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Effective field theory arguments suggest that if beyond the standard model (BSM) sectors contain new
sources of CP violation that couple to QCD, these sources will renormalize the θ term and frustrate
ultraviolet solutions to the strong CP problem. Simultaneously, they will generate distinctive patterns of
low-energy electric dipole moments in hadronic, nuclear, atomic, and molecular systems. Observing such
patterns thus provides evidence that strong CP is solved by an infrared relaxation mechanism. We illustrate
the renormalization of θ and the collections of electric dipole moments generated in several models of BSM
physics, confirming effective field theory expectations, and demonstrate that measurements of ratios of
electric dipole moments at planned experiments can provide valuable input on the resolution of the strong
CP problem.
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I. INTRODUCTION

The universe violates parity (P) and charge-parity (CP)
symmetries. In the standard model (SM), the weak inter-
actions break P and CP, while, beyond the standard model,
new sources of CP violation are required to generate the
baryon asymmetry. For these reasons, it is a surprise that
the strong interactions appear to be P=CP symmetric. Even
at the renormalizable level, the strong interactions contain a
P=CP-violating (CPV) phase θ̄. The limit on the neutron
electric dipole moment (EDM), however, presently places a
bound θ̄ < 1.2 × 10−10 [1,2]. If P and CP are not sym-
metries of the Universe, why, then, does the strong force
appear to conserve these quantum numbers to fantastic
precision? Under renormalization, we might expect an O(1)
θ̄ to be generated, even if for some reason it vanishes as an
ultraviolet (UV) boundary condition.
It is a curious fact that this naïve renormalization group

expectation is not reflected by the SM alone, even if it
appears to be true in generic extensions of the SM.
Radiative corrections to θ̄ in the SM start at high loop
order [3] and are estimated to be well below the current
experimental bound. This surprising property is the starting

point for UV solutions to the strong CP problem, including
Nelson-Barr models based on spontaneous CP violation,
models based on spontaneous parity violation, and others
[4–11]. If the UV Lagrangian preserves P, CP, or suitable
generalizations of them, then θ̄ ¼ 0 is a natural UV
boundary condition. These symmetries must be broken
spontaneously, and the trick is to sequester the order
parameters sufficiently from QCD so that θ̄ is not regen-
erated when the spontaneous symmetry breaking sector is
integrated out. This is a subtle model-building problem,
because the fact that θ̄ is negligibly renormalized in the SM
appears to be quite special, due to the limited flavor
structures of the SM, and is not a property shared by most
extensions of the SM [12–18]. Minimal left-right models,
for example, preserve parity in the UV, so that θ̄ ¼ 0 is a
natural boundary condition, but it is regenerated after
electroweak symmetry breaking by new phases in the
Higgs sector. However, various classes of UV solutions
are known that might achieve the required sequestration, in
which case the special radiative structure of the SM takes
over and protects θ̄ into the infrared (IR).
Generically, one does not expect to observe any new

sources of hadronic CP violation if strong CP is addressed
by a UV mechanism. The sequestering required to protect θ̄
from spontaneous P=CP breaking to several loop order
also typically prevents any other sources of hadronic CP
violation—various dimension-six operators, in the lan-
guage of the SM effective field theory (SMEFT)—from
being generated at an observable level. This can be verified
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in explicit models for UV solutions. For example, the two-
loop corrections to θ̄ in models of softly broken generalized
parity typically dominate the pattern of EDMs [19]. More
generally, the argument can be sharpened examining the
divergence structure of SMEFT [18]. dimension-six CPV
operators coupling to quarks or gluons give rise to one-loop
quadratic divergences in θ̄, reflecting strong sensitivity of θ̄
to the CPV physics at the cutoff.
Contrapositively, UV models proposed to address strong

CP can be constrained by experimental evidence for new
(non-θ̄) sources of hadronic CP violation. The argument is
one of naturalness: even if θ̄ is small in the UV, if other
sources of hadronic CP violation are present at an observ-
able level, it is difficult to understand from an effective field
theory point of view why θ̄ should be small in the IR. Thus,
if new sources of strong-sector CP violation are observed,
axion solutions to the strong CP problem—which largely
relax the IR value of θ̄ regardless of its renormalization at
intermediate scales and the presence of higher dimension
operators—become essentially the only game in town.
This EFT argument gives low energy EDM experiments a

unique and interesting window into the strong CP problem.
These experiments are the most sensitive probes of new
sources of flavor-diagonal CPV beyond the SM. A compli-
cation, however, is that a small bare θ̄ itself generates a
pattern of hadronic EDMs. Therefore, correlated measure-
ments are required to distinguish a pure θ̄ scenario from one
with distinct new CPV sources. Given a sufficient suite of
hadronic EDM measurements, if nonzero EDMs are
observed, it is possible to disentangle the various contribu-
tions from a small nonzero θ̄ and other CPV sources. If the
latter are present, the argument above can be applied.
In this work we illustrate how this EFT argument

operates by studying a few concrete UV extensions of
the SM. These models introduce new CP-violating inter-
actions for quarks and gluons somewhere above the weak
scale. We show that these interactions renormalize θ̄ at tree
level or one loop, necessitating an IR solution to the strong
CP problem. Furthermore, we show that the models
generate distinctive correlated patterns of EDMs distin-
guishable from the pattern generated by θ̄ alone.
This paper is organized as follows. In Sec. II we discuss

the renormalization of θ̄ in the SM and beyond. We recap
how θ̄ is corrected in SMEFT and introduce three beyond
the standard model (BSM) models with additional sources
of CP violation that explicitly verify the EFT expectations.
In Sec. III we discuss the low-energy CP-odd interactions
that are induced in the BSM models and the resulting
EDMs of hadrons, nuclei, atoms, and molecules. In Sec. IV
we demonstrate how the pattern of EDMs of different
systems can separate pure-θ̄ scenarios (which can arise
either in IR or UV solutions to the strong CP problem)
from models where higher-dimensional flavor-diagonal
CP-odd operators are relevant and an IR solution is needed.
We conclude in Sec. V.

II. CORRECTIONS TO θ̄

In the SM, the strong CP phase that is invariant under
anomalous chiral field redefinitions is

θ̄ ¼ θ þ arg det yuyd; ð1Þ

where yu;d are the up- and down-type Yukawa matrices. In
BSM models, there can be additional terms in the invariant
strongCP phase. There can also be new invariant phases that
radiatively correct θ̄. We will see examples of both below.
In perturbation theory, a radiative correction to arg det y

shifts θ̄ at one loop by

Δθ̄ ¼ arg detðyþ δyÞ − arg det ¼ arg detð1þ y−1δyÞ
≈ Im trðy−1δyÞ; ð2Þ

where y≡ yuyd.

A. Corrections to θ̄ in SMEFT

In SMEFT, there are quadratic divergences in the one-loop
radiative contribution to θ̄ arising from higher-dimensional
CP-violating operators. These terms can be used to estimate
the correction to θ̄ in a systematic computation, as long as the
Wilsonian momentum cutoff is taken sufficiently below the
scale at which the SMEFT operators become strongly
coupled. Typically, this is a conservative estimate. More
generally, the quadratic divergences can be taken simply as
an indicator that models which generate hadronic CP-
violating SMEFT operators typically also have sizeable
new threshold corrections to θ̄. The explicit calculation
was performed in Ref. [18] and here we just list the result.
We define the dimension-six operators through

LSMEFT ¼ LSM þ 1

Λ2

X
i

ciOi; ð3Þ

in terms of the operators in Table I. The one-loop quadratic
divergence in θ̄ from dimension-six CP-violating SMEFT
operators is [18]

TABLE I. Dimension-six SMEFT operators in the basis of
Ref. [20], which contribute to the renormalization of θ̄ at one
loop.

