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The differential cross-section in squared momentum transfer of ρ, ρ0, ω, ϕ, f0ð980Þ, f1ð1285Þ, f0ð1370Þ, f1ð1420Þ, f0ð1500Þ, and J/ψ
produced in high-energy virtual photon-proton (γ∗p), photon-proton (γp), and proton-proton (pp) collisions measured by the H1,
ZEUS, and WA102 Collaborations is analyzed by the Monte Carlo calculations. In the calculations, the Erlang distribution, Tsallis
distribution, and Hagedorn function are separately used to describe the transverse momentum spectra of the emitted particles. Our
results show that the initial- and final-state temperatures increase from lower squared photon virtuality to a higher one and
decrease with the increase of center-of-mass energy.

1. Introduction

In high-energy collisions, it is interesting for us to describe
the excitation and equilibrium degrees of an interacting sys-
tem because of the two degrees related to the reaction mech-
anism and evolution process of the collision system [1–10].
In the progress of describing the excitation degree and struc-
ture character of the system, temperature is an important
quantity in physics in view of intuitiveness and representa-
tion. In high-energy collisions, different types of temperature
are used [11–18], which usually refer to the initial tempera-
ture Ti, quark-hadron transition temperature Ttr , chemical
freeze-out temperature Tch, kinetic freeze-out or final-state
temperature (“confinement” temperature) Tkin or T0, and
effective temperature Tef f or T , etc. In this work, we emphat-
ically discuss the initial- and final-state temperatures, though
other types of temperatures are also important.

The initial temperature Ti is the temperature of emission
source or interacting system when a projectile particle or
nucleus and a target particle or nucleus undergo the initial

stage of a collision. It represents the excitation degree of the
emission source or that of an interacting system in the initial
state of collisions, and it is usually meant as describing the
interacting system after thermalization. The initial tempera-
ture Ti can be extracted by fitting the transverse momentum
pT spectra of particles by using some distributions such as the
Erlang distribution [19–21], Tsallis distribution [22, 23],
Hagedorn function [24], and Lévy–Tsallis function [25].
Here, both the names of distribution and the function are
used according to the various accepted terminologies in the
literature, though they represent the similar probability den-
sity function in fitting the particle spectra. Meanwhile, the
average transverse momentum hpTi can be obtained from
the same function.

The final-state temperature T0 is usually known as the
kinetic freeze-out temperature, which refers to the tempera-
ture of emission source when the inelastic collisions ceased
and there are only elastic collisions among particles. In the
last stage of collisions, the momentum distribution of parti-
cles is fixed and the transverse momentum spectra can be
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measured in experiments. The excitation degree of the sys-
tem in the last stage can be described by the final-state tem-
perature T0 in which the influence of flow effect is
excluded. The temperature or related main parameters used
in the Erlang distribution [19–21], Tsallis distribution [22,
23], Hagedorn function [24], and Lévy–Tsallis function
[25] are not T0, but the effective temperature T in which
the influence of flow effect is not excluded.

The Mandelstam variables [26] consist of the four-
momentum of particles in a two-body reaction. Both the
squared momentum transfer and the transverse momentum
can represent the kinetic character of particles. Let us use
the squared momentum transfer to replace the transverse
momentum in fitting the particle spectra. Then, we can fit
the squared momentum transfer spectra with the related dis-
tributions to obtain the initial temperature Ti, average trans-
verse momentum hpTi, and other quantities. Of course, in
fitting the squared momentum transfer spectra, the above-
mentioned distributions cannot be used directly. In fact, we
have to use the Monte Carlo method to obtain the concrete
value of a transverse momentum for a given particle from
the mentioned distributions. Then, the concrete value of
squared momentum transfer can be obtained from the
definition.

Except for the temperature parameter, other parameters
also describe partly the characters of the interacting system.
For instance, the entropy index q which describes the degree
of equilibrium can be extracted from the Tsallis distribution
[22, 23] considering the particle mass. Meanwhile, q can be
extracted from the Hagedorn function [24] which is the same
as the Lévy–Tsallis function [25] for a particle neglecting its
mass. If there is relation between the Tsallis distribution
and the Hagedorn function, we may say that the former
one covers the latter one in which the mass is neglected.
Because the universality, similarity, or common characteris-
tics exist in high-energy collisions [27–36], some distribu-
tions used in the large collision system can be also used in a
small collision system.

In this paper, the differential cross-section in the squared
momentum transfer of ρ, ρ0, ϕ, and J/ψ produced in virtual
photon-proton (γ∗p) collisions and ω and J/ψ produced in
photon-proton (γp) collisions, as well as f0ð980Þ, f1ð1285Þ,
f0ð1370Þ, f1ð1420Þ, and f0ð1500Þ produced in proton-
proton (pp) collisions measured by the H1 [37, 38], ZEUS
[39–42], and WA102 Collaborations [43, 44] is fitted with
the results from the Monte Carlo calculations. Firstly, the
transverse momenta satisfied with the Erlang distribution,
Tsallis distribution, and Hagedorn function are generated.
Secondly, these special transverse momenta are transformed
to the squared momentum transfers. Thirdly and lastly, the
distribution of squared momentum transfers is obtained
and fitted to the experimental data by the least squares
method.

2. Formalism and Method

2.1. The Erlang Distribution. The Erlang distribution is the
convolution of multiple exponential distributions. In the
framework of a multisource thermal model [19–21], we

may think that more than one parton (or parton-like) con-
tribute to the transverse momentum of the considered parti-
cle. The j-th parton (or parton-like) is assumed to contribute
to the transverse momentum to be pt j which obeys an expo-
nential distribution with the average hpti which is j-ordinal
number independent. We have the probability density func-
tion obeyed by ptj to be

f pt j
� �

= 1
pth i exp −

ptj
pth i

� �
: ð1Þ

The average hpti reflects the excitation degree of contrib-
utor parton and can be regarded as the effective temperature
T .

The contribution of all ns partons to pT is the sum of var-
ious pt j. The distribution of pT is then the convolution of ns
exponential functions [19–21]. We have the pT distribution
(the probability density function of pT) of final-state particles
to be the Erlang distribution

f1 pTð Þ = 1
N

dN
dpT

= pns−1T

ns − 1ð Þ! pth ins exp −
pT
pth i

� �
, ð2Þ

where N denotes the number of all considered particles and
pT has an average of hpTi =

Ð∞
0 pT f1ðpTÞdpT = nshpti. Equa-

tion (2) is naturally normalized to be 1. In Equation (2), there
are two free parameters, ns and hpti.
2.2. The Tsallis Distribution. The Tsallis distribution [22, 23]
has more than one form, which are widely used in the field of
high-energy collisions. Conveniently, we use the following
form

f2 pTð Þ = 1
N

dN
dpT

= CpT 1 + mT −m0
nT

� �−n
, ð3Þ

where C is the normalization constant,mT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T +m2

0
p

is the
transverse mass, m0 is the rest mass, n = 1/ðq − 1Þ, and q is
the entropy index [22, 23]. Equation (3) is valid only at mid-
rapidity (y ≈ 0) which results in cosh y ≈ 1 and the particle
energy E =mT cosh y ≈mT .

In Equation (3), a large n corresponds to a q that is close
to 1, and the source or system approaches to equilibrium.
The larger the parameter n is, the closer to 1 the entropy
index q is, with the source or system being at a higher degree
of equilibrium. There is no exact minimum n or maximum q
[22–25] which is a limit for approximate equilibrium. Empir-
ically, in the case of n ≥ 4 or q ≤ 1:25 which is 25% more than
1 (even n ≥ 5 or q ≤ 1:2which is 20%more than 1), the source
or system can be regarded as being in a state of approximate
(local) equilibrium. Usually, in high-energy collisions, the
source or system is approximately in equilibrium due to n
being large enough.

2.3. The Hagedorn Function. The Hagedorn function [24] is
an inverse power law which has the probability density
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function of pT to be

f3 pTð Þ = 1
N

dN
dpT

= ApT 1 + pT
p0

� �−n0
, ð4Þ

where A is the normalization constant, n0 is a free parameter
which is similar to n in the Tsallis distribution [22, 23], and
p0 is a free parameter which is similar to the product of nT
in the Tsallis distribution. Note here that it appears as if p0
= nT is a perfect liquid-like relation; however, p0 is a trans-
verse momentum and n is a dimensionless number. This is
not meant in a perfect liquid sense, but the letters are just
randomly coinciding.

It should be noted that the Hagedorn function is a special
case of the Tsallis distribution in which m0 can be neglected.
Generally, at high pT , we may neglect m0, observing the two
distributions being very similar to each other. At low pT , the
two distributions have obvious differences due to nonignor-
able m0. To build a connection with the entropy index q,
we have n0 ≈ 1/ðq − 1Þ. To build a connection with the
effective temperature T , we have p0 ≈ n0T ≈ T/ðq − 1Þ.

2.4. The Squared Momentum Transfer. In the center-of-mass
reference frame, in a two-body reaction 1 + 2⟶ 3 + 4 or in
a two-body-like reaction, it is supposed that particle 1 is inci-
dent along the z direction and particle 2 is incident along the
opposite direction. In addition, particle 3 is emitted with
angle θ relative to the z direction and particle 4 is emitted
along the opposite direction. According to Ref. [26], three

Mandelstam variables are defined as

s = − P1 + P2ð Þ2 = − P3 + P4ð Þ2, ð5Þ

t = − P1 − P3ð Þ2 = − −P2 + P4ð Þ2, ð6Þ
u = − P1 − P4ð Þ2 = − −P2 + P3ð Þ2, ð7Þ

where P1, P2, P3, and P4 are four-momenta of particles 1, 2, 3,
and 4, respectively.

