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1 Introduction and summary

Conformal field theory (CFT) has applications in a wide range of fields in physics, which
includes condensed matter physics, statistical mechanics, and string theory. The confor-
mal bootstrap program was initiated in [2, 3]. When applied to the special case of two
space-time dimensions, thanks to the Virasoro symmetry, the minimal models can be solved
exactly [4]. Since the seminal work of [5], the modern numerical bootstrap has become one
of the most powerful tools to study higher dimensional (D>2) conformal field theories. In
certain cases, the numerical bootstrap results are the world’s most precise predictions of
the scaling exponents [6–10]. See [11] for a recent review including many other success-
ful applications.

Supersymmetry is a symmetry between bosons and fermions [12–14]. Even though
it was first proposed to solve the long-standing hierarchy problem in particle physics,
it has also recently attracted a lot of attention in condensed matter physics due to the
possibility of experimental realization [1, 15–21]. Typically in these models supersymmetry
is realized as an emergent symmetry at the second-order phase transition point. At such
a critical point, the symmetry is described by the so-called superconformal field theory
(SCFT), where the usual conformal group is enlarged into the superconformal group. In
this work, we develop the numerical bootstrap technique to study the 2 + 1 dimensional
N = 1 superconformal field theories. This allows us to determine the critical exponents of
various models.

In this work, we study the minimal superconformal field theory in 2+1 dimensions.
We show another example where numerical bootstrap allows us to determine the scaling
exponents to unprecedented precision. The Lagragian of the model is

L = 1
2(∂µσ)2 + ψ̄γµ∂

µψ + λ1
2 σψ̄ψ + λ2

2
8 σ

4. (1.1)

Here ψ is a Majorana spinor in three dimensions. This model is sometimes referred as the
N=1 Ising model. The theory is invariant under time reversal symmetry (T-parity) under
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which σ → −σ and ψ → γ0ψ. When λ1 = λ2, the model hasN = 1 supersymmetry (SUSY)
and the Lagrangian can be rewritten into a Wess-Zumino model with superpotential

W = λΣ3. (1.2)

Here
Σ = σ + θ̄ψ + 1

2 θ̄θε (1.3)

is a real superfield. When λ1 6= λ2, SUSY is broken. However, it is expected that the theory
would still flow to the supersymmetric fixed point, and SUSY is realized as an emergent
symmetry. It was argued in [1] that this fixed point might be realized as a quantum critical
point at the boundary of a 3 + 1D topological superconductor. Emergent supersymmetry
means that the critical point can be reached by fine-tuning a single physical parameter,
which is crucial for experimental realization. This condition is equivalent to saying that
the spectrum of the SCFT contains only one relevant scalar operator that is even under
time-reversal parity (T-parity). The operator corresponds to the mass term m2σ2 that can
be added to the Lagragian (1.1), we need to tune its coefficicent to zero to reach the critical
point. We find that when bootstrapping the N=1 Ising model, the physical condition of
emergent supersymmetry plays an important role.

To bootstrap this theory, one needs to consider four point correctors 〈σσσσ〉, 〈εεεε〉
and 〈σσεε〉, with ε being the superconformal descendant of σ (ε is a conformal primary).
The operator product expansion (OPE) coefficients in σ× σ, σ× ε and ε× ε are related to
each other, and the relation is fixed by superysmmetry. This is a generalization of the “long
multiplet bootstrap” idea [22] used in two-dimensional superconformal bootstrap. Notice
that unlike SCFTs with a higher number of supersymmetry, N=1 SCFTs have no R sym-
metry and the scaling dimension of Φ can not be determined exactly by analytic methods.
Imposing the emergent supersymmetry condition, we can determine ∆σ to high precision,
providing both an upper and lower bound for its value. Our numerical bootstrap work
can be viewed as a numerical “proof” of the emergent supersymmetry of the model (1.1).
Furthermore, if we assume that there are only two relevant operators that are T-parity odd
in the spectrum, the allow region for (∆σ,∆σ′) becomes an isolated island. This helps us
determine the critical exponents ησ, ηψ, 1/ν and ω all together. We also calculate the value
of CT , which appears in the two-point function for stress-energy tensor.

