M(1 − x))2 + κ2]

+ 2κ2 (κ2 + xM2
X ) g2(κ

2)2

+2κ2M2 (1 − x) (4g1(κ
2)2 − xg2(κ

2)2)
]

×
[
(2π)3 4xM2 (xM2

X − x(1 − x)M2+κ2)2
]−1

.

(32)

In Eq. (32) M is the proton mass, whereas g1,2 couplings
depict the effective proton-gluon-spectator vertex interaction

g1,2(κ
2) = G1,2

(1 − x)
[
κ2 + xM2

X − x(1 − x)M2
]

[
κ2 + xM2

X − x(1 − x)M2 + (1 − x)�2
X

]2 .

(33)

The spectral function ρX in Eq. (31) weighs f̂1 over MX in
a continuous range and its expression reads

ρX (MX ) = μ2a

(
A

B + μ2b + C

πσ
e− (MX−D)2

σ2

)
, (34)

where μ2 = M2
X − M2, and the model parameters in

Eqs. (33) and (34) were obtained by a simultaneous fit of
the κ-integral of spectator-model unpolarized and helicity
functions on NNPDF3.1sx [33] and NNPDFpol1.1 [34]
collinear PDFs, respectively, and they encode effective small-
x effects coming from the BFKL resummation. In our study
we employ values for these parameters obtained by averag-
ing over the whole set of replicas provided (see Section 3
of Ref. [29] for details). They read: G1 = 1.51 GeV2,
G2 = 0.414 GeV2, �X = 0.472 GeV, A = 6.1, a = 0.82,
b = 1.43, C = 371, D = 0.548 GeV, and σ = 0.52
GeV.

We stress that exploratory studies by using this TMD
model as a UGD are justified by the fact that we are
considering observables for the exclusive ρ-meson lepto-
production in the forward limit. In a more general, off-
forward case one should consider rather models for the
gluon generalized parton distribution (GPD), instead of
TMDs.
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Fig. 7 Q2-dependence of the transversely polarized cross section, σT ,
for GBW and IN UGD models, at W = 75 GeV together with the
HERA data (left upper panel) and at W = 20, 30, 50 GeV relevant

for EIC (the remaining panels). Uncertainty bands give the effect of
varying a2(μ0 = 1 GeV) between 0.0 and 0.6. Full, WW and genuine
contributions are shown separately

4 Results

All the results shown in this section were obtained by mak-
ing use of the leptonic-exclusive-amplitudes (LExA) modular
interface as implemented in the JETHAD code [35].

We present predictions for the polarized cross sections σL

and σT and their ratio σL/σT , as obtained with all the UGD
models presented above, and compare them with HERA data.
The behavior of the polarized cross sections σL and σT and
the ratio σL/σT [36] in terms of Q2 for all UGDs, at W = 75
GeV (comparison with HERA data) and at W = 20, 30, 50
GeV (predictions for the EIC), is shown in Figs. 3, 4, and 5,
taking into account the variation of the Gegenbauer coeffi-
cienta2(μ0) in the same range used for the helicity-amplitude
ratio analysis of Ref. [8]. As can be seen from the figures,
the uncertainties due to the choice of UGDs are much bigger
than those due to a2 uncertainty which opens a possibility to
test UGD models for the reaction under consideration. The
comparison exhibits a partial agreement with the experimen-
tal data, where once again none of the proposed models is

able to describe the whole Q2 region. However, we can spec-
ify which UGD model is more suitable for the description of
the polarized cross sections and which, indeed, for their ratio
in the Q2 intermediate range. On one side, observing Figs. 6
and 7 , the GBW model, considered in its standard definition,
i.e. without the evolution of saturation scale (for a detailed
discussion about saturation effects see Ref. [37]), and the IN
one appear to be the UGD models that allow us to match data
for the single polarized cross sections, σL and σT , in the most
accurate way. Here the genuine twist-3 contribution is con-
sidered. On the other side, although the predictions for the
cross section ratio σL/σT in Fig. 8 with the GBW model is
quite resonable, if we regard increasing values of Q2 ∼ 10
GeV2, the IN UGD model2 is able to slightly better catch
also the low-Q2 region of data. We stress, however, that in