In the Mandelstam variables, slightly varying the form,ffiffi
s

p
is the center-of-mass energy, −t is the squared momen-

tum transfer between particles 1 and 3, and −u is the squared
momentum transfer between particles 1 and 4. Conveniently,
let ∣t ∣ be the squared momentum transfer between particles
1 and 3. We have

∣t∣ = ∣ E1 − E3ð Þ2 − p
!
1 − p

!
3

� �2
∣

= m2
1 +m2

3 − 2E1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3T
sin θ

� �2
+m2

3

r
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

1

q p3T
tan θ

�����
�����:
ð8Þ

Here, E1 and E3, p
!
1 and p

!
3, and m1 and m3 are the

energy, momentum, and rest mass of particles 1 and 3,
respectively. In particular, p3T is the transverse momentum
of particle 3, which is referred to be perpendicular to the z
direction.

As the energy of incoming photon in the center-of-mass
reference frame of the reaction, E1 in Equation (8) should be
a fixed value. However, E1 has a slight shift from the peak

10–2
10–1

10
102
103
104
105
106
107
108

0 0.2 0.4 0.6 0.8 1

d
𝜎

/d
|t|

 (n
b/

G
eV

2 )

|t| (GeV2)

H1 Collaboration

Q2 = 3.3 GeV2 × 4
Q2 = 6.6 GeV2 × 2
Q2 = 11.5 GeV2 × 1
Q2 = 17.4 GeV2 × 0.5
Q2 = 33.0 GeV2 × 0.5

1

𝛾
⁎
p→𝜌p W = 75 GeV

(a)

10–2

10–1

d
𝜎

/d
|t|

 (n
b/

G
eV

2 )
|t| (GeV2)

H1 Collaboration
𝛾
⁎
p→𝜌Y W = 75 GeV

Q2 = 3.3 GeV2 × 2
Q2 = 6.6 GeV2 × 1
Q2 = 15.8 GeV2 × 1

1

10

102

103

104

105

106

0 1 2 3 4

(b)

10–2
10–1

d
𝜎

/d
|t|

 (n
b/

G
eV

2 ) 

|t| (GeV2)

ZEUS Collaboration
𝛾 p →𝜌0p W= 90 GeV⁎

Q2 = 2.7 GeV2 Q2 =11.9 GeV2

Q2 = 19.7 GeV2

Q2 = 41.0 GeV2

Q2 = 5.0 GeV2

Q2 = 7.8 GeV2

1

10
102
103
104
105
106
107
108
109

0 0.2 0.4 0.6 0.8 1

(c)

Figure 1: The differential cross-section in squared momentum transfer of (a) γ∗p⟶ ρp, (b) γ∗p⟶ ρY , and (c) γ∗p⟶ ρ0p produced in ep
collisions at (a, b)W = 75GeV and (c)W = 90GeV. The experimental data points from (a, b) nonexclusive and (c) exclusive productions are
measured by the H1 [37] and ZEUS Collaborations [39], respectively, with differentQ2 marked in the panels. The data points are fitted by the
Monte Carlo calculations with the Erlang distribution Equation (2) (the solid curves), the Tsallis distribution Equation (3) (the dashed
curves), and the Hagedorn function Equation (4) (the dotted curves) for p3T in Equation (8).
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Table 1: Values of E1, hpti, ns, Ti, and χ2/ndof corresponding to the solid curves in Figures 1–3, where ns = 5 that is not listed in the table to
avoid trivialness. In some cases, ndof is less than 1, which is denoted by “−” in the last column, and the corresponding curve is only to guide
the eyes. For Figure 3(a), the first and second Q2 = 6:8GeV2 are averaged from the ranges of Q2 = 2 – 100 and 5–10GeV2, respectively.

Figure Reaction Main selection E1 (GeV) pth i (GeV/c) Ti (GeV) χ2/ndof

Figure 1(a) γ∗p⟶ ρp

Q2 = 3:3GeV2 0:960 ± 0:003 0:045 ± 0:003 0:174 ± 0:011 17/3
6.6 0:960 ± 0:003 0:048 ± 0:001 0:186 ± 0:004 8/3
11.5 0:960 ± 0:001 0:052 ± 0:001 0:201 ± 0:003 3/3
17.4 0:960 ± 0:003 0:057 ± 0:002 0:221 ± 0:008 9/3
33.0 0:960 ± 0:001 0:061 ± 0:002 0:236 ± 0:007 5/3

Figure 1(b) γ∗p⟶ ρY

Q2 = 3:3GeV2 0:960 ± 0:020 0:085 ± 0:010 0:329 ± 0:039 47/7
6.6 0:960 ± 0:020 0:100 ± 0:012 0:387 ± 0:046 95/7
15.8 0:960 ± 0:020 0:115 ± 0:020 0:445 ± 0:078 86/7

Figure 1(c) γ∗p⟶ ρ0p

Q2 = 2:7GeV2 0:961 ± 0:004 0:047 ± 0:001 0:182 ± 0:004 22/1
5.0 0:961 ± 0:001 0:052 ± 0:001 0:201 ± 0:003 5/1
7.8 0:961 ± 0:001 0:052 ± 0:002 0:201 ± 0:007 11/1
11.9 0:961 ± 0:001 0:055 ± 0:001 0:213 ± 0:004 2/1
19.7 0:961 ± 0:001 0:056 ± 0:002 0:217 ± 0:008 1/1
41.0 0:961 ± 0:002 0:058 ± 0:002 0:225 ± 0:008 3/1

Figure 2(a) γp⟶ ωp 70GeV <W < 90GeV 0:960 ± 0:010 0:036 ± 0:005 0:139 ± 0:019 5/2

Figure 2(b)
γ∗p⟶ ϕp

Q2 = 3:3GeV2 0:970 ± 0:010 0:045 ± 0:005 0:174 ± 0:020 22/3
6.6 0:970 ± 0:010 0:048 ± 0:003 0:186 ± 0:012 11/3
15.8 0:970 ± 0:010 0:050 ± 0:002 0:194 ± 0:008 9/3

γ∗p⟶ ϕY W = 75GeV 0:970 ± 0:030 0:095 ± 0:007 0:368 ± 0:027 4/−

Figure 2(c) γ∗p⟶ ϕp

Q2 = 2:4GeV2 0:960 ± 0:010 0:058 ± 0:002 0:225 ± 0:008 4/−
3.6 0:960 ± 0:010 0:060 ± 0:005 0:232 ± 0:020 7/−
5.2 0:960 ± 0:010 0:063 ± 0:002 0:244 ± 0:008 4/−
6.9 0:960 ± 0:011 0:065 ± 0:003 0:252 ± 0:012 6/−
9.2 0:960 ± 0:010 0:067 ± 0:002 0:259 ± 0:008 7/−
12.6 0:960 ± 0:012 0:070 ± 0:002 0:271 ± 0:008 5/−
19.7 0:960 ± 0:020 0:072 ± 0:005 0:279 ± 0:019 5/−

Figure 2(d)

pp⟶ ppf0 980ð Þ

ffiffiffiffiffiffiffiffi
sNN

p = 29:1GeV

0:960 ± 0:001 0:062 ± 0:002 0:240 ± 0:008 15/2
pp⟶ ppf1 1285ð Þ 1:018 ± 0:001 0:045 ± 0:002 0:174 ± 0:007 4/2
pp⟶ ppf0 1370ð Þ 1:033 ± 0:002 0:035 ± 0:001 0:136 ± 0:004 86/2
pp⟶ ppf1 1420ð Þ 1:050 ± 0:001 0:058 ± 0:002 0:225 ± 0:008 21/2
pp⟶ ppf0 1500ð Þ 1:056 ± 0:001 0:063 ± 0:002 0:244 ± 0:008 16/2

Figure 3(a) γ∗p⟶ J/ψp

Q2 = 3:1GeV2 1:690 ± 0:020 0:020 ± 0:001 0:077 ± 0:004 3/−
6.8 1:690 ± 0:010 0:022 ± 0:001 0:085 ± 0:004 5/−
6.8 1:690 ± 0:010 0:022 ± 0:001 0:085 ± 0:004 1/−
16.0 1:690 ± 0:010 0:023 ± 0:001 0:089 ± 0:004 8/−

Figure 3(b) γp⟶ J/ψp

Q2 = 0:05GeV2 1:700 ± 0:005 0:018 ± 0:001 0:070 ± 0:004 35/−
3.2 1:700 ± 0:001 0:020 ± 0:001 0:077 ± 0:004 2/−
7.0 1:700 ± 0:004 0:022 ± 0:002 0:085 ± 0:008 10/−
22.4 1:700 ± 0:001 0:024 ± 0:002 0:093 ± 0:008 3/4
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value due to different experiments and selections. To obtain a
good fit, we treat E1 as a parameter which is the same or has
small difference in the same/similar reactions. p3T obeys one
of Equations (2)–(4) and θ obeys an isotropic assumption in
the center-of-mass reference frame, which will be discussed
later in this section. To obtain ∣t ∣ , we may perform the
Monte Carlo calculations. Note that we may calculate ∣t ∣
from two particles, i.e., particles 1 and 3, but not from one
particle. Instead, for one calculation, ∣t ∣ means the squared
momentum transfer in an event. For many calculations, ∣t ∣
distribution can be obtained from the statistics. For conve-
nience in the description, the transverse momentum and rest
mass of particle 3 are also denoted by pT andm0, respectively.

