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We calculate the thermal rate of real-photon production in the quark-gluon plasma at a temperature of
T ¼ 254 MeV using lattice QCD. The calculation is based on the difference between the spatially
transverse and longitudinal parts of the polarization tensor, which has the advantage of falling off rapidly at
large frequencies. We obtain this linear combination in the time-momentum representation from lattice
QCD with two flavors of quarks in the continuum limit with a precision of about two parts per mille.
Applying a theoretically motivated fit ansatz for the associated spectral function, we obtain values for the
photon rate that are in line with QCD weak-coupling calculations. A representative result is dΓðkÞ=dk ¼
ð1.5þ2.1

−1.5 Þ · ð10 fmÞ−4 · ð0.2 GeVÞ−1 at k ¼ 1.2 GeV for the differential rate of photon production per unit
volume of plasma.
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I. INTRODUCTION

Strongly interacting matter undergoes a phase transition
at a temperature of about 150 MeV [1–3]. Below the
transition, the thermal medium is characterized by hadrons
(nucleons, pions, kaons,…) as primary degrees of freedom,
while well above the transition it is characterized by quarks
and gluons, the elementary degrees of freedom of quantum
chromodynamics (QCD). The high-temperature phase, the
quark-gluon plasma (QGP), is probed experimentally in
high-energy heavy-ion collisions at T ≲ 500 MeV [4]. One
of the remarkable properties of the medium is its ability to
exhibit collective effects in spite of the rapid expansion
occurring in heavy-ion collisions. The most prominent such
effect is the large anisotropic flow observed in heavy-ion
collisions at RHIC and the LHC, pointing to a small shear
viscosity to entropy density ratio of the medium; see,
e.g., [5] and references therein. In addition, probes of the
medium that do not interact strongly are of great interest,
since they escape largely unscathed once produced.
In particular, the rate at which photons are emitted by
the QGP is a classic—though challenging—observable in
heavy-ion experiments [6]. Direct photons with a transverse

momentum below 2 GeVare found to admit an exponential
spectrum, and models assuming the formation of the QGP
are consistent with these measurements [7,8]. The produc-
tion of weakly interacting particles by the QGP is also an
important issue in early universe cosmology, for instance,
in models which propose a keV-scale sterile neutrino as a
dark matter candidate [9,10].
In this paper, we address the rate of photon emission

from the QGP via lattice QCD simulations. One motiva-
tion to perform the calculation is that the rate vanishes in
the limit of noninteracting quarks and gluons; therefore, it
is a measure of the strength of their interactions. Second,
direct photons emitted in heavy-ion collisions have been
found to exhibit an unexpectedly large central value of
elliptic flow [11,12]—albeit with significant uncertainty,
therefore addressing their thermal production rate non-
perturbatively can contribute to resolving the issue. Third,
a controlled calculation of the photon rate paves the way
for calculating the production of other particles, such as
lepton pairs—relevant in heavy-ion phenomenology—or
sterile neutrinos—relevant for validating or ruling out a
dark matter candidate.
The main computational difficulty stems from the

production of weakly interacting particles being a real-
time process, which is accessible from the Matsubara
path integral formalism implemented in lattice QCD only
via an analytic continuation [13]. Numerically, the latter
amounts to a poorly conditioned inverse problem dis-
cussed below.
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II. THEORY BACKGROUND

We consider the full set of spectral functions of the
electromagnetic current1 Vμ ¼ P

f¼u;d;s;…Qfψ̄fγ
μψf,

ρμνðω; k⃗Þ ¼
Z

d4xeiðωx0−k⃗·x⃗ÞTr
�
e−βH

ZðβÞ ½V
μðxÞ; Vνð0Þ†�

�

:

ð1Þ

For any four-vector uμ, the form u†μρμνðω; k⃗Þuν=ω is real
and non-negative; for uμ real, it is also even in ω. Current
conservation leads to ω2ρ00ðω; k⃗Þ ¼ kikjρijðω; k⃗Þ, imply-
ing that2 ðk̂ik̂jρij − ρ00Þ=ω has the same sign as
K2 ≡ ω2 − k2, and that it vanishes at lightlike kinematics,
K2 ¼ 0. It will be useful to consider the linear combination

