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1 Introduction

Derived from closed string field theory [1], the structure of L∞ algebras were suggested

to underly all classical perturbative gauge symmetries and their dynamics. For the first

time, they actually appeared in the context of higher spin gauge theories [2] and were also

discussed in the mathematics literature (see e.g. [3–6]). Motivated by the study of field

theory truncations of string field theory [7], the authors of [8] argued that the symmetry

and the action of any consistent perturbative gauge symmetry is controlled by an L∞

algebra. For Chern-Simons and Yang-Mills gauge theories as well as for double field theory

the symmetries and equations of motion could be expressed in terms of an L∞ structure.

Based on the higher spin AdS3-CFT2 duality, a large set of explicit non-trivial L∞

algebras were identified recently [9] by showing that the well understood class of classi-

cal W algebras can also be rewritten in terms of higher products satisfying the relations

of L∞ algebras. Recall that W algebras appear as extended chiral symmetry algebras of

two-dimensional conformal field theories (CFTs)(see [10] for a review) and are actually

not describing gauge symmetries but infinitely many global symmetries. These examples

are special in the sense that only two graded vector spaces were non-trivial, X0 contains

the symmetry parameters and X−1 the generators of the W algebra. The special fea-

ture of W algebras, namely that the Poisson bracket between the generators closes only

non-linearly, implied non-trivial higher products, corresponding e.g. to field dependent

symmetry parameters.
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In [9] this correspondence was restricted to the classical case, for which the product of

fields is just the point-wise product of holomorphic functions. However, from CFT it is well

known that these classical W algebras appear as the classical ~ → 0 limit of quantum W

algebras. Here one is dealing with chiral quantum fields, whose product involves a normal

ordering prescription. In addition, the field content of the algebra itself and their structure

constants receive ~ corrections.

It is an interesting question, how the L∞ structure generalizes to the quantum case. In

the context of string field theory, this was already analyzed in [1] and further elucidated in

the mathematical context in [11]. In this paper we generalize the analysis of [9] to quantum

W-algebras. We will see that the higher products now involve the normal ordered product

as the fundamental one, and that they also receive ~ corrections. In addition also the

quadratic relations among the higher products receive quantum corrections, induced by

non-trivial contractions following from the application of Wick’s theorem. Since we are

dealing with an interacting (non-free) CFT, these contractions are given by the singular

part of the operator product expansion (OPE) and, as will be shown, imply off-diagonal

terms among the naive classical L∞ relations. Guided by quantum W algebras we are thus

led to a well motivated definition of quantum L∞ algebras that control the symmetries of

a quantum theory. Similar as in the case of classical symmetries the quantum L∞ algebras

we look at are restricted to a graded vector space X = X0⊕X−1 and are constructed such

that they become the classical L∞ algebra of the classical symmetry in the ~ → 0 limit.

The paper is organized as follows: in section 2 we recall the definition of a classical L∞

algebra and its connection to the gauge algebra of classical gauge field theories. In section 3,

after identifying the possible origin of quantum corrections, we first define quantum L∞

algebras. Then we will compare it to loop L∞ algebras, the quantum corrected L∞ algebras

arising for closed string field theory (CSFT) [1, 11]. In section 4 we will show in detail that

the quantum W3 algebra is organized in terms of a quantum L∞ algebra.

2 The L∞ gauge algebra of a classical symmetry

In this section we review how a perturbative classical gauge algebra is actually controlled

by an L∞ algebra. L∞ algebras are generalized Lie algebras where one has not only a

two-product, the commutator, but more general multilinear n-products with n inputs

ℓn : X⊗n → X

x1, . . . , xn 7→ ℓn(x1, . . . , xn) ,
(2.1)

defined on a graded vector space X =
⊕

nXn, where n denotes the grading. The products

are graded symmetric

ℓn(. . . , x1, x2, . . . ) = (−1)1+deg(x1)deg(x2) ℓ2(. . . , x2, x1, . . . ) , (2.2)

with

deg
(
ℓn(x1, . . . , xn)

)
= n− 2 +

n∑

i=1

deg(xi) . (2.3)
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These ℓn define an L∞ algebra, if they satisfy the infinitely many relations

Jn(x1, . . . , xn) :=
∑

i+j=n+1

(−1)i(j−1)
∑

σ

χ(σ;x)

ℓj
(
ℓi(xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

)
= 0 .

(2.4)

The permutations are restricted to the ones with

σ(1) < · · · < σ(i), σ(i+ 1) < · · · < σ(n) , (2.5)

and the sign χ(σ;x) = ±1 can be read off from (2.2). The first relations Jn with

n = 1, 2, 3, . . . can be schematically written as

J1 = ℓ1ℓ1 , J2 = ℓ1ℓ2 − ℓ2ℓ1 , J3 = ℓ1ℓ3 + ℓ2ℓ2 + ℓ3ℓ1 ,

J4 = ℓ1ℓ4 − ℓ2ℓ3 + ℓ3ℓ2 − ℓ4ℓ1 ,
(2.6)

from which one can deduce the scheme for the higher Jn. More concretely, the first L∞

relations read

ℓ1
(
ℓ1(x)

)
= 0

ℓ1
(
ℓ2(x1, x2)

)
= ℓ2

(
ℓ1(x1), x2

)
+ (−1)x1ℓ2

(
x1, ℓ1(x2)

)
,

(2.7)

revealing that ℓ1 must be a nilpotent derivation with respect to ℓ2. Denoting

(−1)xi = (−1)deg(xi) the full relation J3 reads

0 = ℓ1
(
ℓ3(x1, x2, x3)

)
+ (2.8)

ℓ2
(
ℓ2(x1, x2), x3

)
+ (−1)(x2+x3)x1ℓ2

(
ℓ2(x2, x3), x1

)
+

(−1)(x1+x2)x3ℓ2
(
ℓ2(x3, x1), x2

)
+

ℓ3
(
ℓ1(x1), x2, x3

)
+ (−1)x1ℓ3

(
x1, ℓ1(x2), x3

)
+ (−1)x1+x2ℓ3

(
x1, x2, ℓ1(x3)

)

and means that the Jacobi identity for the ℓ2 product is mildly violated by ℓ1 exact ex-

pressions. For this reason, L∞ algebras are also called strong homotopy Lie algebras in the

mathematical literature.

