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We derive the fixed-Λ and unimodular propagators using the path integral formalism as applied to the
Einstein-Cartan action. The simplicity of the action (which is linear in the lapse function) allows for an
exact integration starting from the lapse function and the enforcement of the Hamiltonian constraint,
leading to a product of Chern-Simons states if the connection is fixed at the endpoints. No saddle point
approximation is needed. Should the metric be fixed at the endpoints, then, depending on the contour
chosen for the connection, Hartle-Hawking or Vilenkin propagators are obtained. Thus, in this approach
one trades a choice of contour in the lapse function for one in the connection, where appropriate. The
unimodular propagators are also trivial to obtain via the path integral, and the previously derived
expressions are recovered.
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I. INTRODUCTION

Path integral quantization is currently the choice method
for obtaining a wave function of the Universe in quantum
cosmology. While boundary conditions of the Universe are
ultimately a matter of choice, the path integral is an ideal
setting for the discussion and implementation of these
boundary conditions as they naturally appear as limits of
integration. The path integral of the Einstein-Hilbert action in
theArnowitt-Deser-Misner (ADM) formalism is very closely
related to Dirac canonical quantization in which constraints
are operators which annihilate wave function eigenstates. In
the ADM formalism, the Einstein-Hilbert action contains
threemomentum constraints and theHamiltonian constraint.
Hartle andHawking observed that by taking the path integral
of the Einstein-Hilbert action containing Hamiltonian con-
straint, the wave function of the Universe Ψ obeys the
Wheeler-DeWitt (WDW) equation [1,2].

HΨ ¼ 0: ð1Þ

The three Hamiltonian constraints correspond to the wave
function being invariant under spatial diffeomorphisms.
If homogeneity and isotropy are assumed, then the shift
function Ni ¼ 0 and the only relevant constraint is the
Hamiltonian constraint. Halliwell rigorously showed that

the minisuperspace Friedmann-Robertson-Walker (FRW)
Einstein-Hilbert action can be made Becchi-Rouet-Stora-
Tyutin invariant and gauge fixed such that the lapse function
N can be chosen to be constant [3,4].
The purpose of this paper is to explore the relationship

between path integral and canonical quantization. We want
to show that recent results based on the canonical quan-
tization of the Einstein-Cartan action [5,6] can also be
derived by taking the path integral of the Einstein-Cartan
action for the FRW metric. In this formalism, the con-
nection is more fundamental than the metric [7] and
unimodular extensions [8,9] take center place.
In such theories a dual relation can be found between the

Hartle-Hawking wavefunction and the Chern-Simons state,
should the connection be real. Allowing for a negative
imaginary connection contour makes contact with the
Vilenkin wave function instead [10]. The unimodular
extension, rendering Λ constant on shell only, permits
superposing such waves into localized packets. These are
normalizable under an inner product suggested by the
unimodular theory, with unitarity preserved under evolu-
tion as ticked by a clock associated with the variable
conjugate to Λ.
The propagators for such theories have been worked out

in [11]. Whether the concept of propagator is useful in
discussing creation out of nothing in the context of this
quantum theory is a different matter. Regardless of that issue,
the path integral formulation should help to sharpen up the
derivation of these propagators and clarify the discussion.

II. PREVIOUS RESULTS

The starting point here is the Einstein-Cartan action
reduced to minisuperspace (MSS)

*j.magueijo@imperial.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 023526 (2023)

2470-0010=2023=107(2)=023526(8) 023526-1 Published by the American Physical Society

https://orcid.org/0000-0003-1408-3313
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.023526&domain=pdf&date_stamp=2023-01-26
https://doi.org/10.1103/PhysRevD.107.023526
https://doi.org/10.1103/PhysRevD.107.023526
https://doi.org/10.1103/PhysRevD.107.023526
https://doi.org/10.1103/PhysRevD.107.023526
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S0 ¼
3Vc

8πG

Z
dt

�
_ba2 − Na

�
−ðb2 þ kÞ þ a2

ϕ

��
; ð2Þ

where a is the expansion factor, b is the only MSS
connection variable (an off-shell version of the Hubble
parameter, since b ¼ _a on shell, if there is no torsion), k is
the normalized spatial curvature, N is the lapse function
and Vc ¼