The model (1.1) belongs to a family of models called the Gross-Neveu models, whose
Lagragian is given by a four fermion interaction [23], L = ∑N

i=1 ψ̄iγµ∂
µψi + g(∑N

i=1 ψ̄iψi)2.
In D>2, the four fermion interaction is non-renormalizable. The action

L = 1
2(∂µσ)2 +

N∑
i=1

ψ̄iγµ∂
µψi + λ1

2 σ
N∑
i=1

ψ̄iψi + λ2
2

8 σ
4, (1.4)

is the UV completion of the Gross-Neveu models in 2<D<4 [24, 25], which are sometimes
referred as the Gross-Neveu-Yukawa (GNY) model or the chiral Ising model. Here N

counts the number of Majorana fermions. To determine the scaling exponents of the GNY
model have been the has been a longtime goal of many theoretical work, either based on
ε-expansion [26–31], large N method [32–35]. The N = 4 and N = 8 models are of special

– 2 –



J
H
E
P
0
6
(
2
0
2
1
)
1
5
4

interest since they could also be studied using Monte Carlo simulation [27, 36–39]. Also,
the N = 8 GNY model is known to describe the quantum critical point of the semimetal
to charge density wave order transition on graphene [40]. It is a nice surprise that we can
use the modern numerical bootstrap method to determine the critical exponents of N = 1
special case to high precision. This also allows us to perform a two-sided Padé re-sum
the large N critical exponents of (1.4) calculated in [33–35], and get the results for the
N = 4 and N = 8 GNY models. The result is summarised in table 1 and compared with
other methods.

2 Bootstrap the minimal N = 1 SCFT

Conformal multiplets in N=1 superconformal field theories group themselves into super-
multiplets. There are in total four types of multiplets, which we denote as Bl+, Bl−, F

j
+

and F j− as in [41]. “B/F” tells us whether the super-primary field is bosonic or fermionic.
A generic super-multiplet contains four conformal primaries, suppose the superconformal
primary has spin l and scaling dimension ∆0, there are two level-1 (super)descendant with
∆ = ∆0 + 1/2 and spin l± 1. There is also a level-2 descendant with ∆ = ∆0 + 1 and spin
l. The subscritp +/− denote the parity of a bosonic field within the super-multiplet. The
super-multiplet B(l)

+/− contain the following component operators (with l=integer)

[l]+/−∆
Q−→ [l ± 1/2]∆+1/2

Q−→ [l]−/+∆+1, (2.1)

and the super-multiplet F (j)
+/− contains the following component operators (with j=half

integer)

[j]∆
Q−→

[j − 1/2]+/−∆+1/2

[j + 1/2]−/+∆+1/2

Q−→ [j + 1]∆+1. (2.2)

Here we denote a conformal primary field with spin l, scaling dimension ∆ and even parity
to be [l]+∆. In our convention, the super-field Σ, define in (1.3), is a B(l=0)

− multiplet.
The four point function of the superfield Σ,

〈Σ(x1, θ1)Σ(x2, θ2)Σ(x3, θ3)Σ(x4, θ4)〉, (2.3)

when expanded in the Grassmann variable θ, contains the four point functions involving
not only the superconformal σ, but also super-descendants ψ and ε. For simplicity, in this
work, we consider only bosonic fields σ and ε. In [6], the critical exponents of the three-
dimensional Ising model is determined to high precision by studying the set of crossing
equation involving the set of four point functions {〈σσσσ〉, 〈σσεε〉, 〈εεεε〉}. The crossing
equations turn out to be

∑
O+

(
λσσO λεεO

)
~V+,∆,`

(
λσσO
λεεO

)
+
∑
O−

λ2
σεO

~V−,∆,` = 0, (2.4)