The framework of L∞ algebras is quite flexible and it has been suggested that every

classical perturbative gauge theory (derived from string theory), including its dynamics,

is organized by an underlying L∞ structure [8]. For sure, the pure gauge algebra of such

theories satisfies the L∞ identities. To see this, let us assume that the field theory has a

standard type gauge structure, meaning that the variations of the fields can be organized

unambiguously into a sum of terms each of a definite power in the fields. Defining the

space of gauge parameters ε to be X0 and the field space Φ to be X−1 and setting all other

graded vector spaces to be trivial, the gauge variations can be expressed as

δεΦ =
∑

n≥0

1

n!
(−1)

n(n−1)
2 ℓn+1(ε,Φ, . . . ,Φ

︸ ︷︷ ︸

n times

) . (2.9)

It was shown in [2, 5, 8, 12], that the closure of the symmetry variations

[δε1 , δε2 ]Φ = δ−C(ε1,ε2,Φ)Φ , (2.10)
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and the Jacobi identity

∑

cycl

[
δε1 , [δε2 , δε3 ]

]
= 0 (2.11)

are equivalent to the L∞ relations with two and three gauge parameters. Here the closure

relation allows for a field dependent gauge parameter which can be written in terms of L∞

products as

C(ε1, ε2,Φ) =
∑

n≥0

1

n!
(−1)

n(n−1)
2 ℓn+2(ε1, ε2,Φ, . . . ,Φ

︸ ︷︷ ︸

n times

) . (2.12)

Since it is precisely these relations that we will extend to the quantum case, let us briefly

exemplify the procedure of identifying the constraints arising from the gauge closure with

L∞ relations up to cubic order in the fields. Using (2.9), the gauge commutator reads

[δε1 , δε2 ]Φ =

{

ℓ2
(
ε2, ℓ1(ε1)

)

+ ℓ2
(
ε2, ℓ2(ε1,Φ)

)
− ℓ3

(
ε2, ℓ1(ε1),Φ

)

− ℓ3
(
ε2, ℓ2(ε1,Φ),Φ

)
−

1

2
ℓ2
(
ε2, ℓ3(ε1,Φ,Φ)

)
}

−
{

ε1 ↔ ε2

}

+O(Φ3) ,

(2.13)

while the right hand side of the gauge closure condition can be expanded as

δ−C(ε1,ε2,Φ)Φ = δ−ℓ2(ε1,ε2)Φ+ δ−ℓ3(ε1,ε2,Φ)Φ+ δ 1
2
ℓ4(ε1,ε2,Φ,Φ)Φ+O(Φ3)

= −ℓ1
(
ℓ2(ε1, ε2)

)
− ℓ2

(
ℓ2(ε1, ε2),Φ

)
+

1

2
ℓ3
(
ℓ2(ε1, ε2),Φ,Φ

)

− ℓ1
(
ℓ3(ε1, ε2,Φ)

)
− ℓ2

(
ℓ3(ε1, ε2,Φ),Φ

)
(2.14)

+
1

2
ℓ1(ℓ4(ε1, ε2,Φ,Φ)

)
+O(Φ3) .

Comparing (2.14) with (2.13) we see that demanding closure yields conditions on the ℓn
products. For instance, at zeroth order in Φ one obtains the condition

ℓ1
(
ℓ2(ε1, ε2)

)
= ℓ2

(
ε1, ℓ1(ε2)

)
− ℓ2

(
ε2, ℓ1(ε1)

)
. (2.15)

Upon interchanging the arguments this is exactly the L∞ relation J2(ε1, ε2) = 0 in (2.7).

At first order in Φ one gets

0 = ℓ2
(
ε2, ℓ2(ε1,Φ)

)
+ ℓ2

(
ℓ2(ε1, ε2),Φ

)
− ℓ2

(
ε1, ℓ2(ε2,Φ)

)

− ℓ3
(
ε2, ℓ1(ε1),Φ

)
+ ℓ3

(
ε1, ℓ1(ε2),Φ

)

+ ℓ1
(
ℓ3(ε1, ε2,Φ)

)
.

(2.16)

This is the L∞ relation J3(ε1, ε2,Φ) = 0 in which the term ℓ3
(
ε1, ǫ2, ℓ1(Φ)

)
is missing, as

we have set X−2 = 0. This result is just a consequence of the general two relations between
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the classical gauge algebra and the L∞ algebra:

gauge closure ⇔ 0 = Jn(ε1, ε2,Φ, . . . ,Φ
︸ ︷︷ ︸

n−2 times

) , (2.17)

gauge Jacobi identity ⇔ 0 = Jn(ε1, ε2, ε3,Φ, . . . ,Φ
︸ ︷︷ ︸

n−3 times

) . (2.18)

As one can check, these are actually the only non-trivial L∞ relations in case that the

graded vector space is given by X = X0⊕X−1. This can be generalized by adding a vector

spaceX−2 containing the equations of motion, thus allowing the freedom that gauge closure

only holds on-shell [8].

3 Quantum L∞ gauge algebras

In the last section we recalled how the L∞ relations guarantee the consistency of a classical

gauge algebra. Recently it was shown that also global classical W algebras arising in two-

dimensional conformal field theory yield non-trivial examples of L∞ algebras. Driven by the

aim to extract physically well motivated aspects of a quantum extension of L∞ algebras,

we analyze whether a generalized version of this correspondence holds for quantum W

algebras. On the way, we encounter a couple of new structures that can be traced back to

the non-associativity of the normal ordered products appearing in the quantum W algebra.