Based on the experiments cited from literature [37–44],
we have used two main selection factors for the data. (1)
The squared photon virtuality Q2 = −P2

γ, where Pγ denotes
the four-momentum of the photon. (2) The center-of-mass

energy
ffiffi
s

p
or W, i.e., W = ffiffi

s
p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðP1 + P2Þ2

q
. Let x denote

the Bjorken scaling variable; one has W2 ≃Q2/x.

2.5. The Initial- and Final-State Temperatures. According to
Refs. [45–47], in a color string percolation approach, the ini-
tial temperature Ti can be estimated as

Ti =

ffiffiffiffiffiffiffiffiffiffi
p2T
� 	
2

s
, ð9Þ

where
ffiffiffiffiffiffiffiffiffihp2Ti

p
is the root mean square of pT and hp2Ti =

Ðmax
0

p2T f1,2,3ðpTÞdpT . In the expression of the initial temperature,
we have used a single string in the cluster for a given particle
production [48], though more than two partons or partons-
like take possible part in the formation of the string. That
is, we have used the color suppression factor FðξÞ to be 1 in
the color string percolation model [48]. Other strings, even
if they exist, do not affect noticeably the production of a given
particle. If other strings are considered, i.e., if we take the
minimum FðξÞ to be 0.6 [48], a higher Ti can be obtained

by multiplying a revised factor,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1/FðξÞp

= 1:291, in Equa-
tion (9).

The extraction of final-state temperature T0 is more com-
plex than that of the initial temperature Ti. Generally, one
may introduce the transverse flow velocity βT in the consid-
ered function and obtain T0 and βT simultaneously [49–57],
in which the effective temperature T no longer appears.
Alternatively, the intercept in T versus m0 is assumed to be
T0 [50, 58–63], and the slope in hpTi versus �m is assumed
to be βT [62–66], where �m denotes the average energy. How-
ever, the alternative method using intercept and slope is not
suitable for us due to the fact that the spectra of more than
two types of particles (e.g., pions, kaons, and protons) are
needed in the extraction which is not our case.

In the γ∗p, γp, and pp collisions discussed in the present
work, the flow effect is not considered by us due to the collec-
tive effect being small in the two-body process. This means
that T0 ≈ T in the considered processes. Here, T appears as
that in Equation (3). Meanwhile, T can be also approximated
by hpti in Equation (1) and p0/n0 in Equation (4). Generally,
we may regard different distributions or functions as differ-
ent “thermometers.” Just like the Celsius thermometer and
the Fahrenheit thermometer, different thermometers mea-
sure different temperatures, though they can be transformed
from one to another according to conversion rules. Although
we may approximately regard T in Equation (3) as T0, a
smaller T0 can be obtained if the flow effect is considered.

As mentioned above, T = hpti = hpTi/ns in Equation (1)
and the Erlang distribution, and Ti =

ffiffiffiffiffiffiffiffiffiffiffiffiffihp2Ti/2
p

. We have T2

n2s = 2T2
i − σ2

pT
, so this would mean that T is basically

encoded in σ2
pT
, the squared variance of pT in the distribution.

This also means that Ti and T are related through pT . It is
understandable, because they reflect the violent degrees of
collisions at different stages. Generally, Ti > T ; this is natural.

Note that although we may use the final-state tempera-
ture, it is not a freeze-out temperature for the small system
discussed in this paper. In particular, for γ∗p and γp reac-
tions, these are just a process describable in terms of

Table 1: Continued.

Figure Reaction Main selection E1 (GeV) pth i (GeV/c) Ti (GeV) χ2/ndof

Figure 3(c) γp⟶ J/ψp

W = 45GeV 1:700 ± 0:012 0:026 ± 0:004 0:101 ± 0:016 12/1
55 1:700 ± 0:018 0:024 ± 0:004 0:093 ± 0:016 15/1
65 1:700 ± 0:006 0:022 ± 0:002 0:085 ± 0:008 14/1
75 1:700 ± 0:015 0:021 ± 0:002 0:081 ± 0:008 16/1
85 1:700 ± 0:010 0:020 ± 0:001 0:077 ± 0:004 6/1
95 1:700 ± 0:010 0:018 ± 0:002 0:070 ± 0:008 5/1

Figure 3(d) γp⟶ J/ψp

W = 105GeV 1:700 ± 0:006 0:017 ± 0:001 0:066 ± 0:004 25/1
119 1:700 ± 0:001 0:016 ± 0:001 0:062 ± 0:004 18/1
144 1:700 ± 0:002 0:015 ± 0:001 0:058 ± 0:004 12/1
181 1:700 ± 0:002 0:014 ± 0:001 0:054 ± 0:004 46/1
251 1:700 ± 0:001 0:013 ± 0:001 0:050 ± 0:004 15/1
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Table 2: Values of E1, T , n, and χ
2/ndof corresponding to the dashed curves in Figures 1–3, where “−” in the last column denotes the case of

ndof < 1 and the corresponding curve is only to guide the eyes.

Figure Reaction Main selection E1 (GeV) T (GeV) n χ2/ndof

Figure 1(a) γ∗p⟶ ρp

Q2 = 3:3GeV2 0:950 ± 0:003 0:032 ± 0:002 18:0 ± 1:5 27/3
6.6 0:950 ± 0:002 0:037 ± 0:002 17:5 ± 2:0 5/3
11.5 0:950 ± 0:002 0:039 ± 0:001 17:0 ± 1:0 6/3
17.4 0:950 ± 0:005 0:049 ± 0:002 16:0 ± 2:0 6/3
33.0 0:950 ± 0:005 0:054 ± 0:002 15:0 ± 2:0 5/3

Figure 1(b) γ∗p⟶ ρY

Q2 = 3:3GeV2 0:950 ± 0:010 0:065 ± 0:015 5:0 ± 1:0 55/7
6.6 0:950 ± 0:010 0:075 ± 0:011 4:5 ± 1:1 102/7
15.8 0:950 ± 0:010 0:085 ± 0:020 4:2 ± 2:0 68/7

Figure 1(c) γ∗p⟶ ρ0p

Q2 = 2:7GeV2 0:950 ± 0:002 0:035 ± 0:001 17:0 ± 2:0 35/1
5.0 0:950 ± 0:001 0:039 ± 0:002 16:0 ± 1:0 8/1
7.8 0:950 ± 0:003 0:041 ± 0:002 15:0 ± 0:5 8/1
11.9 0:950 ± 0:002 0:043 ± 0:002 14:0 ± 1:0 9/1
19.7 0:950 ± 0:002 0:045 ± 0:001 13:0 ± 1:0 2/1
41.0 0:950 ± 0:001 0:047 ± 0:001 12:0 ± 1:0 2/1

Figure 2(a) γp⟶ ωp 70GeV <W < 90GeV 0:960 ± 0:010 0:021 ± 0:003 20:0 ± 2:0 5/2

Figure 2(b)
γ∗p⟶ ϕp

Q2 = 3:3GeV2 0:970 ± 0:010 0:025 ± 0:002 10:0 ± 1:5 9/3
6.6 0:970 ± 0:010 0:027 ± 0:003 9:0 ± 1:0 11/3
15.8 0:970 ± 0:010 0:028 ± 0:003 8:0 ± 1:0 23/3

γ∗p⟶ ϕY W = 75GeV 0:970 ± 0:010 0:060 ± 0:008 5:0 ± 1:0 5/−

Figure 2(c) γ∗p⟶ ϕp

Q2 = 2:4GeV2 0:961 ± 0:001 0:040 ± 0:001 9:0 ± 0:1 2/−
3.6 0:961 ± 0:001 0:041 ± 0:001 8:3 ± 0:1 1/−
5.2 0:961 ± 0:001 0:043 ± 0:001 7:4 ± 0:3 3/−
6.9 0:961 ± 0:001 0:043 ± 0:001 7:2 ± 0:2 3/−
9.2 0:961 ± 0:001 0:045 ± 0:001 7:0 ± 0:2 3/−
12.6 0:961 ± 0:001 0:046 ± 0:002 6:7 ± 0:3 3/−
19.7 0:961 ± 0:001 0:048 ± 0:003 5:4 ± 0:3 1/−

Figure 2(d)

pp⟶ ppf0 980ð Þ

ffiffiffiffiffiffiffiffi
sNN

p = 29:1GeV

0:965 ± 0:001 0:047 ± 0:003 8:0 ± 1:0 9/2
pp⟶ ppf1 1285ð Þ 1:017 ± 0:001 0:021 ± 0:001 12:6 ± 0:2 6/2
pp⟶ ppf0 1370ð Þ 1:033 ± 0:001 0:013 ± 0:001 12:0 ± 0:3 102/2
pp⟶ ppf1 1420ð Þ 1:050 ± 0:004 0:030 ± 0:004 9:5 ± 0:7 17/2
pp⟶ ppf0 1500ð Þ 1:062 ± 0:001 0:034 ± 0:003 7:0 ± 0:5 15/2