ρðω; k; λÞ ¼ ðδij − k̂ik̂jÞρij þ λðk̂ik̂jρij − ρ00Þ: ð2Þ

Defining the Euclidean correlator3

GE
μνðx0; k⃗Þ ¼

Z

d3xe−ik⃗·x⃗hVE
μðxÞVE

ν ð0Þ†i; ð3Þ

the corresponding linear combination

Gðx0; k; λÞ ¼ ðδij − k̂ik̂jÞGE
ij þ λðk̂ik̂jGE

ij −GE
00Þ ð4Þ

admits the spectral representation

Gðx0; k; λÞ ¼
Z

∞

0

dω
2π

ρðω; k; λÞ cosh½ωðβ=2 − x0Þ�
sinhðβω=2Þ : ð5Þ

The production rate of dileptons with invariant mass
squared equal to K2, which occurs via a timelike photon, is
proportional to ρðω; k; 1Þ [14]. An interpretation of the
spectral function for negative virtualities is provided in the
Supplemental Material [15]. To leading order in the fine-
structure constant α ¼ e2=ð4πÞ, the differential photon rate
per unit volume of plasma can be written as

dΓðkÞ ¼ e2
d3k

ð2πÞ32k
ρðk; k; λÞ
eβk − 1

ð6Þ

and does not depend on λ. Given our goal of computing
the photon rate, we choose λ ¼ −2, because as a combined
consequence of current conservation and Lorentz

invariance, ρðω; k;−2Þ vanishes identically in the vacuum
(at zero temperature). Since, in addition, ρðω; k ¼ 0;−2Þ
vanishes exactly for ω ≠ 0 due to charge conservation, we
expect from the operator-product expansion

ρðω; k;−2Þ ∝ k2=ω4; ω ≫ πT; k: ð7Þ

This strong suppression in the ultraviolet implies a super-
convergent sum rule for ρðω; k;−2Þ,

Z
∞

0

dωωρðω; k;−2Þ ¼ 0: ð8Þ

Spectral positivity implies that ρðω; k;−2Þ=ω is non-
negative for K2 < 0, and it must become negative for
K2 > 0 in order to satisfy the sum rule (8).
In the infrared limit, the hydrodynamic prediction for

ρðω; k;−2Þ reads

ρðω; k;−2Þ=ω ≈
4χsDk2

ω2 þ ðDk2Þ2 ω; k ≪ D−1; ð9Þ

where D is the diffusion coefficient and χs ≡ βG00ðx0; 0⃗Þ
the static susceptibility. Therefore, following [18], we
define the effective diffusion coefficient

DeffðkÞ≡ ρðω ¼ k; k; λÞ
4χsk

; ð10Þ

which is proportional to the photon rate and tends to D in
the limit k → 0. In the weak-coupling regime, results at
order g2 have recently become available for general ðω; kÞ
[19,20]. The photon rate itself has been obtained at order g3

in [21].
From here on, we set λ ¼ −2 and omit the last argument

of ρðω; k; λÞ and Gðω; k; λÞ.

III. THE LATTICE CALCULATION

We use lattice QCD with an isospin doublet of
OðaÞ improved Wilson fermions at a temperature of
T ¼ 254 MeV; the details of the lattice action can be
found in [22] and references therein. Table I lists our
ensembles, which allow us to take the continuum limit at
a fixed temperature. All but the finest ensemble have a

renormalized quark mass of mMS ≃ 13 MeV in the MS
scheme at a renormalization scale of μ ¼ 2 GeV; on the

finest ensemble, we have mMS ≃ 16 MeV. Quark-mass
effects, which are suppressed by ðm=TÞ2 in the chirally
symmetric phase, are therefore expected to be negligible.
The ensembles F7, O7, and X7 were generated using the
MP-HMC algorithm [23] in the implementation described
in Ref. [24] based on the DD-HMC package [25],
while ensemble W7 was generated using twisted-mass
Hasenbusch frequency splitting in the version 1.6 of

1The Minkowski-space Dirac matrices satisfy fγμ; γνg ¼ 2gμν
with gμν ¼ diagð1;−1;−1;−1Þ. Also, time evolution in Eq. (1) is
Minkowskian, Vμðt; x⃗Þ≡ e−iðP⃗·x⃗−HtÞVμð0; 0⃗ÞeiðP⃗·x⃗−HtÞ.