Resolving these issues guides us to a proposal of a quantum L∞ gauge algebra that we will

present in the section.

Concretely, in section 3.1, by demanding consistency of the quantized symmetry alge-

bra, we outline how the usual notion of an L∞ algebra has to be adjusted for a quantum

L∞ algebra. We find that beyond the higher products also the L∞ relations receive quan-

tum corrections, whose origin lies in the necessity to perform Wick contractions between

quantum fields.

In 3.2 we review the L∞ algebra of closed string field theory and the quantum correc-

tions appearing there. As it turns out, the quantum corrections due to Wick contractions

do not appear there.

3.1 The quantum L∞ algebra of a quantum symmetry

Going from a classical field theory to a quantum field theory, the fields become operator

valued. We want to consider quantum symmetries which in the classical limit ~ → 0 become

a classical symmetry of the kind described in the last section. In particular we are still

working only on the graded vector space X = X0 ⊕X−1, where the symmetry parameters

are contained in X0 and the field operators in X−1. In the case of W-algebras, the infinitely

many symmetry parameters1 are compactly encoded in ǫ(z) =
∑

n∈Z z
n+∆−1ǫn and the

infinitely many symmetry generators in W (z) =
∑

n∈Z z
−n−∆Wn. Here ∆ denotes the

conformal dimension of the chiral field W (z).

1Note that the holomorphic function ǫ(z) does not parametrize a gauge variation, as the latter would

depend on z and z.
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In the classical case it was crucial that the variation of the field could be organized

in terms of definite powers in the fields to define the corresponding L∞ products. In

order to adapt the notion of field powers, we have to specify an operator product in the

quantum case.

Inspired by the analysis of W algebras, to be discussed in detail in section 4, we define

the operator product to be the symmetrized normal ordered product

A ⋆ B =
1

2

(

N(AB) +N(BA)
)

. (3.1)

This is a convenient choice, as by taking the classical limit ~ → 0, it becomes the usual

point-wise multiplication of fields. Let us already point out one subtlety relative to the

classical case, that will be one source of quantum corrections. As can be seen from the

notion of the normal ordering in 2d CFT, the ⋆ product above while commutative fails to

be associative. There,2 the non-associativity of the normal ordered product is given by

(εA) ⋆ B − ε(A ⋆ B) = ε(AB) , (3.2)

where ε is just a c-number symmetry variation and A,B are operator valued fields. More-

over, the last term denotes extra terms arising from the contraction between the two

operators defined as

lim
y→x

(

A(x)B(y)− (AB)(x, y)
)

= N(AB)(x) (3.3)

which in a CFT is nothing else than the singular part of the operator product expansion.

Having defined the product between operators, we assume that variations of the field can

be schematically written in the form

δquε Φ ∼
∑

n

ε Φ ⋆ · · · ⋆ Φ
︸ ︷︷ ︸

n times

, (3.4)

where for simplicity we considered bosonic fields and symmetry parameters. Following the

lines of the classical discussion we define graded symmetric multilinear quantum n-products

Ln+1 : X
⊗n → X (3.5)

and rewrite the variation in the form

δquε Φ =
∑

n≥0

1

n!
(−1)

n(n−1)
2 Ln+1(ε,Φ, . . . ,Φ

︸ ︷︷ ︸

n times

) . (3.6)

The quantum Ln products still carry the intrinsic grading degLn = n− 2. Since the star-

product is symmetric, the L-products are automatically symmetric when interchanging

two fields. Since in the limit ~ → 0, the star product becomes the normal field product,

the quantum Ln-products will become the classical ℓn-products with the right degree and

symmetry properties.

2This can be shown using the general formula 6.227 in [13].
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Following the classical analysis, the question now is which constraints arise from de-

manding the closure of the quantum symmetry algebra

[δquε1 , δquε2 ]Φ = δqu
−C (ε1,ε2,Φ)Φ (3.7)

and the Jacobi identity
∑

cycl

[
δquε1 , [δquε2 , δquε3 ]

]
= 0 . (3.8)

Here, the field dependent closure parameter C(ε1, ε2,Φ) should still be expressed in terms

of the symmetrized normal ordered product

C (ε1, ε2,Φ) ∼
∑

n

ε1ε2 · Φ ⋆ · · · ⋆ Φ , (3.9)

allowing to read off the Ln products with two symmetry parameters

C (ε1, ε2,Φ) =
∑

n≥0

1

n!
(−1)

n(n−1)
2 Ln+2(ε1, ε2,Φ, . . . ,Φ

︸ ︷︷ ︸

n times

) . (3.10)

To identify potential sources of quantum corrections in the L∞ relations, we write out the

first few terms of both sides of the closure condition (3.7). Up to second order in the fields,

the left hand side can be expanded as

[δquε1 , δquε2 ]Φ =

{

L2

(
ε2, L1(ε1)

)

+ L2

(
ε2, L2(ε1,Φ)

)
− L3

(
ε2, L1(ε1),Φ

)
(3.11)

− L3

(
ε2, L2(ε1,Φ),Φ

)
−

1

2
L2

(
ε2, L3(ε1,Φ,Φ)

)
}

−
{

ε1 ↔ ε2

}

,

while the right side is

δ−Cqu (ε1,ε2,Φ)Φ = δ−L2(ε1,ε2)Φ+ δ−L3(ε1,ε2,Φ)Φ (3.12)

= −L1

(
L2(ε1, ε2)

)
− L2

(
L2(ε1, ε2),Φ

)
+

1

2
L3

(
L2(ε1, ε2),Φ,Φ

)

− L1

(
L3(ε1, ε2,Φ)

)
− L2

(
L3(ε1, ε2,Φ),Φ

)
.

