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Abstract The main focus of this paper is to discuss the solu-
tions of Einstein’s Field Equations (EFEs) for compact spher-
ical objects study. To supply exact solution of the EFEs, we
have considered the distribution of anisotropic matter gov-
erned by a new version of Chaplygin fluid equation of state
(EoS). To determine different constants, we have represented
the outer space-time by the Schwarzschild metric. Using the
observed values of the mass for the various strange spherical
object candidates, we have expanded anisotropic emphasize
at the surface to forecast accurate radius estimates. More-
over, we implement various analysis to examine the physi-
cal acceptability and stability of our suggested stellar model
viz., the energy conditions, cracking method, adiabatic index,
etc. Graphical survey exhibits that the obtained stellar sys-
tem fulfills the physical and mathematical prerequisites of
the strange astrophysical object candidates Cyg X-2, Vela
X-1, 4U 1636-536, 4U 1608-52, PSR J1903+327 to exam-
ine the various physical parameters and their effects on the
anisotropic stellar model. The investigation reveals that com-
plicated geometries arise from the interior matter distribution
obeys a new version of Chaplygin fluid EoS and they are
physically pertinent in the investigation of discovered com-
pact structures.

1 Introduction

General relativity (GR) has upgraded our understanding of
the Universe. However, when managing with portraying the
physical wonders at high energy phase or exceptionally short
distances, the issues and defections of this theory will perhaps
become the most important factor, particularly in the request
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for the Planck scales where gravitational effects as well as
quantum effects are significant.

Due to the nowadays acknowledged existence of accel-
erating expansion of the Universe portrayed by dark energy
(DE) through the strong negative pressure (for a review see
[1–14] and references therein), the investigation of spheri-
cally symmetric solutions of the EFEs [15,16] in presence of
DE is of great importance. This investigation has previously
been addressed for example in [17–32].

One of the most straightforward systems for DE is the
Chaplygin fluid [33–39]. The system depends on an ideal
fluid fulfilling the EoS p = −A/ρ where p is the pres-
sure, ρ is the energy density and A is a positive constant.
In this way, other proposed models which are also plausi-
ble for dynamical investigations, for instance, phantom [40],
quintessence [41], K-essence [42], quintom [43–47], holo-
graphic dark energy [48,49].

The Chaplygin fluid model is well-consistent with var-
ious classes of observational tests such as supernovae data
[50], gravitational lensing [51,52], gamma ray bursts [53] and
cosmic microwave background radiation [54]. As with other
competing candidates to explain the overwhelming energy
density of the present Universe, Chaplygin fluid model is
naturally constrained through cosmological observables. So
the motivation to choose Chaplygin fluid EoS depends on the
observational data according to which the EoS parameter for
DE can be less than −1. In this respect, to obtain predictable
results with observational data, the Chaplygin fluid EoS was
replaced by a modified Chaplygin fluid EoS [55], or gener-
alized Chaplygin fluid EoS [56–61]. On the other hand, the
generalized Chaplygin fluid cosmology is also well-useful
from holographic point of view [62,63]. There are still other
expansions such as the modified cosmic Chaplygin fluid [64]
and the generalized cosmic Chaplygin fluid [65].
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Recently researchers are using Chaplygin EoS with great
interest since it describes the accelerating phase of the present
Universe. The Chaplygin EoS is a special form of polytropic
EoS, which is used to model the compact stellar systems.
On the other hand, there are several construct stellar models
have done for compact celestial bodies with Chaplygin EoS.
In this connection, Bertolami and Páramos [66] have studied
general features of a spherically symmetric object described
through the generalized Chaplygin fluid EoS. Using the asso-
ciated Lane–Emden equation, they highlighted that general-
ized Chaplygin dark star should exist in a framework uni-
fying dark energy and dark matter. Furthermore, they have
also argued that a Chaplygin dark star may arise from a den-
sity fluctuation in the context of the generalized Chaplygin
fluid model of unification of dark energy and dark matter.
Mubasher et al. [67] constructed a stationary, spherically
symmetric and spatially inhomogeneous wormhole space-
time supported by a modified Chaplygin fluid. Whereas
Rahaman and co-workers [68] have described anisotropic
charged fluids with a nonlinear Chaplygin EoS and were able
to find solutions using an algebraic method without solving
any differential equations. Similar types of solutions have
also been studied to generate and analyze physically viable
models of compact astrophysical objects extended in differ-
ent analogy in presence of the Chaplygin fluid [21–25].

The study of the relativistic astrophysical configuration
started with the disclosure in 1916 by Karl Schwarzschild of
a universal vacuum outside EFEs solution [69]. He addition-
ally gave the main internal astrophysical solution [15], which
should be matched to the external solution. In this regard, the
gravitational collapse of spherical objects produces cosmic
compact objects with very high inside densities like black
holes, and neutron stars which are the almost well-known
finished result in the evolution of spherical objects.

One of the most fundamental assignments, when all is said
in GR, is the physical modeling of a compact stellar spherical
object collapsing under its own gravity. Subsequently, the
revelation of pulsars and clarification of their features by
supposing neutron stars rotates, the theoretical investigation
of high dense stars has been achieved using both analytical
and numerical approaches and the parameters of compact
cosmic systems have been turned out by general relativistic
processing.

The eventual fate of the compact stellar systems (the result
of several stellar procedures, including the merger of bina-
ries and supernova explosions) is chosen by the inward mass
distribution of the spherical object. The features of compact
spherical objects are emphatically influenced by the expected
depiction of matter in their insides.

For this purpose, Alcock and co-workers [70] and Haensel
and his collaborators [71] examined the comportment and
the physical highlights of diverse compact spherical systems
and introduced a general frame for compact stellar structures

which are not made out of neutron matter, yet where, speci-
fied the states of exceptionally great density in their insides,
there could instead be stage progress from nuclear to quark
matter. The extraordinary states winning in the inside of com-
pact stellar spherical objects appear to be anyway behind the
extent of the straightforwardly arranged earthbound research
facilities. So that the theoretical depiction of compact spheri-
cal objects matter is right now one of the exceedingly testing
problems of particle physics and nuclear.