R
d3x is the comoving volume of the region

under study (Vc ¼ 2π2 for a whole k ¼ 1 universe) and
ϕ ¼ 3=Λ is a useful parametrization for the cosmological
constant. Note that in this formulation the natural canonical
pair consists of b and a2, the MSS reduction of the
connection (gauge field) and the densitized inverse triad
(the electric field), respectively.
We then subject this theory to the unimodular extension [8]

in the Henneaux and Teitelboim formulation [9], where full
diffeomorphism invariance is preserved. To S0 one adds a
new term

S0 → S ¼ S0 −
3

8πG

Z
d4xϕ∂μTμ; ð3Þ

where Tμ is a density, so that the added term is diffeo-
morphism invariant without the need for a

ffiffiffiffiffiffi−gp
factor in the

volume element or for the connection in the covariant
derivative. Since the metric and connection do not appear
in the new term, the Einstein equations and other field
equations are unmodified. The only new equations of motion
are the on shell constancy forΛ (the defining characteristic of
unimodular theories [8,9]) and the fact that T0 is proportional
to a prime candidate for relational time; 4-volume or unim-
odular time [8,9,12,13].We stress that the prefactor in the new
term is arbitrary and chosen for later convenience, but it does
matter for the quantum theory. Likewise we could have
defined the alternative action,

S0 → S ¼ S0 þ
3

8πG

Z
d4x ð∂μϕÞTμ ð4Þ

equivalent to (3) up to boundary term

Sbound ¼ −
3

8πG

Z
∂M

dΣμ ϕTμ; ð5Þ

where dΣμ is the coordinate area density normal on the
boundary ∂M. This does not matter classically and for the
purpose of canonical quantization, but it does affect the path
integral formulation, as we shall see. As it happens, (3) is the
correct form of the action if we wish to use T to label the
starting and ending times for the propagators. Reduction
to MSS gives

S0 → S ¼ S0 þ
3Vc

8πG

Z
dtx _ϕT ð6Þ

with T ≡ T0. Note that on shell we have

_T ¼ N
a3

ϕ2
¼ N

Λ2

9
a3; ð7Þ

proportional to 4-volume or unimodular time [12,13].
The quantum mechanics of this theory was studied in [6]

in the connection representation and in [11] in the metric
representation. In the latter the propagators were worked
out directly. The general solutions are superpositions of
fixed-Λ solutions to the WDWequation, ψ s, augmented by
a time evolution factor

ψðq; TÞ ¼
Z

∞

−∞
dϕAðϕÞe−i

hϕTψ sðq;ϕÞ; ð8Þ

where q stands for one of the dual variables, b or a2, and
h ¼ l2P=ð3VcÞ with lP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8πGℏ
p

. For q ¼ b,

ψ sðb;ϕÞ ¼ ψCSðb;ϕÞ ¼ N b exp

�
i
h
ϕXðbÞ

�
; ð9Þ

i.e., the Chern-Simons-Kodama state [7,14–22], where

XðbÞ ¼ b3

3
þ kb ð10Þ

is the Chern-Simons functional reduced to MSS. For
q ¼ a2 one has for Λ > 0

ψ sða2;ϕÞ ¼ N aAið−zÞ ð11Þ

with

z ¼ −
�
ϕ

h

�
2=3

�
k −

a2

ϕ

�
; ð12Þ

i.e., the Hartle-Hawking wave function, or for Λ < 0

ψ sða2;ϕÞ ¼
N a

2
½Aið−zÞ þ iBið−zÞ�; ð13Þ

i.e., the Vilenkin counterpart. A central assumption here is
that b is real, so that these ψsða2;ϕÞ are the Fourier duals of
the Chern-Simons-Kodama state [10,11]. (The normaliza-
tion factors N defined in [11] will not be important here.
The apparent contradiction with [23] for Λ < 0 is currently
being investigated.)
If instead we allow for b to have a contour covering half

the negative imaginary line and the positive imaginary line,
then [10] we find the V wave function for Λ > 0, and the
Hartle-Hawking (HH) wave function for Λ < 0. The
unimodular wave packets for such a theory, however, have
not been studied, since the Fourier duality must then be
replaced by a Laplace transform, with technical compli-
cations [11].
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The reason why unimodular propagators can be found
directly is that the (time-independent) amplitude AðϕÞ can
be obtained by an inversion formula