To read off the quantum L∞ relations, we now sort (3.11) and (3.12) according to the

power in Φ. Since now the power of Φ is with respect to the symmetrized normal ordered

product, this is a bit more subtle than in the classical case. One first has to bring all

terms into the schematic form (ε1ε2) · (Φ ⋆ · · · ⋆Φ) that also appeared in the definitions of

the L-products (3.6) and (3.10). While some terms are already of this form, for others a

rebracketing is necessary.

Consider for instance the fourth term in (3.11) that, upon using (3.4), can be schemat-

ically written as

L3

(
ε2, L2(ε1,Φ),Φ

)
∼ ε2

(
(ε1Φ) ⋆ Φ

)
. (3.13)

– 7 –
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Using the non-associativity of the ⋆-product (3.2), this becomes

L3

(
ε2, L2(ε1,Φ),Φ

)
= ε1ε2 · (Φ ⋆ Φ) + ε1ε2 · (ΦΦ) . (3.14)

Let us assume for simplicity a free theory such that ΦΦ is proportional ~1. Then the last

term in (3.14) is proportional to ǫ1 and ǫ2 and therefore a quantum correction to the L∞

relation at zeroth order in Φ. Treating the last term in (3.12) in an analogous way, we find

the quantum corrected L∞ relation at zeroth order in Φ

0 = L2

(
L1(ε1), ε2

)
+ L2

(
ε1, L1(ε2)

)
+ L1

(
L2(ε1, ε2)

)

− L3

(
ε2, L2(ε1,Φ),Φ

)
+ L3

(
ε1, L2(ε2,Φ),Φ

)
+ L2

(
L3(ε1, ε2,Φ),Φ

)
.

(3.15)

Similarly also all other L∞ relations get corrected by contractions of higher L∞ relations.

Let us summarize: guided by quantum algebras in 2d CFT, we identified two sources

of quantum corrections to L∞ algebra. First, relative to the classical products, the higher

quantum L∞ products can receive corrections of higher order in ~. The second kind of

quantum corrections arises from contractions between quantum fields that appear when

sorting the relations in powers of the field. These contractions change the power of the

fields so that the classically separated L∞ relations receive quantum suppressed off-diagonal

corrections.

We want to stress that the contractions differ severely from theory to theory. While in

free theories the contraction is proportional to the identity operator, in interacting theories

(like generic CFTs) the contraction of two fields is usually field dependent again. We can

therefore not provide a general closed formula for which contraction of which L∞ relation

contributes to which other L∞ relation.

Guided by these observations we suggest to define quantum L∞ algebras that govern

(global) quantum symmetries as follows: one has a graded vector space X = X0 ⊕ X−1,

where Xn is said to have degree n. In addition there are multi-linear quantum products

Ln(x1, . . . , xn) that have degree deg(Ln) = n− 2 so that

deg
(
Ln(x1, . . . , xn)

)
= n− 2 +

n∑

i=1

deg(xi) . (3.16)

Each product can in principle receive quantum corrections at any power in ~. The products

are graded commutative, i.e.

Ln(. . . , x1, x2, . . . ) = (−1)1+deg(x1)deg(x2)Ln(. . . , x2, x1, . . . ) . (3.17)

Like in the classical case, one defines

J qu
n (x1, . . . , xn) :=

∑

i+j=n+1

(−1)i(j−1)
∑

σ

χ(σ;x)

Lj

(
Li(xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

)
.

(3.18)
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The Ln products define a quantum L∞ algebra if they satisfy for each m = 2, 3

and n ∈ Z
+
0

J qu
m+n(ǫ1, . . . , ǫm, x1, . . . , xn) +

∑

(y1,...,yk)
→(x1,...,xn)

~
ξ J qu

m+k(ǫ1, . . . , ǫm, y1, . . . , yk
︸ ︷︷ ︸

→(x1,...,xn)

) = 0 .
(3.19)

Since this is the main formula of the paper we want to explain the formula in more detail.

ǫi ∈ X0 is a symmetry parameter and xi ∈ X−1 is a field. While the first term is the known

one from the classical L∞ relations, the second term contains the crucial new feature of

quantum L∞ algebras, namely the corrections due to contractions of other L∞ relations.

To cover all such corrections we sum over all L∞ relations whose field input (y1, . . . , yk)

can contract into (x1, . . . , xn). The ξ ≥ 1 counts the number of contractions employed to

convert the dependence on (y1, . . . , ym) into a dependence on (x1, . . . , xn). The underbrace

signals that only the terms that arise from the particular contraction are to be taken here.

To avoid permutation factors we let the sum run only over (y1, . . . , yk) that are not equal

under permutation. Furthermore notice that the order of the (y1, . . . , yk) does not play a

role since the J qu share the permutation property of (3.17).3

Let us provide a more general and mathematically precise definition for the quantum

L∞ algebra. Since the quantum corrections mix the different L∞ relations, we can also

define quantum L∞ algebras very compactly by demanding that for m ∈ {2, 3} and ǫi ∈ X0

the sum of all L∞ relations vanish

∞∑

n=1

∑

(x1,...xn)∈Xn
−1

J qu
m+n(ǫ1, . . . , ǫm, x1, . . . xn) = 0 , (3.20)

where as before the second sum runs only over distinct (x1, . . . , xn). In case the L prod-

ucts do not change the power of the input, the terms in (3.20) separate into the classical

L∞ relations (2.4). On the other hand, using normal ordered products in the L prod-

ucts, (3.20) reduces to the former definition (3.19). Nevertheless we want to stress that

in general (3.20) does not need any physical input in form of a contraction. From the

mathematical viewpoint the definition (3.20) might therefore be more appealing. We nev-

ertheless prefer (3.19) that also makes it manifest that in the ~ → 0 limit one encounters

the classical L∞ relations and that their off-diagonal quantum corrections arise from the

contraction of quantum fields.

In section 4 we show in much detail how quantum W algebras fit precisely into this

definition of quantum L∞ algebras. Especially in section 4.4 we will demonstrate that the

quantum relations (3.19) can be given a precise meaning for the quantum W3 algebra.