Notwithstanding considerable study, the matter nature at
the extraordinary densities in the center of compact stellar
spherical object stays unsure. Several scenarios ranging from
hadronic and nuclear matter to exotic states implying Bose-
Einstein condensation of kaons or pions, to bulk quark matter
and quark matter in beads, have been suggested.

Ongoing tests in the most recent decades on relativistic
nuclear impacts at the Brookhaven RHIC, and LHC in CERN,
test hot intense matter revealing insight into the wonders of
hot plasma shaped by intense gluons and quarks [72,73].
Over the possibilities outcomes of obtaining high-density
nuclear matter in earthbound research centers, FAIR in Ger-
many, FRIB in USA, J-Parc in Japan and RAON in Korea
sooner rather than later, the possible discoveries of gravita-
tional waves from binary neutron star black holes (or binary
neutron stars) are accepted to guarantee tests of the ultra-high
density inside of compact spherical objects.

This shall unlock another window for studying compact
stellar spherical systems, and allow us to better understand
the uncertainties associated features of ultra-high-densities
nuclear matter. Uncertainties on ultra-high-density features
result in uncertainties about the most extreme conceivable
mass of a compact spherical object. Now, a few of the notable
features of astrophysical systems are their radii and masses.
The infinitesimal distribution of matter in the spherical body
is an fundamental element in determining the connection
between radius and mass.

We presently make a few remarks identifying with the
physical highlights of local anisotropy. The local anisotropy
has been considered by several theorists especially in the
work by Herrera and Santos [74] and references therein.
Some recent works of the phenomenon of anisotropy are
included in the study of Kileba Matondo and co-workres
[75] who have recovered observational parameters of astro-
nomical objects, for instance, SAX J1808.4-3658 and PSR
J1614-2230.

At the last phase of astrophysical evolution, the ordinary
baryonic matter is profoundly squeezed by gravity in the cen-
ter of heavy spherical objects throughout supernova occur-
rences. In like kind of compact spherical objects, the inside
pressure keep is anisotropic in the ultra-high-density mat-
ter in light of the fact that the radial pressure keeps not
be matched by the transverse pressure. The source of this
anisotropic pressure keep emerge due to the presence of type-
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IIIA superfluid [76,77] or by the existence of a strong astro-
physical core, electromagnetic field [78–80], rotation, phase
transitions, pion condensation [81], etc.

As a result of these effects, the EoS of the astrophysical
matter turns out to be basically anisotropic in an ultra-high-
density circumstance. The main endeavors to contemplate
pressure anisotropy in self-gravitating systems have been
made by Jeans [82]. Additionally, considerable work has
been done on anisotropic relativistic structures beginning
from the successful thought of Lemaitre [83]. Bowers and
Liang [84] studied anisotropic compact stellar bodies in Ein-
steinian gravity. Subsequently, Herrera and Santos [85] gave
a detailed discussion of local anisotropy in self-gravitating
systems. Heintzmann and Hillebrandt [86] introduced a basic
study on the characteristic of a relativistic anisotropic neu-
tron sphere system at high densities by methods for a few
straightforward suppositions and have indicated that for a
self-assertive huge anisotropy there is no constraining mass
for neutron spheres, anyway the most extreme mass of a neu-
tron sphere still lies past 3 − 4 M�.

The idea of cracking was presented in [74] which is
straight-identified with the presence of anisotropy. Cracking
is basic to describe the stability of the matter distribution near
to equilibrium. In addition, a significant observational factor,
the anisotropy is examined in detail by Mak and Harko [87]
and they have demonstrated that for a dust-loaded Universe
the cosmological development consistently finishes inside
an anisotropic stage, however for the high-density matter–
loaded Universes, anisotropy can occur in normal compact
spheres as well as in hypothetical items like boson spheres
and DE sphere [88,89]. Notwithstanding that, several authors
have additionally acquired solutions of the EFEs in various
methodologies [90–120].

In this paper, we supply a framework for modeling com-
pact spherical objects in which the interior matter distribu-
tion obeys a new version of Chaplygin fluid EoS of the form
pr = Hρα − Kρ−β . The matter distribution is anisotropic.
It is already conceivable to solve the EFEs. An exhaustive
and detailed investigation manifest that the system is reg-
ular, well-defined and fulfills the criteria for physical fea-
sibility and provide closed-form solutions which satisfacto-
rily describe compact strange astrophysical object candidates
like Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR
J1903+327.

The remainder of this paper is organized as follows: In
Sect. 2, we have presented the spherical symmetric metric
and EFEs for anisotropic matter distribution. The new solu-
tion for the anisotropic strange compact spherical systems by
taking the ansatz of the gravitational potential Z(x) and radial
pressure has been presented in Sect. 3. In Sect. 4, we have
determined arbitrary constants by using specific conditions
for the anisotropic solution. We present all the physical condi-
tions viz., positivity of the energy density and radial pressure

at the center, monotonic decrease of the energy density and
the radial pressure in term of the radial coordinate r , the con-
tinuity of the extrinsic curvature through the corresponding
hyper-surface, the nature of anisotropic force, the positiv-
ity of the trace of the energy tensor, ρ − pr − 2pt , energy
conditions, stability of anisotropic compact sphere via adi-
abatic index, cracking method and Tolman–Oppenheimer–
Volkoff equation, for well-behaved anisotropic astrophysical
models in Sect. 5. Some other physical characteristics of the
anisotropic system such as gravitational mass, compactness
parameter and gravitational red-shift are examined in Sect. 6.
Concluding remarks close this paper.