The vectors ~V± were calculated in [6]. For the reader’s convenience, we will note their
explicit expressions in appendix A. In previous attempts to determine the critical expo-
nents of (1.1), either based on bootstrapping three-dimensional scalar operators [42], or
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fermions [43], the only SUSY constrain taken into account was the relation between the
scaling dimension of operators, ∆ε = ∆σ + 1 and ∆ψ = ∆σ + 1/2, since they belong to
the same supermultiplet Σ. Here we however show that OPE relations are much more
powerful, therefore are essential in bootstrapping N=1 SCFTs. Suppose O+ and O− are
from the same superconformal multiplet, their OPE coefficients λσσO+ , λεεO− and λσεO−
are proportional to each other. Their ratios are fixed by supersymmetry and can be de-
termined by considering the θ-expansion of three-point functions of superfields 〈ΣΣO〉.
〈ΣΣO〉 is determined by superconformal symmetry and can be worked out based on the
results of [44]. Plug these OPE relations into (2.4), and collect blocks for O+ and O− that
belongs to the same multiplet, the crossing equations becomes∑

l∈ even
λ2
B+
~V
B+

∆,l +
∑

l∈ even
λ2
B−
~V
B−

∆,l +
∑

j−1/2∈ even
λ2
F+
~V
F+

∆,j +
∑

j−1/2∈ odd
λ2
F−
~V
F−

∆,j = 0. (2.5)

∆ and l (or j) are the scaling dimensions and spins of super-conformal primaries. As will be
presented explicitly in appendix A, there are four different types of superconformal blocks
~V B+ , ~V B− , ~V F+ and ~V F− . Each corresponds to a type of super-multiplets appearing in
Σ× Σ OPE. Schematically, the OPE looks like

Σ× Σ ∼ Bµ1...µl
+ + Q̄QBµ1...µl

−

+QαFµ1...µj−1/2
+,α +QαF (µ1...µ

−,β σ
µl+1)
α

β . (2.6)

As mentioned in the introduction, we are going to assume that the N=1 Ising model
has emergent supersymmetry. This is equivalent to requiring the spectrum to contain only
one relevant T-parity even scalar. In terms of constraints on the super-multiplets, this
amounts to imposing the following conditions

• all B(l)
+ multiplets with l = 0 have scaling dimension bigger than 3,

• all B(l)
− multiplets with l = 0 (except for Σ) have scaling dimension bigger than

2 (notice that this multiplet contains a parity even super-descendant with scaling
dimension 3),

• all F (j)
+ multiplets with j = 1/2 have scaling dimension bigger than 5/2.

Time-reversal symmetry even scalar operators can only appear in the above three
channels B(l)

+ , B(l)
− and F (j)

+ . Imposing the first and the third conditions, assuming the sub-
leading B(0)

− super multiplet (which we denote the superfield as Σ′ and it super-primary
as σ′) to have scaling dimension bigger or equal to ∆σ′ . We can use numerical bootstrap
to carve out the region in (∆σ,∆σ′)-plane that allows an unitary N = 1 SCFT to exist.
The result is shown in figure 1, where the maximum number of derivatives for conformal
block approximation is Λ = 13. For technical details of numerical bootstrap, we refer
to [45]. The sharp spike at ∆σ ≈ 0.584 indicates an SCFT which we will identify as the
3D N = 1 minimal SCFT. The kink at ∆σ ≈ 0.96 appears when the bound meets the
line ∆σ′ = ∆σ. The identification of this kink to an previously known conformal field
theory remains mysterious at the moment. We have checked that if we use higher Λ [45]
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Figure 1. Bound on the scaling dimension of the subleading T-parity odd operator. We assume
that the spectrum contains only one relevant T-parity even operator. The numerics is performed
at Λ = 13.

to do the numerics, this kink is pushed to ∆σ → 1. One preliminary guess is that the
kink is related to the existence of SCFT with higher number of supersymmetries, since the
supermultiplets multiplets of SCFT with N > 1 may contain protected scalar with scaling
dimension ∆ = 1. For example, the N = 2 flavor current multiplet, when viewed as N = 1
multiplets, branches into a conserved current multiplet, and a real scalar multiplet with
the scaling dimension ∆ = 1.