3.2 Comparison to the L∞ algebra of CSFT

We will now compare our definition for a quantum L∞ algebra with the L∞ algebra of

closed string field theory (CSFT) [1, 11]. To distinguish these two different L∞ definitions,

3Here an obstacle becomes apparent if one tries to generalize the above definition beyond the given case

where contractions appear only between elements of X−1. When contractions appear not only between

elements with even parity the order of the y1, . . . , yk does indeed matter. Lacking an example to follow we

cannot give a precise ordering prescription to fix this issue here.
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we will follow Markl [11] and call the L∞ algebra of CSFT a loop L∞ algebra, while the

definition from last section will be called quantum L∞ algebra.

In a loop L∞ algebras one usually expands the quantum products according to their

loop level, thus their power of ~

Ln(x1, . . . , xn) =
∑

g

Lg
n(x1, . . . xn) , (3.21)

where Lg
n is proportional to ~

g. Then, the Lg
n products define a loop L∞ algebra, if for any

level g the following relation holds (we use the notation of [11])

0 =
∑

g1+g2=g

∑

i+j=n+1

(−1)i(j−1)
∑

σ

χ(σ;x)

× Lg1
j

(
Lg2
i (xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

)

+
1

2

∑

s

(−1)deg(hs)+n−g Lg−1
n+2(hs, h

s, x1, . . . , xn) .

(3.22)

The sum over s in the last term runs over a basis of fields labeled by s. The field with an up-

per index, hs, is the conjugate field to hs with respect to a scalar product 〈hs, ht〉 = δst . The
∑

s L
g−1
n (hs, h

s, . . . ) can be interpreted as an identity operator. When contracting hs, h
s

to eliminate this identity operator, we obtain an additional ~ factor such that, together

with the ~
g−1 from the Lg−1

n , the last term is proportional to ~
g as well.

Let us compare the defining relations of (global) quantum and (gauge) loop L∞ al-

gebras: the first part of the loop L∞ relation (3.22) appears in quantum L∞ algebras as

the order ~
g term, when inserting the expansion (3.21) into the first term of (3.19). The

second term of (3.22) does not appear in the quantum L∞ relations in (3.19). The reason

for this is, that the quantum L∞ was derived in a setting where the total vector space con-

tained only degree 0 objects, the symmetry parameters, and degree -1 objects, the fields.

Therefore X = X0 ⊕ X−1 and all objects with a degree other than 0 and -1 were set to

zero. Demanding all terms in the defining relation of loop L∞ algebras (3.22) to have the

same degree, we find

deg(hs) + deg(hs) = −3 . (3.23)

Since hs is a field, its degree is deg(hs) = −1 and the degree of hs is bound to be

deg(hs) = −2. Therefore, hs is trivial and the second term in (3.22) could not appear

in the derivation of the quantum L∞ based entirely on quantum gauge variations.

Remarkably, the second term in the quantum L∞ relation (3.19) has no counterpart

in the loop L∞ algebras. Therefore the L∞ relations of the CSFT L∞ algebra do not

receive corrections from contraction terms. The question arises if there exist a connection

between the two definitions. From the current status, the answer is not completely clear

to us and more work or insight is required to fully clarify it. We can only say that the

structure of (gauge) loop L∞ arose as a consequence of the quantum master equation of

the BV-formalism for the CSFT quantum action. On the contrary, our (global) quantum

L∞ definition is based on the analysis of bootstrapped and therefore exactly solvable global

quantum W algebras in 2d CFT.
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4 The quantum W3 − L∞ algebra

In the recent paper [9] it was shown that (classical) W algebras are highly non-trivial

(classical) L∞ algebras with field dependent symmetry parameters. In this section we will

show that the quantum W3-algebra fits into the framework of the quantum L∞ algebra

of section 3.1 (and was in fact motivating it). We expect that more general quantum

W-algebras will even provide more intricate examples of quantum L∞ algebras.

4.1 W algebras

In two-dimensional conformal field theories the energy momentum tensor T (z) is a quasi

primary field that has conformal dimension two, generates the conformal transformations

and obeys the Virasoro algebra. A W algebra is an extension of the Virasoro algebra by

chiral primary fields of conformal dimension usually larger than two. The prototype exam-

ple is Zamolodchikov’s W3 algebra [14], generated by two fields {T (z),W (z)} of conformal

dimensions two and three. The (quantum) OPEs among these fields are known to be4

1

~
T (z) ◦ T (w) =

c/2

(z − w)4
+ 2

(
T (w)

(z − w)2
+

1

2

∂T (w)

(z − w)

)

,

1

~
T (z) ◦W (w) = 3

(
W (w)

(z − w)2
+

1

3

∂W (w)

(z − w)

)

,

1

~
W (z) ◦W (w) =

c/3

(z − w)6

+ α

(
T (w)

(z − w)4
+

1

2

∂T (w)

(z − w)3
+

3

20

∂2T (w)

(z − w)2
+

1

30

∂3T (w)

(z − w)

)

+ β

(
Λqu(w)

(z − w)2
+

1

2

∂Λqu(w)

(z − w)

)

.

(4.1)

Here the field Λqu denotes the normal ordered product

Λqu = N(TT )− ~
3

10
∂2T (4.2)

where we have indicated the quantum correction linear in T . The corresponding algebra

for the modes satisfies the Jacobi-identity for

α = 2 , β =
32

5c+ 22~
. (4.3)

Following [17], in these formulas we have introduced ~ so that the classical limit and its

quantum corrections are clearly visible. In the ~ → 0 limit, the commutator (singular part

of the OPE) becomes the Poisson bracket

{·, ·}PB = lim
~→0

1

i~
[·, ·] . (4.4)

4Up to some structure constants, the form of the OPE between quasi-primary fields is generally

known [15] (for a pedestrian derivation see also [16]), as has been exploited for the classical W − L∞

algebra relation in [9].
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There exist three sources of quantum corrections. Two of them are manifest in the

~ corrections in (4.2) and (4.3)5 and the third is the appearance of the normal ordered

product N(TT ) instead of the usual point-wise multiplication (TT ) in the classical case.