2 Spherically symmetric space-time

We will examine a model describing an anisotropic fluid con-
figuration with static spherical symmetry obeying a new ver-
sion of modified Chaplygin EoS. The interior of a spherical
symmetric static space-time in Schwarzschild coordinates
xa = (t, r, ϑ, ϕ) is represented by the following line ele-
ment:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2 (
dϑ2 + sin2 ϑdϕ2) ,

(1)

where ν and λ are the gravitational potentials which are the
functions of the radial coordinate, r only. The Einstein field
equation is,

8πTi j = Gi j . (2)

HereGi j is the Einstein’s tensor with the accompanying func-
tions,

Ri j − 1

2
Rgi j = Gi j , (3)

where Ri j is the Ricci tensor, R is the Ricci scalar and gi j
is the metric tensor. Ti j is the energy-stress tensor of the
underlying fluid distribution.

Let’s suppose that the matter involved in the distribution is
anisotropic in kind. By employing the overall function, so we
obtain the function for energy-stress tensor in the following
form:

T j
i = ρη jηi + prχiχ

j + pt
(
η jηi − χiχ

j − g j
i

)
, (4)

with η jηi = χiχ
j = 1 , χi is the unit space-like vector

and η j is the fluid four-velocity of the relaxation body and
consequently η jχi = 0 . The expression (4) provides the
components of the energy-stress tensor of an anisotropic fluid
at any point in terms of the density ρ , the radial pressure pr
and the transverse pressure pt . With the simple shape of line
element, the energy-stress tensor T j

i takes the form:
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T j
i = diag (ρ,−pr , − pt ,−pt ) , (5)

and

T j
i = 0 i f i �= j. (6)

Taking G = c = 1 , where G is the gravitational constant
and c is the speed of light. Using (5), the system of EFEs for
the line element can be written as

ρ = 1

8π

{
1 − e−λ

r2 + e−λ

r

dλ

dr

}
, (7)

pr = 1

8π

{
e−λ − 1

r2 + e−λ

r

dν

dr

}
, (8)

pt = e−λ

8π

{
1

2

d2ν

dr2 + 1

4

(
dν

dr

)2
}

−e−λ

8π

{
1

4

dν

dr

dλ

dr
+ 1

2r

(
dν

dr
− dλ

dr

)}
. (9)

Now the gravitational mass contained in the spherical object
of radius r is given by,

m (r) = 4π

∫ r

0
ρ (ε) ε2dε, (10)

where ε is an integration variable. We now introduce the
transformation was used for the first time by Durgapal and
Bannerji [122]

x = r2, Z (x) = e−2λ(r), y2 (x) = e2ν(r). (11)

In terms of these new variables expressed in (11), the line
element (1) can be written in the following form

ds2 = −y (x) dt2 + 1

4x Z (x)
dx2 + x

(
dϑ2 + sin2 ϑdϕ2) .

(12)

The system of EFEs (7)–(8) can be written as

ρ = 1

8π

{
1 − Z

x
− 2

dZ

dx

}
, (13)

pr = 1

8π

{
4Z

(
1

y

dy

dx

)
+ Z − 1

x

}
, (14)

pt = 1

8π

{
4x Z

d2y

dx2 +
(

4Z + 2x
dZ

dx

) (
1

y

dy

dx

)
+ dZ

dx

}
.

(15)

The gravitational mass expression (10) becomes

m (x) = 2π

∫ x

0

√
ερ (ε) dε, (16)

in terms of the new variable x expressed in (11).
In order to close the system of EFEs (13)–(14), we assume

that the interior matter distribution obeys a new version of
Chaplygin fluid EoS as follow,

pr = Hρα − Kρ−β wi th 0 ≤ β ≤ 1 (17)

which reduces to modified Chaplygin fluid EoS for α = 1.
This modified Chaplygin fluid EoS was used by Mubasher et
al. [67], Rahaman et al [68], Benaoum [121] to model com-
pact stellar structures within the context of general relativity.
The new version of modified Chaplygin fluid EoS expressed
in (17) looks less economical than pure Chaplygin, due to
this huge number of free parameters, it is more flexible from
the point of view of the comparison with observational data.
Then it is possible to write the EFEs (13)–(14) within the
simplest form

ρ = 1

8π

{
1 − Z

x
− 2

dZ

dx

}
, (18)

pr = 1

8π

{
4Z

(
1

y

dy

dx

)
+ Z − 1

x

}
, (19)

pt = pr + , (20)

 = 1

8π

{
4x Z

d2y

dx2 + dZ

dx

(
1 + 2x

(
1

y

dy

dx

))
+ 1 − Z

x

}

(21)

Using Eqs. (17), (18) and (18) we get

1

y

dy

dx
= 1

4Z

{

H

(
1

8π

)α−1 (
1 − Z

x
− 2

dZ

dx

)α
}

− 1

4Z

{
K

(
1

8π

)−β (
1 − Z

x
− 2

dZ

dx

)−β

− 1 − Z

x

}

(22)

where the quantity  = pt − pr is the measure of anisotropy
in our model. To examine the physical characteristics, the
solution should be given explicitly. Several choices can be
made for the gravitational potential Z (x), but the choices
need to be physically conceivable to model a achievable com-
pact spherical object. In the next section, we will consider
an easy and physically reasonable form for the gravitational
potential Z (x), provides us with a simple to solve the EFEs
in order to obtain the model of compact spherical object.

3 New solution for anisotropic strange compact
spherical object

As we can see that the Einstein’s system of equations (18)–
(19) depends on the gravitational potential Z (x). For this pur-
pose, we assume ansatz of the gravitational potential Z (x)
of the form

Z (x) = 1

(1 + ax)
, (23)

where a is a real constant. Here Z (x) = 1 at x → 0, which
shows that the gravitational potential we chose in expression
(23) is regular, positive and finite at center and well-behaved
in the stellar interior. This gravitational potential expressed
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in (23) satisfies all the above requirements which leads to the
main physical availability of solution.