AðϕÞ ¼
Z

dμðqÞ ei
hϕTψ⋆

s ðq;ϕÞψðq; TÞ; ð14Þ

with dμðbÞ ¼ dXðbÞ and dμða2Þ ¼ da2a2=ϕ. Hence we
can write (8) in the form

ψðq; TÞ ¼
Z

dμðq0Þhq; Tjq0; T 0iψðq0; T 0Þ ð15Þ

reading off the propagator as

hq; Tjq0; T 0i ¼
Z

dϕ e−
i
hϕΔThqjq0iϕ ð16Þ

related to the fixed-Λ propagator

hqjq0iϕ ¼ ψ sðq;ϕÞψ⋆
s ðq0;ϕÞ: ð17Þ

This is the central result we will attempt to reproduce using
the path-integral formalism. We can have b or a2 at both
endpoints, or mixed propagators.
We start with the fixed-Λ propagators with fixed con-

nections as endpoints.

III. THE CONNECTION FIXED-Λ
PROPAGATORS

We want to compute

Z0 ¼
Z

e
i
ℏS0 ð18Þ

with fixed b ¼ bf and b ¼ bi as endpoints. This is such a
simple system that the answer can be obtained in a variety of
ways. For the sake of diversity we present an approach that
has not been used in previous literature. The idea is to
integrate the unconstrained lapse function first, leading to a
deltaDirac in theHamiltonian constraint. In contrastwith [4]
this leads to: 1) using solutions to theHamiltonian constraint
for the rest of the integration, and 2) eschewing the need for
a saddle-point approximation. In analogy with [24] we will
be using Lorentzian path integrals, but will not need the
sophisticated machinery developed therein. In contrast with
all previous approaches we will assume that N is real and
covers thewhole real line. Freedom in the choice of contours
will come later, as we will see in Sec. IV.
An elegant derivation of the connection propagators

follows, with one caveat. Setting Ñ ¼ Na and H ¼
−ðb2 þ kÞ þ a2=ϕ, we get

hbfjbiiϕ ¼
Z

DbDa2DÑ exp

�
i
h

Z
dtð _ba2 − ÑHÞ

�

¼
Z

DbDa2 exp

�
i
h

Z
dt _ba2

�
δ½H�

∝
Z

Db exp

�
i
h

Z
dtϕ _bðb2 þ kÞ

�

¼
Z

Db exp
�
i
h

Z
bf

bi

dbϕðb2 þ kÞ
�

∝ ψCSðbf;ϕÞψ⋆
CSðbi;ϕÞ; ð19Þ

where in the last step we used

Z
tf

ti

dt _bðb2 þ kÞ ¼
Z

bf

bi

dbðb2 þ kÞ ¼ XðbfÞ − XðbiÞ

and the functional integration over a2 in the second
step includes integrations over a2f and a2i , so that the
Hamiltonian constraint is also imposed there.
The caveat is that the proportionality constant in the last

step is infinite. This is not surprising. Given the invariance
of the theory under redefinitions of time/lapse function, the
path integral has an infinite gauge volume multiplying our
answer. But this is not a problem and can be eliminated in at
least two ways.

A. Delayed gauge fixing

One possibility is to fully fix the gauge. But if we want to
implement the Hamiltonian constraint as in the calculation
leading to (19), we should write the gauge-fixing condition
as a functional integral over an auxiliary field B

δ½Ñ − Ñ0� ¼
Z

DBe
i
h

R
dt BðÑ−Ñ0Þ; ð20Þ

and then “delay” this gauge fixing by performing the
integration in B last. (Here we did the gauge fixing with
Ñ ¼ aN but this would have worked with any other version
of N.) Specifically,

hbfjbiiϕ ¼
Z

DBDbDa2 DÑ

× exp

�
i
h

Z
dt ð _ba2 − ÑðH − BÞÞ − BÑ0

�
:

The integration over Ñ now produces the functional Dirac
delta

δ½H − B� ¼ δ

�
−ðb2 þ kÞ þ a2

ϕ
− B

�
; ð21Þ

where before we had simply δ½H�. This is eaten up by the
functional integration in a2 to produce
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hbjb0iϕ ¼
Z

DBDb

× exp

�
i
h

Z
dt ð _bϕðb2 þ kÞ þ _bϕB − BÑ0Þ

�
:

ð22Þ

The first term in the exponent in (22) produces boundary
factors that are the right result, Eq. (17), just as in the
calculation (19). However, the proportionality factor in the
last step in (19) is now

Z
DBDb exp

�
i
h

Z
dtBð _bϕ − Ñ0Þ

�
¼

Z
Db δð _bϕ − Ñ0Þ

¼ 1

with _b ¼ Ñ0=ϕ ¼ const and so

bf − bi
tf − ti

¼ Ñ0

ϕ
ð23Þ

is enforced. This is just a statement of the Raychaudhuri
equation in this gauge,

_b ¼ Λ
3
aN ¼ Ñ0

ϕ
: ð24Þ

Hence we have

hbfjbiiϕ ∝ ψCSðbf;ϕÞψ⋆
CSðbi;ϕÞ; ð25Þ

as required, with the proportionality sign now hiding
no infinities.

B. Ratios of path integrals

The infinite prefactor multiplying the Chern-Simons
functional in (19) can also be dealt with by taking the
ratio of the path integral containing the Hamiltonian and the
path integral for the classical action given by

Zcl ¼
Z

DÑDbDa2 exp

�
i
h

Z
dt a2 _b

�
: ð26Þ

Using the fact that the classical equation of motion for b is
the Raychaudhuri equation, this can be substituted into the
classical action to yield

Zcl ¼
Z

DÑDbDa2 exp

�
i
h

Z
dt a2

Λ
3
aN

�
;

¼
Z

DÑDbDa2 exp

�
i
h

Z
dt a2

Λ
3
Ñ

�
;

¼
Z

DbDa2 δ

��
Λ
3
a2
��

;

¼
Z

Db: ð27Þ

Taking the ratio of the path integrals then gives us a product
of Chern-Simons functions for these boundary conditions,

Z0

Zcl
¼

R
DÑDbDa2 exp½ ih

R
dt ð _ba2 − ÑHÞ�R

DÑDbDa2 exp½ih
R
dt ð _ba2Þ� ;

¼
R
DbR
Db

ψCSðbf;ϕÞψ�
CSðbi;ϕÞ;

¼ ψCSðbf;ϕÞψ�
CSðbi;ϕÞ: ð28Þ

The Chern-Simons function product is a constant with
respect to the intermediate b and is therefore independent of
the path integral on the second line of (28). The divergence
is then canceled by the fact that the path integral for the
classical action yields the same integral.

IV. THE OTHER FIXED-Λ PROPAGATORS

The calculation is subtly different for propagators
involving the metric at either or both endpoints, since then
the action (2) no longer reproduces the equations of motion.
Recall that for any theory ruled by a phase-space action
principle [25],

S ¼
Z

dt ð _qp −Hðq; pÞÞ ð29Þ

the action only provides the equations of motion if the
variable which is dotted in the first term (the “q”) is kept
fixed at the endpoints. Otherwise, boundary counterterms
have to be added as appropriate. For example, if q is
allowed to vary at both endpoints we should use the
alternative action,

S → S − ½qp�fi : ð30Þ

In contrast, p does not need to be kept fixed. No boundary
terms are required, should it be allowed to vary at the
endpoints. This is completely general, and has counterparts
in action principle formulations of gravity.
This point was noted in [4] in the context of the Einstein-

Hilbert action, where the boundary counterterm is a MSS
versionof theGibbons-Hawking-Yorkboundary term[26,27]
(see also [28] for a more general discussion). If our starting
point is the Einstein-Cartan action (2), then b is the variable
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to be kept fixed [the one dotted in the first term of (2)], unless
boundary terms are added. But propagators are predicated on
the fact that if avariable is fixed at oneendpoint, then its dual is
implicitly fully unconstrained there. In order to obtain the
propagators fixing themetricat anendpoint,we thereforeneed
to add a corresponding counter-term to (2), since at that
endpoint b must necessarily be left unfixed.
In the Einstein-Cartan formulation, we only need an

integration by parts when varying with respect to b to
obtain the torsion-free condition,