The normal ordered product between two chiral fields is defined as

N(φχ)(w) =
1

2πi

∮

γ(w)
dz

φ(z) ◦ χ(w)

(z − w)
, (4.5)

where γ(w) is a path encircling w counterclockwise once. The normal ordered product is

therefore the first regular term in the OPE between the two fields. Note that this product

is neither commutative nor associative. Since for the correspondence to an L∞ algebra

one needs graded symmetric products, we use the symmetrized normal ordered product ⋆

from (3.1) that is still non-associative. To demonstrate this, let us explicitly compute the

left hand side of (3.2) for A = B = T

(εT ) ⋆ T − ε(T ⋆ T ) =
1

4πi

∮

dz
ǫ(z)T (z) ◦ T (w)

(z − w)

=
c~

96
∂4ǫ+

~

2
∂2ǫ T +

~

2
∂ǫ ∂T ,

(4.6)

where both sides depend on w. Note that these corrections arise from the contraction of

operators below the integral and that they are ~-suppressed relative to the leading order

normal ordered products.

The extended symmetry algebra acts with

δεiWj(w) =
1

2πi

∮

γ(w)
dz εi(z)

1

~
Wi(z) ◦Wj(w) , (4.7)

where i, j = {T,W}. Instead of writing εT and εW from now on we will write ε for εT and

η for εW .

4.2 Ln products with one symmetry parameter

Let us now follow the steps outlined in the sections 2 and 3.1 to construct the quantum

L∞ algebra corresponding to the quantum W3 algebra. The fields {T,W} have degree −1,

and the symmetry parameters {ε, η} have degree zero. Therefore the total vector space is

X = X0 ⊕X−1 and each Xn = XT
n ⊕XW

n splits into a T and a W part. As in [9], we will

use boldface to highlight vectors in this two-dimensional space, for instance W = (T,W )

will denote either of the fields. Furthermore we equip all Ln products with an upper index

from the set {T,W, ǫ, η} that denotes in which of the four subspaces of X the image of the

higher product Ln is located.

5Notice that when expanding the fraction β we get an infinite series with terms at any order in ~.

Separating the different powers of ~g in different Lg
n products, as usually done in loop L∞ algebras, see (3.21),

is therefore not illuminating in this example.
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Inserting (4.1) in (4.7), for the quantum corrected infinitesimal variations one obtains

δεT =
c

12
∂3ε

︸ ︷︷ ︸

LT
1 (ε)

+(2 ∂ε T + ε ∂T )
︸ ︷︷ ︸

LT
2 (ε,T )

,

δεW = (3 ∂εW + ε ∂W )
︸ ︷︷ ︸

LW
2 (ε,W )

,

δηT = (3 ∂ηW + 2 η ∂W )
︸ ︷︷ ︸

LT
2 (η,W )

(4.8)

and

δηW =
c

360
∂5η

︸ ︷︷ ︸

LW
1 (η)

+α

(
1

6
∂3η T +

1

4
∂2η ∂T +

3

20
∂η ∂2T +

1

30
η ∂3T

)

︸ ︷︷ ︸

LW
2 (η,T )

−
3~β

10

(

∂η ∂2T +
1

2
η ∂3T

)

︸ ︷︷ ︸

LW
2 (η,T )

+ β
(

∂η (T ⋆ T ) +
1

2
η ∂(T ⋆ T )

)

︸ ︷︷ ︸

− 1
2
LW
3 (η,T,T )

.

Notice that we have already written all terms in the form (3.4) such that we can directly

read off the Ln products. Compared to the classical higher products, the only change

is in δηW , where LW
2 (η, T ) receives an explicit ~-correction and ℓW3 (η, T, T ) involves the

quantum product T ⋆ T .

4.3 Ln products with two symmetry parameters

Recall that the Ln products with two symmetry parameters appear in the closure condi-

tion (3.7)

[δquεi , δquεj ]Wk = δqu
−C(εi,εj ,W)Wk , (4.9)

upon expanding (3.10)

C(εi, εj ,W) =
∑

n≥0

1

n!
(−1)

n(n−1)
2 Ln+2(εi, εj ,W, . . . ,W

︸ ︷︷ ︸

n times

) . (4.10)

To obtain the C(εi, εj ,W) we insert (4.7) into the symmetry closure condition and use the

generalized Wick theorem for chiral vertex operator algebras [18]

∮
dy

2πi
(y − w)nA(y) ◦

(
∮

dz

2πi
(z − w)mB(z) ◦ C(w)

)

(4.11)

−

∮
dy

2πi
(y − w)mB(y) ◦

(
∮

dz

2πi
(z − w)nA(z) ◦ C(w)

)

=
n∑

j=0

(
n

j

) ∮
dz

2πi

(
∮

dy

2πi
(y − z)j A(y) ◦B(z)

)

◦ C(w) (z − w)(m+n−j)
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in the special case m,n = 0. In this way, for instance we can derive

[
δε1 , δε2

]
T (z) =

(
1

2πi

)2 ∮

dy
1

~

(
∮

dw ε1(w)ε2(y)
1

~
T (w) ◦ T (y)

)

◦ T (z)

=
1

2πi

∮

dy
(
∂ε1(y)ε2(y)− ε1(y)∂ε2(y)

) 1

~
T (y) ◦ T (z) ,

(4.12)

so that the C-product can be read off as

C(ε1, ε2,W) = ε1 ∂ε2 − ∂ε1 ε2 := Lε
2(ε1, ε2) . (4.13)

Similarly we find

C(ε, η,W) = ε ∂η − 2 ∂ε η := Lη
2(ε, η) ,

C(η1, η2,W) = Lε
2(η1, η2) + Lε

3(η1, η2, T ) ,
(4.14)

with

L ε
2 (η1, η2) = α

(
1

30
η1 ∂

3η2 −
1

30
∂3η1 η2 +

1

20
∂2η1 ∂η2 −

1

20
∂η1 ∂

2η2

)

−
3~β

10

(
1

2
η1 ∂

3η2 −
1

2
∂3η1 η2 −

1

2
∂2η1 ∂η2 +

1

2
∂η1 ∂

2η2

)

,

L ε
3 (η1, η2, T ) = β (η1∂η2 − ∂η1 η2) T .

