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A R T I C L E I N F O A B S T R A C T

Editor: D.F. Geesaman The 𝑔 factors of 11∕2− isomers in semimagic 109Sn and 111Sn (isomeric lifetimes 𝜏 = 2.9(3) ns and 𝜏 = 14.4(7) ns, 
respectively) were measured by an extension of the Time Differential Perturbed Angular Distribution technique, 
which uses LaBr3 detectors and the hyperfine fields of a gadolinium host to achieve precise measurements in 
a new regime of short-lived isomers. The results, 𝑔(11∕2−; 109Sn) = −0.186(8) and 𝑔(11∕2−; 111Sn) = −0.214(4), are 
significantly lower in magnitude than those of the 11∕2− isomers in the heavier isotopes and depart from the value 
expected for a near pure neutron ℎ11∕2 configuration. Broken-symmetry density functional theory calculations 
applied to the sequence of 11∕2− states reproduce the magnitude and location of this deviation. The 𝑔(11∕2−)
values are affected by shape core polarization; the odd 0ℎ11∕2 neutron couples to 𝐽𝜋 = 2+, 4+, 6+... configurations 
in the weakly-deformed effective core, causing a decrease in the 𝑔-factor magnitudes.
The nucleus is a self-organizing strongly interacting quantum many-
body system that displays a variety of behaviors ranging from few-
nucleon to collective excitations. In many heavy nuclei, simple patterns 
in the energy levels are observed despite the underlying complexity of 
the individual nucleon motion. For nuclei near the magic numbers of 
the nuclear shell model, 2, 8, 20, 28, 50, 82, and 126, the low-excitation 
structures are usually associated with the motions of valence nucleons 
outside the closed shells, which are considered inert. Far from the magic 
numbers, sequences of excited states associated with the rotations of a 
deformed spheroid are observed. An active area of research concerns 
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the emergence of collective structures from the apparently few-nucleon 
excitations of nuclei with proton (𝑍) and/or neutron (𝑁) numbers close 
to the magic numbers. Proton-neutron interactions which induce weak 
collectivity are essential to explain these transitional systems [1,2].

The focus here is on the semimagic tin isotopes (𝑍 = 50), which have 
a closed proton shell. Pairing correlations between the valence neutrons 
mean that the low-excitation states of the even-𝐴 isotopes are deter-
mined by a single broken pair of neutrons, with the remaining nucle-
ons coupled to zero angular momentum, whereas the lowest-excitation 
structures of the odd-𝐴 isotopes are determined by the single-particle 
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Fig. 1. Energies of selected states across the odd-𝐴 Sn isotopic chain, showing 
the sequence of long-lived 11∕2− states and their mean lifetimes.

states available to the unpaired nucleon; see Ref. [3] for a recent re-
view. In the odd-𝐴 Sn isotopes between 100Sn and 132Sn, the lowest 
11∕2− state is expected to represent a near pure neutron 0ℎ11∕2 orbit, 
not only because of the pairing correlations, but also because it has 
negative parity, whereas the other single-particle orbits in the valence 
space (1𝑑5∕2, 0𝑔7∕2, 2𝑠1∕2, and 1𝑑3∕2) have positive parity. However, the 
uncontested purity of the neutron 0ℎ11∕2 orbit does not preclude the 
specific polarization effects it may exert on the remaining neutrons and 
closed-shell protons.

A sequence of low-lying 11∕2− states is observed from 109Sn to 131Sn, 
with meanlives between 𝜏 = 2.9(3) ns and 63.3(7) years [4,5], as shown 
in Fig. 1. For the isotopes between 113Sn and 131Sn the magnetic mo-
ments are consistent with a near pure 𝜈ℎ11∕2 configuration; the 𝑔 factors 
(magnetic moment divided by angular momentum) are near constant 
from 113−131Sn [6–12], with 𝑔 ≈ −0.24 (the single-particle 𝑔 factor with 
the spin contribution 𝑔𝑠 = 0.7 × 𝑔𝑠f ree ). The literature value in 111Sn is 
also consistent with this scenario, but the uncertainty is large [7].

