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E-mail: bbhattach@ltu.edu, datta@phy.olemiss.edu,

skamali@go.olemiss.edu, london@lps.umontreal.ca
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proposed. In this paper, we show how CP-violating observables can be used to distinguish

these NP models. Because ~pτ cannot be measured (the decay products of the τ include

the undetected ντ ), obtaining the angular distribution of B̄0 → D∗+τ−ν̄τ is problematic.

Instead, we focus here on B̄0 → D∗+(→ D0π+)µ−ν̄µ. This process may also receive

contributions from the same NP, and LHCb intends to measure the CP-violating angular

asymmetries in this decay. There are two classes of NP models that contribute to b →
cµ−ν̄µ. These involve (i) a W ′ (two types) or (ii) a leptoquark (LQ) (six types). The

most popular NP models predict no CP-violating effects, so the measurement of nonzero

CP-violating asymmetries would rule them out. Furthermore these measurements allow

one to distinguish the W ′ and LQ models, and to differentiate among several LQ models.
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1 Introduction

At present, there are discrepancies with the predictions of the standard model (SM) in

the measurements of RD(∗) ≡ B(B̄ → D(∗)τ−ν̄τ )/B(B̄ → D(∗)`−ν̄`) (` = e, µ) [1–4] and

RJ/ψ ≡ B(B+
c → J/ψτ+ντ )/B(B+

c → J/ψµ+νµ) [5]. The experimental results are shown

in table 1. The deviation from the SM in RD and RD∗ (combined) is at the 4σ level [6–9],

while it is 1.7σ in RJ/ψ [10]. These measurements suggest the presence of new physics

(NP) in b→ cτ−ν̄ decays.

There have been numerous papers examining the nature of the NP required to explain

the above anomalies. These include both model-independent [10–21] and model-dependent

analyses [22–49]. There are therefore many possibilities for the NP. In refs. [12, 50–64], a

variety of observables are proposed for distinguishing the various NP explanations. These

include the q2 distribution, D∗ polarization, the τ polarization, etc. In this paper, we

focus on the measurement of CP-violating observables as a means of differentiating the

NP scenarios.1

1There are also anomalies in various observables involving the decay b → sµ+µ−, and several different

NP explanations have been proposed. In ref. [65] it is shown that these NP models can be distinguished

through the measurement of CP-violating observables in B → K∗µ+µ−.
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Observable Measurement/Constraint

R
τ/`
D∗ /(R

τ/`
D∗ )SM 1.18± 0.06 [1–4]

R
τ/`
D /(R

τ/`
D )SM 1.36± 0.15 [1–4]

R
µ/e
D∗ /(R

µ/e
D∗ )SM 1.00± 0.05 [6]

R
τ/µ
J/ψ/(R

τ/µ
J/ψ)SM 2.51± 0.97 [5]

Table 1. Measured values of observables that suggest NP in b→ cτ−ν̄.

All CP-violating effects require the interference of two amplitudes with different weak

(CP-odd) phases. The most common observable is the direct CP asymmetry, Adir, which

is proportional to Γ(B̄0 → D∗+τ−ν̄τ ) − Γ(B0 → D∗−τ+ντ ). Adir can be nonzero only if

the interfering amplitudes also have different strong (CP-even) phases. Now, strong phases

can only arise in hadronic transitions, and here the only such transition is B̄ → D∗ (or

b → c at the quark level). Thus, whether the decay proceeds within the SM or with NP,

the strong phase will be the same. There is one possible exception: if the NP mediator

has colour (e.g., a leptoquark), it can be involved in gluon exchange, leading to additional

strong phases. However, strong phases generated in this way cannot be large [66]. As a

result, though Adir can be nonzero, we expect it to be small.

The main CP-violating effects in B̄0 → D∗+(→ D0π+)τ−ν̄τ therefore appear as CP-

violating asymmetries in the angular distribution.2 These are kinematical observables,

meaning that, in order to generate such effects, the two interfering amplitudes must have

different Lorentz structures. This fact allows us to distinguish different NP explanations.

To see this, we note that, in the SM, b→ cτ−ν̄τ arises through the exchange of a W ;

the four-fermion effective operator is (V −A)× (V −A) (LL): cSM c̄LγµbLτ̄Lγ
µντ,L. If the

NP coupling is also LL, it simply adds to the SM contribution, so that the full coefficient

of the operator is cSM + cNP. Compared to the SM alone, the correction to the rate is then

2 Re(cSMc
∗
NP) + |cNP|2. On the other hand, if the NP four-fermion effective operator has

a Lorentz structure other than LL, there is no SM-NP interference and the correction to

the rate is simply |cNP|2. We generally expect NP effects to be small, i.e., |cNP| < |cSM|,
in which case the largest correction to the rate comes from the SM-NP interference term,

2 Re(cSMc
∗
NP). For this reason, scenarios in which the NP four-fermion effective operator

is also LL are the preferred explanations. However, in this case, because the SM and NP

have the same Lorentz structure, their interference cannot produce CP-violating angular

asymmetries. That is, if a nonzero asymmetry were measured, it would rule out NP

scenarios with purely LL couplings. Four-fermion effective operators with other Lorentz

structures would be required, and these could be distinguished by the different types of

CP-violating angular asymmetries that they produce.

In refs. [15, 51], the decay B̄0 → D∗+(→ D0π+)τ−ν̄τ was analyzed in the context of an

effective Lagrangian containing NP four-fermion operators with all Lorentz structures. The

angular distribution was computed, giving the various contributions to the CP-violating

angular asymmetries. However, there is a practical problem here: the reconstruction of the

2Another possibility is to use excited charm mesons, see ref. [60].
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angular asymmetries requires the knowledge of ~pτ . But since the τ decays to final-state

particles that include ντ , which is undetected, ~pτ cannot be measured.

A complete analysis of CP-violating angular asymmetries in this decay must there-

fore include information related to the decay products of the τ . One such attempt was

made in ref. [67]. There the decay B̄ → Dτ−ν̄τ was considered, with τ → V −(→
π−π0, π−π+π− or π−π0π0) ντ , and a complicated kinematical CP asymmetry was con-

structed. Our ultimate goal is to perform a complete angular analysis of B̄0 → D∗+(→
D0π+)τ−ν̄τ , including the angular information from the τ decay, and compute the NP

contributions to all possible CP-violating angular asymmetries. Some work along these

lines can be found in ref. [68].

In this paper, we take a first step towards this goal by examining the NP contribution

to the CP-violating angular asymmetries in B̄0 → D∗+µ−ν̄µ. There are two reasons for

starting here. First, LHCb has announced [69] that it will perform a detailed angular

analysis of this decay, with the aim of extracting the coefficients of the CP-violating angular

asymmetries. It is important to show exactly what the implications of these measurements

are for NP. Second, although the preferred explanation of the RD(∗) and RJ/ψ anomalies is

NP in b→ cτ−ν̄, this same NP may well also contribute to b→ cµ−ν̄, leading to deviations

from the SM in B̄0 → D∗+µ−ν̄.3

We begin in section 2 with a derivation of the angular distribution for B̄ → D∗(→
Dπ)`−ν̄`, both in the SM and with the addition of NP. This angular distribution contains

several CP-violating angular asymmetries. In section 3, we describe the various NP models

that can contribute to B̄0 → D∗+µ−ν̄µ, and compute their contributions to the various

CP-violating observables. This provides all the NP implications of the measurement of the

CP-violating angular asymmetries. We conclude in section 4.