OuH H†HQLi H̃ uRj OdH H†HQLiHdRj
OdG QLiσ

μνTadRjHGa
μν OdW QLiσ

μνdRjτaHWa
μν

OdB QLiσ
μνdRjHBμν OuG QLiσ

μνTauRjH̃Ga
μν

OuW QLiσ
μνuRjτaH̃Wa

μν OuB QLiσ
μνuRjH̃Bμν

OHud iH̃†DμHuRiγμdRj Oquqdð1Þ ϵefQe
LiuRjQ

f
LkdRl

Oquqdð8Þ ϵefQe
LiT

auRjQ
f
LkT

adRl
Olequð1Þ ϵefLe

LieRjQ
f
LkuRl

Oledq LLieRjdRkQLl OHG̃ H†HGa
μνG̃

aμν

OG̃ fabcGaμ
ν Gbν

ρ G̃cρ
μ
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16π2δθ̄ ∼ 16π2
�
2

g2s
cHG̃ −

9

2gs
cG̃

�

þ ImTr½Y−1
d ð3cdH þ g0cdB − 18gcdW − 16gscdGÞ�

þ ImTr½Y−1
u ð3cuH − 5g0cuB − 18gcuW − 16gscuGÞ�

þ ImTr½ðY−1
d Yu þ Y†

dðY†
uÞ−1ÞcHud�

þ Im½2cmnij
lequð1ÞY

†nm
e ðY−1

u Þji − 2c�mnij
ledq Ymn

e ðY−1
d Þij�

þ Im

��
6cmnij

quqdð1Þ þ cinmj
quqdð1Þ þ

4

3
cinmj
quqdð8Þ

�
ðY†nm

u ðY−1
d Þji þ Y†ji

d ðY−1
u ÞnmÞ

�
: ð4Þ

Absent an infrared relaxation of θ̄, e.g., by the Peccei-
Quinn mechanism, naturalness requires jδθ̄j≲ 10−10,
implying a stringent bound on the combination of
Wilson coefficients in Eq. (4).
Now we consider specific UV completions of the SM

where the threshold corrections to θ̄ and the predictions for
numerous EDM observables can be computed explicitly.
We confirm the EFT expectation that whenever a dimen-
sion-six operator is introduced that appears in Eq. (4), the
dominant source of CP violation should be a θ̄ term much
larger than the present bound, unless it is relaxed by a
Peccei-Quinn mechanism.
Axion models [21–28] provide the standard IR solu-

tion to the strong CP problem. The QCD axion nonlinearly
realizes an approximate chiralUð1ÞPQ symmetry, with decay
constant fa ≳ 109 GeV. The axion a modifies the CP-odd
Lagrangian term for the gluons,L → ðθ̄ þ a=faÞGG̃, so that
the effective value of θ̄ðaÞ is modified by the axion vacuum
expectation value (VEV). Nonperturbative QCD effects
explicitly break Uð1ÞPQ and generate a periodic potential
for the axion that is minimized at θ̄ þ a=fa ¼ 0, thus setting
the effectiveCP-violating phase to zero in the vacuum of the
axion model, hθ̄ðaÞi≡ θ̄ þ hai=fa ¼ 0. Additional sources
of Uð1ÞPQ violation can shift the minimum of the axion
potential to a nonzero value of hθ̄ðaÞi. To ensure a suffi-
ciently small jθ̄j < 10−10, theUð1ÞPQ global symmetry must
be nearly exact, broken only byQCD effects or by very high-
dimension irrelevant operators (often constrained to be
higher than dimension ten). This is referred to as the axion
quality problem. A handful of models are known to protect
Uð1ÞPQ to a sufficient degree without fine-tuning the
coupling constants, often as an “accident” of some other
structure in the ultraviolet theory [29–41].

B. Case I: Scalar leptoquark models

We start our analysis in a very simple SM extension,
a model of scalar leptoquarks (LQs). Recently these
models have been investigated extensively due to anoma-
lies in b → sll transitions and the muon anomalous mag-
netic moment. We consider here the R2 scalar LQ [42] that

carries SM gauge quantum numbers ð3; 2; 7=6Þ. Apart from
interactions among LQs and LQ-Higgs interactions that
conserve CP, there are potentially CP-violating inter-
actions between LQs and the SM fermions. We focus on
couplings between quarks and charged leptons given by

LðR2Þ
Y ¼ RI

2ðūRxRLϵIJLJ þ Q̄Ix†LReRÞ þ H:c:; ð5Þ

where xRL;LR are 3 × 3 flavor matrices and I, J denote
SUð2Þ indices. The presence of two interactions coupling
to both left- and right-handed quarks and leptons leads to a
rich EDM phenomenology [43,44]. The LQ doublet
describes two states with charges ð5=3Þe and ð2=3Þe and
we consider a common mass for these states mR2

.
The relative phase in the LQ couplings lead to a

threshold correction to θ̄. That is, even if θ̄ ¼ 0, it is
renormalized at one loop by phases in the x couplings.
Closing the lepton lines gives the following UV-divergent
contribution

Δθ̄ ¼ c
8π2

ImTr½y−1u ðxRLy†exLRÞ� log
�

Λ
mR2

�
; ð6Þ

where Λ is a momentum cutoff and c is an order one
constant. We see the appearance of a second reparametri-
zation-invariant phase,

− arg det yu − arg det ye þ arg det xRL þ arg det xLR:

ð7Þ

While this contribution is suppressed by the lepton
Yukawa, it can be enhanced by 1=yu for first-generation
quarks. The same couplings also give rise to a correction to
the electron mass

Δme ∼
1

8π2
ðxeqRLmqx

qe
LRÞ log

�
Λ
mR2

�
; ð8Þ

and on naturalness grounds we require Δme ≲me. This
says, for example, that
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xetRLx
te
LR logðΛ=mR2

Þ≲ 10−4: ð9Þ

However, it places essentially no constraint on first-
generation couplings.
The phenomenology of EDMs in leptoquark models

was discussed in detail in Refs. [43,44]. The LQ-fermion
interactions lead to dimension-six operators below the scale
of the LQ masses. Tree-level diagrams induce [45,46]

L ¼
cabcdlequð1Þ
Λ2

ðL̄I
aeRb

ÞϵIJðQ̄J
cuRd

Þ

þ
cabcdlequð3Þ
Λ2

ðL̄I
aσ

μνeRb
ÞϵIJðQ̄J

cσμνuRd
Þ; ð10Þ

where

cabcdlequð1Þ
Λ2

¼ 4
cabcdlequð3Þ
Λ2

¼ ðxLRÞbcðxRLÞda
2m2

R2

: ð11Þ

Note that closing the lepton lines into a loop, the
first operator contributes to the renormalization of θ̄ in
SMEFT, cf. Eq. (4), which correctly matches the qualitative
structure of the correction in the full LQ model, Eq. (6). In
this model we have a direct correspondence between the
EFT and full theory computations of the correction to θ̄. In
the other models we consider, the SMEFT estimates will be
conservative, with more important corrections to θ̄ arising
already at tree level in the UV theory. The second operator
also contributes to θ̄ but only at two-loop order. This is
reflected by the mixing of cabcdlequð1Þ and cabcdlequð3Þ at one-loop
order in QCD.
At the threshold of the top and charm quark, the four-

fermion operators induce dimension-seven CP-violating
lepton-gluon operators. We only consider the electron
interactions

LeG ¼ CeGαsēiγ5eGa
μνGaμν þ CeG̃

αs
2
ēeGa

μνGa
αβϵ

αβμν;

ð12Þ
where

CeG ¼ −
2

3
CeG̃ ¼

X
q¼c;t

1

24π

Imceeqqlequð1Þ
Λ2mq

: ð13Þ

Electric dipole moments of quarks and leptons and
chromoelectric dipole moment of quarks are induced at
the one-loop level. Focusing on first-generation quarks and
leptons we define the operators1

Ldipole ¼ −
de
2
ēσμνiγ5eFμν −

du
2
ūσμνiγ5uFμν

−
gsd̃u
2

ūσμνiγ5tauGa
μν; ð14Þ

where the one-loop expressions are given by

de ¼
e

ð4πÞ2
X

q¼u;c;t

Ncmq

6
Im

�ðxLRÞeqðxRLÞqe
m2

R2

�
þO

�
m2

q

m2
R2

�
;

du ¼ −
e

ð4πÞ2
X

l¼e;μ;τ

2ml

3
Im

�ðxLRÞluðxRLÞul
m2

R2

�
þO

�
m2

l

m2
R2

�
;

d̃u ¼ −
1

ð4πÞ2
X

l¼e;μ;τ

ml

2
Im

�ðxLRÞluðxRLÞul
m2

R2

�
þO

�
m2

l

m2
R2

�
:

ð15Þ

In particular the electron EDM can get large contributions
from internal top quarks.
Ifwe focus onLQcouplings for first-generationquarks and

leptons only, the largest contributions are to CP-odd four-
fermion operators while the dipole operators are loop sup-
pressed. For electron-top-LQ interactions this is no longer the
case, as the electron-gluon operators also arise at one loop and
the electron EDM is enhanced bymt=me. The resulting EDM
phenomenology will be discussed in Sec. III.