This Letter reports precise measurements of the 𝑔 factors of the 
11∕2− isomers in 109Sn and 111Sn, based on new developments in 
the Time Differential Perturbed Angular Distribution (TDPAD) tech-
nique [13,14]: the use of LaBr3 detectors, which have excellent timing 
and good energy resolution, together with the internal hyperfine fields 
after in-beam implantation into a ferromagnetic host, opens up a new 
regime for precise 𝑔-factor measurements on short-lived excited states 
(𝜏 ≈ a few ns). The 𝑔 factors of the lowest 11∕2− states of 109Sn and 
111Sn with 𝜏 = 2.9(3) ns [4] and 𝜏 = 14.4(7) ns [15], respectively, were 
measured relative to 113Sn with 𝜏 = 118.5(25) ns [6,7]. A marked devi-
ation from the near-constant 𝑔 factors of the heavier isotopes was ob-
served. Curiously, the deviation occurs at 𝑁 ≈ 60, where unexpectedly 
enhanced 𝐵(𝐸2; 0+ → 2+) strengths were observed in the neighboring 
even-even Sn isotopes [16–25], which have generally been interpreted 
as evidence for breaking of the 𝑍 = 50 shell closure in shell model cal-
culations [16–20,26–28].

To gain insight into the origin of the changes in the structures of 
the 11∕2− isomers, we performed broken-symmetry density functional 
theory (DFT) calculations. This approach has explained magnetic mo-
ments of other odd-𝐴 isotopes in the region [29] and it has certain 
advantages over the shell-model. For example, to produce deforma-
tion, shell-model calculations need basis spaces which quickly become 
prohibitively large, and even large-basis calculations require the use of 
effective charges and effective 𝑔-factors to describe the electromagnetic 
moments. In contrast, the DFT calculations naturally allow deformed 
nuclear shapes and spin distributions, and use bare electromagnetic op-
erators [30]. In short, in the DFT, very large single-particle spaces can 
be readily included and the core polarization self-consistently builds up 
within many shells below and above the Fermi energy.

The experiments were performed at the Heavy Ion Accelerator Fa-
cility at the Australian National University using apparatus described 
in Ref. [31]. Excited states in 109,111Sn were populated by 58-MeV 16O 
induced reactions on 96,98Mo. Two targets were prepared by evaporat-
ing 0.2 mg/cm2 of separated isotope onto annealed gadolinium foils 
2

4 mg/cm2 thick. An additional layer of 98Mo 0.07 mg/cm2 thick was 
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Fig. 2. Partial level schemes including isomeric lifetimes of (a) 111Sn and (b) 
109Sn. Out-of-beam LaBr3 energy spectrum following (c) 98Mo(16O, 3𝑛)111Sn and 
(d) 96,98Mo(16O, 3𝑛)109,111Sn reactions. The blue and green regions show the en-
ergy gates used to construct the 1243-1256 𝑅(𝑡) function, and the 1212 𝑅(𝑡)
function, respectively. (e) Region of interest in the HPGe spectrum — this can-
not be gated out of beam due to the poor timing resolution of HPGe detectors. 
The 1256-keV transition in 109Sn is contaminated by the 1243-keV transition 
in 109Sn (see text), and the 1212-keV transition in 110Sn. The 1229-keV and 
1238-keV (109Sn) and 1210-keV (111Sn) transitions are all prompt transitions.

evaporated onto the 96Mo target to enable the simultaneous observation 
of the precessions of the 11∕2− isomers in 109Sn and 111Sn. The beams 
were pulsed into bunches of FWHM ≈ 1.5 ns, separated by 107 ns for 
109,111Sn and by 535 ns for 113Sn. The gadolinium foil was polarized by 
an applied field of 0.1 T. The direction of this field was reversed peri-
odically. The target was cooled to ≈ 6 K throughout the experiment.

Five 𝛾-ray detectors were used: four LaBr3 detectors oriented at 
𝜃𝛾 = ±45◦ and 𝜃𝛾 = ±135◦ relative to the beam axis, and a single HPGe 
detector located at 𝜃𝛾 ≈ −90◦, for monitoring purposes. A PIXIE-16 
DGF data acquisition system recorded 𝛾-ray energies and times from 
LaBr3 and HPGe detectors, as well as times corresponding to the beam 
pulse [32,33].