2 Regarding the helicity amplitude ratio T11/T00, as a result of a correc-
tion in the numerical implementation, we note a significantly improved
agreement between the IN model and the experimental data with respect
to the Fig. 2 in Ref. [8]. For the sake of simplicity and recognizing in
the GBW model intriguing features and parameters worthy to be probed
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Fig. 8 Q2-dependence of the polarized cross-section ratio, σL/σT , for
the GBW and IN UGD models, at W = 75 GeV HERA (left upper
panel) and at W = 20, 30, 50 GeV relevant for EIC (the remaining pan-

els). Uncertainty bands represent the effect of varying a2(μ0 = 1 GeV)

between 0.0 and 0.6. Full and WW contributions are shown separately

this low-Q2 range the validity of our approach to IFs, based
on the use of collinear DAs, could be questionable. There-
fore our ability to discriminate among UGD models at small
virtualities could be limited.

5 Conclusions

We have calculated cross sections for the diffractive elec-
troproduction of ρ mesons in the energy range of HERA
and EIC. We have used the high-energy factorization formal-
ism for the forward amplitude [5,6], utilizing an empirical
parametrization of the diffractive slope to obtain the relevant
integrated cross sections.

The impact factors for longitudinal and transverse mesons
probe the transverse momentum dependence of the UGD
in different ways, so that the polarization dependence of ρ-

Footnote 2 continued
further, in that paper an exhaustive phenomenological analysis of this
UGD parametrization was proposed.

production has been proposed as a sensitive probe of the
shape of the UGD [7,8]. The impact factor for longitudinally
polarized meson is obtained in terms of the leading twist DA.
We find that, for the higher-twist DAs relevant for transverse
mesons, the WW contributions dominate. We have investi-
gated the effect of uncertainty related with the form of leading
twist DA by varying the Gegenbauer coefficient a2.

We have performed calculations for a representative
choices of UGDs available in the literature. These UGDs fol-
low different strategies in their construction. Some explicitly
connect to solutions of a specific evolution equation [21,28],
while others stress the presence of a substantial nonpertur-
bative component [19,27], while being adjusted to giving a
good description of proton deep inelastic structure functions.

The latter two UGDs in fact do give the best description
of the HERA cross sections. While our use of an empirical
parametrization of the diffractive slope introduces an addi-
tional model element/uncertainty, the spread of predictions
from various UGDs appears to be larger than the uncertainty
in the slope. Some UGDs substantially underestimate the
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total cross section, which may mean that, in the relevant κ-
range, their κ-shape and normalization miss some important
insights on the nonperturbative proton dynamics.

The cross section ratio σL/σT indeed appears to have
potential to discriminate further between UGDs, for the case
at hand the IN UGD gives the best description of HERA data.

New data taken at the Electron-Ion Collider EIC also
have a potential to further discriminate between the differ-
ent UGDs. At the lower range of W an investigation of the
matching/correspondence to TMD factorization approaches
with on-shell partons would be interesting.

It has been recently pointed out how the inclusive diffrac-
tive tagging of particles with a heavy transverse mass, such as
Higgs bosons [38], heavy-flavored jets [39–41] and charmed
baryons [42], leads to a fair stabilization of the high-energy
series under higher-order corrections. Future studies of reac-
tions featuring the forward emission of those objects will pro-
vide us with additional and possibly clearer probe channels
for the UGD. Furthermore, the detection of forward quarko-
nia (recently studied in the context of high-energy factor-
ization in more central directions of rapidity [43–48]) in the
low−pT region will help us (i) to shed light on the quarko-
nium production mechanisms and (ii) to investigate kine-
matic regions at the frontier between the high-energy and the
TMD dynamics.

The analysis presented in this work is at leading order
and an obvious improvement would be its extension to the
next-to-leading order. This calls for the setup of a theoretical
scheme for the convolution of NLO IFs and UGD, which is
not trivial, except for UGD models based on BFKL.
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