2 Angular analysis

In this section we discuss the kinematics of the decay B̄ → D∗(→ Dπ)`−ν̄` and define

the angular observables in the process using transversity amplitudes. The total decay

amplitude for this process can be expressed as a sum over several pairs of effective two-

body decays. In the most general case, several of these are due to NP, while one arises

from the SM. We begin by examining the SM contribution.

2.1 Transversity amplitudes: SM

Following ref. [70], the decay B̄ → D∗`−ν̄` is considered to be B̄ → D∗W ∗−, where the

on-shell D∗ decays to Dπ and the off-shell W ∗− decays to `−ν̄`.
4 Its amplitude is given by

M(m;n)(B → D∗W ∗) = ε∗µD∗(m)Mµνε
∗ν
W ∗(n) , (2.1)

where εµV ∗(m) is the polarization of a vector particle (D∗ or W ∗). Here m,n = ±1, 0 and

t represent the transverse, longitudinal and timelike polarizations, respectively. (Only the

off-shell W ∗− has a timelike polarization.)

3Note that, since R
µ/e
D∗ /(R

µ/e
D∗ )SM = 1.00 ± 0.05 (table 1), NP that contributes to b → cµ−ν̄ must also

equally affect b→ ce−ν̄.
4The angular distributions for semileptonic B decays were also presented in [71].
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In the B-meson rest frame we write the polarizations of the two vector particles as

εµD∗(±) = (0, 1,±i, 0)/
√

2 , εµD∗(0) = (kz, 0, 0, k0)/mD∗ , (2.2)

εµW ∗(±) = (0, 1,∓i, 0)/
√

2 , εµW ∗(0) = −(qz, 0, 0, q0)/
√
q2 , εµW ∗(t) = qµ/

√
q2 ,

where kµ = (k0, 0, 0, kz) and qµ = (q0, 0, 0, qz) are the four momenta of the D∗ and W ∗,

respectively, both written in the rest frame of the B. The polarization vectors of the

off-shell W ∗ satisfy the following orthonormality and completeness relations:

ε∗µW ∗(m)εW ∗µ(m′) = gmm′ ,∑
m,m′

ε∗µW ∗(m)ενW ∗(m
′)gmm′ = gµν , (2.3)

where gmm′ = diag(+,−,−,−) for m = t,±, 0. For the on-shell D∗, these relations are

ε∗µD∗(m)εD∗µ(m′) = −δmm′ ,∑
m,m′

ε∗µD∗(m)ενD∗(m
′)δmm′ = −gµν +

kµkν

m2
D∗

. (2.4)

Since the B meson has spin 0, of the 12 combinations of D∗ and W ∗ polarizations,

only 4 are allowed, producing the following helicity amplitudes:

M(+;+)(B → D∗W ∗) = A+ ,

M(−;−)(B → D∗W ∗) = A− ,
M(0;0)(B → D∗W ∗) = A0 ,

M(0;t)(B → D∗W ∗) = At . (2.5)

One may also go to the transversity basis by writing the amplitudes involving transverse

polarizations as

A||,⊥ = (A+ ±A−)/
√

2 . (2.6)

The full amplitude for the decay process B → D∗(→ Dπ)`−ν̄` can now be expressed as

M(B → D∗(→ Dπ)W ∗(→ `−ν̄`)) ∝
∑

m,m′=±,0
εσD∗(m)(pD)σ gmm′ ε

∗ρ
D∗(m

′)Mρν (2.7)

×
∑

n,n′=t,±,0
ε∗νW ∗(n

′) gn′n ε
µ
W ∗(n) (ū`γµPLvν̄`) .

Here we have made explicit use of the fact that εσD∗(pD∗)σ = εσD∗(pD + pπ)σ = 0, so that

A(D∗ → Dπ) ∝ εσD∗(pD − pπ)σ = 2εσD∗(pD)σ. In the above amplitude, one can project out

the relevant helicity components to obtain

M(B → D∗(→ Dπ)W ∗(→ `−ν̄`))

∝
∑

m,m′=±,0

∑
n,n′=t,±,0

εσD∗(m)(pD)σ gmm′M(m′,n′)(B → D∗W ∗)

× gn′n εµW ∗(n) (ū`γµPLvν̄`)

∝ −
∑

m=±,0

∑
n=t,±,0

gnnHD∗(m)M(m,n)(B → D∗W ∗)LW ∗(n) , (2.8)
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where

HD∗(m) = εD∗(m) · pD , LW ∗(n) = εµW ∗(n)(ū`γµPLvν̄`) . (2.9)

The notation of eq. (2.8) can be simplified by defining a timelike polarization for the D∗:

HD∗(t) ≡ HD∗(0). In this case, the helicities of eq. (2.5) become M(m;m)(B → D∗W ∗) =

Am and

M(B → D∗(→ Dπ)W ∗(→ `−ν̄`)) ∝ −
∑

m=t,±,0
gmmAmHD∗(m)LW ∗(m) . (2.10)

Written in this form, the differential decay rate can now be constructed from the

helicity amplitudes and the Lorentz-invariant quantities HD∗ and LW ∗ . The spin-summed

square of the amplitude is

|M|2 ∝
∑

m,m′=t,±,0
gmmgm′m′ (AmA∗m′)

(
HD∗(m)H∗D∗(m′)

) ∑
spins

LW ∗(m)L∗W ∗(m′) . (2.11)

The leptonic part of the above squared amplitude is given in eq. (A.2).

2.2 New physics

From eq. (2.10), we see that, in the SM, the decay amplitude can be written as the prod-

uct of a hadronic piece HD∗(m), a leptonic piece LW ∗(m), and a helicity amplitude Am,

summed over all helicities m. As we will see, this same structure holds in the presence

of NP. We can consider separately the NP leptonic and hadronic contributions. We begin

with the leptonic piece.

In the SM, we have B̄ → D∗W ∗−, where the W ∗− decays to `−ν̄` via a (V − A)

interaction. If NP is present, there are several possible differences. First, there may also be

scalar and/or tensor interactions. Second, the decay products may include a ν̄ of a flavour

other than `. Finally, a right-handed (RH), sterile neutrino may be produced [42, 43, 48].

In what follows, we assume that neutrinos are left-handed, as in the SM, though we will

discuss how our analysis is affected if a RH neutrino is involved. Regarding the ν̄ flavour,

technically we should write ν̄i and sum over all possibilities for i (since the ν̄ is undetected).