δS0
δb

¼ 0 ⟹ _a ¼ Nb: ð31Þ

Such a variation generates a boundary term of the form,

δS0 ¼ ðvolume termÞ þ 3Vc

8πG
½a2δb�fi : ð32Þ

A boundary counterterm proportional to a2b should
therefore be added for each endpoint (start, finish or both)
where a2 is fixed and b is left unconstrained. Once again,
this counterterm is a MSS version of the general counter-
term for Einstein-Cartan theory, identical on shell to the
Gibbons-Hawking-York boundary term (see e.g., [29,30]).
The crucial point here is that in the Einstein-Cartan
formalism1 it is the connection that must be kept fixed if
we want to dispense with boundary counterterms.
For example, for computing ha2jb0i we should

replace (2) by

S0 → S0 −
3Vc

8πG
bfa2f: ð33Þ

The calculation in the last section still carries through but at
the end we are left with a simple (nonfunctional) integral
over bf of the form

ha2fjbiiϕ ∝
Z

dbf exp

�
−
ibfa2f
h

�
ψCSðbf;ϕÞψ⋆

CSðbi;ϕÞ;

where the exponential reflects the new term in (33). Hence
we end up with the integral transform of the Airy functions,
the contour in bf now deciding which one we get.
Assuming Λ > 0, and a real b contour [10], we have

ha2fjbiiϕ ∝ Aið−zfÞψ⋆
CSðbi;ϕÞ; ð34Þ

that is, the correct version of (17), with the other variations
obtained by a different choice of contour and sign of Λ.

This propagator between fixed initial b and final fixed a2 is
identical to the propagator previously derived in [4].
Likewise for all the other cases of propagators involving

a2. As a final example, consider ha2fja2i iϕ. The action
should be

S0 → S0 −
3Vc

8πG
½ba2�fi ; ð35Þ

so we end up with

ha2fja2i iϕ ∝
Z

dbf exp

�
−
ibfa2f
h

�
ψCSðbf;ϕÞ;

×
Z

dbi exp

�
ibia2i
h

�
ψ⋆
CSðbi;ϕÞ;

which for ϕ > 0 and real b leads to

ha2fja2i iϕ ∝ Aið−zfÞAið−ziÞ: ð36Þ

As explained in [11], if Λ < 0, then for a real b we must
replace the HH wave functions by their V counterpart. The
situation is reversed if we give b the contour ð−i∞; 0Þ ∪
ð0;∞Þ in the complex b plan, that is, the negative
imaginary line and the positive real line. Then, we get
the V wave function for Λ > 0 and the HH one for Λ > 0,
and this change must be made in all mixed propagators. For
example, we get

ha2fja2i iϕ ∝ ½Aið−zfÞ þ iBið−zfÞ�½Aið−ziÞ þ iBið−ziÞ�
ð37Þ

for the metric propagator if Λ < 0.
Thus, we have replaced a choice of integration contour in

N (as in [4,24,31]) by a choice of contour in the con-
nection b.

V. IMPLICATION FOR CREATION
FROM NOTHING

The fact that our calculations did not use the saddle-point
approximation has a simple implication for “creation from
nothing”. Setting z0 ≡ zða2 ¼ 0Þ ¼ −ðϕ=hÞ2=3k, this is
usually expressed by the amplitude

ha2 ¼ a2⋆ja2 ¼ 0iϕ ∝ Aið0ÞAið−z0Þ

∝ exp

�
−
2

3

ϕ

h
k3=2

�

¼ exp

�
−
6Vck3=2

l2PΛ

�
ð38Þ

for the HH case, and
1And its offshoots, such as the Ashtekar or Plebanski formal-

isms.
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ha2 ¼ a2⋆ja2 ¼ 0iϕ ∝ Aið−z0Þ þ iBið−z0Þ