2We use the notation k≡ jk⃗j and k̂i ¼ ki
k .

3The Euclidean current is defined by VE
μ ≡P

f Qfψ̄fγ
E
μψf,

with fγEμ ; γEνg ¼ 2δμν. Also, time evolution is Euclidean in

Eq. (3), VE
μðxÞ ¼ ex0H−iP⃗·x⃗VE

μð0Þe−x0HþiP⃗·x⃗.

CÈ, HARRIS, MEYER, STEINBERG, and TONIATO PHYS. REV. D 102, 091501 (2020)

091501-2



openQCD [26,27]. The ensembles labeled F7 and O7 have
bare parameters identical to the zero-temperature F7 and
O7 ensembles described in [22], for which the pion mass is
269 MeV.
We compute the correlator Gðx0; kÞ of the isovector

current 1ffiffi
2

p ψ̄γμτ
3ψ , which consists of a single connected

Wick contraction.4 The corresponding static susceptibility
amounts to Gðx0; 0Þ=ð2T3Þ ¼ χs=T2 ¼ 0.880ð9Þstatð8Þsyst
in the continuum limit, where the systematic error reflects
the dependence on using different prescriptions for the
renormalization of the local vector current. We employ the
local and the conserved vector currents, resulting in four
discretizations of Gðx0; kÞ, and perform a constrained
simultaneous continuum extrapolation. We have computed
the leading-order perturbative lattice predictions, so that we
are able to correct for the corresponding cutoff effects
affecting our Monte Carlo data. To avoid incurring large
cutoff effects at short distances, we omit data points for
x0 < xmin

0 , where xmin
0 ¼ β=4 is our default value. We thus

have data points for Gðx0; kÞ at xðiÞ0 ¼ i
24
· β, i ∈ f6; 7; 8;

9; 10; 11; 12g. Given the high accuracy of the data, we are
led to leave out the coarsest ensemble from the continuum
limit, which leaves us with three lattice spacings for the
linear extrapolation in a2. The relative statistical precision
of the continuum correlator is one to two permille. It is well
known that the topological charge Q acquires a long
autocorrelation time at small lattice spacings, and our
simulations confirm this effect. However, we have found
the dependence of the vector correlator of interest on jQj to
be at most at the 3% level. Therefore, the vector correlator
only suffers a modest increase in uncertainty from this
algorithmic difficulty.

IV. ANALYSIS OF THE SPECTRAL FUNCTION

To obtain a global picture of the spectral function
without committing to any specific functional form, in
[30] we applied the Backus-Gilbert method to our data.
The results confirm the theoretical expectation that most of
the spectral weight is contained in the spacelike region
ω2 < k2.
A second method [30], that we now pursue further,

consists in applying an explicit fit ansatz for the spectral
function,

ρðω; kÞ ¼ Að1þ Bω2Þ tanhðωβ=2Þ
½ðω − ω0Þ2 þ b2�½ðωþ ω0Þ2 þ b2�½ω2 þ a2� :

ð11Þ

It satisfies the expected large-ω behavior (7), and, for given
ða; b;ω0Þ, we always adjust B in such a way that the sum
rule (8) is satisfied. We impose physically motivated lower
bounds on a2 and b2. Our analysis treats the data at several
momenta within one “group” simultaneously, assuming a
locally affine dependence of the parameters ða; b;ω0Þ on kγ
with either γ ¼ 1 or 2. There are thus six nonlinear model
parameters. We have performed scans over these six
parameters, recording their DeffðkÞ and χ2 values, and
requiring a p value greater than 0.32 for a set of parameters
to be considered acceptable. In evaluating the χ2, we use a
moderately regulated covariance matrix, which largely
explains the smaller-than-usual set of χ2 values we obtain.
More details on our fitting procedures can be found in the
Supplemental Material [15].
Before describing our results for DeffðkÞ, we briefly