However, this makes the notation cumbersome, and does not change the physics. For this

reason, for notational simplicity, we continue to write ν̄`, though the reader should be

aware that other ν̄ flavours are possible. Thus, in the presence of NP, the relevant two-

body processes to consider are B̄ → D∗N∗−(→ `−ν̄`), where N = S−P, V −A, T represent

left-handed scalar, vector and tensor interactions, respectively. In what follows, we label

these SP , V A and T . (The V A contribution includes that of the SM.)

Turning to the hadronic piece, we note that the underlying decay is b → c`−ν̄. For

each of the leptonic SP , V A and T Lorentz structures, we introduce NP contributions to

the b→ c transition. The effective Hamiltonian is

Heff =
GFVcb√

2

{
[(1 + gL) c̄γµ(1− γ5)b+ gR c̄γµ(1 + γ5)b] ¯̀γµ(1− γ5)ν` (2.12)

+ [gS c̄b+ gP c̄γ5b] ¯̀(1− γ5)ν` + gT c̄σ
µν(1− γ5)b¯̀σµν(1− γ5)ν` + h.c.

}
.
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2.3 Transversity amplitudes: NP

Including all possible contributions (SM + NP), the amplitude for the process can be

expressed as

MSM+NP ∝
∑

m,m′=±,0
ενD∗(m)(pD)ν gmm′ ε

∗µ
D∗(m

′)MSP
µ (ū`PLvν̄`)

+
∑
m,m′

εσD∗(m)(pD)σ gmm′ ε
∗ρ
D∗(m

′)MV A
ρν

∑
n,n′

ε∗νV A(n′) gn′n ε
µ
V A(n) (ū`γµPLvν̄`)

+
∑
m,m′

εβD∗(m)(pD)β gmm′ ε
∗ρ
D∗(m

′)MT
ρ,σα

×
∑
n,n′

ε∗σT (n′) gn′n ε
µ
T (n)

∑
p,p′

ε∗αT (p′) gp′p ε
ν
T (p) (ū`σµνPLvν̄`) . (2.13)

The vector part is identical to the SM with the SM coupling replaced by possible NP

couplings in the hadronic amplitudes.

As in the vector-current case, we can define hadronic amplitudes by contracting the

currents with polarization vectors of the intermediate states. The scalar, vector, and tensor

amplitudes are

MSP
(m)(B → D∗SP ∗) = ε∗µD∗(m)MSP

µ ,

MV A
(m;n)(B → D∗V A∗) = ε∗µD∗(m)MV A

µν ε∗νV A(n) ,

MT
(m;n,p)(B → D∗T ∗) = iε∗ρD∗(m)MT

ρ,σα ε
∗σ
T (n) ε∗αT (p) . (2.14)

Using the above definitions we can now rewrite the total amplitude of eq. (2.13) as

MSM+NP ∝ −
∑

m=±,0
HD∗(m)

{
MSP

(m) LSP +
∑

n=t,±,0
gnnMV A

(m;n) LV A(n)

+
∑

n,p=t,±,0
gnn gppMT

(m;n,p) LT (n, p)

}
, (2.15)

where the leptonic amplitudes have been defined as

LSP = ū`PLvν̄` ,

LV A(n) = εµV A(n) ū`γµPLvν̄` ,

LT (n, p) = −iεµT (n) ενT (p) (ū`σµνPLvν̄`) . (2.16)

Since the decaying B meson is a pseudoscalar, conservation of angular momentum

leads to the relationships m = 0 for the scalar part, m = n for the vector part and

m = n+p for the tensor part. In addition, since the tensor current is antisymmetric under

the interchange of n and p, the amplitudes corresponding to n = p automatically vanish.

Thus, similar to eq. (2.5), the non-zero helicity amplitudes in the full angular distribution

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
1

are given by

MSP
(0) (B → D∗SP ∗) = ASP ,

MV A
(+;+)(B → D∗V A∗) = A+ ,

MV A
(−;−)(B → D∗V A∗) = A− ,

MV A
(0;0)(B → D∗V A∗) = A0 ,

MV A
(0;t)(B → D∗V A∗) = At ,

MT
(+;+,0)(B → D∗T ∗) =MT

(+;+,t)(B → D∗T ∗) = A+,T ,

MT
(0;−,+)(B → D∗T ∗) =MT

(0;0,t)(B → D∗T ∗) = A0,T ,

MT
(−;0,−)(B → D∗T ∗) =MT

(−;−,t)(B → D∗T ∗) = A−,T . (2.17)

The differential decay rate is proportional to the spin-summed amplitude squared.

We have ∣∣MSM+NP
∣∣2 = |MSP |2 + |MV A|2 + |MT |2

+ 2Re [MSPM∗V A +MSPM∗T +MV AM∗T ] . (2.18)

The individual terms are given by

1.

|MSP |2 ∝
∑

m,m′=±,0
MSP

(m)M
SP∗
(m′)HD∗(m)H∗D∗(m)

∑
spins

LSP L∗SP ,

= |ASP |2 |HD∗(0)|2
∑
spins

LSP L∗SP . (2.19)

2. |MV A|2 is given in eq. (2.11).

3.

|MT |2 ∝
∑

m,m′=±,0

(
HD∗(m)H∗D∗(m′)

) ∑
n,n′,p,p′=t,±,0

gnn gn′n′ gpp gp′p′

×
(
MT

(m;n,p)M
T∗
(m′;n′,p′)

)∑
spins

LT (n, p)L∗T (n′, p′) . (2.20)

4.

MSPM∗V A ∝
∑

m=±,0
HD∗(0)H∗D∗(m)

∑
n=t,±,0

gnnMSP
(0)

× MV A∗
(m;n)

∑
spins

LSP L∗V A(n) . (2.21)

5.

MSPM∗T ∝
∑

m=±,0
HD∗(0)H∗D∗(m)

∑
n,p=t,±,0

gnn gppMSP
(0)

× MT∗
(m;n,p)

∑
spins

LSP L∗T (n, p) . (2.22)
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6.

MV AM∗T ∝
∑

m,m′=±,0
HD∗(m)H∗D∗(m′)

∑
n,n′,p′=t,±,0

gnn gn′n′ gp′p′MV A
(m;n)

× MT∗
(m′;n′,p′)

∑
spins

LV A(n)L∗T (n′, p′) . (2.23)

The leptonic contributions to
∣∣MSM+NP

∣∣2 are given in the appendix, section A. The

expressions for the helicity amplitudes in terms of form factors are given in the appendix,

section B.

The relationships between amplitudes in the helicity and transversity bases are

A||,T = (A+,T +A−,T )/
√

2 ,

A⊥,T = (A+,T −A−,T )/
√

2 . (2.24)

(A different choice for the transversity basis is used in ref. [72]. However, one can show

that the two bases are equivalent.)