C. Case II: The minimal supersymmetric
standard model

In the minimal supersymmetric standard model
(MSSM), the invariant strong CP phase is

θ̄ ¼ θ þ arg det yuyd þ 3 argmg̃ þ 3 arg vuvd: ð16Þ

It receives new tree-level contributions from the last two
terms. It also receives radiative corrections, for example,
from one-loop contributions to the quark masses or the
gluino mass that are sensitive to phases in the A terms and
the μ term [12]. Rather than studying the full set of one-
loop corrections to θ̄, we restrict our attention to those
contributions that are proportional to αs, as this is sufficient
to generate a nontrivial pattern of electric dipole moments.
At one-loop order in αs, the Yukawa couplings yu;d

receive two types of corrections. The first type is propor-
tional to Au;d, and in a highly simplified limit the correction
to θ̄ is

Δθ̄ ≈
αs
3π

1

m2
soft

ImTr½y−1u ðm†
g̃AuÞ� þ ðu ↔ dÞ: ð17Þ

Here we work in a flavor basis where the gluino-quark-
squark couplings are real and proportional to the identity in
flavor space, and for simplicity we take the limits where the
squarks are degenerate at msoft, the gluino has similar mass

1The dipole operators can be related to the coefficients in
Eq. (4). For instance, du ¼ ðe ffiffiffi

2
p

v=Λ2ÞImðc11uB=g0 þ c11uW=gÞ and
d̃u ¼ −ð ffiffiffi

2
p

v=Λ2ÞImðc11uG=gsÞ. The electron EDM does not ap-
pear in Eq. (4) as it only renormalizes θ̄ at the three-loop level.
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jmg̃j2 ≈m2
soft, and the A terms are treated in the insertion

approximation. We see that if the gluino mass is real, and in
the limit of exact proportionality Af ∝ yf, the corrections
to θ̄ vanish. However, if we allow for deviations from
exact proportionality, Δθ̄ is in general nonzero because of
phases in the Yukawas, even if the gluino phase vanishes
at tree level. Furthermore, if we allow deviations from
exact degeneracy of the squark masses, the trace above will
include insertions of flavor-changing squark soft masses
δm̃2

ff0 , e.g.:

ðΔθ̄ÞA ≃
αs
18π

1

m6
soft

ImTr½y−1u m†
g̃ðδm̃2ÞAuðδm̃2Þ� þ ðu ↔ dÞ:

ð18Þ

This correction can shift θ̄ even in the limit of exact A-term-
Yukawa proportionality.
A second contribution to the quark masses comes from

the μ term in the superpotential, which induces cubic scalar
interactions L ⊃ μ⋆½ũRyuũLH0⋆

d þ ðd ↔ uÞ� þ H:c: With
the H0

u;d → vu;d=
ffiffiffi
2

p
VEV insertion,

δmij
u ≈ −

αs
3π

μ⋆m⋆
g
v⋆dffiffiffi
2

p yiju
1

m2
soft

; ð19Þ

where again we simplify the loop integrals by setting the
squark and gluino propagator masses to a universal msoft.
An analogous expression for δmij

d is found by applying
(u ↔ d) above. Each correction δyq is strictly proportional
to yq, so the new contribution to θ̄ is

ðΔθ̄Þμ ≃ ImTrðy−1u δyu þ y−1d δydÞ

¼ −
αs
π
Im

��
v⋆d
vu

þ v⋆u
vd

�
μ⋆m⋆

g

m2
s

�
: ð20Þ

Note that in the limit of large tan β≡ jvu=vdj, the
assumption δyu ≪ yu underpinning the Eq. (2) approxi-
mation can become invalid if μ tan βαs=π ≳OðmsÞ, so a
more careful analysis is required in that regime [47].
From the gluino mass correction, Δθ̄ ≈ 3 Imðm−1

g δmgÞ,
with similar assumptions for the particle masses and
couplings, we obtain

ðΔθ̄Þv2 ¼ −
3αs
16π

v2u
m2

soft

Imðm−1
g̃ TrðAuy

†
uÞÞ þ ðu ↔ dÞ: ð21Þ

In each case, we see the appearance of additional phases
that can correct θ̄. The relevant reparametrization-invariant
phases can be read off directly from each of the corrections
(and in cases involving VEVs note that the soft supersym-
metry (SUSY)-breaking B term transforms like v�uv�d). If
there is a large hierarchy between the weak scale and the
SUSY-breaking scale, the correction to the gluino mass

phase can be suppressed below 10−10; however, this
suppression does not affect the correction to the quark
mass phases. To remove all the large sources of Δθ̄ in the
MSSM, additional strong assumptions must be made. For
example, in soft supersymmetry breaking universality, the
Higgs VEVs and gaugino masses are taken to be real, and
the A terms are taken to be exactly proportional to the
Yukawa matrices.
In the MSSM with R-parity conservation, there are no

tree-level contributions to SMEFT operators, but the dipole
operators cuB;uW;uG;dB;dW;dG are induced at one loop. They
appear in Eq. (4); closing the gauge-boson loop corre-
sponds to a two-loop contribution to θ̄. In the full model
there are larger, one-loop corrections to θ̄ from diagrams
with the gauge boson removed entirely, not to mention tree-
level contributions. So in this case the SMEFT estimate is
likely conservative. Nevertheless, it is convenient as a
diagnostic tool: the appearance of any dimension-six
operators appearing in Eq. (4), which can be verified by
low-energy experiments as discussed in detail below,
suggests large corrections to θ̄.
The quark EDMs and chromo-EDMs (CEDMs) (dq and

d̃q, respectively) are defined as in Eq. (14)

L ¼ −
dq
2
q̄σμνiγ5qFμν −

gsd̃q
2

q̄σμνiγ5taqGμν; ð22Þ

for q ¼ fu; dg. Complex phases in the gluino mass and in
the fermion-gluino interaction generate an EDM and
CEDM at one-loop order, proportional to αs. For the
EDM, the relevant diagram features a virtual gluino and
squark, q → ðg̃þ q̃0Þ → q, with a photon coupled to the
virtual squark. Here the deviations from exact degeneracy
in the squark masses become important, so we will treat
them with a degree of generality, including off-diagonal
ðmassÞ2 couplings in the flavor basis. In the absence of any
generation-changing masses, the first-generation up and
down squarks (in the flavor basis) have mass matrices given
approximately by [48]

M2
ũ ≃

�M2
Q̃
þOðm2

Z cos 2βÞ muðA⋆
u − μ cot βÞ

muðAu − μ⋆ cot βÞ M2
Ũ
þOðm2

Z cos 2βÞ

�

≈m2
soft

�
1 ϵ⋆u
ϵu 1þ Δu

�
; ð23Þ

M2
d̃
≃
�M2

Q̃
þOðm2

Z cos 2βÞ mdðA⋆
d − μ tan βÞ

mdðAd − μ⋆ tan βÞ M2
D̃
þOðm2

Z cos 2βÞ

�

≈m2
soft

�
1 ϵ⋆d
ϵd 1þ Δd

�
; ð24Þ

where the Au;d above refer to the (1,1) components of the
respective 3 × 3 matrices. Above, we parametrize the mass
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matrices with a real Δq and complex ϵq for each q ¼ u, d.
Ignoring theOðm2

ZÞ diagonal entries, we take the (1,1) (i.e.,
left-left) components of the two matrices to be approx-
imately equal to m2

soft ≈M2
Q̃
.

In the approximately degenerate limit assumed for the
squark masses in our calculation of the one-loop correc-
tions to Δθ̄, jΔqj ≪ Oð1Þ. Even with exactly degenerate
soft SUSY-breaking masses M2

Q̃
¼ M2

Ũ
¼ M2

D̃
, however,

the Oðm2
ZÞ diagonal terms from electroweak symmetry

breaking introduce some degree of mass splitting. Absent
any fine cancellations between the electroweak correc-
tions and the soft masses, we anticipate a lower limit on
the magnitude of Δ, jΔqj ≳Oðcos 2 βm2

Z=m
2
softÞ. The off-

diagonal ϵq, on the other hand, are suppressed by factors
of mq=msoft, so we may assume jϵj ≪ jΔj for the first-
generation quarks.
Following [47,48], the contribution from the gluino loop

diagram to the quark EDM dq is given by

dq
e

¼ −
2αs
3π

X
j¼1;2

ImðUq2jU⋆
q1je

−iϕ3Þ jmg̃j
M2

q̃j

Qq̃B

�jmg̃j2
M2

q̃j

�
;

ð25Þ

where ϕ3 ¼ argmg̃ is the phase of the gluino mass;

the Uq diagonalize the mass matrices via U†
qM2

q̃Uq ¼
diagðM2

q̃1
;M2

q̃2
Þ, with mass eigenvalues M2

q̃j
; Qq̃ is the

squark electric charge; and where

BðrÞ ¼ 1þ rþ 2r
1−r ln r

2ð1 − rÞ2 ; Bð1Þ ¼ 1

6
: ð26Þ

Expanding to linear order in ϵ=Δ, we find ðUqÞ11 ¼
ðUqÞ22 ≃ 1, and ðUqÞ12 ¼ −ðUqÞ⋆21 ¼ ϵ⋆=Δ. Similarly,
the mass eigenvalues are M2

q̃1
≃m2

softð1þOðϵ2ÞÞ and
M2

q̃2
≃m2

softð1þ ΔþOðϵ2ÞÞ. Specializing to the jm2
g̃j ≈

m2
soft case, we find

dq
e
≈ −Qq

αs
4π

jϵqj
msoft

sin ðϕ3 − arg ϵqÞ × FðΔÞ; ð27Þ

FðΔÞ≡ 4

9Δ4
½Δ3 − 3Δ2 − 6Δþ 6ð1þ ΔÞ logð1þ ΔÞ�:

ð28Þ

In the limit of degenerate squark masses, Δ → 0, the
function F approaches a constant, Fð0Þ ¼ 2=9. Recalling
that the typical size of ϵ is jϵj ∼mq=msoft, the overall
contribution to the q ¼ u, d dipole moment scales
as mq=m2

soft.
At one-loop order, the quark chromo-EDM is propor-

tional to the same Imðeiϕ3ϵ⋆Þ combination of phases, with

the same dependence on Uq; the only major difference is
the existence of a second type of diagram, where the
external gluon couples to the virtual gluino rather than
the squark, so that the gluino loop diagram induces a
CEDM of

d̃q ≈
αs
4π

jϵqj
msoft

sin ðϕ3 − arg ϵqÞ ×GðΔÞ; ð29Þ

where

GðΔÞ ¼ 1

18Δ4
½19Δ3 þ 78Δ2 þ 48Δ

− 6ð1þ ΔÞð8þ 9ΔÞ logð1þ ΔÞ�: ð30Þ

Here we have again specialized to m2
g̃ ≈m2

soft in order to
express the result simply in terms of Δ. In the limit Δ → 0,
Gð0Þ ¼ 5=18 remains finite.
By turning on additional phases in the electroweak

chargino sector, the EDMs and CEDMs receive further
contributions, but as these are proportional to g2 or g02,
they can be considered small compared to the αs correc-
tions listed above unless the gluino phase is tuned so that
Imðeiϕ3ϵ⋆qÞ is small.

D. Case III: The P-symmetric minimal left-right
symmetric model

Left-right symmetric models have an extended gauge
symmetrySUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [49–51].
The left- and right-handed fermions are fundamental repre-
sentations of the SUð2Þ groups, and right-handed neutrinos
appear automatically. The minimal left-right symmetric
model (MLRSM) includes a minimal scalar sector contain-
ing one scalar bidoublet and two triplets [52]. Vacuum
expectation values of these scalar fields then break the
extended gauge symmetry to the SM group at some high-
energy scale. This leads tomassive right-handed electroweak
gauge and scalar bosons with masses above a few TeV to
avoid phenomenological constraints. Full details of the
model can be found in many places in the literature, see,
e.g., [49–51,53,54].
Left-right models can have an exact symmetry between

left- and right-handed fermions at high scales. One way of
doing so is by considering a generalized parity (P)
symmetry. In the case of exact P symmetry the QCD θ
term is explicitly forbidden in the microscopic theory.
However, there is an explicit CP-violating phase δ2 in the
Higgs potential,

α2feiδ2 ½Trðϕϕ̃†ÞTrðΔRΔ
†
RÞ þ Trðϕ†ϕ̃ÞTrðΔLΔ

†
LÞ� þ H:c:g:

ð31Þ

Here ϕ is the Higgs bidoublet and ΔL;R are Higgs triplets.
δ2 is responsible for spontaneous CP violation in the Higgs
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bidoublet, hΦi ¼ diagðv1; eiαv2Þ, with sinðαÞ ∝ sinðδ2Þ
[55,56]. Thus the quark mass matrices, and θ̄, obtain a
tree-level phase of order δ2, unsuppressed by any ratio of
scales.
In left-right symmetric model, CP-odd flavor-diagonal

operators are induced already at tree level. They arise from
the exchange of heavy WR and scalar fields. The contri-
butions from the latter lead to four-fermion operators that
scale with SM Yukawa couplings and are thus suppressed
for light fermions most relevant for EDMs. In addition, to
avoid producing too large flavor-changing neutral currents
the scalar fields must be relatively heavy whereas the WR
boson could be lighter. We therefore focus on contributions
from the tree-level exchange of WR bosons. The tree-level
matching leads to a single SMEFT operator right below the
mass of the WR boson (see Ref. [54] for a derivation)

L6;MLRSM ¼ cijHud

Λ2
iφ̃†DμφūiRγ

μdjR þ H:c:; ð32Þ

where

cijHud

Λ2
¼ g2R

m2
WR

ξeiα

1þ ξ2
VR;ij; ð33Þ

in terms of a gauge coupling gR ¼ g, the mass of the right-
handed gauge bosonmWR

and the parameter ξ related to the
ratio of VEVs appearing in the model. In this section, we
set VR ¼ VCKM which is a leading-order expression in the
limit ξ sin α → 0 [57]. Corrections can be systematically
included but do not change the qualitative conclusions.

The dimension-six operator cijHud appears in Eq. (4) and
thus indicates a renormalization of θ̄ at the matching scale.
In this case, the EFT argument is conservative as the
renormalization already appears at tree level. Nonetheless
from a low-energy perspective the appearance of cijHud

signifies the need to account for the large θ̄ term.
Below the electroweak scale, after integrating out the

electroweak gauge bosons, we obtain four-quark operators

L̃eff ¼ −
X2
a¼1

ðCijlm
aLRO

ijlm
aLR þ Cijlm�

aLR ðOijlm
aLRÞ†Þ; ð34Þ

where

Oijlm
1LR ¼ d̄mγμPLulūiγμPRdj;

Oijlm
2LR ¼ d̄mα γμPLulβū

i
βγμPRd

j
α; ð35Þ

and α and β are color indices. At the electroweak scale we
have

Cijlm
1LRðmWÞ ¼

V�
lmc

ij
Hud

Λ2
; Cijlm

2LRðmWÞ ¼ 0: ð36Þ

The CP-odd four-quark operators depend on the same
phase as the induced correction to θ̄.
We focus on operators involving just up, down, and

strange quarks and find four relevant operators

LEDM ¼ −iðImCudud
1LR d̄γμPLuūγμPRdþ ImCudud

2LR d̄αγμPLuβūβγμPRdα

þ ImCusus
1LR s̄γ

μPLuūγμPRsþ ImCusus
2LR s̄αγ

μPLuβūβγμPRsα − H:c:Þ; ð37Þ

where the second operator is induced through QCD renormalization-group evolution [58,59]

Cijlm
1LRð3 GeVÞ ¼ 0.9Cijlm

1LRðmWÞ; Cijlm
2LRð3 GeVÞ ¼ 0.4Cijlm

1LRðmWÞ þ 1.9Cijlm
2LRðmWÞ: ð38Þ

III. EDM PHENOMENOLOGY

A. CP-violating hadronic couplings

As discussed above, models with CP-violating
couplings to the strong sector typically induce a large θ̄

term. For consistency with the neutron EDM the θ̄ term
must be relaxed further in the infrared, presumably by a
Peccei-Quinn mechanism. The pattern of higher-dimension
CP-violating operators generated alongside θ̄ in each of the
models survives, producing distinctive patterns of electric
dipole moments at lower energies. We now turn to the

estimation of these EDM observables, a somewhat com-
plicated task that involves hadronic, nuclear, atomic, and
molecular physics. In the spirit of effective field theories, it
is useful to perform the calculation in steps. We first discuss
what hadronic or semileptonic CP-violating operators are
generated from the various CP-violating operators at the
quark-gluon level. In principle, many hadronic interactions
are generated, but they can be organized in a systematic way
in chiral perturbation theory. In this section, we give themain
results and refer to Refs. [60,61] for more details.
Semileptonic operators.—We begin with the semilep-

tonic operators that describe CP-violating electron-quark
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and electron-gluon interactions. These operators are
induced in the leptoquark model, cf. Eqs. (10) and (12).
They further induce CP-odd electron-nucleon interactions

that, in turn, induce atomic and molecular EDMs. The
CP-violating electron-nucleon interactions take the
form [43]

L ¼ −
GFffiffiffi
2

p
�
ēiγ5eN̄ðCð0Þ

S þ τ3C
ð1Þ
S ÞN þ ēe

∂μ

mN
½N̄ðCð0Þ

P þ τ3C
ð1Þ
P ÞSμN�

− 4ēσμνeN̄ðCð0Þ
T þ τ3C

ð1Þ
T ÞvμSνN

�
þ…; ð39Þ

where N ¼ ðpnÞT is the nonrelativistic nucleon doublet with mass mN , velocity vμ, and the spin Sμ [vμ ¼ ð1; 0Þ and
Sμ ¼ ð0; σ=2Þ in the nucleon rest frame]. The matching coefficients are given by