∝ exp

�
2

3

ϕ

h
k3=2

�

¼ exp

�
6Vck3=2

l2PΛ

�
ð39Þ

for the V case, where the WKB approximation was used in
the second line of both calculations. We will not comment
on the implications of the exponent’s sign for inflationary
models (which are not the topic of this paper).
We want to note here that we could equally well have

identified the “nothing” from

−ðb2 þ kÞ þ a2

ϕ
¼ 0 ⟹ ða ¼ 0⟺ b ¼ �i

ffiffiffi
k

p
Þ; ð40Þ

resulting in b ¼ �i
ffiffiffi
k

p
. Neither of these b points lie on the

HH contour but b ¼ −i
ffiffiffi
k

p
is on the contour leading to the

V wave function. Hence in this case we could also have
represented the “creation from nothing” by the propagators

ha2 ¼ a2⋆jb ¼ −i
ffiffiffi
k

p
iϕ ∝ ψ⋆

CSðb ¼ −i
ffiffiffi
k

p
Þ

∝ exp

�
6Vck3=2

l2PΛ

�
ð41Þ

or

hb ¼ 0jb ¼ −i
ffiffiffi
k

p
iϕ ∝ ψ⋆

CSðb ¼ −i
ffiffiffi
k

p
Þ

∝ exp

�
6Vck3=2

l2PΛ

�
: ð42Þ

Choosing b ¼ 0 or a ¼ a⋆ as the nearest point of the
classical trajectory makes little difference. However, choos-
ing a ¼ 0 and b ¼ −i

ffiffiffi
k

p
cannot be exactly equivalent.

Indeed it only makes sense for the Vilenkin contour. Also
we have not used the saddle-point approximation in our
propagator derivation; yet it is only after using the WKB
approximation in (39) that the it becomes equivalent to (41).
The use of b ¼ −i

ffiffiffi
k

p
as representative of the “nothing”

has been advocated at least since [32].

VI. THE UNIMODULAR PATH INTEGRAL
AND ITS PROPAGATORS

Given the simple form of the unimodular extension (6),
its propagators (16) can be recovered from the path integral
by writing

Z ¼
Z

DϕDT exp

�
i
h

Z
dt _ϕT

�
Z0: ð43Þ

Ambiguities in the classical theory, which are not relevant
in the canonical quantization, stand out here: foremost the

issue of the boundary terms and which of the two
formulations, Eqs. (3) or (4), to take.
It turns out that (4) is the correct choice, if we want to use

relational time T to index the start and end points of the
propagators, and so leave ϕ totally unconstrained. If we
take (4), then ϕ is the dotted variable, so by fixing relational
time at (both) endpoints, we have add to the action a
boundary term, with the full unimodular action reading

S ¼ S0 þ
3Vc

8πG

Z
dtx _ϕT −

3Vc

8πG
½ϕT�fi ð44Þ

and this will generate the necessary boundary terms in (43).
The integral is easy to do. Functional integration over T

leads to δ½ _ϕ�. The functional integral in ϕ therefore requires
that ϕ be constant along the intermediate trajectories, its
(constant) value left undefined. The final result is therefore
a (non-functional) integration over the same ϕ at both
endpoints, which, taking into account the boundary terms
in (44) is

Z ¼
Z

dϕ exp

�
−
i
h
ϕðTf − TiÞ

�
Z0 ð45Þ

thereby reproducing (16).
As in [11], more explicit forms of the propagators can

then be found. Assuming that the a2 and N path integrals
have been evaluated in Z0 to yield the product of initial and
final Chern-Simons functions, the unimodular propagator
becomes

Z ¼
Z

dϕ exp

�
−
i
h
ϕðTf − Xf − Ti þ XiÞ

�

¼ δðXf − Tf − Xi þ TiÞ ¼ δðXf
ret − Xi

retÞ ð46Þ

with Xretðb; TÞ≡ XðbÞ − T. This defines bret ¼ bðXretÞ in
terms of which we can write mixed propagators (associated
with the other Z0 as computed in Sec. IV) in the alternative
forms

hbTja2T 0i ¼ e
i
hbreta

2

ffiffiffiffiffiffiffiffi
2πh

p ðb2ret þ kÞ ; ð47Þ

ha2Tja20T 0i ¼
Z

db
2πh

e−
i
hðba2−breta20Þ

b2ret þ k
; ð48Þ

with the latter simplifying to

ha20ja200i ¼ e
−jΔa2 j ffiffikp

h

2
ffiffiffi
k

p
h

ð49Þ

in the limit of equal times.
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VII. CONCLUSIONS