The hyperfine field strength was evaluated using the known 𝑔 fac-
tor of the 11∕2− isomer in 113Sn, populated by a beam of 18O at 55 MeV 
on the 98Mo target. To check that no changes in the hyperfine field 
occurred during the measurement, the precession frequency was moni-
tored through the sequence of ≈ 2.5-hr runs over a run time of ≈ 48 hrs. 
Moreover, for the 111,113Sn measurement with the 98Mo target, the beam 
was switched twice between 16O and 18O. No evidence was found of 
changes in the observed precession frequencies. Additional details on 
the experimental methodology can be found in Refs. [13,14,34].

Energy spectra from the LaBr3 detectors and relevant parts of the 
109,111Sn level schemes are shown in Fig. 2. The spectra are gated out-
of-beam (3 – 20 ns).

𝑅(𝑡) functions were constructed in the usual way [13,14]. The os-
cillations in the 𝑅(𝑡) function indicate precession of the excited state. 
Some damping of the 𝑅(𝑡) amplitude was observed: this was attributed 
to a Gaussian distribution of hyperfine field strengths, which is common 
for gadolinium hosts [13,14,35]. In both cases, the 𝑅(𝑡) functions from 
the reference isotope (113Sn and 111Sn) were used to characterize the 
mean (⟨𝐵hf ⟩) and width (Δ𝐵hf ) of the field-strength distribution. This 
distribution was then used to fit the 𝑔 factor(s) of the isotopes of inter-
est. Fig. 3 shows the 113Sn 𝑅(𝑡) function that was used to fix the 𝐵hf

distribution for the 111Sn 𝑔-factor measurement.
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Fig. 3. 𝑅(𝑡) function for the 661-keV transition depopulating the 11∕2− isomer 
in 113Sn. The field distribution was fitted taking 𝑔(113Sn, 11∕2−) = −0.235(2) [7].

Fig. 4. 𝑅(𝑡) function for the 979-keV transition depopulating the 11∕2− isomer 
in 111Sn. The field distribution was fixed from the 113Sn measurement.

Fig. 4 shows the 𝑅(𝑡) function for the 979-keV transition depopulat-
ing the 𝜏 = 14.4(7) ns, 11∕2− isomer in 111Sn [15]. The red curve shows 
the best fit with ⟨𝐵hf ⟩ = −30.2(5) T and Δ𝐵hf = 4.0(7) T. This fit gives 
𝑔(11∕2−, 111Sn) = −0.214(4).

For the 11∕2− state in 109Sn, the 𝑅(𝑡) function is shown in Fig. 5(a). 
In addition to the 1256-keV transition depopulating the 𝜏 = 2.9(3) ns 
isomer [4], contamination from adjacent peaks was present, most no-
tably the 1243-keV transition, which depopulates a 17∕2+ isomer in 
109Sn with a lifetime of 𝜏 = 10.1(14) ns [4] (see Fig. 2). Moreover, the 
combined 1243-1256-keV peak is only partially resolved from a 1212-
keV peak in the LaBr3 detectors. The 1212-keV peak corresponds to the 
2+ → 0+ transition in 110Sn (𝜏 = 0.69(6) ps). The transition is present 
out-of-beam because the 2+ state is fed by the 6+ state at 2478 keV, 
which has 𝜏 = 8.1(6) ns [36]. The 𝑅(𝑡) function for the 1212-keV transi-
tion shows no evidence of precession — see Fig. 5(b) — and thus does 
not impact the 𝑅(𝑡) analysis for the combined 1243-1256-keV peak.

The effect of the 2116-keV, 17∕2+ isomer feeding the 11∕2− isomeric 
state through the 660-keV transition was assessed. A limit of < 8% feed-
ing was established from the HPGe spectrum. The effect of this feeding 
was evaluated using the formalism given by Häusser et al. [37]. The 
result is to slightly increase the damping of the oscillations, but at a 
level far below that caused by the distribution of hyperfine fields in the 
gadolinium host. The shift of the oscillation frequency and thus the ef-
fect on the extracted 𝑔 factor is negligible. Thus, for the purposes of 
the extracting the 𝑔 factor from the 𝑅(𝑡) function, the decays of the two 
isomers were considered independent.