Cð0Þ
S ¼ v2

�
σπN

mu þmd
ImCð1Þeeuu

lequ þ 16π

9
ðmN − σπN − σsÞCeG

�
;

Cð1Þ
S ¼ v2

1

2

δmN

md −mu
ImCð1Þeeuu

lequ ;

Cð0Þ
P ¼ −8πv2ðΔu þ ΔdÞmNCeG̃; Cð1Þ

P ¼ v2
gAmN

mu þmd
ImCð1Þeeuu

lequ − 8πv2gAmN
md −mu

mu þmd
CeG̃;

Cð0Þ
T ¼ v2ðgdT þ guTÞImCð3Þeeuu

lequ ; Cð1Þ
T ¼ v2ðgdT − guTÞImCð3Þeeuu

lequ : ð40Þ

in terms of the hadronic matrix elements [62–65]

σπN ¼ ð59.1� 3.5Þ MeV; σs ¼ ð41.1þ11.3
−10.0Þ MeV; δmN ¼ ð2.32� 0.17Þ MeV;

gA ¼ 1.27� 0.002; Δu ¼ 0.842� 0.012; Δd ¼ −0.427� 0.013: ð41Þ

Hadronic operators.—More complicated are the purely
hadronic operators such as the quark (chromo-)EDMs and
four-quark operators. We begin with the analysis of quark
EDMs, which are induced in the LQ scenario as well as the
MSSM. Due to the explicit appearance of the electromag-
netic field strength, quark EDMs mainly induce hadronic
operators that contain explicit photons as well (operators
without photons are suppressed by αem=π). The most
important operators are the nucleon EDMs, related to the
quark EDMs by

dnðdqÞ ¼ guTdu þ gdTdd;

dpðdqÞ ¼ guTdd þ gdTdu; ð42Þ
where guT ¼ −0.213� 0.011 and gdT ¼ 0.820� 0.029.
These so-called tensor charges are obtained from lattice-
QCD calculations [66] and have very small theoretical
uncertainties.
The quark chromo-EDMs also contribute to nucleon

EDMs, but there are no lattice-QCD calculations available
at present. The neutron EDM was evaluated using QCD
sum rules [67,68] giving

dnðd̃qÞ ¼ g̃nð4Qdd̃d −Qud̃uÞ; ð43Þ

where g̃n ¼ ð1� 0.5Þ0.55e=Qu. We express the proton
EDM through a quark model relation

dpðd̃qÞ ¼ c̃pg̃nð−4Qdd̃u þQud̃dÞ; ð44Þ

so that dp and dn depend on the same QCD matrix element
g̃n. We use c̃p ¼ 1� 0.2 to account for possible isospin
breaking. These relations are valid only under a Peccei-
Quinn mechanism, that is the expressions take into account
the contribution from the induced θ̄ term.
In addition to nucleon EDMs, the quark chromo-EDMs

also induce CP-violating pion-nucleon interactions. The
most important operators are given by

L ¼ ḡ0N̄τ · πN þ ḡ1N̄π3N ð45Þ

in terms of the pion triplet π⃗. These couplings were
evaluated with QCD sum rules as well but come with
rather large uncertainties [69]. Chiral perturbation theory
can be used to obtain some further insight in these matrix
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elements. Through a chiral transformation it can be
shown that the matrix elements connecting ḡ0;1 to quark
chromo-EDMs are related to matrix elements connecting
meson and baryon mass corrections to CP-even quark
chromomagnetic dipole moments [70]. This by itself
does not help as the matrix elements of quark chromo-
magnetic dipole moments are also poorly known.
However, Ref. [71] argued that the unknown matrix
elements (called the “direct” contributions) are small
compared to so-called vacuum-alignment pieces that
are much better known. The argument uses a relation
between chromomagnetic matrix elements and twist-three
distributions that can be measured in deep inelastic
scattering processes. Using (sparse) data on the latter,
Ref. [71] found that the unknown direct pieces provide
only 10% corrections to the total matrix element.
Neglecting the direct pieces, we find the simple relations
that are valid in presence of a Peccei-Quinn mechanism,

ḡ0ðd̃qÞ ≃ δg0
1

4Fπ
ðd̃u þ d̃dÞr

dδmN

dm̄ε
; ð46Þ

ḡ1ðd̃qÞ ≃ δg1
1

2Fπ
ðd̃u − d̃dÞr

σπN
m̄

; ð47Þ

where we defined the vacuum condensate ratio:

r ¼ 1

2

h0jq̄gsσμνGμνqj0i
h0jq̄qj0i ; ð48Þ

which has the value r ¼ ð0.4� 0.05Þ GeV2 [72–74].
Furthermore ðdδmN=dm̄ϵÞ ≃ δmN=ðm̄ϵÞ ¼ ð2.49 �
0.17 MeVÞ=ðm̄ϵÞ [65,75], m̄ ¼ ðmu þmdÞ=2 ¼ ð3.37�
0.08Þ MeV [76], and ϵ ¼ ðmd − muÞ=ð2m̄Þ ¼ ð0.37 �
0.03Þ [76]. We have added δg0;1 ¼ ð1� 0.3Þ to account
for the theoretical uncertainties in these expressions.
We now turn to four-quark operators induced, for

example, in the MLRSM, cf. Eqs. (33)–(37). We closely
follow Ref. [77] which connected theCP-odd pion-nucleon
couplings through chiral symmetry relations to K → ππ
amplitudes for which lattice-QCD calculations exist. Put
together the relevant expressions are given by

ḡ1 ¼ ð1.45� 0.16� 0.75Þ × 10−5 Im

�
V�
us
v2cusHud

Λ2

�
þ ð2.85� 0.33� 1.5Þ × 10−5 Im

�
V�
ud
v2cudHud

Λ2

�
;

ḡ0 ¼ ð0.08� 0.015� 0.04Þ × 10−5 Im
�
V�
us
v2cusHud

Λ2

�
: ð49Þ

The contributions to the nucleon EDMs are not so well understood and have been calculated with several approaches, see,
e.g., Refs. [56,78]. We follow Ref. [77] and use the next-to-next-to-leading-order expressions for the chiral loops in
dimensional regularization [79]

dn ¼ d̄nðμÞ −
egAḡ1
8π2Fπ

�
ḡ0
ḡ1

�
log

m2
π

μ2
−
πmπ

2mN

�
þ 1

4
ðκ1 − κ0Þ

m2
π

m2
N
log

m2
π

μ2

�
;

dp ¼ d̄pðμÞ þ
egAḡ1
8π2Fπ

�
ḡ0
ḡ1

�
log

m2
π

μ2
−
2πmπ

mN

�
−
1

4

�
2πmπ

mN
þ
�
5

2
þ κ1 þ κ0

�
m2

π

m2
N
log

m2
π

μ2

��
; ð50Þ

where gA ≃ 1.27 is the nucleon axial charge, and κ1 ¼ 3.7
and κ0 ¼ −0.12 are related to the nucleon magnetic mo-
ments. We set μ ¼ mN for the renormalization scale and
apply d̄n;pðμ ¼ mNÞ ¼ 0. To estimate the uncertainty of
this expression we vary the renormalization scale μ
between mN and mK in the loop expressions. All expres-
sions for the four-quark operators assume a Peccei-Quinn
mechanism and include corrections from the induced θ̄
term.

B. The QCD θ̄ term

If a pattern of EDMs is observed that can be explained by
(small) θ̄ term alone, it will not be possible to say whether it
is the result of an imperfect infrared relaxation of θ̄ or a
small radiative correction to a vanishing ultraviolet

boundary condition. This means we can only draw useful
conclusions about the strong CP problem if the observable
pattern of EDMs is distinguishable from that of a pure θ̄
term. Thus we must compare EDMs induced in the various
beyond the SM models discussed above, to those induced
by the θ̄ term alone.
Let us briefly discuss the hadronic couplings arising

from the θ̄ term. Various lattice-QCD calculations of
nucleon EDMs have been reported [2,80–83], and the
most accurate result was given in Ref. [2]:

dn ¼ −ð1.5� 0.7Þ × 10−3θ̄ e fm: ð51Þ

Other recent lattice calculations found EDMs consistent
with zero and thus did not confirm these findings [82,83].
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Equation (51) is in agreement with estimates from QCD
sum rules and chiral perturbation theory. The proton EDM
was calculated on the lattice as well but the result has a
larger uncertainty. Instead we apply a relation dp ¼ −ð1�
0.5Þdn which covers various estimates from the chiral
perturbation theory, QCD sum rules, and the lattice results.
The CP-odd pion-nucleon couplings are better under

control. Reference [84] found

ḡ0 ¼ −ð14.7� 2.3Þ × 10−3θ̄;

ḡ1 ¼ ð3.4� 2.4Þ × 10−3θ̄; ð52Þ
through chiral symmetry relations between CP-odd pion-
nucleon interactions and quark-mass corrections to baryon
masses.
Finally, Ref. [85] noticed that a nonzero θ̄ term induced

CP-odd electron-nucleon interactions through electromag-
netic loops. They obtained2

CS ¼ −ð3� 1.5Þ × 10−2θ̄; ð53Þ

where CS is a linear combination of Cð0Þ
S and Cð1Þ

S appearing
in Eq. (39). We will discuss this combination in more detail
in the next section.