present the outcome of our procedure when applied to
mock Euclidean data generated from known spectral
functions. For these tests, we have used the spectral
functions of noninteracting quarks as well as those of
the strongly coupled super Yang-Mills (SYM) theory
[31]. In order to be realistic, we reuse the covariance
matrix of our lattice QCD data, rescaled so as to achieve
the same relative error on the correlator. In both cases, we
find that the correct value of DeffðkÞ is one of those
having a p value above 0.32. The output spectral
functions yielding the highest p value tend to have a
somewhat larger value of DeffðkÞ.
Our final results for theDeffðkÞ values yielding a p value

above 0.32 for the QCD correlator at T ¼ 254 MeV are
displayed in Fig. 1. We show results for both the linear
and the quadratic dependence on k, γ ¼ 1 and 2. We
observe that for the third momentum group, containing
momenta above 1.0 GeV, the values of DeffðkÞ · GeV cover
the interval [0, 0.7] and are thus compatible both with
the leading-order weak-coupling prediction [32] and the
strongly coupled SYM prediction [31], which lie between
0.3 and 0.5. Moreover, the weak-coupling prediction is
among those values with the highest p value. In the second

TABLE I. Simulations at a fixed temperature of T ¼ ð254�
5Þ MeV and fixed aspect ratio TL ¼ 4. For orientation, the
transition temperature is about 211 MeV [28]. The number of
point sources per configuration is 16 in all cases. The autocorre-
lation time of the squared topological charge defined at gradient-
flow time [29] t̄ ¼ β2=80 is given in molecular-dynamics units
(MDUs).

Label ð6=g20; κÞ 1=ðaTÞ Nconf
MDUs
conf τint½Q2ðt̄Þ�

F7 (5.3,0.13638) 12 482 20 11.3(15)
O7 (5.5,0.13671) 16 305 20 19(5)
W7 (5.685727,0.136684) 20 1566 8 81(23)
X7 (5.827160,0.136544) 24 511 10 490(230)

4In order to keep the notation concise, we do not explicitly
distinguish between the quantities derived from the isovector
and from the electromagnetic current. To obtain the photon
rate from our results for DeffðkÞ, we use Eq. (6) with
ρðk; kÞ ¼ 4kDeffðkÞ · χs½Qf� in the approximation χs½Qf� ≃ Cem·
χs½isovector�, with Cem ¼ P

f¼u;d;s Q
2
f ¼ 2=3.
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momentum group, the range of acceptable DeffðkÞ values
covers a range up to about twice the strongly coupled SYM
value (for the ansatz quadratic in k), while again the weak-
coupling prediction has one of the highest p values. In the
group of smallest momenta, the lattice data lose sensitivity
to the photon rate. Particularly, the data do not exclude
large values ofDeffðkÞ. Finally, we remark that our fits yield
a strong correlation between the values of DeffðkÞ at
successive k [33].
It is instructive to look at the full frequency dependence

of the spectral functions which describe the QCD corre-
lators. In Fig. 2, as representative examples for the three
spatial momenta k ¼ ð0.40; 0.98; 1.49Þ GeV, we show
spectral functions that correspond to the upper and lower
ends of the DeffðkÞ ranges shown in Fig. 1. We also
display the spectral function leading to the smallest χ2,
and for comparison, the spectral functions of noninter-
acting quarks as well as those of the strongly coupled
SYM theory. For the second and third momenta, we
observe that all three spectral functions describing the
QCD correlators exhibit a smooth behavior for ω2 < k2

and admit a maximum near the point ω ¼ k, its precise
location being tightly linked to the value of DeffðkÞ and
hence to the photon emission rate.