Now, in order to integrate the Eq. (22), we use the function
of the gravitational potential (23). In this way, from Eqs. (18)–
(22) we get

1

y

dy

dx
= 1

4
H

(
1

8π

)α−1 {
aα (3 + ax)α (1 + ax)1−2α

}

−1

4
K (8π)β

{
a−β (3 + ax)−β (1 + ax)3β

}

+1

4
a. (24)

Integrating this equation we obtain

ln (y) = 1/4(ax + 22−3αa(1+α)Hπ(1−α)x2(1 + ax/3)−α

×(3 + ax)αF1 (2, 2α,−α; 3;−ax,−ax/3)

+(a(α−1)H(8π)(1−α)(1 + ax)(−2α)(3 + ax)(1+α)

×(1 + 1/2(−3 − ax))(2α)

×2F1 (2α, 1 + α, 2 + α; 1/2(3 + ax)))/(1 + α)

−(a(−1−β)kπβ(1 + ax)(2 + 2ax)(3β)

×(1 + 1/4(2 + 2ax))β(2 + 1/2(2 + 2ax))−β

×2F1 (β, 1 + 3β, 2 + 3β; 1/4(−2 − 2ax)))

/(1 + 3β)) + C1 (25)

where F1 (a, b1, b2; c; x, y), and 2F1 (a, b, c; z) are both
hyper-geometric functions and C1 is the integration con-
stant, which will be determined from the boundary condition.
Subsequently, the Einstein’s system of equations composed
of matter density, radial pressure and transverse pressure is
obtained as follows

ρ = 1

8π

(
3a + a2x

)
(1 + ax)−2 , (26)

pr = Hρα − Kρ−β, (27)

pt =  + Hρα − Kρ−β, (28)

and using Eqs. (20) and (23) we get the anisotropic parameter

 = 1

8π

{
4x

(1 + ax)

d2y

dx2 − a

(1 + ax)2

(
1 + 2x

(
1

y

dy

dx

))}

+ 1

8π

{
a

1 + ax

}
(29)

where y is given by the expression (25) mentioned above.
The anisotropic parameter is attractive in nature if  < 0
and repulsive if  > 0 .

4 Matching conditions for anisotropic solution

In this section, we match our inner space-time to the Schwarz-
schild outer solution at the boundary r = ra , where ra is the
radius of the spherical object and it is evident that ra > 2M ,

M is the total gravitational mass of the spherical object. The
outer space-time is provided by the line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2
(
dϑ2 + sin2 ϑdϕ2

)
. (30)

The correspondence between the internal line element (1)
and the external line element (30) at the boundary r = ra
imposes the prerequisites

e2ν(ra) =
(

1 − 2M

ra

)
, (31)

e2λ(ra) =
(

1 − 2M

ra

)−1

=
(

1 + ar2
a

)−1
. (32)

The condition (31) imposes the following limitation on
the integration constant C1 as

C1 = 1

2
ln

(
1 − 2M

ra

)
− 1/4(ax + 22−3αa(1+α)Hπ(1−α)x2

×(1 + ax/3)−α(3 + ax)αF1 (2, 2α, −α; 3;−ax, −ax/3)

+(a(α−1)H(8π)(1−α)(1 + ax)(−2α)(3 + ax)(1+α)

×(1 + 1/2(−3 − ax))(2α)

×2F1 (2α, 1 + α, 2 + α; 1/2(3 + ax)))/(1 + α)

−(a(−1−β)kπβ(1 + ax)(2 + 2ax)(3β)

×(1 + 1/4(2 + 2ax))β(2 + 1/2(2 + 2ax))−β

×2F1 (β, 1 + 3β, 2 + 3β; 1/4(−2 − 2ax)))/(1 + 3β)),

(33)

which imposes a restriction on the parameters H , K , a, α and
β, which can be solved in the case that we specify the radius
of the compact stellar spherical body. By choosing some rea-
sonable values to these parameters, we obtain the central den-
sity of the compact stars between 1.7199 × 1015 g/cm3 and
1.8160×1015 g/cm3 as shown in Table 2. From these results,
the pressure anisotropy is chosen motivated by the fact that
the central density is beyond the nuclear density (∼ 1015

g/cm3). Whereas, relaxing the stringent condition pr = pt
to allow local anisotropies  = pr − pt in the stellar medium
constitutes a more realistic situation from the astrophysical
point of view. In this respect Ruderman [123], Canuto [124–
126], and Canuto et al. [127–130] investigations revealed
that, if the density of matter overcomes the nuclear density,
this problem is anisotropic in nature and should be treated in
a relativistic way. In this direction, Bowers and Liang [84]
presented one of the first studies based on anisotropic mat-
ter distributions. Furthermore, the existence of anisotropy in
the matter distribution allows adding important benefits in
the description of the system, highlighting three important
point: Firstly, the presence of an extra gradient, repulsive in
nature when  > 0 (otherwise is attractive). This fact is
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Table 1 Constant parameters calculated for radii and mass for some strange star candidates

Compact star ObservedMass PredictedRadius a α β H K
Models (M/M�) R (km) (×10−3 km−2) (×10−4)

Cyg X-2 (Rawls et al. [131]) 1.710 9.68 10.650 0.85 0.01 0.145 1.5

4U 1636-536 (Kaaret et al. [133]) 2.020 9.59 10.850 0.85 0.01 0.145 1.5

Vela X-1(Rawls et al. [131]) 1.770 9.56 10.941 0.85 0.01 0.145 1.5

4U 1608-52 (Güver et al.) [132] 1.740 9.52 11.033 0.85 0.01 0.145 1.5

PSR J1903+327 (Freire et al. [134]) 1.667 9.43 11.245 0.85 0.01 0.145 1.5

relevant since the presence of a repulsive anisotropy gradi-
ent offset the gravitational attraction avoiding a gravitational
collapse. Secondly, the possibility to obtain more compact
objects, and thirdly, the stability of the system is enhanced.