C. EDMs of nuclei, atoms, and molecules

We are now in the position to calculate EDMs of various
systems. The nucleon EDMs have already been discussed
above so we turn to larger systems. We begin with para-
magnetic systems that are mainly sensitive to (semi)
leptonic CP-violating operators. The most stringent limits
are from polar molecules due to huge innermolecular
electric fields induced by relatively small external electric
fields. A nonzero electron EDM and/or electron-nucleon
interactions affect the frequency associated with the
response of paramagnetic polar molecules to such an
applied external field. The frequency ω is given by

ω ¼ αdede þ αCS
CS; ð54Þ

where the coefficient CS is given by

CS ≡ Cð0Þ
S þ Z − N

Z þ N
Cð1Þ
S : ð55Þ

Here, Z and N are the proton and neutron numbers of the
heaviest atom of the molecule. The parameters αde and αCS

depend on the paramagnetic molecular system of interest.
As an example, Table II presents the values of αde and αCS

in ThO, HfFþ, and BaF systems [86–93].
EDMs of nuclei are only sensitive to hadronic sources of

CP violation. So far no nuclear EDMs have been measured,
but there are plans to measure the EDMs of light nuclei in
storage rings [94]. Anticipating such measurements we
consider the deuteron EDM [95–97]

dD ¼ ð0.94� 0.01Þðdn þ dpÞ þ ½ð0.18� 0.02Þḡ1�e fm:

ð56Þ
Diamagnetic atomic EDMs are sensitive to nuclear CP
violation and electron-nucleon interactions. 225Ra, due to
its octopole deformation, is mainly sensitive to CP-odd
nuclear forces that are, in turn, dominated by one-pion-
exchange processes involving ḡ0;1. We use [98,99]

dRa ¼ ð7.7 × 10−4Þ × ½ð2.5� 7.5Þḡ0 − ð65� 40Þḡ1�e fm:

ð57Þ
The situation is more complicated for the diamagnetic atom
199Hg. This system gets relevant contributions from the
nucleon EDMs, theCP-violating nuclear force, the electron
EDM, and from CP-odd electron-nucleon interactions. We
write [98,100–103]

dHg ¼ ð0.012� 0.012Þde −
�
ð0.028� 0.006ÞCS −

1

3
ð3.6� 0.4Þ

�
CT þ Zα

5mNR
CP

��
× 10−20 e cm

− ð2.1� 0.5Þ × 10−4½ð1.9� 0.1Þdn þ ð0.20� 0.06Þdp þ ð0.13þ0.5
−0.07ḡ0 þ 0.25þ0.89

−0.63 ḡ1Þe fm�; ð58Þ

where R ≃ 1.2A1=3 fm is the nuclear radius, and CP;T ¼
ðCðnÞ

P;Thσ⃗ni þ CðpÞ
P;Thσ⃗piÞ=ðhσ⃗ni þ hσ⃗piÞ, with Cðn;pÞ

P;T ¼
Cð0Þ
P;T ∓ Cð1Þ

P;T . For
199Hg we have [104]

hσ⃗ni ¼ −0.3249� 0.0515; hσ⃗pi ¼ 0.0031� 0.0118:

ð59Þ

TABLE II. Input parameters for EDMs of paramagnetic
molecules.

αde αCS

ThO ð120.6�4.9Þ mrad=s
10−27 e cm

ð181.6� 7.3Þ × 107 mrad=s

HfFþ ð34.9�1.4Þ mrad=s
10−27 e cm

ð32.0� 1.3Þ × 107 mrad=s

BaF ð19.7�0.75Þ mrad=s
10−27 e cm

ð12.7� 0.18Þ × 107 mrad=s

2We expect that the same electromagnetic two-loop diagrams
discussed in Ref. [85] lead to contributions to CP and CT of
similar size. However, these interactions mainly contribute to
diamagnetic systems where the CP violation is dominated by
purely hadronic interactions. As such, we do not include
corrections from θ̄ to CP;T in our analysis.
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IV. DISENTANGLING SOURCES OF CP
VIOLATION

In this section we discuss how EDM measurements of
various systems can be used to separate various CP-
violating BSM models and the SMEFT operators they
generate from a pure θ̄ scenario. The former, we have
argued, require an infrared relaxation of θ̄. The latter,
however, is not necessarily indicative of a PQ mechanism,
since it could be the remnant of an imperfect UV solution,
for instance due to spontaneous breaking of P or CP. In
addition, as we will discuss, we also have to distinguish
scenarios where CP violation is dominated by dimension-
six operators that are not necessarily correlated with large
threshold corrections to θ̄. In the models we study the prime
example is an electron EDM, which does not appear
in Eq. (4).

A. Case 1: Scalar leptoquark models

We begin with the simple LQ scenario discussed in
Sec. II B and focus on couplings between first-generation
quarks and leptons. That is, we set xeuLR ¼ xueRL ¼ eiα, where
α is some nonzero phase, and set the remaining couplings
to zero. In this simple case, the dominant CP-violating
dimension-six operators are quark-electron interactions,
while the electron EDM is one-loop suppressed, which
is not compensated by the slight enhancement by mu=me.
The quark EDMs and chromo-EDMs also appear only at
one loop and are further suppressed by a factor of me=mu.
This scenario precisely predicts ratios between EDMs of

paramagnetic systems [102,105]. This is illustrated in
Fig. 1 where the red bands in the left and right panels
illustrate the ratios ωHfFþ=ωThO and ωBaF=ωThO, respec-
tively. The error bands are small as both the hadronic matrix
elements connecting electron-quark to electron-nucleon
couplings as well as the molecular theory is well under
control. The contributions from the electron EDM are very

small and appear at the 10−4 level. Therefore, we can apply
the present situation to a sole-source limit in which the
bound on CS is obtained by assuming de ¼ 0. Taking the
current limit, jCSj < 7.3 × 10−10 (90% C.L.) [106], we
obtain mR2

≳ 1.9 × 104 TeV when jxeuRLxueRLj sin α ¼ 1,
illustrating the excellent sensitivity of EDM experiments
to new sources of CP violation.
It is possible to separate this scenario from one where the

dominant source of CP violation is the electron EDM. This
is, for instance, the case in a LQ model where xetLR ¼ xteRL ¼
eiα with the other couplings set to zero. In this case the
electron EDM in Eq. (15) is enhanced by mt=me and
provides the dominant contribution to paramagnetic sys-
tems. The induced electron-gluon operators provide neg-
ligible contributions. In this case, the renormalization of θ̄
is not excessive, as expected from the EFT arguments of
Ref. [18], and thus a de-dominated EDM pattern would not
necessarily point towards an IR solution of the strong CP
problem. A de-dominated scenario like this leads to the
green bands in Fig. 1. Clearly, sufficiently precise mea-
surements of two paramagnetic systems can separate these
scenarios. The current upper limit on ωHfFþ [107] is a few
times weaker than that of ωThO [106], but in general if a
nonzero signal is found in one system, then the other one
should be around the corner. No measurements of ωBaF
exist, but an experiment is in development [108].
With just paramagnetic systems it is not possible to

separate a pure-θ̄ scenario from the LQ scenario with
couplings to first-generation quarks. In both cases, the
paramagnetic observables are dominated by the CS inter-
actions, and the ratios are therefore almost identical.
However, in this case the neutron and diamagnetic
EDMs provide a way out. In a pure-θ̄ scenario such
EDMs are relatively large compared to paramagnetic
EDMs, whereas in the LQ scenario hadronic CP violation
is loop suppressed. We illustrate this in Fig. 2 where we
depict ωThO versus dn. The bands for the LQ and pure θ̄ are

FIG. 1. The left (right) panel shows the correlation between ωHfFþ (ωBaF) and ωThO in a pure-de scenario (green) and the LQ scenario
(red). The bands indicate the small uncertainty arising from hadronic and molecular matrix elements. The region between the vertical
dashed lines is allowed at 2σ level.
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very distinct. For instance, if a next-generation ThO
measurement finds a nonzero value ωThO ¼ 0.1 mrad=s,
then a pure θ̄ scenario is already excluded as this would
predict dn ≃ 3 × 10−25 e cm, which is well above the
existing limit dn ≤ 1.8 × 10−26 e cm [1], depicted by the
horizontal dashed line. For Hg similar statements hold but
here the hadronic and nuclear uncertainties make definite
statement more complicated.
In summary, the simple R2 leptoquark model illustrates

the EFTarguments of [18]. A pattern of EDMs indicative of
higher-dimensional CP-odd operators that mix quadrati-
cally with θ̄ is directly associated with large threshold
corrections to θ̄ at the EFT matching scale. The large
threshold corrections must be relaxed in the infrared. The
leptoquark model also provides an example where para-
magnetic EDMs are dominated by a dimension-six oper-
ator, the electron EDM, that does not indicate large
corrections to θ̄. However, such scenarios can be separated
through precise measurements of at least two paramag-
netic EDMs.