If we further assume that Σ and Σ′ are the only two relevant scalar superfields in
the spectrum, the allowed region becomes an isolated island. This is shown in figure 2,
where we use the parameters SΛ=27 in [45] for the numerics. The bootstrap island can also
be found if one considers only SUSY OPE relations involving scalar operators1 [46, 47].
Notice that the scaling dimension of Σ′ is higher than 2, so that the corresponding T-parity
even descendant is irrelevant. This bootstrap island can be viewed as a non-perturbative
numerical “proof” of the emergent supersymmetry of the model (1.1).

3 Scaling exponents and CFT data

From the island, it is easy to get ∆σ = 0.584444(30), corresponding to the critical exponents

ησ = ηψ = 0.168888(60), 1/ν = 1.415556(30). (3.1)

Σ′ contains a super-primary with ∆σ′ = 2.882(9) and also a super-descendant which is the
lowest dimensional irrelevant T-parity even scalar operator. This helps us determine the
critical exponent

ω = 0.882(9). (3.2)
The four loop ε-expansion of the Gross-Neveu-Yukawa model was calculated in [31], the
Padé[3,1] approximation gives ησ = ηψ = 0.170, 1/ν = 1.415 and ω = 0.838. This is
consistent with our result and justifies our identification of the island with N = 1 minimal

1This bootstrap island was reported in the preprint [arXiv:1807.04434]. Shortly after that, the work
of [47] also found the same bootstrap island using SUSY OPE relations involving scalar operators. We
should emphasize that to obtain a higher precision result of the critical exponents and to generalize the
method to study SCFTs with flavor symmetry, it is essential to include all the SUSY OPE relations.
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Figure 2. The region that allows a unitary N = 1 SCFT to exist. We assume that the spectrum
contains only one relevant T-parity even operator, and σ and σ′ are the only two relevant T-parity
odd scalar operators. The numerics is performed at Λ = 27.

model. We can also compare our results with previous bootstrap determinations of the
critical exponents. In [42], it was observed that the SUSY line ∆ε = ∆σ + 1 intersects with
the region at ∆σ = 0.565, this provides a lower bound for ησ > 0.13. In [43], the allowed
region touches the SUSY line ∆ψ = ∆σ + 1/2 at ∆σ ≈ 0.582 (though one need to impose
the condition ∆σ′ ≥ 3). Our results show that N = 1 minimal model is indeed located in
this region.

We can also calculate the constant CT in the stress-tensor two-point function when it
is normalized using the Ward identity. By bootstrapping the OPE coefficient λ2

F− , with
F∆=5/2,j=3/2
− being the SUSY current multiplet, we get

CN=1
T /Cf.s.T ≈ 1.684 (3.3)

where Cf.s.T means CT of a free real scalar. This value is in fair agreement with the value
CN=1
T /Cf.s.T ≈ 1.73 from one loop ε-expansion given in [48].

Since we now know the critical exponents to high precision, we can use this result
to perform “two-sided” Padé re-summation of the large-N expansion result of the Gross-
Neveu model (see [48] for a “two-sided” Padé resummation of both the 4− ε series and the
2+ε series), which allows us to estimate the critical exponents of the Gross-Neveu(-Yukawa)
models with a higher number of fermions. The critical exponent ηψ is know to 1

N3 order [49],
while ησ and ν−1 are known to 1

N2 order [33–35]:

ηψ = 8
3π2N

+ 1792
27π4N2

+ 64
(
−3402ζ(3) + 141π2 − 668 + 324π2 log(2)

)
243π6N3

+O( 1
N4 ),

ησ = 1
2 −

64
3π2N

+ 2
(
9728− 864π2)