The 𝑅(𝑡) function for the combination of two independent isomeric 
states is given by

𝑅(𝑡) =
𝑁0𝑒

−𝑡∕𝜏0𝐴0 sin(2𝜔0𝑡) +𝑁1𝑒
−𝑡∕𝜏1𝐴1 sin(2𝜔1𝑡)

𝑁0𝑒
−𝑡∕𝜏0 +𝑁1𝑒

−𝑡∕𝜏1
, (1)

where 𝑁𝑖, 𝜏𝑖, 𝐴𝑖, are the initial population, lifetime, and oscillation am-
plitude for the states associated with each of the unresolved transitions 
(𝑖 = 0, 1). The Larmor frequency is 𝜔𝑖 = (𝜇𝑁∕ℏ)𝐵hf𝑔𝑖, where 𝜇𝑁 is the 
nuclear magneton and ℏ is the reduced Planck constant. The relative 
populations of the two states were determined from the HPGe spec-
trum, while the two lifetimes were fixed to the values reported in 
Refs. [4,15]. A time-zero offset, as well as mean hyperfine field-strength 
⟨𝐵hf ⟩ = −31.6(6) T and full-width at half-maximum Δ𝐵hf = 4.6(6) T were 
3

determined from a fit to the concurrent 111Sn 11∕2− isomer measure-
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Fig. 5. (a) 𝑅(𝑡) function for the combined 1243-keV and 1256-keV transitions in 
109Sn. The solid red line indicates the best fit. The blue and green curves show 
the oscillations induced in the 𝑅(𝑡) function by the 11∕2− and 17∕2+ isomers, re-
spectively. The blue points correspond to the experimental 𝑅(𝑡) with the green 
curve (i.e. the oscillation from the 17∕2+ state) subtracted. The time zero posi-
tion is determined precisely from the simultaneous measurement on 111Sn. (b) 
𝑅(𝑡) function for the adjacent, 1212-keV region. This peak shows no evidence 
of precession.

Fig. 6. (a) The 𝜒2 surface for Fig. 5. The solid lines correspond to contours at 
the minimum 𝜒2 + 1, +2, and +3. 𝜒2∕𝜈 = 1.1 for the best fit. (b) 𝜒2 curve for 
𝑔(17∕2+). (c) 𝜒2 curve for 𝑔(11∕2−). Red lines show the minimum 𝜒2 + 1 level.

ment. Finally, Eq. (1) was fitted to the 𝑅(𝑡) data with 𝑔0, 𝑔1, 𝐴0, and 𝐴1
as free parameters. The 𝑅(𝑡) function is sensitive to both 𝑔 factors since 
the lifetimes of the two states differ by a factor of 3 and the two 𝑔 fac-
tors have opposite signs and magnitudes that differ by a factor of 7. The 
first part of the 𝑅(𝑡) function (0 – 12 ns) is most sensitive to 𝑔(11∕2−), 
whereas by the later times (>12 ns) 𝑅(𝑡) is sensitive only to 𝑔(17∕2+).

The 𝜒2 surface from the combined fit is shown in Fig. 6. Best-fit 
values are 𝑔(11∕2−) = −0.186(6) and 𝑔(17∕2+) = +0.0300(15). The uncer-
tainties in the 𝑔 factors arising from the values that were fixed in this 
fit were estimated as 2.5% based on a Monte-Carlo simulation; the ex-
tracted 𝑔 factors are not strongly dependent on these values. Thus, we 
obtain 𝑔(11∕2−) = −0.186(8) and 𝑔(17∕2+) = +0.030(2) for 109Sn. The ex-
pected configuration of the latter state, 𝜈[(𝑔27∕2)6+ ⊗𝑑5∕2]17∕2+ (with the 
remaining 6 valence neutrons coupled to 𝐽𝜋 = 0+), has 𝑔 = +0.053, as-
suming standard values of 𝑔(𝑔7∕2) = +0.298, and 𝑔(𝑑5∕2) = −0.536, the 
Schmidt 𝑔 factors with 𝑔𝑠 = 0.7 × 𝑔𝑠f ree quenching.