To determine the radial dependence of the physical quan-
tities of our stellar system, which includes energy den-
sity, transverse pressure, radial pressure and the some other
physical features of the anisotropic stellar model. We have
employed the data values can be seen from Table (1), which
could be very near the observational data of five compact
strange astrophysical objects: two X-ray binaries, namely
Cyg X-2 and Vela X-1 performed by Rawls et al. [131], two
low-mass-X-ray binaries, namely, 4U 1608-52 and 4U 1636-
536 performed by Güver et al. [132]; Kaaret et al. [133] and
one binary millisecond pulsars, namely PSR J1903+327 per-
formed by Freire et al. [134], by showing the anisotropic
effects presented by taking into account a spherically sym-
metric inside space-time metric in the Einstein’s general rel-
ativity framework.

5 Physical analysis

We are now in a position to examine the physical strengths
of the anisotropic stellar system presented in the previous
sections. In order to represent a achievable compact spherical
object, our anisotropic stellar system must meet the following
physical prerequisites:

1. Positivity of the energy density and radial pressure at the
center In the specific model, since ρ (0) = 3a

8π
, the

matter density ρ is regular and positive at the center. We

also have pr (0) = H
( 3a

8π

)α −K
( 3a

8π

)−β
. To ensure that

the positiveness of radial pressure pr at the origin we must

have K
H <

( 3a
8π

)α+β
. The behavior of energy density and

radial pressure are depicted in Figs. 1 and 2, respectively.
From these figures, it is evident that our specific system of
a strange compact spherical object satisfies this condition.

2. Monotonic decrease of the energy density and the radial
and pressure against the radial coordinate r
Since the gradient of energy density and radial pressure

are strictly negative for all r ∈]0, R[ , the energy density ρ

and radial pressure pr are monotonous decreasing func-
tions from the origin to surface of the compact spherical

object. The profiles of the gradient of energy density
(
dρ
dr

)

and radial pressure
(
dpr
dr

)
are outlined in Figs. 3 and 4,

for specific choice of parameters.
3. The continuity of the extrinsic curvature through the cor-

responding hyper-surface, K−
i j = K+

i j Continuity of the
extrinsic curvature through the matching hyper-surface,
at the boundary of the compact stellar spherical system
r = R yields the condition

(pr )r=R = 0, (34)

which gives

R = 1

4
√

π
( K

H

) 1
2(α+β)

⎧
⎨

⎩
a2 − 16πa

(
K

H

) 1
α+β

×
⎧
⎨

⎩

(

16πa

(
K

H

) 1
α+β − a2

)2

+ 32π

(
K

H

) 1
α+β

×
(

3a + 8π

(
K

H

) 1
α+β

)⎫
⎬

⎭

1/2
⎫
⎪⎬

⎪⎭

1/2

, (35)

which is finite for suitable choice of variables H , K , a, α
and β.

4. The nature of anisotropic force The behavior of the
anisotropic parameter  = pt − pr against the radial
coordinate, r is exhibit in Fig. 5. Indeed, this result shows
that the anisotropic force is repulsive in type and at the ori-
gin of the compact strange spherical object the anisotropic
parameter vanishes, which is expected.

5. The positivity of the trace of the energy tensor, ρ −
pr − 2pt For a compact stellar spherical structure of
anisotropic fluid, the trace of the energy tensor ought be
positive, as the condition suggested by Bondi [135]. To
verify this condition for our specific system, we plot the
trace of the energy tensor ρ − pr − 2pt as a function of
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Fig. 1 Behaviour of the matter density ρ against the radial coordinate
r of our stellar model for strange astrophysical stars Cyg X-2, 4U 1636-
536, Vela X-1, 4U 1608-52 and PSR J1903+327 for the parameters
given in Table 1
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Fig. 2 Behaviour of the radial pressure pr against the radial coordinate
r of our stellar model for strange astrophysical stars Cyg X-2, 4U 1636-
536, Vela X-1, 4U 1608-52 and PSR J1903+327 for the parameters
given in Table 1

radial coordinate r which is shown graphically in Fig. 6.
So from this figure, it is evident that our stellar model
satisfies the condition suggested by Bondi [135].

6. Stability of anisotropic compact sphere via adiabatic
index As specified by Heintzmann and Hillebrandt [86],
an anisotropic compact strange star model is stable if the
adiabatic index �, is strictly greater than 4/3 everywhere
within the compact strange star where the relativistic adi-
abatic index � is given by

� =
{(

H
(

3a + a2r2
)β+α +

(
8π

(
1 + ar2

)2
)α−1

×
(

3a + a2r2
)β+1 − K

(
8π

(
1 + ar2

)2
)α+β )
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Fig. 3 Behaviour of the gradient of energy density
(
dρ
dr

)
against the

radial coordinate r of our stellar model for strange astrophysical stars
Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for
the parameters given in Table 1
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Fig. 4 Behaviour of the gradient of radial pressure
(
dpr
dr

)
against the

radial coordinate r of our stellar model for strange astrophysical stars
Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for
the parameters given Table 1

×
(
H

(
3a + a2r2

)α+β − K

(
8π

(
1 + ar2

)2
)α+β )−1

}

×
⎧
⎨

⎩
αH

(
3a + a2r2

8π
(
1 + ar2

)2

)2β+α−1

+βK

(
3a + a2r2

8π
(
1 + ar2

)2

)β−1
⎫
⎬

⎭
. (36)