27π4N2 +O( 1
N3 ),

ν−1 = 1− 32
3π2N

+ 64
(
632 + 27π2)
27π4N2 +O( 1

N3 ). (3.4)
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N = 4 ηψ ησ ν−1

large-N , Padé[2,2] 0.0942 − −

large-N , Padé[3,1] 0.1043 − −

large-N , Padé[1,2] − 0.570 1.017
large-N , Padé[2,1] − 0.522 1.040
ε expansion.a 0.096 0.506 0.852
Monte Carlob − 0.45(2) 1.30(3)
Monte Carloc − 0.54(6) 1.14(2)
Monte Carlod − 0.275(25) 1.35(6)

N = 8 ηψ ησ ν−1

large-N , Padé[2,2] 0.0430 − −

large-N , Padé[3,1] 0.0437 − −

large-N , Padé[1,2] − 0.754 0.982
large-N , Padé[2,1] − 0.745 0.991
ε expansion.e 0.042 0.74 0.948
Monte Carlof − 0.754(8) 1.00(4)
Monte Carlog 0.38(1) 0.62(1) 1.20(1)

aSee [48]. The result is a two sided re-summation of the 2+ ε expansion [29] and 4−ε

expansion [27].
bSee [37].
cSee [39].
dSee [38].
eSee [48]. The result is a two sided re-summation of the 2+ ε expansion [29] and 4−ε

expansion [27].
fSee [27].
gSee [36].

Table 1. ηψ., ησ. and ν−1.

The resumed result is presented in the first two rows of table 1, and compared with the
results using other methods. Our ηψ and ησ are also compatible with various kinks observed
by bootstrapping 3D fermions [50]. We focus on the N = 4 and N = 8 models due to
possible realization using Monte Carlo simulation [27, 36–39]. What’s more, the N = 8
model corresponds to the quantum critical point of the semimetal to charge density wave
order transition on graphene [40].

– 7 –



J
H
E
P
0
6
(
2
0
2
1
)
1
5
4

4 Discussion

A Monte Carlo simulation of this N = 1 super-Ising models would certainly be interesting.
The Lagrangian (1.1) has an anomaly under time-reversal symmetry. One would possibly
need to study such a system at the boundary of a 3 + 1 dimensional lattice, which can
make the simulation time-consuming. Another interesting direction, as pointed out in [20],
is to construct lattice models with non-local interaction. One important lesson that we
have learned from this work is that long multiplet bootstrap [22], hence crossing equation
involving super-descendant operators (which are conformal primaries), play important role
in numerical bootstrap. In other words, it would be interesting to try imposing similar
constraints when bootstrapping SCFT’s with higher number of supercharges, extending
the works of [51, 52].
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A Superconformal bootstrap equations

To derive the superconoformal bootstrap equations, we first follow the result [44] to consider
the three-point function of two Σ’s and a third superfield,

〈O(l)(x1, θ1, η1)Σ(x2, θ2)Σ(x3, θ3)〉

= t(X1,Θ1, η1)
x2∆Φ−∆O−l

12 x2∆Φ−∆O−l
13 x∆O+l

23
, (A.1)

with

xµ12 = xµ1 + xµ2 + iθ̄1γµθ2,

x12± = xµ12γµ ± i12 θ̄12θ12, θ12 = θ1 − θ2,

X1 = 1
2(x−1

31+x23−x−1
21+ + x−1

21+x23+x−1
31−),

Θ1 = i(x−1
21+θ21 − x−1

31+θ31). (A.2)
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Here η1 is an auxiliary two component spinor, valued by commuting numbers. There exist
four different t-structures

B(l)
+ : (η̄1X1η1)l,

B(l)
− : Θ̄1Θ1(η̄1X1η1)l(tr[X2

1])−1/2,

F (j)
+ : η̄1X1Θ1(η̄1X1η1)j−1/2(tr[X2

1])−3/4,

F (j)
− : η̄1Θ1(η̄1X1η1)j−1/2(tr[X2

1])−1/4.