V. CONCLUSION

Using lattice simulations in the quark-gluon plasma
phase of QCD with two dynamical quark flavors at a
temperature of 254 MeV, we have computed one particu-
larly ultraviolet-soft component of the polarization tensor
in the continuum limit. This component determines the
photon emission rate from the medium via analytic con-
tinuation; in practice, however, one is faced with the inverse
problem [Eq. (5)] for the spectral function. We explored
exhaustively the parameter space of the Padé-form spectral
functions in Eq. (11). The photon rate is given, up to
kinematical factors, by the spectral function at photon
kinematics, ω ¼ k, and normalizing this quantity by the
well-determined static charge susceptibility, one obtains the
effective (momentum-dependent) diffusion coefficient.
The latter is only mildly sensitive to the number of charged
degrees of freedom in the plasma: the strongly coupled
SYM and the weak-coupling QCD predictions are com-
parable and slowly varying functions of k for k ≥ πT.

FIG. 1. Lattice results for the effective diffusion coefficient
DeffðkÞ, defined by Eqs. (6) and (10). The color-coded vertical
bars represent those values ofDeff for which a spectral function of
the form (11) exists that has a p value above 0.32. The colors
indicate the smallest χ2=d:o:f. found for a given value of Deff .
Shaded areas identify the momentum groups that are fitted
simultaneously; for each momentum, results are shown both
for the γ ¼ 1 and γ ¼ 2 parametrizations of the k dependence of
the nonlinear parameters. Analytical results from perturbative
QCD [32] (with a 40% uncertainty band [21]) and from the
strong-coupling limit of N ¼ 4 SYM theory [31] are shown for
comparison.

FIG. 2. Representative spectral functions obtained from lattice
QCD data for three different spatial momenta. They are compared
to the spectral functions of noninteracting quarks and of the
strongly coupled SYM theory.
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Within the explored family of spectral functions, we
determined which values of this coefficient are compatible
with the Euclidean data; our result is displayed in Fig. 1.
We have validated our handling of the inverse problem and
the associated uncertainties by applying the same pro-
cedure to the strongly coupled SYM theory and to QCD at
zero coupling, which represent extreme opposite carica-
tures of the quark-gluon plasma. Our results imply non-
perturbative constraints on the possible rate of photon
emission from the QGP at a temperature typical for the
strongly interacting system created in heavy-ion collision
experiments. For k ≥ πT, we largely confirm the weak-
coupling predictions, in spite of the relatively low temper-
ature of 254 MeV. Specifically, we quote the thermal
photon emissivities

dΓðkÞ · ð10 fmÞ4
dðk=ð0.2 GeVÞÞ ¼

�
4.4þ6.2

−1.9 k ¼ 0.80 GeV;

1.5þ2.1
−1.5 k ¼ 1.20 GeV;

ð12Þ

where the asymmetric uncertainties are determined from
the extent of the vertical bars of the γ ¼ 1 fits in Fig. 1 and
reflect both the statistical and the systematic uncertainty
associated with the inverse problem. Our results are also in
good agreement with those of a previous lattice calculation
performed in the quenched approximation [18].
What are the implications of our findings for predictions

of the direct photon yield and spectrum in heavy-ion
collisions at RHIC or the LHC? In hydrodynamic studies
[34,35] thereof, the photon emissivity of thermalized
quark-gluon plasma is one of the several key ingredients.
Given that the leading perturbative rate of photon emission
was used in the latter publications, and that our calculation
largely confirms this rate, the implication is that it con-
solidates these predictions. In regard to the observation of
an unexpectedly large elliptic flow of direct photons
[11,12], it would be very interesting to repeat the present
calculation at a temperature in the crossover region, in order

to see whether the photon emissivity is substantially higher
than an interpolation of QGP and hadronic-phase emissiv-
ities. That a higher fraction of direct photons could be
produced in the later, cooler stages of the heavy-ion
collision has been proposed as a possible explanation of
the observed photon elliptic flow [36].
As a study based on lattice correlators computed for

noninteracting quarks shows, adding data points at shorter
Euclidean time significantly enhances the ability of the data
to exclude large values of Deff , particularly at low photon
momenta. This calls for even finer lattices to be used, which
represents a challenge in view of the large lattice sizes
required and the long associated autocorrelation times. We
finally remark that a different strategy has also recently been
proposed for lattice QCD to compute the photon rate using a
dispersion relation at fixed, vanishing virtuality [37].
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