B. Case II: The MSSM

Since we have focused on a limiting case of the MSSM
where the only phase is in the gluino mass, the EDM
phenomenology is dominated by quark EDMs and chromo-
EDMs. This implies that paramagnetic systems are not
particularly relevant for the discussion and we can focus on
nucleon, nuclear, and diamagnetic systems. While we have
expressed our results in terms of several MSSM parame-
ters, in all ratios of EDMs the dependence on msoft and ϕ3

cancels and the only dependence is on the squark mass
splitting parametrized by Δ. This dependence is actually
mild for Δ < 1, where the functions FðΔÞ and GðΔÞ only
vary by about 35%, and the ratio of functions FðΔÞ=GðΔÞ
only varies by a factor of 2 for any Δ. We assume that
an Oð1Þ splitting among the squarks is a reasonably gen-
eral region of parameter space and we take Δ ¼ 1 for

concreteness. Before we discuss ratios of EDMs we briefly
mention the reach of present EDM experiments. The
current dHg limit results in msoft ≳ 20 TeV at ϕ3 ¼ π=2,
taking central values for the hadronic and nuclear matrix
elements. The experimental bound on dn leads to the
somewhat weaker limit msoft ≳ 5.4 TeV but has smaller
uncertainties.
The neutron and proton EDMs are dominated by the

quark chromo-EDMs while the quark EDMs provide
roughly 20% corrections. The ratio of the neutron- and
proton-induced chromo-EDM contributions depends on
the ratio

dpðd̃qÞ
dnðd̃qÞ

¼ c̃p
ð4Qdd̃d −Qud̃uÞ
ð−4Qdd̃u þQud̃dÞ

≃ −0.78 × ð1� 0.2Þ;

ð60Þ
where c̃p ¼ 1� 0.2 capture the uncertainty due to isospin
breaking. Unfortunately, for θ̄-dominated EDMs,

dpðθ̄Þ
dnðθ̄Þ

¼ −1 × ð1� 0.5Þ: ð61Þ

Thus these ratios overlap within uncertainties, implying
that measurements of both nucleon EDMs cannot separate
a pure θ̄ scenario from our MSSM model. This is clearly
illustrated in the top-left panel of Fig. 3, where also EDM
contributions are included, where it can be seen that the
gray and red bands overlap entirely.
Nuclear and diamagnetic systems are much more prom-

ising, as in these cases the contribution from the CP-odd
nuclear force can break the degeneracy. For instance, in the
deuteron EDM the contributions from dn þ dp are small in
both the MSSM and the pure-θ̄ scenario. However, the
contribution from CP-odd one-pion-exchange proportional
to ḡ1 is rather different in both models. ḡ1 is relatively
small for θ̄, since the θ̄ term is an isospin-conserving
interaction and the generation of ḡ1 is suppressed by the
small quark mass difference over the chiral-symmetry-
breaking scale Λχ ∼ 1 GeV. In the MSSM however, the
isospin-breaking combination d̃u − d̃d induces ḡ1 directly.
As such jdD=dnj≳Oð1Þ for the MSSM [54,109] whereas
jdD=dnj≲Oð1Þ for θ̄. This is reflected in the top-right
panel of Fig. 3 where, despite sizable hadronic uncertain-
ties, the gray and red bands do not overlap.
A deuteron EDM measurement would be ideal for our

goals as it is theoretically relatively clean. However, there
is no competitive measurement planned on short time-
scales, although plans exist for storage-ring experiments.
We therefore consider EDMs of diamagnetic atoms. We
begin with 225Ra, which is analogous to the deuteron EDM
as it is dominated by contributions from the isospin-
breaking CP-violating nuclear force proportional to ḡ1.
Unfortunately, unlike for the deuteron EDM, the nuclear

FIG. 2. Correlation between ωThO and dn in the LQ model (red)
and a pure-θ̄ scenario (gray). The dashed lines correspond to
experimental bounds.
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uncertainties are sizable. This is reflected in the bottom-left
panel of Fig. 3 where the red and gray bands are wider than
was the case for the deuteron. Still, they may be separable.
On the other hand, an upper bound on the 225Ra EDM has
already been set: dRa < 1.2 × 10−23 e cm, and a measure-
ment with sensitivity at the 10−28 e cm level is foreseen
[110]. If such an experiment sees a signal, the MSSM
scenario would predict a somewhat larger neutron EDM
than in the pure θ̄ scenario. Slight improvements of nuclear
matrix elements would reduce the width of the MSSM
bands and make the statements more definite.
Competitive measurements of dD and dRa are still in the

future, and the most stringent limit is that on jdHgj ≤
6.3 × 10−30 e cm [111]. Unfortunately, the nuclear uncer-
tainties are severe and make it hard to separate the MSSM
from the pure-θ̄ scenario using dHg. This is illustrated in the
bottom-right panel of Fig. 3 where the red and gray bands
overlap. Improved calculations of the nuclear matrix
elements would go along way in making the predictions
more robust. In any case, despite large uncertainties, the
pure-θ̄ scenarios can be excluded if measurements fall
outside the gray bands. Such a result would be sufficient to
make the point.

C. Case III: The P-symmetric minimal
left-right-symmetric model

In the MLRSM the dominant contribution to EDMs
arises at tree level from the CP-violating four-quark
operators in Eq. (37). While most literature focuses on
the neutron EDM [56,78,79], nuclear and diamagnetic
atoms are actually larger due to the large contribution to
ḡ1 and to lesser extent ḡ0 in Eq. (49). It was already pointed
out in Refs. [54,60] that this leads to enhanced nuclear
EDMs, e.g., jdDj ≫ jdnj, and that several measurements
can separate contributions from θ̄ and the four-quark
operators [54,112]. This can already be glimpsed from
the different sensitivities of dn and dHg to the left-right
symmetry-breaking scale. We set3 ξ sin α ≃mb=mt, and
using central values of the hadronic and nuclear matrix
elements obtain mWR

≳ 126ð18Þ TeV from dHg (dn).
We further illustrate this point in Fig. 4. The dp=dn ratio

is not well predicted in the MLRSM due to large uncer-
tainties from short-distance contributions not captured by

FIG. 3. Correlation between various EDMs and the neutron EDM for a pure-θ̄ scenario (gray) and the MSSM (red). The bands indicate
the uncertainty in the ratios arising from hadronic and nuclear matrix elements.

3We require ξ sin α ≤ mb=mt to account for the observed quark
masses [53].
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pion loops. In addition, the MLRSM and pure-θ̄ ratio bands
for dp=dn overlap within uncertainties.
The story is completely different for larger systems. The

four-quark operators induced in the MLRSM lead to a
sizable CP-odd nuclear force arising from one-pion-
exchange diagrams proportional to ḡ1. Both the hadronic
and nuclear matrix elements are well under control leading
to a ratio dD=dn ¼ Oð50Þ, which is very different from the
QCD θ̄ term that predicts much smaller values for the same
ratio. The same holds for the diamagnetic atom 225Ra, but in
this case the nuclear matrix elements are more uncertain,
leading to a broader band. Nevertheless, the ratio dRa=dn
are very distinct in the MLRSM with respect to the pure-θ̄
scenario. In principle, this would hold for dHg=dn as
well were it not for the large nuclear uncertainties. As a
result, the MLRSM and θ̄ bands overlap for their dHg=dn
predictions.
Finally, let us discuss how a UV solution to the strong

CP problem would work in the P-symmetric MLRSM. The
tree-level correction to θ̄ can be made small by picking a
sufficiently small value for the spontaneous phase α. In
essence this simply transfers the question of the origin of
the smallness of θ̄ in the SM, to that of the smallness of α.