The core result of this paper is that one can eliminate the
metric (or densitized inverse triad, a2) in the path integral
by integrating first over the unconstrained lapse function to
impose the Hamiltonian constraint, which can then be used
to write the metric as a function of the connection. The
Einstein-Cartan action thus becomes a pure boundary term
in the connection, identical with the Chern-Simons func-
tional, so that the path integral with fixed connection at
both endpoints is just the product of Chern-Simons-
Kodama wave functions at endpoints and a redundant
infinite integration over the intermediate connections
(which we regularized).2

If one or both endpoints have fixed metric instead of
connection, then we are left with an integration over the
connection at that point and a path integral factor (arising
from a boundary term in the action), which amounts to a
Fourier/Laplace transform of the Chern-Simons-Kodama
state. This converts the corresponding Chern-Simons-
Kodama factor in the propagator into an appropriate
Airy function, depending on the contour of the connection.
The procedure thus yields Hartle-Hawking or Vilenkin
propagators depending on the choice of contour for the
connection (which has replaced the choice of contour for
the lapse function). Therefore, finding the propagators in
connection space is much more practical, since the saddle-
point approximation and steepest descent methods are
required to find metric representation propagators. These
calculations can be trivially extended to unimodular theory.
Naturally, part of the reason for our successes is that the

fixed-Λ theory is very simple; it has zero degrees of
freedom. But this is not true for the unimodular extension,
which in minisuperspace has one degree of freedom
(two more variables, the same number of constraints).
Unimodular theory is remarkable in that this happens
without changing the number of local degrees of freedom.
This is because locally we have a gauge symmetry (see [9])
and so an extra first-class constraint, so that the two new
variables do not represent a new local degree of freedom.
The homogeneous “zero mode” of Λ and of unimodular
time are physical, but locally we still only have the two
degrees of freedom of the standard graviton. Some of the
techniques in this paper can also be applied to more

complicated systems, including cosmologies with dust and
radiation fluids subject to the “unimodular trick” [5,6]. This is
described in [34].
An important direction for future work following from

our paper is the study of its implications for the stability of
tensor mode perturbations around the homogeneous and
isotropic background (as opposed to the scalar modes
investigated in [35]). We have in mind in particular the
results of [24,31]. Given that these results were derived
within the path integral metric formalism, it would be
interesting to investigate the issue from the point of view of
the connection duals investigated here. One must wonder if
the instability identified in [24,31] is related to similar
issues plaguing some, but not all versions of the Chern-
Simons-Kodama state [15,17,22,36–38]. In general one
finds unphysical states, with negative norms and/or ener-
gies, if the reality conditions are not properly taken into
account. The Vilenkin state requires the connection to stray
off the real line [10], so the two instabilities may well be
connected. It is also inevitable to wonder whether the
picture on instabilities would be radically different within
the unimodular extension. One must recall that, strictly
speaking, no monochromatic wave function is physical and
that this affects discussions of normalizability.
In closing, we stress that in this paper we have remained

agnostic regarding the probability interpretation of the
wave function. That is, we have used the propagators as
a tool for evaluating the wave function, decoupling the
matter from their probability interpretation. This is the
attitude in [11], Sec. VII, as well as, one imagines, in [35]
(where presumably a Klein-Gordon current is to be used to
interpret the wave function, rather than taking the square, as
naively implied by the propagators). Obviously, the prob-
ability interpretation is very important, and this is addressed
elsewhere (see Ref. [6], Sec. V. D, and Ref. [11], Secs. III
and V). The latter are applicable to the Hartle-Hawking
wave function, but not to the Vilenkin tunneling wave
function (a matter currently under investigation); see
also [39] for an important alternative view of unitarity
and the correspondence principle. Whichever probability
interpretation one takes, the technical aspects of our paper
stand valid.
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