Figure 3(a) γ∗p⟶ J/ψp

Q2 = 3:1GeV2 1:680 ± 0:010 0:0022 ± 0:0001 22:0 ± 1:0 6/−
6.8 1:680 ± 0:004 0:0024 ± 0:0001 20:0 ± 0:3 8/−
6.8 1:680 ± 0:004 0:0024 ± 0:0001 20:0 ± 0:3 2/−
16.0 1:680 ± 0:003 0:0026 ± 0:0002 16:0 ± 1:0 9/−

Figure 3(b) γp⟶ J/ψp

Q2 = 0:05GeV2 1:685 ± 0:001 0:0019 ± 0:0001 25:0 ± 3:0 33/−
3.2 1:685 ± 0:005 0:0020 ± 0:0001 22:0 ± 2:0 8/−
7.0 1:685 ± 0:002 0:0022 ± 0:0002 20:0 ± 2:0 6/−
22.4 1:685 ± 0:003 0:0026 ± 0:0001 16:0 ± 2:0 3/4

Figure 3(c) γp⟶ J/ψp W = 45GeV 1:690 ± 0:010 0:0042 ± 0:0001 18:0 ± 2:0 27/1
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perturbative quantum chromodynamics (pQCD) and factor-
ization [67], but not a process in which deconfinement or
freeze-out is involved. The meaning of the final-state temper-
ature for the large system such as heavy-ion collisions or the
small system such as pp collisions with high multiplicity is
somehow different from here. At least, for the large system,
we may consider the deconfinement- or freeze-out-involved
picture. Meanwhile, the flow effect in the large system cannot
be neglected.

2.6. The Process of Monte Carlo Calculations. In an analytical
calculation, the function Equations (2)–(4) on pT distribu-
tion are difficult to use in Equation (8) to obtain the ∣t ∣ dis-
tribution. Instead, we may perform the Monte Carlo
calculations. Let R1,2 and r1,2,3,⋯,ns be random numbers dis-
tributed evenly in [0,1]. To use Equation (8), we have to
know the changeable p3T (i.e., pT) and θ. Other quantities
such as E1, m1, and m3 in the equation are fixed, though E1
is treated by us as a parameter with slight variety.

To obtain a concrete value of pT , we need one of Equa-
tions (2)–(4). Solving the equation

ðpT
0
f i p′T
� �

dp′T < R1 <
ðpT+δpT
0

f i p′T
� �

dp′T , ð10Þ

where i = 1, 2, and 3 and δpT is a small shift relative to pT ; we
may obtain concrete pT . It seems that Equation (10) directly
means that the integral of f1ðpTÞ, f2ðpTÞ, and f3ðpTÞ is the
same for the ½0, pT � interval, which essentially means that
the three functions are equal (except for a null measure
set). In fact, the three functions are different in forms because
of Equations (2)–(4), and we need to distinguish them.

In particular, for f1ðpTÞ, we have a simpler expression.
Let us solve the equation

ðpt j
0
f p′t j
� �

dp′t j = r j  j = 1, 2, 3,⋯, nsð Þ: ð11Þ

We have

ptj = − pth i ln rj  j = 1, 2, 3,⋯, nsð Þ, ð12Þ

due to Equation (1) being used, where rj in Equation (12)
replaced 1 − r j because both of them are random numbers
in [0,1]. The simpler expression is

pT = − pth i
Yns
j=1

ln r j, ð13Þ

due to pT being the sum of ns random ptj.
To obtain a concrete value of θ, we need the function

f θ θð Þ = 1
2 sin θ, ð14Þ

which is obeyed by θ under the assumption of isotropic emis-
sion in the center-of-mass reference frame. Solving the equa-
tion

ðθ
0
f θ θ′
� �

dθ′ = R2, ð15Þ

we have

θ = 2 arcsin
ffiffiffiffiffi
R2

p� �
, ð16Þ

which is needed by us.
According to the concrete values of pT and θ, and using

other quantities, the value of ∣t ∣ can be obtained from Equa-
tion (8). After repeating the calculations many times, the dis-
tribution of ∣t ∣ is obtained statistically. Based on the method
of least squares, the related parameters are obtained natu-
rally. Meanwhile, Ti can be obtained from Equation (9).
hpTi and hp2Ti can be obtained from one of Equations
(2)–(4) or from the statistics. The errors of parameters are
obtained by the general method of statistical simulation.

Table 2: Continued.

Figure Reaction Main selection E1 (GeV) T (GeV) n χ2/ndof

55 1:690 ± 0:010 0:0038 ± 0:0006 19:0 ± 4:0 35/1
65 1:690 ± 0:010 0:0033 ± 0:0005 20:0 ± 3:0 32/1
75 1:690 ± 0:030 0:0030 ± 0:0007 21:0 ± 5:0 28/1
85 1:690 ± 0:003 0:0026 ± 0:0003 22:0 ± 3:0 18/1
95 1:690 ± 0:007 0:0020 ± 0:0003 23:0 ± 3:0 12/1

Figure 3(d) γp⟶ J/ψp

W = 105GeV 1:690 ± 0:003 0:0013 ± 0:0003 24:0 ± 3:0 34/1
119 1:690 ± 0:001 0:0012 ± 0:0004 25:0 ± 2:0 23/1
144 1:690 ± 0:005 0:0011 ± 0:0004 26:0 ± 3:0 20/1
181 1:690 ± 0:001 0:0010 ± 0:0003 27:0 ± 3:0 40/1
251 1:690 ± 0:001 0:0009 ± 0:0003 28:0 ± 2:0 17/1
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Table 3: Values of E1, p0, n0, and χ
2/ndof corresponding to the dotted curves in Figures 1–3, where “−” in the last column denotes the case of

ndof < 1 and the corresponding curve is only to guide the eyes.

Figure Reaction Main selection E1 (GeV) p0 (GeV/c) n0 χ2/ndof

Figure 1(a) γ∗p⟶ ρp

Q2 = 3:3GeV2 0:960 ± 0:010 1:70 ± 0:11 19:0 ± 1:5 66/3
6.6 0:960 ± 0:003 1:85 ± 0:02 18:0 ± 0:8 19/3
11.5 0:960 ± 0:007 1:90 ± 0:10 17:5 ± 2:0 16/3
17.4 0:960 ± 0:007 2:02 ± 0:05 15:8 ± 0:8 16/3
33.0 0:960 ± 0:005 2:12 ± 0:10 15:0 ± 1:0 9/3

Figure 1(b) γ∗p⟶ ρY

Q2 = 3:3GeV2 0:960 ± 0:020 2:10 ± 0:37 15:0 ± 2:7 78/7
6.6 0:960 ± 0:020 2:30 ± 0:17 14:0 ± 0:9 118/7
15.8 0:960 ± 0:020 2:50 ± 0:27 13:5 ± 1:0 74/7

Figure 1(c) γ∗p⟶ ρ0p

Q2 = 2:7GeV2 0:950 ± 0:003 1:59 ± 0:10 18:5 ± 0:5 55/1
5.0 0:950 ± 0:001 1:61 ± 0:04 18:0 ± 0:5 34/1
7.8 0:950 ± 0:002 1:63 ± 0:04 17:0 ± 1:0 33/1
11.9 0:950 ± 0:003 1:63 ± 0:10 16:5 ± 1:0 29/1
19.7 0:950 ± 0:002 1:63 ± 0:05 16:0 ± 1:3 16/1
41.0 0:950 ± 0:002 1:65 ± 0:05 15:8 ± 0:4 2/1

Figure 2(a) γp⟶ ωp 70GeV<W<90GeV 0:960 ± 0:010 1:30 ± 0:05 21:0 ± 2:0 7/2

Figure 2(b)
γ∗p⟶ ϕp

Q2 = 3:3GeV2 0:970 ± 0:010 1:75 ± 0:05 20:0 ± 2:0 12/3
6.6 0:970 ± 0:010 1:80 ± 0:04 19:0 ± 1:0 22/3
15.8 0:970 ± 0:010 1:85 ± 0:03 18:0 ± 1:0 37/3

γ∗p⟶ ϕY W = 75GeV 0:970 ± 0:020 1:50 ± 0:20 11:0 ± 1:0 6/−

Figure 2(c) γ∗p⟶ ϕp

Q2 = 2:4GeV2 0:962 ± 0:002 2:20 ± 0:03 16:2 ± 0:4 10/−
3.6 0:962 ± 0:002 2:22 ± 0:02 16:0 ± 0:5 5/−
5.2 0:962 ± 0:002 2:24 ± 0:04 15:7 ± 0:8 4/−
6.9 0:962 ± 0:002 2:26 ± 0:05 15:5 ± 0:5 5/−
9.2 0:962 ± 0:001 2:29 ± 0:03 15:0 ± 0:3 7/−
12.6 0:962 ± 0:001 2:31 ± 0:03 14:7 ± 0:2 5/−
19.7 0:962 ± 0:001 2:34 ± 0:02 14:4 ± 0:2 1/−

Figure 2(d)

pp⟶ ppf0 980ð Þ ffiffiffiffiffiffiffiffi
sNN

p = 29:1GeV 0:971 ± 0:001 1:53 ± 0:10 13:5 ± 0:7 56/2
pp⟶ ppf1 1285ð Þ 1:023 ± 0:001 2:00 ± 0:10 22:0 ± 0:5 12/2
pp⟶ ppf0 1370ð Þ 1:036 ± 0:002 1:30 ± 0:10 21:0 ± 2:0 132/2
pp⟶ ppf1 1420ð Þ 1:049 ± 0:003 2:10 ± 0:20 16:0 ± 1:5 21/2
pp⟶ ppf0 1500ð Þ 1:065 ± 0:001 2:30 ± 0:20 16:0 ± 1:0 20/2