(4.15)

Please note the explicit first order quantum correction in L ε
2 (η1, η2) and the infinitely many

quantum corrections hidden in the ~ dependence of β.

4.4 Quantum L∞ relations with two symmetry parameters

Having determined the quantum corrected Ln products for the W3 algebra, let us now

state and check the quantum L∞ relations

J qu
m+n(ǫ1, . . . , ǫm, x1, . . . , xn) +

∑

(y1,...,yk)
→(x1,...,xn)

~
ξ J qu

m+k(ǫ1, . . . , ǫm, y1, . . . , yk
︸ ︷︷ ︸

→(x1,...,xn)

) = 0
(4.16)

when plugging in exactly two symmetry parameters. These are the ones that are equivalent

to the quantum closure condition (4.9).

Quantum corrections to the L∞ relations

The distinguished new feature of the definition of quantum L∞ algebras is the second term

in (4.16) where the contractions appear. Let us therefore first list the L∞ relations that

are non-trivially corrected by such contraction terms.

Since we plug in two symmetry parameters and we need at least two fields to be able

to contract, we must have at least four inputs in (4.16). But since the highest Ln product

is L3, all relations J
qu
6 ,J qu

7 , · · · = 0 are automatically satisfied. To further trivialize most

cases we can use that the only non-trivial L3 products are LW
3 (η, T, T ) and LW

3 (η1, η2, T ).
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Since the first L3 always maps into the kernel of the second L3, for J qu
5 ∼ L3L3 one can

conclude

J qu
5 (ǫi, ǫj ,W,W,W) = 0 . (4.17)

In a similar vein, evaluating (2.8) one finds that trivially

J qu
4 (ε, ε,W,W ) = 0 ,

J qu
4 (ε1, ε2,W,W) = 0 ,

J qu
4 (ε, η,W, T ) = 0 .

(4.18)

The only non-zero contraction terms can therefore arise in the terms

J qu
4 (ǫ, η, T, T ) , J qu

4 (η1, η2,W, T ) , J qu
4 (η1, η2, T, T ) . (4.19)

From the form of the OPEs (4.1), one realizes that the contraction TT yields terms propor-

tional to ~T and the identity ~1, while the second contraction reads WT ∼ ~W . Hence the

L∞ relations that are non-trivially corrected by a contraction of a higher L∞ relation are

0 = J qu
2 (ε, η) + ~J qu

4 (ε, η, T, T
︸︷︷︸

→1

) ,

0 = J qu
3 (ε, η, T ) + ~J qu

4 (ε, η, T, T
︸︷︷︸

→T

) ,

0 = J qu
2 (η1, η2) + ~J qu

4 (η1, η2, T, T
︸︷︷︸

→1

) ,

0 = J qu
3 (η1, η2, T ) + ~J qu

4 (η1, η2, T, T
︸︷︷︸

→T

) ,

0 = J qu
3 (η1, η2,W ) + ~J qu

4 (η1, η2, T,W
︸ ︷︷ ︸

→W

) .

(4.20)

Following the logic of section 3.1, we will now explicitly evaluate the contractions

appearing in these quantum L∞ relations. We start with terms arising from contractions

of the L∞ relation J qu
4 (η1, η2, T, T ). In a first step we find

J qu
4 (η1, η2, T, T ) = −LT

2

(
L ε
3 (η1, η2, T ), T

)

+
1

2
LT
2

(
η2, L

W
3 (η1, T, T )

)
−

1

2
LT
2

(
η1, L

W
3 (η2, T, T )

)
.

(4.21)

Recall that every L∞ relation collects the contribution of the form (η1η2) (T ⋆ T ). While

the terms in the second line are already of this form, the first term is not, so that the

non-associativity of the ⋆-product (3.2) is expected to induce contractions. Inserting the

explicit expression of the Ln products into the first term yields

−LT
2

(
L ε
3 (η1, η2, T ), T

)
= −2β

(
∂(fT ) ⋆ T

)
− β

(
(fT ) ⋆ ∂T

)
, (4.22)
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where we abbreviated f := η1 ∂η2 − ∂η1 η2. Using the normal ordering prescription (4.5)

and its function linearity in the second argument we find for the first term

−2β
(

∂(fT ) ⋆ T
)

(z)

= −β

(
∮

dy

2πi

f(y) T (y) ◦ T (z)

(y − z)2
+ ∂f(z)N(TT )(z) + f(z)N(T ∂T )

)

= −β

(

c~

240
∂5f(z) +

~

3
∂3f(z)T (z) +

~

2
∂2f(z) ∂T (z) (4.23)

+ 2 ∂f(z)N(TT )(z) + f(z) ∂N(TT )(z)

)

.

Evaluating the second term in (4.22) similarly gives

−β
(

(fT ) ⋆ ∂T
)

(z) = (4.24)

−
β

2

(
c~

60
∂5f(z) +

2~

3
∂3f(z)T (z) +

3~

2
∂2f(z) ∂T (z) + f(z) ∂N(TT )

)

.