We plot the variation of the relativistic adiabatic index, �,
in Fig. 7. From this figure, we can see that the relativistic
adiabatic index, �, is strictly greater than 4/3 everywhere
inside the anisotropic strange star, which implies accord-
ing to Heintzmann and Hillebrandt [86] that our specific
anisotropic compact strange star model is well-stable.
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Fig. 5 Behaviour of the anisotropic parameter ( = pt − pr ) against
the radial coordinate r of our stellar model for strange astrophysical stars
Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for
the parameters given in Table 1
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Fig. 6 Behaviour of the trace of the energy tensor (ρ − pr − 2pt )
against the radial coordinate r of our stellar model for strange astro-
physical stars Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR
J1903+327 for the parameters given in Table 1

7. Stability of anisotropic compact sphere via the cracking
method Our proposed specific model of an anisotropic
compact strange spherical object will be physically avail-
able if the square of radial ( v2

sr = dpr
dρ ) and transverse

( v2
st = dpt

dρ ) speeds of sound must fulfill the inequali-

ties 0 ≤ v2
sr ≤ 1 and 0 ≤ v2

st ≤ 1 all over inside the
anisotropic compact strange spherical object [136,137],
which is known as a causality condition.
Due to the complexity of the function of transverse pres-
sure pt , we illustrate the above causality condition using
a graphical representation. From Fig. 8 we can obviously
see that the tangential and radial velocities of the sound
are always less than 1 and thus fulfill the causality con-
dition : the velocity of sound is less than the velocity of
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Fig. 7 Behaviour of the index adiabatic (�) against the radial coordi-
nate r of our stellar model for strange astrophysical stars Cyg X-2, 4U
1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for the parame-
ters given in Table 1
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Fig. 8 Behaviour of the square of radial and transverse speeds of sound
against the radial coordinate r of our stellar model for strange astro-
physical stars Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR
J1903+327 for the parameters given in Table 1

light everywhere inside the specific compact stellar object.
Moreover, according to the inequality, v2

sr − v2
st < 1,

proposed by Andréasson [138], which involves that the
difference between radial and tangential velocity must be
less than 1. For this purpose, Fig. 8 shows that our specific
model is satisfied with this condition everywhere within
the stellar configuration.

8. Energy conditions We will check if our particular model
of the anisotropic strange compact sphere meets all the
requirements of the energy conditions. It is well-defined
that for a physically agreeable system, the following
energy conditions must be respected everywhere within
the compact anisotropic fluid spherical object:
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(i) Null Energy Condition (NEC) :
ρ ≥ 0, (37)

(ii) Weak Energy Condition (WEC) :
ρ + pr ≥ 0, ρ + pt ≥ 0, (38)

(iii) Strong Energy Condition (SEC) :
ρ + pr + 2pt ≥ 0. (39)

Figure 10 shows that our specific anisotropic compact
strange spherical object developed here validated the
availability of the energy conditions characterized by
the inequalities (37)–(39) which are fulfilled everywhere
within the anisotropic compact strange spherical object.

9. Stable equilibrium condition via Tolman–Oppenheimer–
Volkoff equation The Tolman–Oppenheimer–Volkoff
(TOV) equation represents the inner configuration of the
anisotropic compact sphere which is a link between two
physical quantities, the energy density and the pressure
radial. We use the TOV equation, we want to determine if
our current system is in a state of stable equilibrium under
under the three different forces, namely the anisotropic
Fa , hydrostatic Fh and gravitational Fg forces. The gen-
eralized TOV equation with the help of the Tolman–
Whittaker formula can be composed as follows [15,16]:

−MG

r2 (ρ + pr ) exp

(
λ − ν

2

)
− dpr

dr
+ 2

r
(pt − pr ) = 0,

(40)

where MG = 1
2r

2 exp
(

ν−λ
2

) dν
dr is the effective gravita-

tional mass inside an anisotropic fluid sphere of radius r .
Therefore, this last Eq. (40) involves that the sum of the
three various forces mentioned above is zero :

Fa + Fh + Fg = 0, (41)

where the explicit expressions of these three different
forces are written as

Fa = 2

r
(pt − pr ) , (42)

Fh = −dpr
dr

, (43)

Fg = − 1

2
(ρ + pr )

dν

dr
. (44)

To simplify these Eqs. (42)–(43) mentioned above, we
have traced the profiles of Fa , Fh and Fg which are shown
in Fig. 11. This figure displays that our suggested stellar
system is in static equilibrium, which is feasible under the
three mentioned forces.
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Fig. 9 Behaviour of the difference between the square of radial and
transverse speeds of sound against the radial coordinate r of our stellar
model for strange astrophysical stars Cyg X-2, 4U 1636-536, Vela X-1,
4U 1608-52 and PSR J1903+327 for the parameters given in Table 1
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Fig. 10 Behaviour of the energy conditions (ρ), (ρ + pr ), (ρ + pt ),
(ρ + pr + 2pt ) against the radial coordinate r of our stellar model
for strange astrophysical stars Cyg X-2, 4U 1636-536, Vela X-1, 4U
1608-52 and PSR J1903+327 for the parameters given in Table 1

6 Gravitational mass, compactness parameter and
gravitational red-shift

The gravitational mass of the strange star can be examined
by the following formula:

m (r) = 4π

∫ r

0
ρ (ε) ε2dε = a

2

(
r3

1 + ar2

)
. (45)

We plot the behavior of the mass function m (r) in Fig. 12.
From this figure, it is evident that the gravitational mass is
monotonically increasing with the radial coordinate r and
positive within the stellar system, as well as the regularity at
the center of the spherical object, is verified.
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Fig. 11 Behaviour of the three different forces ( Fa , Fh and Fg ) against
the radial coordinate r of our stellar model for strange astrophysical stars
Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for
the parameters given in Table 1

Cyg X 2

4U 1636 536

Vela X 1

4U 1608 52

PSR J1903 327

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

G
ra
v
it
a
ti
o
n
a
l
m
a
ss

Fig. 12 Behaviour of the gravitational mass against the radial coordi-
nate r of our stellar model for strange astrophysical stars Cyg X-2, 4U
1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for the parame-
ters given in Table 1