Figure 3(a) γ∗p⟶ J/ψp

Q2 = 3:1GeV2 1:678 ± 0:001 1:25 ± 0:05 28:0 ± 1:0 5/−
6.8 1:678 ± 0:001 1:29 ± 0:02 26:0 ± 3:0 12/−
6.8 1:678 ± 0:001 1:29 ± 0:02 26:0 ± 3:0 4/−
16.0 1:678 ± 0:001 1:31 ± 0:02 24:0 ± 1:0 12/−

Figure 3(b) γp⟶ J/ψp

Q2 = 0:05GeV2 1:700 ± 0:001 1:20 ± 0:02 29:0 ± 0:5 64/−
3.2 1:700 ± 0:001 1:30 ± 0:02 27:0 ± 0:7 10/−
7.0 1:700 ± 0:001 1:40 ± 0:03 25:0 ± 2:0 5/−
22.4 1:700 ± 0:001 1:50 ± 0:01 23:0 ± 0:1 1/4

Figure 3(c) γp⟶ J/ψp W = 45GeV 1:680 ± 0:003 1:38 ± 0:10 22:0 ± 3:0 19/1
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3. Results and Discussion

3.1. Comparison with Data. Figure 1 shows the differential
cross-section in squared momentum transfer, dσ/d ∣ t ∣ , of
(a) γ∗p⟶ ρp, (b) γ∗p⟶ ρY , and (c) γ∗p⟶ ρ0p pro-
duced in electron-proton (ep) collisions at photon-proton
center-of-mass energy (a, b) W = 75GeV and (c) W = 90
GeV, where σ denotes the cross-section and Y in
Figure 1(b) denotes an “elastic” scattering proton or a diffrac-
tively excited “proton dissociation” [37]. The experimental
data points from (a, b) nonexclusive and (c) exclusive pro-
ductions are measured by the H1 [37] and ZEUS Collabora-
tions [39], respectively, with different average squared
photon virtuality (a) Q2 = 3:3, 6.6, 11.5, 17.4, and 33.0
GeV2; (b) Q2 = 3:3, 6.6, and 15.8GeV2; and (c) Q2 = 2:7,
5.0, 7.8, 11.9, 19.7, and 41.0GeV2. The data points are fitted
by the Monte Carlo calculations with the Erlang distribution
Equation (2) (the solid curves), the Tsallis distribution Equa-
tion (3) (the dashed curves), and the Hagedorn function
Equation (4) (the dotted curves) for p3T in Equation (8).
Some data are scaled by different quantities marked in the
panels for clear visibility. In the calculations, the method of
least squares is used to obtain the parameter values. The
values of E1, hpti, ns, Ti, T , n, p0, and n0 are listed in
Tables 1–3 with χ2 and number of degree of freedom (ndof).
One can see that in most cases, the calculations based on
Equation (8) with Equations (2)–(4) for p3T can fit approxi-
mately the experimental data measured by the H1 and ZEUS
Collaborations.

Figure 2 presents the differential cross-section in squared
momentum transfer, dσ/d ∣ t ∣ , of (a) γp⟶ ωp, (b) γ∗p
⟶ ϕp and γ∗p⟶ ϕY , (c) γ∗p⟶ ϕp, and (d) pp⟶ pp
V (V = f0ð980Þ, f1ð1285Þ, f0ð1370Þ, f1ð1420Þ, and f0ð1500Þ)
produced in (a–c) ep and (d) pp collisions in (a) 70GeV <
W < 90GeV, at (b, c) W = 75GeV, and at (d) proton-
proton center-of-mass energy per nucleon pair

ffiffiffiffiffiffiffiffi
sNN

p = 29:1
GeV. The experimental data points from (a, c) exclusive,
(b) nonexclusive, and (d) exclusive productions are measured
by the ZEUS [40, 41], H1 [37], and WA102 Collaborations
[43, 44], respectively, with different Q2 for only Figure 2(b)

(Q2 = 3:3, 5, 6.6, and 15.8GeV2) and Figure 2(c) (Q2 = 2:4,
3.6, 5.2, 6.9, 9.2, 12.6, and 19.7GeV2). Similar to Figure 1,
the data points are fitted by the Monte Carlo calculations
based on Equation (8). The values of parameters are listed
in Tables 1–3 with χ2/ndof. One can see that in most cases,
the calculations based on Equation (8) with Equations
(2)–(4) for p3T can fit approximately the experimental data
measured by the H1 and ZEUS Collaborations.

Figure 3 displays the differential cross-section in squared
momentum transfer, dσ/d ∣ t ∣ , of (a) γ∗p⟶ J/ψp and (b–
d) γp⟶ J/ψp produced in ep collisions at (a) W = 90GeV,
in (b) 40GeV <W < 160GeV, and at (c, d) Q2 = 0:05GeV2.
The experimental data points from (a) exclusive and (b–d)
nonexclusive productions are measured by the ZEUS [42]
and H1 Collaborations [38], respectively, with (a) Q2 = 3:1,
6.8 averaged in 2–100, 6.8 averaged in 5–10, and 16GeV 2

and (b) Q2 = 0:05, 3.2, 7.0, and 22.4GeV2, as well as with
(c) W = 45, 55, 65, 75, 85, and 95GeV and (d) W = 105,
119, 144, 181, and 251GeV. Similar to Figures 1 and 2, the
data points are fitted by the Monte Carlo calculations based
on Equation (8). The values of parameters are listed in
Tables 1–3 with χ2/ndof. One can see that in most cases,
the calculations based on Equation (8) with Equations
(2)–(4) for p3T can fit approximately the experimental data
measured by the H1 and ZEUS Collaborations.

From the above comparisons, we see that some fits have
large χ2 compared to ndof, corresponding to low confidence
levels. The parameters obtained from these fits are not repre-
senting the data well. We would like to say here that these
values are used only for the qualitative description of the data
tendencies, but not the quantitative interpretation of the data
size. In some cases, ndof < 1, which means that there were at
least as many parameters as data points. This means that a
perfect fit should have been found. However, this was not
the case here. The reason is that we have used given func-
tions, but not any function such as a polynomial.

3.2. Tendency of Parameters. The dependencies of energy E1
of particle 1 on rest mass m0 of particle 3 for different
two-body reactions are given in Figure 4, where

Table 3: Continued.

Figure Reaction Main selection E1 (GeV) p0 (GeV/c) n0 χ2/ndof

55 1:680 ± 0:010 1:33 ± 0:20 23:0 ± 4:0 26/1
65 1:680 ± 0:010 1:29 ± 0:17 24:0 ± 4:0 21/1
75 1:680 ± 0:008 1:27 ± 0:10 24:0 ± 3:0 21/1
85 1:680 ± 0:002 1:25 ± 0:15 25:0 ± 3:0 21/1
95 1:680 ± 0:002 1:21 ± 0:10 26:0 ± 3:0 13/1

Figure 3(d) γp⟶ J/ψp

W = 105GeV 1:680 ± 0:001 1:18 ± 0:06 27:0 ± 1:0 33/1
119 1:680 ± 0:001 1:15 ± 0:12 28:0 ± 1:0 25/1
144 1:680 ± 0:001 1:12 ± 0:11 29:0 ± 2:0 22/1
181 1:680 ± 0:001 1:11 ± 0:07 30:0 ± 1:0 41/1
251 1:680 ± 0:001 1:07 ± 0:07 31:0 ± 3:0 13/1
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Figures 4(a)–4(c) correspond to the results from the
Erlang distribution, Tsallis distribution, and Hagedorn
function, respectively. The types of reactions are marked
in the panels. Different symbols represent the results from
different reactions or collaborations. One can see that the
production of particle 3 with larger m0 needs the partici-
pation of particle 1 with larger E1.

The tendency of E1 versus m0 presented in Figure 4 is
natural due to the conservation of energy. The results from
the three distributions or functions are almost the same, if

not equal to each other, due to the same experimental data
considered. In fact, E1 should be a fixed value for a given
reaction in the present work. However, because different
selections such as different Q2 and W are used in experi-
ments, E1 has a slight shift from the peak value. Thus, we
may regard E1 as a parameter and obtain it from the fits.

The dependencies of (a) hpTi, (b) Ti, (c) T0, (d) n, (e) p0,
and (f) n0 on average squared photon virtuality Q2 for differ-
ent two-body reactions are shown in Figure 5. The types of
reactions are marked in the panels. Different symbols for
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Figure 2: The differential cross-section in squared momentum transfer of (a) γp⟶ ωp, (b) γ∗p⟶ ϕp and γ∗p⟶ ϕY , (c) γ∗p⟶ ϕp, and
(d) pp⟶ ppV (V = f0ð980Þ, f1ð1285Þ, f0ð1370Þ, f1ð1420Þ, and f0ð1500Þ) produced in (a–c) ep and (d) pp collisions in (a) 70GeV <W <
90GeV, at (b, c) W = 75GeV, and at (d)

ffiffiffiffiffiffiffiffi
sNN

p = 29:1GeV. The experimental data points from (a, c) exclusive, (b) nonexclusive, and (d)
exclusive productions are measured by the ZEUS [40, 41], H1 [37], and WA102 Collaborations [43, 44], respectively, with different Q2 for
only (b) and (c). Similar to Figure 1, the data points are fitted by the Monte Carlo calculations based on Equation (8).
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different reactions represent the parameter values extracted
from Figures 1–3 and listed in Tables 1–3, where the Erlang
distribution, Tsallis distribution, and Hagedorn function in
the ranges of available data are used. In particular, hpTi = ns
hpti from Table 1 and T0 = T from Table 2. One can see that
hpTi, Ti, T0, and p0 increase generally with increases in Q2,
and n and n0 decrease significantly with an increase in Q2.