Performing a series expansion of the three-point function in terms of the Grassmann vari-
ables θ1, θ2 and θ3, we obtain the SUSY OPE relations. It is also necessary to take into
account the fact that the operators from θ expansion are not yet properly normalized. One
needs to fix this by expanding the two-point functions

〈O(l)(x1, θ1, η1)O(l)(x2, σ2, η2)〉 = (η̄1x12+η2)2l

(x2
12)∆+l , (A.3)

in Grassmann variables, and then read out the operators’ normalization and scaling the
OPE relations properly. The convention in this work is the same as [11]. The calculation
is in the same spirit of [54], where N = 1 superconformal block in four dimensions was
calculated.

The superfield B(l)
+ can be expanded in θ as Bµ1...µl

+ = Oµ1...µl
+ + . . . + θ̄θ(Oµ1...µl

− +
#ε(µ1|νρ|PνO+ρ

µ2...µl), where the dots denote fermionic operators that we will neglect.
ε(µ1|νρ|PνO+ρ

µ2...µl is the conformal descendant of Oµ1...µl
+ . From the θ-expansion of

〈B(l)
+ (x1, θ1)Σ(x2, θ2)Σ(x3, θ3)〉, we need to pick the terms promotional to 1, θ̄2θ2θ̄3θ3 and

θ̄1θ1θ̄3θ3, delete terms that comes from three point function involving εPO
(l)
+ , and read

out the OPE ratios λσεO−/λσσO+ and λεεO+/λσσO+ . To take care of the normalization,
we consider two point function 〈B(l)

+ (x1, θ1)B(l)
+ (x2, θ2)〉. The term proportional to 1 gives

us 〈O+O+〉, while the θ̄1θ1θ̄2θ2 term, after deleting the two point function of descendants
〈εPO(l)

+ εPO
(l)
+ 〉, gives us 〈O−O−〉.

The θ-expansion of 〈B(l)
− ΣΣ〉 with B(l)

− = O
(l)
− + . . .+ θ̄θ(O+ + #εPO(l)

− ), after normal-
ization, gives us the OPE ratios λσεO−/λσσO+ and λεεO+/λσσO+ . This time, we need to
study the terms proportional to θ̄1θ1, θ̄3θ3 and θ̄1θ1θ̄2θ2θ̄3θ3.

The fermionic superfield F (j)
+ can be expanded in θ as F (j)

+ = . . . + η̄θ · O(l)
+ +

η̄γµθ · O(l+1)
− + . . ., where l = j − 1/2. The η̄1θ1, η̄1θ1θ̄2θ2θ̄3θ3 and η̄1γµθ1θ̄3θ3 terms

of 〈F (l)
+ (x1, θ1)Σ(x2, θ2)Σ(x3, θ3)〉 help us obtain λ

σεO
(l+1)
−

/λ
σσO

(l)
+

and λ
εεO

(l)
+
/λ

σσO
(l)
+
. To

normalise the operators properly, one need to calculate the η̄1θ1η̄2θ2 and η̄1γµθ1η̄2γνθ2
terms of 〈F+(x1, θ1, η1)F+(x2, θ2, η2)〉.

A similar calculation can be done for F (j)
− = . . . + η̄θ · O(l)

− + η̄γµθ · O(l+1)
+ +. . . . This

time we need the η̄1θ1θ̄3θ3, η̄1γµθ1θ̄2θ2θ̄3θ3 and η̄1γµθ1θ̄2 terms of 〈F (j)
− ΣΣ〉.

Notice an interesting feature in the calculation is that only one conformal primary of
the super multiplet appears in the σ × σ OPE (or σ × ε OPE).
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The non-SUSY crossing equation (2.4), studied in [6], is written in terms of the fol-
lowing two vectors,

~V−,∆,` =



0
0

F σε,σε−,∆,`(u, v)
(−1)`F εσ,σε−,∆,`(u, v)
−(−1)`F εσ,σε+,∆,`(u, v)


,

~V+,∆,` =



(
F σσ,σσ−,∆,` (u, v) 0

0 0

)
(

0 0
0 F εε,εε−,∆,`(u, v)

)
(

0 0
0 0

)
(

0 1
2F

σσ,εε
−,∆,`(u, v)

1
2F

σσ,εε
−,∆,`(u, v) 0

)
(

0 1
2F

σσ,εε
+,∆,`(u, v)

1
2F

σσ,εε
+,∆,`(u, v) 0

)



.