It is well known that the mass-to-radius ratio recognized
as the compactness parameter, for any physically strange star
model must be satisfied to the maximum allowed as pre-
dicted by Buchdahl [139], which has shown that for a (3+1)-
dimensional fluid spherical object M

R < 4
9 ≈ 0.4444 . For the

above gravitational mass formula, the compactness param-
eter of the strange spherical object for the proposed stellar
model can be written as

u (r) = m (r)

r
= a

2

(
r2

1 + ar2

)
. (46)

Consequently, the gravitational red-shift of the surface
corresponding to the mentioned compactness parameter u (r)
can be obtained as
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Fig. 13 Behaviour of the compactness parameter ( u (r) ) against the
radial coordinate r of our stellar model for strange astrophysical stars
Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for
the parameters given in Table 1
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Fig. 14 Behaviour of the gravitational red-shift ( zs ) against the radial
coordinate r of our stellar model for strange astrophysical stars Cyg
X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR J1903+327 for the
parameters given in Table 1

zs = 1 −√
1 − 2u (r)√

1 − 2u (r)
=

√
1 + ar2 − 1. (47)

The behavior of the compactness parameter and the gravi-
tational red-shift are illustrated in Figs. 13 and 14. From these
two figures, we can see that the u (r) and zs are monotonic
increasing functions respectively with respect to the radial
coordinate r . To see the maximum acceptable compactness
parameter, we have obtained the value of M

R = 0.2886 from
our stellar model, which fulfills the Buchdahl condition. This
involves that the mass-to-radius ratio of any spherical object
cannot be arbitrarily massive. Moreover, the surface red-shift
attains the maximum at the boundary for our stellar model
with corresponding value zs = 0.5380 .
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Table 2 Some physical parameters calculated for radii and mass for some strange star candidates

Compact star ρ (0) ρ (R) pr (0) Mass-radius ratio Surface redshift

Models

( ×1015

g/cm3

) ( ×1015

g/cm3

) ( ×1035

dyne/cm3

)
( MR ) (Zs )

Cyg X-2 (Rawls et al. [131]) 1.7199 0.5733 4.5522 0.2819 0.5143

4U 1636-536 (Kaaret et al. [133]) 1.7522 0.5840 4.6593 0.2842 0.5223

Vela X-1(Rawls et al. [131]) 1.7669 0.5889 4.7079 0.2852 0.5260

4U 1608-52 (Güver et al.) [132] 1.7818 0.5939 4.7570 0.2863 0.5296

PSR J1903+327 (Freire et al. [134]) 1.8160 0.6053 4.8699 0.2886 0.5380

According to observational tests, the fluid pressure of the
highly compact celestial bodies like low and high mass x-
ray binaries: Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-
52, X-ray buster: 4U 1820-30, millisecond pulsars: PSR
J1903+327, SAXJ1804.4-3658, etc. becomes anisotropy in
nature which means the pressure can be rotten into two com-
ponents such that one is radial pressure (pr ) and the other is
transverse pressure (pt ). Now,  is known as the anisotropic
parameter. The anisotropy may arise for the different cases
such as the existence of solid core, in presence of type P
superfluid, phase transition, rotation, magnetic field, mix-
ture of two fluids, and existence of external field. Generally,
strange quark matter contains u, d, and s quarks. There are
two ways to classify the formation of strange matter [141].
One way is the transformation of the quark hadron phase in
the early universe and the other way is the reformation of neu-
tron stars to strange matter at ultrahigh densities. A strange
star is composed of the strange matter. Again the strange
star can be classified into two types: Type I strange star with
M/R > 0.3 and Type II strange star with 0.2 < M/R < 0.3.
Depending on mass, radius, and energy density, the strange
star is distinguished from the neutron star . From our stellar
model, we have shown that the numerical values of the mass-
to-radius ratio have been obtained for the compact strange
stars as 0.2819 < M/R < 0.2886 (see Table 2). In this
regard, it is worth mentioning from the mass-to-radius ratio
that our stellar model is compatible with the Type II strange
star (0.2 < M/R < 0.3). Hence it can be concluded that our
obtained Chaplygin star behaves as a strange star.

7 Concluding remarks

In this paper, we provide a general system for modeling
anisotropic relativistic compact stellar objects in which the
interior matter distribution obeys a new version of Chaplygin
fluid EoS of the form pr = Hρα − Kρ−β .

The field equations are solved by using an easy and phys-
ically conceivable form for the gravitational potential Z(x),
and under reasonable limit condition the interior line element

(1) has been incorporated easily at the boundary of spherical
objects (r = R), to an outside Schwarzschild line element
whose mass is equivalent to m(r = R) = M [140]. As a
result, the obtained set of solutions is related to the physical
properties of some compact stellar spherical bodies, which
incorporate strange spherical objects. It is seen that the model
is suitable in conjunction with several physical highlights,
which are very interesting and worthwhile as suggested by
other researchers [90–120] during the system of general the-
ory of relativity. We have found a set of physically viable and
free from singularity solutions of the new generalized class
representing various attributes of the anisotropic relativistic
model. Moreover, we have considered the physical behav-
ior of five compact strange astrophysical objects: two X-ray
binaries, namely Cyg X-2 and Vela X-1 studied by Rawls et
al. [131], two low mass-X-ray binaries, namely, 4U 1608-52
and 4U 1636-536 performed by Güver et al. [132]; Kaaret
et al. [133] and one binary millisecond pulsars, namely PSR
J1903 327 performed by Freire et al. [134], by showing the
anisotropic effects presented by taking into account a spher-
ically symmetric inside space-time metric in the arena of
general theory of relativity.

As an exhaustive discussion we might want to advance
here is that various confirmation schemes of the model have
been made and we would want to highlight some of the
eminent characteristics of the current systems which are
described below.