Because of Q2 being a reflection of a hard scale of reac-
tion, this is natural that a harder scale results in a higher exci-
tation degree and then a larger hpTi, Ti, and T0. In most

cases, one can see a large enough n or n0. This means that q
is close to 1 and the reaction systems stay in an approximate
equilibrium state. At a harder scale, the degree of equilibrium
decreases due to more disturbance to the equilibrated resid-
ual partons in the target particle. Then, one has a larger q
and smaller n or n0 when compared with those at the softer
scale.

Figure 6 shows the excitation functions of related param-
eters, i.e., the dependencies of (a) hpTi, (b) Ti, (c) T0, (d) n,
(e) p0, and (f) n0 on the photon-proton center-of-mass
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Figure 3: The differential cross-section in squared momentum transfer of (a) γ∗p⟶ J/ψp and (b–d) γp⟶ J/ψp produced in ep collisions
at (a) W = 90GeV, in (b) 40GeV <W < 160GeV, and at (c, d) Q2 = 0:05GeV 2. The experimental data points from (a) exclusive and (b–d)
nonexclusive productions are measured by the ZEUS [42] and H1 Collaborations [38], respectively, with different Q2 marked in panels (a)
and (b), as well as with different W marked in (c) and (d), where in (a), the first and second Q2 = 6:8GeV 2 are averaged from the ranges
of Q2 = 2 – 100 and 5–10GeV2, respectively. Similar to Figures 1 and 2, the data points are fitted by the Monte Carlo calculations based on
Equation (8).
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energy W for γp⟶ J/ψp reactions. The symbols represent
the parameter values extracted from Figure 3 and listed in
Tables 1–3. Again, hpTi = nshpti from Table 1 and T0 = T
from Table 2. One can see that hpTi, Ti, T0, and p0 decrease
with an increase inW, and n and n0 increase with an increase
in W.

In γp⟶ J/ψp reactions, at a higher center-of-mass
energy, the incident photon has a higher energy. Although
the emitted J/ψ also has a higher energy, it is more inclined

to have a smaller angle. As a comprehensive result, the trans-
verse momentum of J/ψ is smaller, and then, Ti and T0,
which are obtained from the transverse momentum, are also
smaller. In addition, larger n and n0 at a higher collision
energy means more equilibrium due to the shorter collision
time and then less disturbance to the equilibrated residual
partons in the target particle. This situation is different from
nucleus-nucleus collisions in which a cold or spectator
nuclear effect has to be considered.
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Figure 4: The dependencies of E1 onm0 for different two-body reactions which are marked in the panels. (a–c) correspond to the results from
the Erlang distribution, Tsallis distribution, and Hagedorn function, respectively.
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In fact, in nucleus-nucleus collisions, secondary cascade
collisions may happen among produced particles and specta-
tor nucleons. The secondary collisions may cause the emis-
sion angle to increase and then the transverse momentum
to increase. The effect of secondary collisions is more obvious
or nearly saturated at a higher energy. In nucleus-nucleus
collisions at a lower energy, the system approaches equilib-

rium more easily due to a longer interaction time. Con-
versely, at a higher energy, the system does not approach
equilibrium more easily due to the shorter interaction time
for secondary collisions.

3.3. Further Discussion. Before the summary and conclu-
sions, we would like to point out that the concept of
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Figure 5: The dependencies of (a) hpTi, (b) Ti, (c) T0, (d) n, (e) p0, and (f) n0 on Q2 for different two-body reactions. The symbols represent
the parameter values extracted from Figures 1–3 and listed in Tables 1–3. Here, hpTi = nshpti from Table 1 and T0 = T from Table 2.
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temperature used in the present work is valid. Generally, the
concept of temperature is used in a large system with multi-
ple particles, which stays in an equilibrium state or approxi-
mate (local) equilibrium state. From the macroscopic point
of view, the systems of γ∗p, γp, and pp reactions are indeed
small. However, we know that there are lots of events under
the same condition in the experiments. These events obey
the law of grand canonical ensemble in which the concept
of temperature is applicable.

Because the same experimental condition is used in statis-
tics, lots of events are in equilibrium if they consist of a large
statistical system which can be described by the grand canon-
ical ensemble. Particles in the large statistical system obey the
same distribution law such as the same transverse momentum
distribution. From the statistical point of view, particle pro-
ductions in high-energy collisions are a statistical behavior,
and the temperature reflects the width of distribution. The
higher the temperature is, the wider the distribution is.
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The temperature is also a reflection of the average kinetic
energy based on a large statistical system or a single particle.
For a single particle, if the distribution law of kinetic energies
or transverse momenta is known, the temperature of emis-
sion source or interacting system is known, where the source
or system means the large thermal source from the ensemble.
Generally, we say the temperature of source or system, not
saying the temperature of a given particle, from the point of
view of statistical significance of temperature. Based on the
temperature, we may compare the experimental spectra of
different particles in different experiments.

However, different methods have used different distribu-
tions or functions, i.e., different “thermometers.” To unify
these “thermometers” or to find transformations among
them, one has to perform quite extensive analysis. Although
one may use as far as possible the standard distribution such
as the Boltzmann, Fermi-Dirac, or Bose-Einstein distribution
to fit the experimental spectra, it is regretful that a single
standard distribution cannot fit the experimental spectra very
well in general. Naturally, one may use a two-, three-, or even
multicomponent standard distribution to fit the experimen-
tal spectra, though more parameters are introduced.

In fact, the two-, three-, or multicomponent standard dis-
tribution can be fitted satisfactorily by the Tsallis distribution
with q > 1, because the standard distribution is narrower than
the Tsallis distribution [68]. In particular, the standard distri-
bution is equivalent to the Tsallis distribution with q = 1. It is
natural to use the Tsallis distribution to replace the standard
distribution. That is, one may use the Tsallis distribution
with q > 1 to fit the experimental spectra and obtain the tem-
perature, though the Tsallis temperature is less than the stan-
dard one.

As mentioned in the first section and discussed above,
some distributions applied in a large collision system can be
also applied in a small collision system due to the universal-
ity, similarity, or common characteristics existing in high-
energy collisions [27–36]. Based on the same reason, some
statistical or hydrodynamic models applied in the large sys-
tem should be also applied in the small system. Of course, lots
of events are needed in experiments and high statistics is
needed in calculation if performing a Monte Carlo code.

4. Summary and Conclusions

In summary, the differential cross-section in the squared
momentum transfer of ρ, ρ0ω, ϕ, f0ð980Þ, f1ð1285Þ, f0ð
1370Þ, f1ð1420Þ, f0ð1500Þ, and J/ψ produced in γ∗p, γp,
and pp collisions has been analyzed by the Monte Carlo
calculations in which the Erlang distribution, Tsallis distri-
bution, and Hagedorn function (inverse power law) are
separately used to describe the transverse momentum
spectra of the emitted particles. In most cases, the model
results are approximately in agreement with the experi-
mental data measured by the H1, ZEUS, and WA102 Col-
laborations. In some cases, the fits show qualitatively the
data tendencies. The values of the initial- and final-state
temperatures and other related parameters are extracted
from the fitting process. The squared photon virtuality

Q2 and center-of-mass energy W-dependent parameters
are obtained.

With an increase in Q2, the quantities hpTi, Ti, T0,
and p0 increase generally, and the quantities n and n0
decrease significantly. Q2 is a reflection of a hard scale of
reaction. A harder scale results in a higher excitation
degree and then a larger hpTi, Ti, and T0. In most cases,
the reaction system can be regarded as an equilibrium
state. At a harder scale (larger Q2), the degree of equilib-
rium decreases due to more disturbance to the equilibrated
residual partons in the target particle, though the degree of
excitation is high.

With the increase ofW, the quantities hpTi, Ti, T0, and p0
decrease, and the quantities n and n0 increase. In γp⟶ J/ψp
reactions at a high energy, the emitted J/ψ is more inclined to
have a small angle and hence small pT , Ti, and T0. In addi-
tion, the system stays in a state with a higher degree of equi-
librium at high energy due to less disturbance to the
equilibrated residual partons in the target particle. This situ-
ation is different from nucleus-nucleus collisions in which
the influence of a cold or spectator nuclear effect is existent.

Data Availability

This manuscript has no associated data or the data will not be
deposited. (Authors’ comment: the data used to support the
findings of this study are included within the article and are
cited at relevant places within the text as references.)

Ethical Approval

The authors declare that they are in compliance with ethical
standards regarding the content of this paper.