In addition to the 𝑅(𝑡) formed by the peaks at ≈ 1250 keV, the 832-
keV transition can be observed out-of-beam in the LaBr3 detectors. The 
𝑅(𝑡) function from this transition shows an oscillation consistent with 

the slow component in Fig. 5 from the 17∕2+ state, however it is con-
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Fig. 7. (a) The 11∕2− spectroscopic quadrupole moments, data from [43,44,12]. 
(b) The 11∕2− 𝑔 factors, data from [6–12]. Shell-model calculations are plotted 
in the green and orange solid lines. DFT with the time-odd mean fields included 
(blue dashed line) or not (purple dashed line) are also shown. The theoretical 
error band corresponds to the uncertainty in the value of the Landau parameter 
𝑔′0 = 1.7(4) [30]. (c) 𝐵(𝐸2; 0+ → 2+) strengths in the even-even Sn isotopes [45].

taminated at short times. Meaningful oscillations were not observed for 
other peaks; e.g. the 672-keV peak is weak and contaminated by back-
ground activity from 110Ag → 110Cd decays [𝐸(2+1 ; 

110Cd) = 657 keV].
The new 𝑔(11∕2−) results for 109Sn and 111Sn are the first indica-

tions of a departure from the nearly constant 𝑔(11∕2−) ≈ −0.243 found 
in heavier Sn isotopes. Fig. 7 shows the 𝑔 factors for 111−131Sn [6–
12], along with 109,111Sn from the present work. Shell-model calcu-
lations using the program KSHELL [38] were carried out using the 
“SR88MHJM” [39–41] and “SN100PN” [42] Hamiltonians. Both calcu-
lations have closed proton shells, and include 𝜈(1𝑑5∕2, 0𝑔7∕2,1𝑑3∕2,2𝑠1∕2,
0ℎ11∕2) orbitals. The effective spin 𝑔 factor was quenched to 0.7 × 𝑔𝑠f ree , 
and effective charges of 𝑒𝑛 = 1.0 and 0.8 were used for “SR88MHJM” 
and “SN100PN”, respectively.

Broken-symmetry DFT calculations were performed using the code
HFODD (3.16n) [46,47] and the standard Skyrme force UNEDF1 [48]. 
The methodology employed in this work followed the studies of high-
spin isomeric states in heavier elements [49]. By performing cal-
culations with broken time-reversal symmetry, the time-odd mean 
fields [50] generated by the spin-spin two-body force can be in-
cluded. Its strength was defined by the isovector Landau parameter 
𝑔′0 = 1.7(4) [30]. The time-odd fields lead to a self-consistent evalua-
tion of the spin polarization summed to all orders, in contrast to the 
first-order effects included in the standard shell-model picture [51].

To obtain the DFT configurations for the 11∕2− states, the quasipar-
ticle state having the largest overlap with the neutron Nilsson-like axial 
orbital [𝑁𝑛𝑧Λ]𝐾 = [505]11∕2 for the angular-momentum projection on 
the axial-symmetry axis of Ω =+𝐾 = +11∕2 was blocked [52,53]. The 
angular-momentum symmetry was then restored to the intrinsic HFB 
states [46,54], which allowed computation of the spectroscopic mag-
netic dipole moments 𝜇 and spectroscopic electric quadrupole moments 
4

𝑄𝑠. In the DFT calculations used here, parity symmetry was conserved 
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at the mean-field level and thus negative-parity states of the core did 
not affect the extracted 𝑄𝑠 or 𝜇 values.

Results of the DFT calculations are shown in Fig. 7. Those labeled
“UNEDF1 w/o T-odd” (“UNEDF1 with T-odd”), correspond to the UN-
EDF1 functional without (with) time-odd mean fields. The time-odd 
mean fields quite uniformly reduce the magnitude of the 𝑔 factors 
from the single-particle Schmidt value (𝑔 ≈ −0.35) to close to the ex-
perimental values, 𝑔 ≈ −0.243. This spin polarization is a well-known 
effect, and is usually included through use of a quenched or effec-
tive spin 𝑔 factor [55,56]. However, the DFT calculations can produce 
this effect with no need for such quenching. Core polarization contri-
butions from many shells naturally incorporate configurations such as 
[𝑔−19∕2 ⊗𝑔7∕2]1+ [55,56,42].