2.4 Angular distribution

In the previous subsection, we computed the square of the full amplitude for B̄ → D∗(→
Dπ)`−ν̄`. Using section B in the appendix, this can be expressed as a function of the

final-state momenta. In this section, we obtain the angular distribution of the decay.

To this end, we use the formalism of helicity angles defined in the rest frames of the

intermediate particles, as shown in figure 1. We have chosen the z-axis to align with the

direction of the D∗ in the rest frame of the B. With this choice of alignment, the helicity

angles θ∗ and π−θ` respectively measure the polar angles of the D and the charged lepton in

the rest frames of their parent particles (D∗ and N∗, respectively), and χ is the azimuthal

angle between the decay planes of the two intermediate states. For the CP-conjugate

decay, the helicity angles are defined in the same way. Thus, in comparing the decay and

the CP-conjugate decay, θ̄∗ = θ∗ and θ̄` = θ`, but χ̄ = χ.

Using the above definitions we can express the four momenta of the D and the `− in

the rest frames of their respective parent particles as follows:

pµD = (ED, |~pD| sin θ∗, 0, |~pD| cos θ∗) ,

pµ` = (E`, |~p`| sin θ` cosχ, |~p`| sin θ` sinχ,− |~p`| cos θ`) , (2.25)

where EX and ~pX (X = D, `) represent the energy and the three-momentum of X in its

parent rest frame. The complete angular distribution can then be written as

d4Γ

dq2 d cos θ` d cos θ∗ dχ
=

3

8π

G2
F |Vcb|2(q2 −m2

` )
2|pD∗ |

28π3m2
Bq

2

× B(D∗ → Dπ)

(
N1 +

m`√
q2
N2 +

m2
`

q2
N3

)
, (2.26)
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θ

θℓ

χ

B

ν

ℓ

D

π

x

y

z

Figure 1. Definition of the angles in the B̄ → D∗(→ Dπ)`−ν̄` distribution.

where q = p` + pν̄` , and |pD∗ | =
√
λ(m2

B,m
2
D∗ , q

2)/(2mB), with λ(a, b, c) = a2 + b2 +

c2 − 2ab − 2ac − 2bc, is the 3-momentum of D∗ in the B-meson rest frame. For N1,

N2 and N3, the angular functions associated with the various (combinations of) helicity

amplitudes are given in tables 2, 3 and 4, respectively. The angular distribution derived

here can be compared with that given in ref. [51]. There are some sign differences, but

these are just conventions — if everything is written in terms of form factors, the two

angular distributions agree.

2.5 CP violation

The components in the angular distribution that particularly interest us are those whose

coefficients are Im(AiA∗j ), where Ai,j are two different helicity amplitudes. These are

the terms that are used to generate CP-violating asymmetries. Note that they are all

proportional to sinχ.

Technically, these angular components are not, by themselves, CP-violating observ-

ables. Suppose that the helicity amplitudes Ai and Aj had the same weak phase but

different strong phases. Im(AiA∗j ) would then be nonzero, but this would not indicate CP

violation, since the weak-phase difference vanishes. This would be a fake signal. Suppose

instead that Ai and Aj had the same strong phase but different weak phases. Im(AiA∗j )
would again be nonzero, and in this case it would be a true CP-violating signal. In order

to distinguish true and fake signals, one must compare the same quantity in the decay and

the CP-conjugate decay. For a true signal, the angular component will be the same in

both decays. This is because, in going from process to antiprocess, the weak phases change

sign and the azimuthal angle χ → −χ. A fake signal will be indicated if the angular

component changes sign. Thus, in the general case, to obtain a true CP-violating signal,

one must add the angular distributions for the decay and the CP-conjugate decay. (Even

though we are adding the distributions, these are referred to as CP-violating asymmetries.)

Triple-product asymmetries [73, 74] exhibit a similar behaviour. Indeed, the above angular

asymmetries are a generalization of triple products.
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Amplitude in N1 Angular Function

|A0|2 4 sin2 θ` cos2 θ∗

|A⊥|2 2 sin2 θ∗(cos2 χ+ cos2 θ` sin2 χ)

|A‖|2 2 sin2 θ∗(cos2 θ` cos2 χ+ sin2 χ)

|A‖,T |2 32 sin2 θ` sin2 θ∗ cos2 χ

|A⊥,T |2 32 sin2 θ` sin2 θ∗ sin2 χ

|A0,T |2 64 cos2 θ` cos2 θ∗

|ASP |2 4 cos2 θ∗

Re(A‖A∗⊥) −4 cos θ` sin2 θ∗

Re(A0A∗‖) −
√

2 sin 2θ` sin 2θ∗ cosχ

Re(A0A∗⊥) 2
√

2 sin θ` sin 2θ∗ cosχ

Re(A‖,TA∗SP ) 8
√

2 sin θ` sin 2θ∗ cosχ

Re(A0,TA∗‖,T ) 16
√

2 sin 2θ` sin 2θ∗ cosχ

Re(A0,TA∗SP ) 32 cos θ` cos2 θ∗

Im(A⊥A∗0) −
√

2 sin 2θ` sin 2θ∗ sinχ

Im(A‖A∗⊥) 2 sin2 θ` sin2 θ∗ sin 2χ

Im(ASPA∗⊥,T ) −8
√

2 sin θ` sin 2θ∗ sinχ

Im(A0A∗‖) −2
√

2 sin θ` sin 2θ∗ sinχ

Table 2. Terms in the N1 part of the angular distribution.

Amplitude in N2 Angular Function

Re(A0A∗0,T ) −32 cos2 θ∗

Re(A0,TA∗t ) 32 cos θ` cos2 θ∗

Re(A0A∗SP ) −8 cos θ` cos2 θ∗

Re(AtA∗SP ) 8 cos2 θ∗

Re(A‖A∗⊥,T ) 16 cos θ` sin2 θ∗

Re(A‖,TA∗⊥) 16 cos θ` sin2 θ∗

Re(A‖A∗‖,T ) −16 sin2 θ∗

Re(A⊥A∗⊥,T ) −16 sin2 θ∗

Re(A0A∗⊥,T ) −8
√

2 sin θ`sin2θ∗ cosχ

Re(A0,TA∗⊥) −8
√

2 sin θ` sin 2θ∗ cosχ

Re(A‖,TA∗t ) 8
√

2 sin θ` sin 2θ∗ cosχ

Re(A‖A∗SP ) −2
√

2 sin θ` sin 2θ∗ cosχ

Im(A0A∗‖,T ) 8
√

2 sin θ` sin 2θ∗ sinχ

Im(A‖A∗0,T ) −8
√

2 sin θ` sin 2θ∗ sinχ

Im(AtA∗⊥,T ) −8
√

2 sin θ` sin 2θ∗ sinχ

Im(A⊥A∗SP ) −2
√

2 sin θ` sin 2θ∗ sinχ

Table 3. Terms in the N2 part of the angular distribution. These are suppressed by m`/
√
q2.
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Amplitude in N3 Angular Function