Disclosure

The funding agencies have no role in the design of the study;
in the collection, analysis, or interpretation of the data; in the
writing of the manuscript; or in the decision to publish the
results.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The work of Q.W. and F.H.L. was supported by the National
Natural Science Foundation of China under Grant Nos.
12047571, 11575103, and 11947418; the Scientific and Tech-
nological Innovation Programs of Higher Education Institu-
tions in Shanxi (STIP) under Grant No. 201802017; the
Shanxi Provincial Natural Science Foundation under Grant
No. 201901D111043; and the Fund for Shanxi “1331 Project”
Key Subjects Construction. The work of K.K.O. was sup-
ported by the Ministry of Innovative Development of the
Republic of Uzbekistan within the fundamental project on

15Advances in High Energy Physics



analysis of open data on heavy-ion collisions at RHIC and
LHC.

References

[1] H. Wang, J.-H. Chen, Y.-G. Ma, and S. Zhang, “Charm hadron
azimuthal angular correlations in Au + Au collisions at

ffiffiffiffiffi
sN

p
= 200 GeV from parton scatterings,” Nuclear Science and
Techniques, vol. 30, no. 12, p. 185, 2019.

[2] T.-Z. Yan, S. Li, Y.-N. Wang, F. Xie, and T.-F. Yan, “Yield
ratios and directed flows of light particles from proton-rich
nuclei-induced collisions,” Nuclear Science and Techniques,
vol. 31, p. 15, 2019.

[3] M. Fisli and N. Mebarki, “Top quark pair-production in non-
commutative standard model,” Advances in High Energy Phys-
ics, vol. 2020, Article ID 7279627, 6 pages, 2020.

[4] X.-W. He, F.-M. Wu, H.-R. Wei, and B.-H. Hong, “Energy-
dependent chemical potentials of light hadrons and quarks
based on transverse momentum spectra and yield ratios of
negative to positive particles,” Advances in High Energy Phys-
ics, vol. 2020, Article ID 1265090, 19 pages, 2020.

[5] M. Waqas and B.-C. Li, “Kinetic freeze-out temperature and
transverse flow velocity in Au-Au collisions at RHIC-BES
energies,” Advances in High Energy Physics, vol. 2020, Article
ID 1787183, 14 pages, 2020.

[6] Z.-B. Tang, W.-M. Zha, and Y.-F. Zhang, “An experimental
review of open heavy flavor and quarkonium production at
RHIC,” Nuclear Science and Techniques, vol. 31, no. 8, p. 81,
2020.

[7] C. Shen and L. Yan, “Recent development of hydrodynamic
modeling in heavy-ion collisions,” Nuclear Science and Tech-
niques, vol. 31, no. 12, p. 122, 2020.

[8] H. Yu, D.-Q. Fang, and Y.-G. Ma, “Investigation of the sym-
metry energy of nuclear matter using isospin-dependent quan-
tum molecular dynamics,” Nuclear Science and Techniques,
vol. 31, no. 6, p. 61, 2020.

[9] S. Bhaduri, A. Bhaduri, and D. Ghosh, “Study of di-muon pro-
duction process in pp collision in CMS data from symmetry
scaling perspective,” Advances in High Energy Physics,
vol. 2020, Article ID 4510897, 17 pages, 2020.

[10] A. N. Tawfik, “Out-of-equilibrium transverse momentum
spectra of pions at LHC energies,” Advances in High Energy
Physics, vol. 2020, Article ID 4604608, 7 pages, 2019.

[11] J. K. Nayak, J. Alam, S. Sarkar, and B. Sinha, “Measuring initial
temperature through a photon to dilepton ratio in heavy-ion
collisions,” Journal of Physics G, vol. 35, no. 10, article
104161, 2008.

[12] A. Adare, S. Afanasiev, C. Aidala et al., “Enhanced production
of direct photons in Au+Au collisions at √sNN=200 GeV and
implications for the initial temperature,” Physical Review Let-
ters, vol. 104, article 132301, 2010.

[13] M. Csanád and I. Májer, “Initial temperature and EoS of quark
matter via direct photons,” Physics of Particles and Nuclei Let-
ters, vol. 8, no. 9, pp. 1013–1015, 2011.

[14] M. Csanád and I. Májer, “Equation of state and initial temper-
ature of quark gluon plasma at RHIC,” Central European Jour-
nal of Physics, vol. 10, pp. 850–857, 2012.

[15] R. A. Soltz, I. Garishvili, M. Cheng et al., “Constraining the ini-
tial temperature and shear viscosity in a hybrid hydrodynamic
model of

ffiffiffiffiffi
sN

p = 200 GeV Au+Au collisions using pion spectra,

elliptic flow, and femtoscopic radii,” Physical Review C, vol. 87,
no. 4, article 044901, 2013.

[16] M. Waqas and F.-H. Liu, “Initial, effective, and kinetic freeze-
out temperatures from transverse momentum spectra in high-
energy proton(deuteron)-nucleus and nucleus-nucleus colli-
sions,” The European Physical Journal Plus, vol. 135, no. 2,
p. 147, 2020.

[17] J. Cleymans and M. W. Paradza, “Tsallis statistics in high
energy physics: chemical and thermal freeze-outs,” Physics,
vol. 2, no. 4, pp. 654–664, 2020.

[18] L.-L. Li and F.-H. Liu, “Kinetic freeze-out properties from
transverse momentum spectra of pions in high energy
proton-proton collisions,” Physics, vol. 2, no. 2, pp. 277–308,
2020.

[19] F.-H. Liu and J.-S. Li, “Isotopic production cross section of
fragments in 56Fe+p and 136Xe(124Xe)+Pb reactions over an
energy range from 300A to 1500A MeV,” Physical Review C,
vol. 78, no. 4, article 044602, 2008.

[20] F.-H. Liu, “Unified description of multiplicity distributions of
final-state particles produced in collisions at high energies,”
Nuclear Physics A, vol. 810, no. 1-4, pp. 159–172, 2008.

[21] F.-H. Liu, Y.-Q. Gao, T. Tian, and B.-C. Li, “Unified descrip-
tion of transverse momentum spectrums contributed by soft
and hard processes in high-energy nuclear collisions,” The
European Physical Journal A, vol. 50, no. 6, p. 94, 2014.

[22] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statis-
tics,” Journal of Statistical Physics, vol. 52, no. 1-2, pp. 479–
487, 1988.

[23] B. I. Abelev, J. Adams, M. M. Aggarwal et al., “Strange particle
production in p + p collisions at

ffiffi
s

p = 200 GeV,” Physical
Review C, vol. 75, article 064901, 2007.

[24] R. Hagedorn, “Multiplicities, pT distributions and the expected
hadron ⟶ quark-gluon phase transition,” La Rivista del
Nuovo Cimento, vol. 6, no. 10, pp. 1–50, 1983.

[25] B. Abelev, J. Adam, D. Adamová et al., “Production of
Σ(1385)± and Ξ(1530)0 in proton-proton collisions at

ffiffi
s

p = 7
TeV,” The European Physical Journal C, vol. 75, no. 1, pp. 1–
19, 2015.

[26] N.-S. Zhang, Particle Physics (Volume I), Science Press, Beijing,
China, 1986.

[27] E. K. G. Sarkisyan and A. S. Sakharov, “Multihadron produc-
tion features in different reactions,” AIP Conference Proceed-
ings, vol. 828, pp. 35–41, 2006.

[28] E. K. G. Sarkisyan and A. S. Sakharov, “Relating multihadron
production in hadronic and nuclear collisions,” The European
Physical Journal C, vol. 70, no. 3, pp. 533–541, 2010.

[29] A. N. Mishra, R. Sahoo, E. K. G. Sarkisyan, and A. S. Sakharov,
“Effective-energy budget in multiparticle production in
nuclear collisions,” The European Physical Journal C, vol. 74,
no. 11, article 3147, 2014.

[30] E. K. G. Sarkisyan, A. N. Mishra, R. Sahoo, and A. S. Sakharov,
“Multihadron production dynamics exploring the energy bal-
ance in hadronic and nuclear collisions,” Physical Review D,
vol. 93, no. 5, article 054046, 2016.

[31] E. K. G. Sarkisyan, A. N. Mishra, R. Sahoo, and A. S. Sakharov,
“Centrality dependence of midrapidity density from GeV to
TeV heavy-ion collisions in the effective-energy universality
picture of hadroproduction,” Physical Review D, vol. 94,
no. 1, article 011501, 2016.

[32] E. K. G. Sarkisyan, A. N. Mishra, R. Sahoo, and A. S. Sakharov,
“Effective-energy universality approach describing total

16 Advances in High Energy Physics



multiplicity centrality dependence in heavy-ion collisions,”
EPL, vol. 127, no. 6, article 62001, 2019.

[33] A. N. Mishra, A. Ortiz, and G. Paic, “Intriguing similarities of
high-pT particle production between pp and A−A collisions,”
Physical Review C, vol. 99, no. 3, article 034911, 2019.

[34] P. Castorina, S. Plumari, and H. Satz, “Universal strangeness
production in hadronic and nuclear collisions,” International
Journal of Modern Physics E, vol. 25, no. 8, article 1650058,
2016.

[35] P. Castorina, A. Iorio, D. Lanteri, H. Satz, and M. Spousta,
“Universality in high energy collisions of small and large sys-
tems,” in Proceedings of the 40th International Conference on
High Energy physics – ICHEP2020, vol. 390no. ICHEP2020,
p. 537, Prague, Czech Republic, 2020, https://arxiv.org/abs/
2012.12514.

[36] P. Castorina, A. Iorio, D. Lanteri, H. Satz, and M. Spousta,
“Universality in hadronic and nuclear collisions at high
energy,” Physical Review C, vol. 101, no. 5, article 054902,
2020.