Both with and without time-odd mean fields, the calculated 𝑔 fac-
tors exhibit a marked dependence on the neutron numbers: this is a 
result of the odd 0ℎ11∕2 neutron coupling to even-spin configurations of 
the core [29,49]. The coupling is governed by time-even mean fields 
induced by the quadrupole-quadrupole interaction. Again, in the DFT, 
the induced time-even mean fields lead to shape polarization summed 
up to all orders, in contrast to the so-called second-order perturbative 
effects included in the shell-model picture [51]. The varying coupling 
to the shape-polarized core is responsible for the decreasing magnitude 
of the 𝑔-factor with neutron numbers from 𝑁 = 69 to 59. Notably, this 
decrease is reproduced in the DFT calculations that do not include time-
odd fields; it cannot be attributed to the usual spin-polarization, where 
spin-orbit partners couple to 1+, i.e. [𝑔−19∕2 ⊗ 𝑔7∕2]1+ [55,56,42]. The 
agreement between the DFT calculations and the experimental spec-
troscopic quadrupole moments is excellent.

Theoretical predictions are always accompanied by uncertainties re-
lated to parameters [57]. The functional UNEDF1 used here generates 
some dependence of the results on its paring-force parameters. Within 
the estimated uncertainty of those parameters, the results shown were 
obtained with pairing-force values increased by 20% relative to those 
used in Ref. [49], which produced better experimental agreement for 
both 𝑄𝑠 and 𝑔. The value of the isovector Landau parameter used in the 
present calculations (𝑔′0 = 1.7(4) [30]) differs from that used for the In 
isotopes in Ref. [29] (𝑔′0 = 0.82), which preceded the global analysis of 
Ref. [30]. A systematic comparison of the DFT results for 𝜇 and 𝑄𝑠 in 
the In and Sn isotopic chains is called for. It is noteworthy that the elec-
tromagnetic moments have not been used to set the DFT parameters to 
date.

There has been considerable literature on the increase of 𝐵(𝐸2)
strength in the Sn isotopic chain near 𝑁 = 60 [16–28], which is shown 
in Fig. 7(c). The enhancement near 𝑁 = 60 has generally been associ-
ated with excitations across the 𝑍 = 50 shell gap. While extended-space 
shell-model calculations can reproduce the 𝐵(𝐸2) strengths across the 
chain (see, e.g., Ref. [28]), they still require effective charges. It is pos-
sible that the deviation of the 𝑔(11∕2−) values near 𝑁 = 60 is related 
to the observed 𝐸2 trends, however it will take additional theoretical 
work to establish the exact relationship between the two phenomena 
based on models that treat the even-𝐴 and odd-𝐴 nuclei on an equal 
footing. Nevertheless, it is evident that the magnetic moments provide 
a sensitive probe of emerging collectivity in atomic nuclei and provide 
insights that are complementary to the 𝐸2 transition strength data.

The present work shows that features of the electromagnetic mo-
ments of the semi-magic Sn isotopes require the polarization of shape 
and spin distributions from single-particle spaces far beyond the valence 
spaces used in traditional shell-model calculations for the region. The 
nuclear DFT offers such insights. The unique perspective electromag-
netic moments offer on the question of emerging collectivity, beyond 
what is usually inferred from the 𝐵(𝐸2) values in even-even nuclei, has 
also been demonstrated. In particular, this brings about a question of 
whether the very notion of the “core” should depend on which type of 
polarizing particle is in action; a comparative analysis of the effective 
cores in odd indium, antimony, and tin isotopes is very much called 

for [49].
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In conclusion, an extension of the TDPAD technique has opened up 
a new regime of precise 𝑔-factor measurements for excited states with 
lifetimes on the order of a few ns. Application of the technique to the 
11∕2− isomers in 109,111Sn reveals a remarkable and unexpected devia-
tion from the near-constant 𝑔 ≈ −0.243 observed in heavier Sn isotopes. 
State-of-the-art DFT calculations satisfactorily reproduce the absolute 
magnitude of the 𝑔 factors across the entire isotopic chain, including 
the deviation near 𝑁 = 60. The calculations indicate that the 𝑔-factor 
variations arise from the core responding to the odd neutron, includ-
ing excitations well beyond the valence space available to shell-model 
calculations.
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