|At|2 4 cos2 θ∗

|A0|2 4 cos2 θ` cos2 θ∗

|A⊥|2 2 sin2 θ` sin2 θ∗ sin2 χ

|A‖|2 2 sin2 θ` sin2 θ∗ cos2 χ

|A‖,T |2 32 sin2 θ∗(cos2 θ` cos2 χ+ sin2 χ)

|A⊥,T |2 32 sin2 θ∗(cos2 χ+ cos2 θ` sin2 χ)

|A0,T |2 64 sin2 θ` cos2 θ∗

Re(A0A∗t ) −8 cos θ` cos2 θ∗

Re(A0A∗‖)
√

2 sin 2θ` sin 2θ∗ cosχ

Re(A‖A∗t ) −2
√

2 sin θ` sin 2θ∗ cosχ

Re(A0,TA∗⊥,T ) 32
√

2 sin θ` sin 2θ∗ cosχ

Re(A0,TA∗‖,T ) −16
√

2 sin 2θ` sin 2θ∗ cosχ

Re(A‖,TA∗⊥,T ) −64 cos θ` sin2 θ∗

Im(A‖A∗⊥) −2 sin2 θ` sin2 θ∗ sin 2χ

Im(AtA∗⊥) 2
√

2 sin θ` sin 2θ∗ sinχ

Im(A⊥A∗0)
√

2 sin 2θ` sin 2θ∗ sinχ

Table 4. Terms in the N3 part of the angular distribution. These are suppressed by m2
`/q

2.

Now, as argued in the introduction, in the case of B̄ → D∗(→ Dπ)`−ν̄`, the SM and

NP contributions all basically have the same strong phase. That is, there is no strong-

phase difference between any pair of transversity amplitudes. In this case, the angular

components whose coefficients are Im(AiA∗j ) are signals of CP violation.

In tables 2, 3 and 4, one finds, respectively, four, three and four of these CP-violating

observables. However, one must be careful here. These do not all involve different factors

of Im(AiA∗j ) — some combinations of helicity amplitudes appear in more than one table.

Also, these observables involve only three angular functions, so there can be a number of

different contributions to a single observable. In addition, the angular components listed in

the three tables are not all the same size. Compared to table 2, the observables in tables 3

and 4 are suppressed by m`/
√
q2 and m2

`/q
2, respectively. Typically, one has q2 = O(m2

B),

so these suppression factors are significant. However, if the angular distribution can be

measured in that region of phase space where q2 = O(m2
` ), useful information can be

obtained from the CP-violating observables in these tables. Finally, the helicity amplitudes

all get contributions from the NP operators in eq. (2.12), so if a particular NP operator is

nonzero, several helicity amplitudes may be affected.

In table 5 we present all the information about the CP-violating angular observables:

the contributing helicity amplitudes, the angular functions, the suppression factor, and the

NP couplings probed. This allows us to interpret possible future measurements.

For example, suppose that the angular distribution is measured using the full data

set. In this case, the measurements are dominated by the unsuppressed contributions of

table 2. This angular distribution contains both CP-conserving and CP-violating pieces,

and both can be affected by NP. We focus on the CP-violating observables of table 5.
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Not suppressed Coupling Angular Function

Im(A⊥A∗0) Im[(1 + gL + gR)(1 + gL − gR)∗] −
√

2 sin 2θ` sin 2θ∗ sinχ

Im(A‖A∗⊥) Im[(1 + gL − gR)(1 + gL + gR)∗] 2 sin2 θ` sin2 θ∗ sin 2χ

Im(ASPA∗⊥,T ) Im(gP g
∗
T ) −8

√
2 sin θ` sin 2θ∗ sinχ

Im(A0A∗‖) Im[(1 + gL − gR)(1 + gL + gR)∗] −2
√

2 sin θ` sin 2θ∗ sinχ

Suppressed by m`/
√
q2 Coupling Angular Function

Im(A0A∗‖,T ) Im[(1 + gL − gR)g∗T ] 8
√

2 sin θ` sin 2θ∗ sinχ

Im(A‖A∗0,T ) Im[(1 + gL − gR)g∗T ] −8
√

2 sin θ` sin 2θ∗ sinχ

Im(AtA∗⊥,T ) Im[(1 + gL − gR)g∗T ] −8
√

2 sin θ` sin 2θ∗ sinχ

Im(A⊥A∗SP ) Im[(1 + gL + gR)g∗P ] −2
√

2 sin θ` sin 2θ∗ sinχ

Suppressed by m2
`/q

2 Coupling Angular Function

Im(A‖A∗⊥) Im[(1 + gL − gR)(1 + gL + gR)∗] −2 sin2 θ` sin2 θ∗ sin 2χ

Im(AtA∗⊥) Im[(1 + gL + gR)(1 + gL − gR)∗] 2
√

2 sin θ` sin 2θ∗ sinχ

Im(A⊥A∗0) Im[(1 + gL + gR)(1 + gL − gR)∗]
√

2 sin 2θ` sin 2θ∗ sinχ

Table 5. The CP-violating terms in the angular distribution, their corresponding NP couplings,

and the angular functions to which they contribute.

• Suppose that the angular distribution is found to include the component

sin 2θ` sin 2θ∗ sinχ. This indicates that Im(A⊥A∗0) 6= 0, which implies that gR 6= 0,

and that it has a different (weak) phase than (1 + gL). In this case, one expects

to also observe nonzero coefficients for the other two angular functions in table 5,

sin2 θ` sin2 θ∗ sin 2χ and sin θ` sin 2θ∗ sinχ.

• The third angular function, sin θ` sin 2θ∗ sinχ, receives an additional contribution

from Im(ASPA∗⊥,T ). But if it has been established that gR 6= 0, one cannot tell if

gP and gT are also nonzero. This is where the CP-conserving observables come into

play. From table 2, we see that both |ASP |2 and |A⊥,T |2 can be determined from the

angular distribution, so in principle we will know if they are nonzero (though we will

have no information about their phases).

• If it is found that the coefficients of the first two angular functions are ' 0, this

implies that gR ' 0 (or that its phase is the same as that of (1 + gL)). In this case,

the measurement of a nonzero coefficient of the third angular function will point

clearly to Im(ASPA∗⊥,T ) 6= 0.

Finally, suppose that the angular analysis reveals no unsuppressed CP-violating ob-

servables. To probe other such observables, it will now be necessary to reconstruct the

angular distribution for the data with q2 = O(m2
` ). If this is possible, one can see if

the angular function sin θ` sin 2θ∗ sinχ has a nonzero coefficient in the data suppressed by

m`/
√
q2. If it does, this indicates that gT or gP (or both) is nonzero. As noted above, one

can perform a cross-check by measuring CP-conserving observables. In particular, from

table 2, we see that the angular distribution can give us information about new tensor and

scalar interactions.
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3 New-physics models

In section 2.4, we derived the angular distribution for B̄ → D∗(→ Dπ)`−ν̄` in the presence

of NP. This applies to ` = e, µ, τ . However, in this paper we focus specifically on B̄0 →
D∗+µ−ν̄µ, as LHCb intends to perform a detailed angular analysis of this decay, and

measure the CP-violating observables [69]. In this section, we examine the NP models that

can generate nonzero CP-violating observables in B̄0 → D∗+µ−ν̄µ.