(A.4)

As usual, the convoluted conformal bock are defined by

F ab;cd±,∆,l(u, v) = v
∆c+∆b

2 g∆ab;∆cd
∆,l (u, v)± u↔ v.

To get the SUSY crossing equation, we simply need to plug in (2.4) the OPE ratios
that we have calculated by the expansion of the SUSY three-point functions in Grassmann
variables. We get (2.5), with

~V
B+

∆,l =


F−,∆,l

σσ,σσ

c2
1F−,∆,l

εε,εε

c2F−
σε,σε
,∆+1,l

c1F−
σσ,εε
,∆,l + c2(−1)lF−εσ,σε,∆+1,l

c1F+
σσ,εε
,∆,l − c2(−1)lF+

εσ,σε
,∆+1,l

 ,

~V
B−

∆,l =



F−
σσ,σσ
,∆+1,l

d2
1F−

εε,εε
,∆+1,l

d2F−
σε,σε
,∆,l

d1F−
σσ,εε
,∆+1,l + d2(−1)lF−εσ,σε,∆,l

d1F+
σσ,εε
,∆+1,l − d2(−1)lF+

εσ,σε
,∆,l

,
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~V
F+

∆,j =



F−
σσ,σσ
,∆l,l

f2
1F−

εε,εε
,∆l,l

f2F−
σε,σε
,∆l,l+1

f1F−
σσ,εε
,∆l,l

+ f2(−1)l+1F−
εσ,σε
∆l,l+1

f1F+
σσ,εε
,∆l,l

− f2(−1)l+1F+
εσ,σε
,∆l,l+1


,

~V
F−

∆,j =



F−
σσ,σσ
,∆l,l+1

e2
1F−

εε,εε
,∆l,l+1

e2F−
σε,σε
,∆l,l

e1F−
σσ,εε
,∆l,l+1 + e2(−1)lF−εσ,σε,∆l,l

e1F+
σσ,εε
,∆l,l+1 − e2(−1)lF+

εσ,σε
,∆l,l


(A.5)

For the fermionic superblocks, we define ∆l = ∆ + 1/2, l = j − 1/2. The constants with

c1 = (2∆σ −∆− l − 1) (2∆σ −∆ + l)
2∆σ (2∆σ − 1) ,

c2 = (∆− 1)(∆− l − 1)(∆ + l)
4(2∆− 1)∆σ (2∆σ − 1) , (A.6)

d1 = (2∆σ + ∆− l − 3) (2∆σ + ∆ + l − 2)
2∆σ (2∆σ − 1) ,

d2 = (2∆− 1)(∆− l − 1)(∆ + l)
(∆− 1)∆σ (2∆σ − 1) , (A.7)

f1 = (−2∆σ −∆l + l + 4) (−2∆σ + ∆l + l + 1)
2∆σ (2∆σ − 1) ,

f2 = (2l + 1)(∆l − l − 2)(∆l + l)
2(l + 1)∆σ (2∆σ − 1) , (A.8)

and

e1 = (2∆σ −∆l + l + 1) (2∆σ + ∆l + l − 2)
2∆σ (2∆σ − 1) ,

e2 = (l + 1)(∆l − l − 2)(∆l + l)
2(2l + 1)∆σ (2∆σ − 1) . (A.9)

The OPE coefficients in (2.5) correspond to λσσO, with O being the T-parity even operator
in the multiplet. It turns out the five crossing equations are not linear independent, when
doing numerical bootstrap, we simply delete the second line.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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