Nevertheless, some authors have argue this should be
considered as a type of solution [113]. In such a UV
solution, the CP-odd part of the dimension-six operator in
Eq. (32) scales with α as well and is suppressed by v2=v2R
compared to the tree-level θ̄ term. As such, the low-energy
EDM phenomenology is dominated by θ̄ [56]. This is
consistent with our assertion that only the presence of
dimension-six contributions to EDMs arising from oper-
ators in Eq. (4) can be used to infer that strong CP is solved
by infrared relaxation.

V. CONCLUSIONS

The strong CP problem has been getting worse by about
an order of magnitude every decade for the last 60 years
[114]. The main experimental probes are the neutron and
199Hg EDMs, which establish the severity of the problem,
and searches for axion dark matter. In this work, building
on Ref. [18], we have attempted to strengthen the argument
that a diverse portfolio of hadronic EDM measurements
could provide valuable data on the mechanism that
addresses strong CP. The basic observation is that it is
unnatural to have both new, observably large sources of
hadronic CP violation, and an ultraviolet solution to strong

FIG. 4. Correlation between various EDMs and the neutron EDM for a pure-θ̄ scenario (gray) and the MLRSM (red). The bands
indicate the uncertainty in the ratios arising from hadronic and nuclear matrix elements.
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CP. If a pattern of hadronic EDMs is observed that is
inconsistent with a small value of θ̄ alone, infrared
relaxation by an axion becomes the most natural solution.
At the same time, if a Peccei-Quinn mechanism addresses
strong CP, there is no particular reason for BSM physics to
preserve CP to high accuracy.
We have surveyed a handful of BSM models to illustrate

this effective field theory argument in detail: when there
are large phases, there is a large threshold correction to θ̄
that requires infrared relaxation, and it is correlated with
distinctive patterns of hadronic, diamagnetic, and para-
magnetic EDMs. These observations motivate targets for
future EDM measurements of various systems. In particu-
lar, EDM measurements of light nuclei would be very
welcome, as the nuclear theory is under good control and
the EDMs are not suppressed by Schiff screening. In
addition, a rich experimental program is possible with
EDMs and magnetic quadrupole moments of radioactive
molecules [115] to further constrain hadronic CP violation.
To make the most of existing and future experiments,
hadronic and nuclear theory must be improved. Lattice
QCD calculations are underway that connect dimension-six

operators, such as the quark chromo-EDM, to nucleon
EDMs [116,117] but still have a long way to go. Improved
nuclear structure calculations of, for example, 199Hg and
225Ra EDMs would be very beneficial in connecting
observed patterns of EDMs to ultraviolet physics and the
nature of the solution to the strong CP problem.

ACKNOWLEDGMENTS

P. D. acknowledges support from the U.S. Department
of Energy under Grant No. DE-SC0015655. K. F. is
supported by the U.S. Department of Energy through the
Los Alamos National Laboratory and the LANL LDRD
Program. Los Alamos National Laboratory is operated by
Triad National Security, LLC, for the National Nuclear
Security Administration of U.S. Department of Energy
(Contract No. 89233218CNA000001). The work of B. L.
was performed in part at Aspen Center for Physics, which is
supported by National Science Foundation Grant No. PHY-
1607611. The work of B. L. was partially supported by a
grant from the Simons Foundation.

[1] C. Abel et al. (nEDM Collaboration), Phys. Rev. Lett. 124,
081803 (2020).

[2] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif,
Phys. Rev. C 103, 015202 (2021).

[3] J. R. Ellis and M. K. Gaillard, Nucl. Phys. B150, 141
(1979).

[4] A. E. Nelson, Phys. Lett. 136B, 387 (1984).
[5] S. M. Barr, Phys. Rev. Lett. 53, 329 (1984).
[6] L. Bento, G. C. Branco, and P. A. Parada, Phys. Lett. B

267, 95 (1991).
[7] R. N. Mohapatra and G. Senjanovic, Phys. Lett. 79B, 283

(1978).
[8] M. Beg and H.-S. Tsao, Phys. Rev. Lett. 41, 278 (1978).
[9] H. Georgi, Hadronic J. 1, 155 (1978).

[10] K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 1286
(1990).

[11] S. M. Barr, D. Chang, and G. Senjanovic, Phys. Rev. Lett.
67, 2765 (1991).

[12] M. Dine, R. G. Leigh, and A. Kagan, Phys. Rev. D 48,
2214 (1993).

[13] G. Hiller and M. Schmaltz, Phys. Lett. B 514, 263 (2001).
[14] M. Dine and P. Draper, J. High Energy Phys. 08 (2015)

132.
[15] A. Albaid, M. Dine, and P. Draper, J. High Energy Phys.

12 (2015) 046.
[16] P. Draper and D. McKeen, J. High Energy Phys. 04 (2016)

127.
[17] P. Draper, J. Kozaczuk, and J.-H. Yu, Phys. Rev. D 98,

015028 (2018).

[18] J. de Vries, P. Draper, K. Fuyuto, J. Kozaczuk, and D.
Sutherland, Phys. Rev. D 99, 015042 (2019),

[19] J. de Vries, H. Patel, and P. Draper, arXiv:2109.01630.
[20] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,

J. High Energy Phys. 10 (2010) 085.
[21] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791

(1977).
[22] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[23] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[24] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[25] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
[26] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.

Phys. B166, 493 (1980).
[27] M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B,

199 (1981).
[28] A. R. Zhitnitsky, Yad. Fiz. 31, 497 (1980) [Sov. J. Nucl.

Phys. 31, 260 (1980)].
[29] E. J. Chun and A. Lukas, Phys. Lett. B 297, 298 (1992).
[30] L. Randall, Phys. Lett. B 284, 77 (1992).
[31] H.-C. Cheng and D. E. Kaplan, arXiv:hep-ph/0103346.
[32] L. Di Luzio, E. Nardi, and L. Ubaldi, Phys. Rev. Lett. 119,

011801 (2017).
[33] H. Fukuda, M. Ibe, M. Suzuki, and T. T. Yanagida, Phys.

Lett. B 771, 327 (2017).
[34] B. Lillard and T. M. P. Tait, J. High Energy Phys. 11 (2017)

005.
[35] B. Lillard and T. M. P. Tait, J. High Energy Phys. 11 (2018)

199.

UNCOVERING AN AXION MECHANISM WITH THE EDM … PHYS. REV. D 104, 055039 (2021)

055039-15

https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevC.103.015202
https://doi.org/10.1016/0550-3213(79)90297-9
https://doi.org/10.1016/0550-3213(79)90297-9
https://doi.org/10.1016/0370-2693(84)92025-2
https://doi.org/10.1103/PhysRevLett.53.329
https://doi.org/10.1016/0370-2693(91)90530-4
https://doi.org/10.1016/0370-2693(91)90530-4
https://doi.org/10.1016/0370-2693(78)90243-5
https://doi.org/10.1016/0370-2693(78)90243-5
https://doi.org/10.1103/PhysRevLett.41.278
https://doi.org/10.1103/PhysRevD.41.1286
https://doi.org/10.1103/PhysRevD.41.1286
https://doi.org/10.1103/PhysRevLett.67.2765
https://doi.org/10.1103/PhysRevLett.67.2765
https://doi.org/10.1103/PhysRevD.48.2214
https://doi.org/10.1103/PhysRevD.48.2214
https://doi.org/10.1016/S0370-2693(01)00814-0
https://doi.org/10.1007/JHEP08(2015)132
https://doi.org/10.1007/JHEP08(2015)132
https://doi.org/10.1007/JHEP12(2015)046
https://doi.org/10.1007/JHEP12(2015)046
https://doi.org/10.1007/JHEP04(2016)127
https://doi.org/10.1007/JHEP04(2016)127
https://doi.org/10.1103/PhysRevD.98.015028
https://doi.org/10.1103/PhysRevD.98.015028
https://doi.org/10.1103/PhysRevD.99.015042
https://arXiv.org/abs/2109.01630
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(92)91266-C
https://doi.org/10.1016/0370-2693(92)91928-3
https://arXiv.org/abs/hep-ph/0103346
https://doi.org/10.1103/PhysRevLett.119.011801
https://doi.org/10.1103/PhysRevLett.119.011801
https://doi.org/10.1016/j.physletb.2017.05.071
https://doi.org/10.1016/j.physletb.2017.05.071
https://doi.org/10.1007/JHEP11(2017)005
https://doi.org/10.1007/JHEP11(2017)005
https://doi.org/10.1007/JHEP11(2018)199
https://doi.org/10.1007/JHEP11(2018)199


[36] G. Choi, M. Suzuki, and T. T. Yanagida, J. High Energy
Phys. 07 (2020) 048.

[37] M. Ardu, L. Di Luzio, G. Landini, A. Strumia, D. Teresi,
and J.-W. Wang, J. High Energy Phys. 11 (2020) 090.

[38] Y. Nakai and M. Suzuki, Phys. Lett. B 816, 136239 (2021).
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