It has been seen that the behavior of physical amounts
of the present astrophysical system, viz, the energy den-
sity ρ, the radial pr and tangential pt pressures respectively,
against the radial coordinate r for the strange astrophysical
stars Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and PSR
J1903+327, are totally limited and positive amounts inside
the astrophysical structure, which is described in Figs. 1
and 2. So from these figures, we confirm that our astro-
physical model is totally free from any physical and geomet-
rical singularity. In addition, the behaviors of the gradient

of energy density
(
dρ
dr

)
and radial pressure

(
dpr
dr

)
are pre-

sented in Figs. 3 and 4, for specific choice of parameters. It
shows that the energy density (ρ) and radial pressure (pr ) are
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monotonous decreasing functions from the core to surface of
the compact stellar object. Figure 5 featured the behavior of
anisotropy against the radial coordinate r . From this figure,
we observe that the anisotropy of the stellar model increases
as the radius increases which is taking a minimum value at
the core and maximum at the boundary (surface). Conse-
quentely, we have checked the positivity of the trace of the
energy tensor, (ρ − pr − 2pt ) of our specific model versus
the radial coordinate r showing graphically in Fig. 6, which
confirm that our model, fulfills the condition suggested by
Bondi [135].

To examine the stability of the framework we have ana-
lyzed both the Herrera cracking condition and the causality
condition. Figure 7 exhibits that for our stellar model the rel-
ativistic adiabatic index � is greater than the critical limit
4/3 and are also increasing monotonically outward, which
affirms that our stellar model is totally steady according to the
suggestion of Heintzmann and Hillebrandt [86]. Once more,
Figs. 8 and 9 displays that for all the cases the inequalities
0 ≤ v2

sr ≤ 1, 0 ≤ v2
st ≤ 1 and v2

sr − v2
st < 1, proposed

by Herrera [136], Abreu et al. [137] and Andréasson [138]
are validate at the same time and hence affirms stability of
the astrophysical model in terms of the velocity of sound
of the stellar system. The energy conditions viz., The NEC,
WEC, and SEC are represented in Fig. 10 which includes
that as our stellar model is compatible with all the inequali-
ties at the same time, it affirms that the accomplished solu-
tion is physically reasonable. We note from Fig. 11 that the
gravitational force

(
Fg

)
in the structure corresponds to the

joint effect of hydrostatic (Fh) and anisotropic (Fa) force
and hence the solution fulfills the generalized TOV equation
(40) which is in static equilibrium under the three mentioned
forces. We have highlighted in Figs. 12, 13 and 14, respec-
tively, the profiles of gravitational mass, compactness param-
eter and gravitational red-shift versus the radial coordinate
r . From our astrophysical system, we find that M/R < 4/9
for the five specific strange spherical object candidates cho-
sen i.e. Cyg X-2, 4U 1636-536, Vela X-1, 4U 1608-52 and
PSR J1903+327. In this regard, Buchdahl’s condition [139]
holds useful for our astrophysical model. Moreover, since
the radius r tends to zero, we find the gravitational mass
m(r) also tends to zero, which shows that the gravitational
mass is regular in the core of the compact stellar spherical
configuration for all the values of the parameter chosen in
Table 1. The effect over the gravitational red-shift Zs for
different strange spherical object candidates due to the exis-
tence of anisotropies in the framework is exhibited their val-
ues in Table 2. The acquired values got here are in agree-
ment with the normal values for compact stellar spherical
structures including uncharged anisotropic matter distribu-
tion. Furthermore, Fig. 13 displays the pattern of the gravi-
tational red-shift interior the spherical object. As should be
obvious it can not be subjective huge due to the value of

mass-to-radius ratio (M/R) of the spherical systems. At long
last, in Table 1 we have showed the possible estimates of the
constant parameters a, α, β, H and K determined for radii
and mass for some strange spherical structure candidates.
Whereas, Table 2 shows some physical parameters such as
the central energy density, surface energy density, and cen-
tral pressure radial determined for radii and mass for some
strange spherical structure candidates are within the range
of the data and in total concurrence, as predicted by several
authors [87–120,122].

As a final comment, it very well may be inferred that an
analytic solution to the EFEs has been acquired, which meets
all the necessities to be a physically and mathematically per-
missible solution describing to a static, spherically symmet-
ric space-time represented by an anisotropic stress-energy
tensor.
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21. N. Bilić, G.B. Tupper, R.D. Viollier, J. Cosmol. Astropart. Phys.

02, 013 (2006)
22. A. Errehymy, M. Daoud, Mod. Phys. Lett. A 34(04), 1950030

(2019)
23. E.F. Eiroa, C. Simeone, Phys. Rev. D 76, 024021 (2007)
24. S. Chakraborty, T. Bandyopadhyay, Modified Chaplygin

traversable wormholes, arXiv:0707.1183 [gr-qc]
25. P.K.F. Kuhfittig, Theoretical construction of wormholes supported

by Chaplygin gas, arXiv:0802.3656 [gr-qc]
26. S.V. Sushkov, Phys. Rev. D 71, 043520 (2005)
27. A. Errehymy, M. Daoud, Found. Phys. 1–32(2019)
28. K.A. Bronnikov, J.C. Fabris, Phys. Rev. Lett. 96, 251101 (2006)
29. T. Multamaki, I. Vilja, Phys. Rev. D 76, 064021 (2007)
30. K.A. Bronnikov, A.A. Starobinsky, JETP Lett. 85, 1 (2007)
31. R.B. Mann, J.J. Oh, Phys. Rev. D 74, 124016 (2006)
32. A. Errehymy, M. Daoud, Mod. Phys. Lett. A 34(39), 1950325

(2019)
33. AYu. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511,

265 (2001)
34. J.C. Fabris, S.V.B. Goncalves, P.E. de Souza, Gen. Relativ. Gravit.

34, 53 (2002)
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