In the SM, the decay b → c`−ν̄ is due to the tree-level exchange of a W . In order to

generate a significant discrepancy with the SM, the NP contributions to this decay must

also take place at tree level. There are three classes of NP models in which this can occur.

The NP mediating particle can be a charged Higgs H± [22, 23, 25, 29, 35–37, 39, 41, 44–46],

a W ′± boson [24, 28, 31–33, 38, 40, 42, 43, 47, 48], or a leptoquark (LQ) [26, 27, 30].

In ref. [34], it was pointed out that there are important constraints on NP explanations

from the B−c lifetime. In particular, NP models with a H± are disfavoured. Below we

examine whether CP-violating observables can be generated in models with a W ′± or a

LQ. Specifically, in each NP model, we determine which of the NP parameters gL,R,S,P,T
[eq. (2.12)] can be generated.

We stress that our main goal in this paper is to examine the implications of the

measurement of CP-violating observables in B̄0 → D∗+µ−ν̄µ. As such, these W ′± and LQ

models are not complete. That is, there may be constraints from other measurements that

are not taken into account here. For example, it was pointed out in the introduction that,

because R
µ/e
D∗ /(R

µ/e
D∗ )SM = 1.00 ± 0.05 (table 1), any NP that contributes to b → cµ−ν̄µ

must equally affect b→ ce−ν̄e. But it is well known that a LQ that couples to both µ and

e will be constrained by µ → eγ and b → seµ [75]. Should a CP-violating observable be

measured in B̄0 → D∗+µ−ν̄µ suggesting the presence of LQs, these constraints must be

taken into account at the model-building stage.

3.1 W ′± models

The W ′ is a vector boson, so it can contribute only to gL and/or gR of eq. (2.12). Two

classes of W ′ models have been proposed. In the first [28, 31–33, 38, 47], the W ′ is SM-like,

coupling only to left-handed fermions. Thus, this W ′L contributes only to gL, which means

that no CP-violating effects can be generated.

The second class uses LR models: one has a right-handed W ′R, and the decay involves

a sterile RH neutrino. The W ′R couples only to right-handed fermions and so contributes

to neither gL nor gR (since these operators involve a left-handed neutrino). One can allow

for NP that couples to a RH neutrino by adding the following NP operators to eq. (2.12):

H′eff =
GFVcb√

2

{[
g′L c̄γµ(1− γ5)b+ g′R c̄γµ(1 + γ5)b

]
µ̄γµ(1 + γ5)ν (3.1)

+
[
g′S c̄b+ g′P c̄γ5b

]
µ̄(1 + γ5)ν + g′T c̄σ

µν(1 + γ5)bµ̄σµν(1 + γ5)ν + h.c.
}
.

Just as in table 5, CP-violating observables can be produced due to the interference of any

two of these NP operators. However, the W ′R contributes only to g′R, so that, once again,

no CP-violating effects can be generated.
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CP-violating observables can be generated if the W ′ contributes to both gL and gR (or

g′L and g′R if the neutrino is RH). This can occur in the LR model if the SM W mixes with

the W ′R. However, constraints from b→ sγ force this mixing to be small, <∼ O(10−3) [40],

which means that any CP-violating effects are tiny.

Thus, the only way to generate sizeable CP-violating effects is if there is a W ′L and a

W ′R, both with large contributions to b → c`−ν̄, and there is significant mixing. Such a

model has not yet been proposed, but it is a possibility.

3.2 Leptoquark models

There are ten models in which the LQ couples to SM particles through dimension ≤ 4

operators [76]. These include five spin-0 and five spin-1 LQs. Six of these can contribute to

b→ cµ−ν̄µ [27]. Three have fermion-number-conserving couplings and three have fermion-

number-violating couplings. The interaction Lagrangian that generates the contributions

to b→ cµ−ν̄µ is given by

LLQ = LLQ
F=0 + LLQ

F=−2 ,

LLQ
F=0 = (hij1LQ̄iLγ

µLjL + hij1Rd̄iRγ
µ`jR)U1µ + hij3LQ̄iL~σγ

µLjL · ~U3µ

+(hij2LūiRLjL + hij2RQ̄iLiσ2`jR)R2 + h.c.,

LLQ
F=−2 = (gij1LQ̄

c
iLiσ2LjL + gij1Rū

c
iR`jR)S1 + (gij3LQ̄

c
iLiσ2~σLjL) · ~S3

+(gij2Ld̄
c
iRγµLjL + gij2RQ̄

c
iLγµ`jR)V µ

2 + h.c. (3.2)

Here Q and L represent left-handed quark and lepton SU(2)L doublets, respectively; u, d

and ` represent right-handed up-type quark, down-type quark and charged lepton SU(2)L
singlets, respectively. The indices i and j are the quark and lepton generations. ψc = Cψ̄T

is a charge-conjugated field.

For all six models, we integrate out the LQ to form four-fermion operators. We then

perform Fierz transformations to put these operators in the form of eq. (2.12). In this way,

we determine which LQs contribute to which gL,R,S,P,T coefficients.

U1:

LLQ ⊃ (h22
1Lc̄Lγ

µνµL + h32
1Lb̄Lγ

µµL + h32
1Rb̄iRγ

µµR)U1µ + h.c. (3.3)

Four-fermion operators:

Leff = − 1

M2
U1

[
h22

1Lh
32∗
1L (c̄Lγ

µνµL)(µ̄LγµbL) + h22
1Lh

32∗
1R (c̄Lγ

µνµL)(µ̄RγµbR)
]

+ h.c. (3.4)

Fierz transformation:

Leff = − 1

M2
U1

[
h22

1Lh
32∗
1L (c̄Lγ

µbL)(µ̄LγµνµL)− 2h22
1Lh

32∗
1R (c̄LbR)(µ̄RνµL)

]
+ h.c. (3.5)

U3:

LLQ ⊃ (h22
3Lc̄Lγ

µνµL − h32
3Lb̄Lγ

µµL)U3µ + h.c. (3.6)
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Four-fermion operator:

Leff =
1

M2
U3

h22
3Lh

32∗
3L (c̄Lγ

µνµL)(µ̄LγµbL) + h.c. (3.7)

Fierz transformation:

Leff =
1

M2
U3

h22
3Lh

32∗
3L (c̄Lγ

µbL)(µ̄LγµνµL) + h.c. (3.8)

R2:

LLQ ⊃ (h22
2Lc̄RνµL − h32

2Rb̄LµR)R2 + h.c. (3.9)

Four-fermion operator:

Leff =
1

M2
R2

h22
2Lh

32∗
2R (c̄RνµL)(µ̄RbL) + h.c. (3.10)