[37] The H1 Collaboration, F. D. Aaron, M. A. Martin et al., “Dif-
fractive electroproduction of ρ and ϕ mesons at HERA,” Jour-
nal of High Energy Physics, vol. 2010, no. 5, p. 32, 2010.

[38] H1 Collaboration, “Elastic J/ψ production at HERA,” The
European Physical Journal C, vol. 46, pp. 585–603, 2006.

[39] ZEUS Collaboration, “Exclusive ρ0 production in deep inelas-
tic scattering at HERA,” PMC Physics A, vol. 1, p. 6, 2007.

[40] ZEUS Collaboration, “Measurement of elastic ω photoproduc-
tion at HERA ZEUS Collaboration,” Zeitschrift für Physik C,
vol. 73, pp. 73–84, 1997.

[41] ZEUS Collaboration, “Exclusive electroproduction of ϕ
mesons at HERA,” Nuclear Physics B, vol. 718, pp. 3–31, 2005.

[42] ZEUS Collaboration, “Exclusive electroproduction of J/ψ
mesons at HERA,” Nuclear Physics B, vol. 695, pp. 3–37, 2004.

[43] WA102 Collaboration, “A coupled channel analysis of the cen-
trally produced K+ K- and π+π- final states in pp interactions at
450 GeV/c,” Physics Letters B, vol. 462, pp. 462–470, 1999.

[44] D. Barberis, W. Beusch, F. G. Binon et al., “A measurement of
the branching fractions of the f1 (1285) and f1 (1420) produced
in central pp interactions at 450 GeV/c,” Physics Letters B,
vol. 440, no. 1-2, pp. 225–232, 1998.

[45] L. J. Gutay, A. S. Hirsch, R. P. Scharenberg, B. K. Srivastava,
and C. Pajares, “De-confinement in small systems: clustering
of color sources in high multiplicity p p collisions at √s = 1.8
TeV,” International Journal of Modern Physics E, vol. 24,
no. 12, article 1550101, 2015.

[46] R. P. Scharenberg, B. K. Srivastava, C. Pajares, and B. K. Srivas-
tava, “Exploring the initial stage of high multiplicity proton-
proton collisions by determining the initial temperature of
the quark-gluon plasma,” Physical Review D, vol. 100, no. 11,
article 114040, 2019.

[47] P. Sahoo, S. De, S. K. Tiwari, and R. Sahoo, “Energy and cen-
trality dependent study of deconfinement phase transition in
a color string percolation approach at RHIC energies,” The
European Physical Journal A, vol. 54, no. 8, p. 136, 2018.

[48] Q. Wang and F.-H. Liu, “Excitation function of initial temper-
ature of heavy flavor quarkonium emission source in high
energy collisions,” Advances in High Energy Physics,
vol. 2020, Article ID 5031494, 31 pages, 2020.

[49] E. Schnedermann, J. Sollfrank, and U. Heinz, “Thermal phe-
nomenology of hadrons from 200A GeV S+S collisions,” Phys-
ical Review C, vol. 48, no. 5, pp. 2462–2475, 1993.

[50] STAR Collaboration, “Systematic measurements of identified
particle spectra in pp, d+Au, and Au+Au collisions at the
STAR detector,” Physical Review C, vol. 79, article 034909,
2009.

[51] STAR Collaboration, “Identified particle production, azi-
muthal anisotropy, and interferometry measurements in
Au+Au collisions at √sNN=9.2 GeV,” Physical Review C,
vol. 81, article 024911, 2010.

[52] Z. B. Tang, Y. C. Xu, L. J. Ruan, G. van Buren, F. Q. Wang, and
Z. B. Xu, “Spectra and radial flow in relativistic heavy ion col-
lisions with Tsallis statistics in a blast-wave description,” Phys-
ical Review C, vol. 79, no. 5, article 051901, 2009.

[53] P. K. Khandai, P. Sett, P. Shukla, and V. Singh, “System size
dependence of hadron pT spectra in p+p and Au+Au collisions
at √sNN=200 GeV,” Journal of Physics G, vol. 41, no. 2, article
025105, 2014.

[54] K. K. Olimov, S. Z. Kanokova, K. Olimov et al., “Average trans-
verse expansion velocities and global freeze-out temperatures
in central Cu+Cu, Au+Au, and Pb+Pb collisions at high ener-
gies at RHIC and LHC,” Modern Physics Letters A, vol. 35,
no. 14, article 2050115, 2020.

[55] K. K. Olimov, S. Z. Kanokova, A. K. Olimov et al., “Combined
analysis of midrapidity transverse momentum spectra of the
charged pions and kaons, protons and antiprotons in p+p
and Pb+Pb collisions at (snn)

1/2=2.76 and 5.02 TeV at the
LHC,” Modern Physics Letters A, vol. 35, no. 29, article
2050237, 2020.

[56] K. K. Olimov, A. Iqbal, and S. Masood, “Systematic analysis of
midrapidity transverse momentum spectra of identified
charged particles in p+p collisions at (snn)

1/2=2.76, 5.02, and
7 TeV at the LHC,” International Journal of Modern Physics
A, vol. 35, no. 27, article 2050167, 2020.

[57] K. K. Olimov, K. I. Umarov, A. Iqbal, S. Masood, and F.-H. Liu,
“Analysis of midrapidity transverse momentum distributions
of the charged pions and kaons, protons and antiprotons in
p+p collisions at (snn)

1/2=2.76, 5.02, and 7 TeV at the LHC,”
in Proceedings of International Conference "Fundamental and
Applied Problems of Physics", pp. 78–83, Tashkent, Uzbekistan,
September 2020.

[58] S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, and Y. Nara,
“Effects of hadronic rescattering on multistrange hadrons in
high-energy nuclear collisions,” Physical Review C, vol. 92,
no. 4, article 044907, 2015.

[59] H. Heiselberg and A.-M. Levy, “Elliptic flow and Hanbury-
Brown-Twiss correlations in noncentral nuclear collisions,”
Physical Review C, vol. 59, no. 5, pp. 2716–2727, 1999.

[60] U. W. Heinz, “Concepts of heavy-ion physics,” in Lecture
Notes for Lectures Presented at the 2nd CERN-Latin-
American School of High-Energy Physics, San Miguel Regla,
Mexico, June 2003https://arxiv.org/abs/hep-ph/0407360.

[61] R. Russo, Measurement of D+ meson production in p-Pb colli-
sions with the ALICE detector, [Ph.D. thesis], Universita degli
Studi di Torino, Italy, 2015.

[62] H.-L. Lao, F.-H. Liu, B.-C. Li, and M.-Y. Duan, “Kinetic freeze-
out temperatures in central and peripheral collisions: which
one is larger?,” Nuclear Science and Techniques, vol. 29,
no. 6, p. 82, 2018.

[63] H.-L. Lao, F.-H. Liu, B.-C. Li, M.-Y. Duan, and R. A. Lacey,
“Examining the model dependence of the determination of
kinetic freeze-out temperature and transverse flow velocity in
small collision system,” Nuclear Science and Techniques,
vol. 29, no. 11, p. 164, 2018.

17Advances in High Energy Physics

https://arxiv.org/abs/2012.12514
https://arxiv.org/abs/2012.12514
https://arxiv.org/abs/hep-ph/0407360


[64] H.-R. Wei, F.-H. Liu, and R. A. Lacey, “Kinetic freeze-out tem-
perature and flow velocity extracted from transverse momen-
tum spectra of final-state light flavor particles produced in
collisions at RHIC and LHC,” The European Physical Journal
A, vol. 52, no. 4, p. 102, 2016.

[65] H.-L. Lao, H.-R. Wei, and F.-H. Liu, “An evidence of mass-
dependent differential kinetic freeze-out scenario observed in
Pb-Pb collisions at 2.76 TeV,” The European Physical Journal
A, vol. 52, no. 7, p. 203, 2016.

[66] H.-R. Wei, F.-H. Liu, and R. A. Lacey, “Disentangling random
thermal motion of particles and collective expansion of source
from transverse momentum spectra in high energy collisions,”
Journal of Physica G, vol. 43, no. 12, article 125102, 2016.

[67] A. D. Martin and M. G. Ryskin, “The photon PDF of the pro-
ton,” The European Physical Journal C, vol. 74, no. 9, article
3040, 2014.

[68] F.-H. Liu, Y.-Q. Gao, and H.-R. Wei, “On descriptions of par-
ticle transverse momentum spectra in high energy collisions,”
Advances in High Energy Physics, vol. 2014, Article ID 293873,
12 pages, 2014.

18 Advances in High Energy Physics


	Initial- and Final-State Temperatures of Emission Source from Differential Cross-Section in Squared Momentum Transfer in High-Energy Collisions
	1. Introduction
	2. Formalism and Method
	2.1. The Erlang Distribution
	2.2. The Tsallis Distribution
	2.3. The Hagedorn Function
	2.4. The Squared Momentum Transfer
	2.5. The Initial- and Final-State Temperatures
	2.6. The Process of Monte Carlo Calculations

	3. Results and Discussion
	3.1. Comparison with Data
	3.2. Tendency of Parameters
	3.3. Further Discussion

	4. Summary and Conclusions
	Data Availability
	Ethical Approval
	Disclosure
	Conflicts of Interest
	Acknowledgments