Fierz transformation:

Leff = − 1

8M2
R2

[
4h22

2Lh
32∗
2R (c̄RbL)(µ̄RνµL) + h22

2Lh
32∗
2R (c̄Rσ

µνbL)(µ̄RσµννµL)
]

+ h.c. (3.11)

S1:

LLQ ⊃ (g22
1Lc̄

c
LµL − g32

1Lb̄
c
LνµL + g22

1Rc̄
c
RµR)S1 + h.c. (3.12)

Four-fermion operators:

Leff =
1

M2
S1

[
g22∗

1L g
32
1L(b̄cLνµL)(µ̄Lc

c
L) + g22∗

1R g
32
1L(b̄cLνµL)(µ̄Rc

c
R)
]

+ h.c. (3.13)

Fierz transformation:

Leff =
1

8M2
S1

[
4g22∗

1L g
32
1L(c̄Lγ

µbL)(µ̄LγµνµL)− 4g22∗
1R g

32
1L (c̄RbL)(µ̄RνµL)

+ g22∗
1R g

32
1L(c̄Rσ

µνbL)(µ̄RσµννµL)
]

+ h.c. (3.14)

S3:

LLQ ⊃ −(g22
3Lc̄

c
LµL + g32

3Lb̄
c
LνµL)S3 + h.c. (3.15)

Four-fermion operator:

Leff = − 1

M2
S3

g22∗
3L g

32
3L(b̄cLνµL)(µ̄Lc

c
L) + h.c. (3.16)

Fierz transformation:

Leff = − 1

2M2
S3

g22∗
3L g

32
3L(c̄Lγ

µbL)(µ̄LγµνµL) + h.c. (3.17)
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Model gL gR gS gP gT

U1
1
2h

22
1Lh

32∗
1L 0 −h22

1Lh
32∗
1R −h22

1Lh
32∗
1R 0

U3 − 1
2h

22
3Lh

32∗
3L 0 0 0 0

R2 0 0 1
4h

22
2Lh

32∗
2R − 1

4h
22
2Lh

32∗
2R

1
16h

22
2Lh

32∗
2R

S1 − 1
4g

32
1Lg

22∗
1L 0 1

4g
32
1Lg

22∗
1R − 1

4g
32
1Lg

22∗
1R − 1

16g
32
1Lg

22∗
1R

S3
1
4g

32
3Lg

22∗
3L 0 0 0 0

V2 0 0 −g22∗
2R g

32
2L −g22∗

2R g
32
2L 0

Table 6. Contributions of the various LQs to the gL,R,S,P,T coefficients of eq. (2.12). All entries

must be multiplied by 1/(
√

2GFVcbM
2
LQ).

V2:

LLQ ⊃ (g32
2Lb̄

c
RγµνµL + g22

2Rc̄
c
LγµµR)V µ

2 + h.c. (3.18)

Four-fermion operator:

Leff = − 1

M2
V2

g22∗
2R g

32
2L(b̄cRγ

µνµL)(µ̄Rγµc
c
L) + h.c. (3.19)

Fierz transformation:

Leff =
2

M2
V2

g22∗
2R g

32
2L(c̄LbR)(µ̄RνµL) + h.c. (3.20)

In table 6 we summarize the contributions of all the LQs to the gL,R,S,P,T coefficients

of eq. (2.12).

3.3 CP violation

As shown in table 5, the CP-violating observables involve any pair of {(1+gL), gR, gP , gT }.
Above we have seen that the W ′ and most LQ models contribute to gL. It must be pointed

out that, in b → cµ−ν̄µ, gL cannot be large. This is because it is the coefficient of the

(V −A)× (V −A) operator c̄γµ(1−γ5)bµ̄γµ(1−γ5)νµ, which is related by SU(2)L×U(1)Y
to the b→ sµ+µ− operator s̄γµ(1−γ5)bµ̄γµ(1−γ5)µ [77]. In order to explain the anomalies

in the b→ sµ+µ− observables, we require [78]

gL =
α

2π
(−0.68± 0.12) = O(10−3) . (3.21)

In (1 + gL), this is negligible.

Going beyond gL, we note that gR can only be due to a W ′, and gP and gT can only

be generated in LQ models. Furthermore, not all W ′ models lead to a nonzero gR. And

not all LQ models produce gP and/or gT . Putting all of this together, if NP is present in

b → cµ−ν̄µ, we see that the measurement of CP-violating observables can give us a great

deal of information as to its identity.
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First of all, most NP models proposed to explain the RD(∗) and RJ/ψ experimental

data contribute only to gL (in b → cτ−ν̄τ ). As such, they predict no CP-violating effects.

Should a nonzero CP-violating observable be measured, this would rule out these models,

or at least force them to be modified.

Conclusions about the type of NP present depend on which nonzero observables are

measured:

• If the angular distribution is found to include the components sin 2θ` sin 2θ∗ sinχ and

sin2 θ` sin2 θ∗ sin 2χ (the top two entries in table 5), this requires a nonzero gR. This

can only arise in a W ′ model, and so excludes all LQ models. And note: this even

excludes the standard W ′ models, with only a W ′L or a W ′R. In this case, an unusual

model, including both W ′L and W ′R, is required.

• If the sin 2θ` sin 2θ∗ sinχ and sin2 θ` sin2 θ∗ sin 2χ components do not appear in the

angular distribution, but sin θ` sin 2θ∗ sinχ (the third entry in table 5) does, this

indicates that gP and gT are nonzero, and that they have a relative phase. This can

only occur in a model with two LQs. gT can come from a R2 or S1 LQ, while gP can

be due to a U1, R2, S1 or V2 LQ (but the two LQs must be different).

• If none of the above three angular functions are present in the angular distribution,

this implies that gR and one of gP and gT are zero (or that there is no phase differ-

ence). There can still be a CP-violating observable in the data suppressed by m`/
√
q2

(entries 5–8 in table 5). If this is found to be nonzero, it does, this indicates that

one of gT or gP (or both, if they have the same phase) is nonzero. The gP option is

particularly interesting. The U1 LQ is a very popular NP choice (for example, see

ref. [47]), and it can generate gP , but not gT . If this is the only nonzero CP-violating

observable found, this would be strong support for the U1 LQ.

• There is also information from the CP-conserving observables. The full angular

distribution has components proportional to |A‖,T |2, |A⊥,T |2, |A0,T |2 and |ASP |2.

Measurements of these quantities also gives information about which of gT and/or

gP is or is not nonzero.

4 Conclusions

At the present time, the anomalies in the measurements of RD(∗) and RJ/ψ suggest the

presence of new physics in b → cτ−ν̄ decays. A number of different NP explanations

have been proposed, as well as several methods for differentiating these NP models. In

this paper, we explore the possibility of using CP-violating observables to distinguish the

various NP scenarios.

The angular distribution in B̄0 → D∗+(→ D0π+)τ−ν̄τ can be used to provide CP-

violating asymmetries. Now, the reconstruction of this angular distribution requires the

knowledge of the 3-momentum of the τ . The problem here is that ~pτ cannot be measured

since its decay products include ντ , which is undetected. Thus, while our ultimate goal is

to compute the complete angular distribution, including information related to the decay
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products of the τ , in this paper we take a first step by focusing on the decay B̄0 → D∗+µ−ν̄µ.

Here ~pµ is measurable, so the angular distribution can be constructed. In addition, NP

that contributes to b→ cτ−ν̄ may well also affect b→ cµ−ν̄. Finally, LHCb has announced

that it intends to measure the CP-violating angular asymmetries in B̄0 → D∗+µ−ν̄µ, and

we want to examine what the implications of these measurements are for NP.

In the SM, the hadronic b → c current is purely LH. In the presence of NP, there

can be additional contributions to this LH current, parametrized by gL, as well as other

Lorentz structures: RH (gR), scalar (gS), pseudoscalar (gP ) and tensor (gT ) currents. We

compute the angular distribution of B̄0 → D∗+`−ν̄` in terms of the helicity amplitudes

Ai, both in the SM and with NP. We identify the CP-violating angular asymmetries,

proportional to Im[AiA
∗
j ], and show how all CP-violating observables depend on any pair

of {(1 + gL), gR, gP , gT }.
We then examine the models that contribute to b → cµ−ν̄µ. There are two classes,

involving (i) a W ′ (two types) or (ii) a LQ (six types). While most models contribute to gL,

gR can only arise in W ′ models, and gP and gT can only be generated due to LQ exchange.

Furthermore, not all W ′ models lead to a nonzero gR, and not all LQ models produce gP
and/or gT .

The most popular explanations of the B anomalies involve NP that contributes only

to gL. Should any nonzero CP-violating observable be measured, this would rule out

these models, or at least require them to be modified. In addition, there are CP-violating

asymmetries that depend on (1 + gL)-gR, gP -gT , (1 + gL + gR)-gP and (1 + gL − gR)-

gT interference. By measuring all of these, along with the CP-conserving components of

the angular distribution, it will be possible to distinguish the W ′ and LQ models, and to

differentiate among several LQ models.
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A
∣∣MSM+NP

∣∣2: leptonic contributions

1. |MSP |2: ∑
spins

LSP L∗SP = Tr[(/p` +m`)PL/pν̄PR] , (A.1)

where q = p` + pν̄` .
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2. |MV A|2: ∑
spins

LV A(n)L∗V A(n′) = εµV A(n) ε∗νV A(n′) Tr [ū`γµPLvν̄` v̄ν̄`γνPLu`] . (A.2)

3. |MT |2: ∑
spins

LT (n, p)L∗T (n′, p′)∗ = Tr
[
(/p` +m`)σµνPL/pν̄`

σαβPR

]
× εµT (n) ενT (p) ε∗αT (n′) ε∗βT (p′) . (A.3)

4. MSPM∗V A: ∑
spins

LSP L∗V A(n) = Tr[(/p` +m`)PL/pν̄`
γµPL]ε∗µV A(n) . (A.4)

5. MSPM∗T : ∑
spins

LSP L∗T (n, p) = iTr
[
(/p` +m`)PL/pν̄`

σµνPR

]
ε∗µT (n) ε∗νT (p) . (A.5)

6. MV AM∗T : ∑
spins

LV A(n)L∗T (n′, p′) = iTr
[
(/p` +m`)γµPL/pν̄`

σαβPR

]
× εµV A(n)ε∗αT (n′)ε∗βT (p′) . (A.6)

The CP-violating angular asymmetries that appear in tables 2, 3 and 4 have two

things in common: they are all proportional to sin χ, and their coefficients are of the form

Im(AiA∗j ), i 6= j. These can be understood from the above traces. First, in the momenta,

the only element that contains sinχ is the y-component of p` [eq. (2.25)]. Second, in the

evaluation of the traces, some terms contain a factor i, so that Re(AiiA∗j ) ∝ Im(AiA∗j ).
These terms come in two types. (i) In the ⊥ polarizations, the y-component includes an i

[e.g., see eq. (2.2)], so that p` · εN∗(n) contains i sinχ. (ii) Traces involving γ5 lead to terms

of the form iεµνρσp
µ
` V

ν
1 V

ρ
2 V

σ
3 , where the Vi are all different and are ∈ {q, εN∗(n)} (these

lead to triple-product asymmetries). If µ = 2, the factor i sinχ is generated.

Eq. (A.4) contains a term of type (i) (with N = V A), and leads to Im(A⊥A∗SP ).

Eq. (A.5) contains a term of type (ii) (with V1 = q, V2 = ε∗T (n), V3 = ε∗T (n′)), and leads

to Im(ASPA∗⊥,T ). Eq. (A.2) contains both type (i) (with N = V A), leading to Im(A0A∗‖),
and type (ii) (with V1 = q, V2 = εV A(n), V3 = ε∗V A(n′)), leading to Im(A⊥A∗0), Im(A‖A∗⊥)

and Im(AtA∗⊥). Eq. (A.6) contains both type (i) (with N = T ), leading to Im(A0A∗‖,T )

and Im(A‖A∗0,T ), and type (ii) (with V1 = εV A(m), V2 = ε∗T (n), V3 = ε∗T (n′)), leading to

Im(AtA∗⊥,T ).

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
1

B Helicity amplitudes in terms of form factors

Using the definitions for the B → D∗ form factors given in refs. [27, 79], we can find the

hadronic helicity amplitudes [eq. (2.17)]:

ASP = −gP

√
λ(m2

B,m
2
D∗ , q

2)

mb +mc
A0(q2) ,

A0 = −(1 + gL − gR)
(mB +mD∗)(m

2
B −m2

D∗ − q2)

2mD∗
√
q2

A1(q2)

+ (1 + gL − gR)
λ(m2

B,m
2
D∗ , q

2)

2mD∗(mB +mD∗)
√
q2
A2(q2) ,

At = −(1 + gL − gR)

√
λ(m2

B,m
2
D∗ , q

2)√
q2

A0(q2) ,

A+ = (1 + gL − gR) (mB +mD∗)A1(q2)− (1 + gL + gR)

√
λ(m2

B,m
2
D∗ , q

2)

mB +mD∗
V (q2) ,

A− = (1 + gL − gR) (mB +mD∗)A1(q2) + (1 + gL + gR)

√
λ(m2

B,m
2
D∗ , q

2)

mB +mD∗
V (q2) ,

A0,T = gT
1

2mD∗(m2
B −m2

D∗)

×
(

(m2
B −m2

D∗)(m
2
B + 3m2

D∗ − q2)T2(q2)− λ(m2
B,m

2
D∗ , q

2)T3(q2)
)
,

A±,T = gT

√
λ(m2

B,m
2
D∗ , q

2)T1(q2)± (m2
B −m2

D∗)T2(q2)√
q2

, (B.1)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc.
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