Putting both terms together results in

−LT
2

(
L ε
3 (η1, η2, T ), T

)
= −

β~c

80
∂5f(z)

−
β~

3
∂3f(z)T (z)−

5β~

4
∂2f(z)∂T (z)−

β~

2
∂f(z)∂2T (z)

− 2β∂f(z)N(TT )(z)−
3β

2
f(z)∂N(TT )(z)

(4.25)

so that we can directly read off

~J qu
4 (η1, η2, T, T

︸︷︷︸

→1

) = −
β~c

80
∂5f(z) , (4.26)

~J qu
4 (η1, η2, T, T

︸︷︷︸

→T

) = −
β~

3
∂3f(z)T (z)−

5β~

4
∂2f(z) ∂T (z)−

β~

2
∂f(z) ∂2T (z) .

Computing the other contractions is more lengthy, but follows the same steps. Let us

therefore only state the results

~J qu
4 (ε, η, T, T

︸︷︷︸

→T

) = −
4~β

3

(

∂η ∂3ε−
1

2
η ∂4ε

)

T − 2~β

(

∂η ∂2ε−
1

3
η ∂3ε

)

∂T

− ~β η ∂2ε ∂2T , (4.27)

~J qu
4 (ε, η, T, T

︸︷︷︸

→1

) = −
β~c

40

(

∂η ∂5ε+
1

2
η ∂6ε

)

,

and finally

~J4(η1, η2, T,W
︸ ︷︷ ︸

→W

) = −
3β~

4
(∂η1 ∂

2η2 − ∂η2 ∂
2η1) ∂W

−
3β~

2
∂2f ∂W −

9β~

4
∂f ∂2W .

(4.28)

– 16 –



J
H
E
P
1
0
(
2
0
1
7
)
1
6
3

Checking the quantum L∞ relations

We are now in the position to state and check the quantum L∞ relation with two symmetry

parameters. We will sort them according to their appearance in the quantum closure

condition (4.9) with i, j, k ∈ {T,W}.

• (TT,T): the closure condition (4.9) with (ij, k) = (TT, T ) is equivalent to

0 = J qu
2 (ε1, ε2)

= −LT
1

(
L ε
2 (ε1, ε2)

)
+ LT

2

(
LT
1 (ε1), ε2

)
+ LT

2

(
ε1, L

T
1 (ε2)

) (4.29)

and

0 = J qu
3 (ε1, ε2, T )

= LT
2

(
L ε
2 (ε1, ε2), T

)
+ LT

2

(
LT
2 (ε2, T ), ε1

)
+ LT

2

(
LT
2 (T, ε1), ε2

)
.

(4.30)

Inserting (4.13) these relations are readily checked to be satisfied.

• (TT,W): there is only one non-trivial relation

0 = J qu
3 (ε1, ε2,W ) (4.31)

= LW
2

(
L ε
2 (ε1, ε2),W

)
+ LW

2

(
LW
2 (ε2,W ), ε1

)
+ LW

2

(
LW
2 (W, ε1), ε2

)
,

that is also directly satisfied.

• (TW,T): one finds the single non-trivial relation

0 = J qu
3 (ε, η,W )

= LT
2

(
L η
2 (ε, η),W

)
+ LT

2

(
LT
2 (η,W ), ε

)
+ LT

2

(
LW
2 (W, ε), η

)
.

(4.32)

As before, a short computation shows that this equation is satisfied without any

constraints.

• (TW,W): this is the first truly interesting case, as the closure condition involves a

contribution from a contraction

0 = J qu
2 (ε, η) + ~J qu

4 (ε, η, T, T
︸︷︷︸

→1

) ,

0 = J qu
3 (ε, η, T ) + ~J qu

4 (ε, η, T, T
︸︷︷︸

→T

) ,

0 = J qu
4 (ε, η, T, T ) .

(4.33)

When evaluating these relations, the contraction terms computed in (4.27) are crucial.

Like in the classical case, the first equation is satisfied for α = 2. Note that terms from

the quantum part of L2(η, T ) get exactly canceled by the quantum correction from the

contraction. The second equation is indeed satisfied for β = 16α
5c+22~ , the value of the

quantumW3 algebra. The third relation holds without giving any constraints on α, β.
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• (WW,T): in this case the closure is equivalent to the quantum L∞ relations

0 = J qu
2 (η1, η2) + ~J qu

4 (η1, η2, T, T
︸︷︷︸

→1

) ,

0 = J qu
3 (η1, η2, T ) + ~J qu

4 (η1, η2, T, T
︸︷︷︸

→T

) ,

0 = J qu
4 (η1, η2, T, T ) .

(4.34)

Again, the contraction terms (4.26) are needed. The first equation is satisfied for

α = 2 and the second for β = 16α
5c+22~ . Again, the quantum corrected L∞ relations fix

the open constants exactly to the values expected for the quantum W3 algebra. The

third equation holds independently of the numerical values of α, β.

• (WW,W): the quantum L∞ relations equivalent to closure are

0 = J qu
3 (η1, η2,W ) + ~J qu

4 (η1, η2, T,W
︸ ︷︷ ︸

→W

) ,

0 = J qu
4 (η1, η2, T,W ) .

(4.35)

After inserting the contraction term (4.28), both equations hold independent of α

and β.

4.5 L∞ relations with three symmetry parameters

After we have checked the L∞ relations with two symmetry parameters, it remains to

evaluate those with three symmetry parameters. Recall that these are equivalent to the

Jacobi identity
∑

cycl

[
δquεi , [δ

qu
εj
, δquεk ]

]
= 0 . (4.36)

For three symmetry parameter insertions, Jn = 0 is trivially satisfied for n ≥ 5 in the

case of the W3 algebra. Therefore, there cannot be any correction terms arising from

contractions. Again sorting them according to the triplet (ijk) in (4.36), the quantum L∞

relations read as follows:

• (TTT):

0 = L ε
2

(
L ε
2 (ε1, ε2), ε3

)
+ L ε

2

(
L ε
2 (ε3, ε1), ε2

)
+ L ε

2

(
L ε
2 (ε2, ε3), ε1

)
.

• (TTW):

0 = L η
2

(
L ε
2 (ε1, ε2), η

)
+ L η

2

(
L η
2 (η, ε1), ε2

)
+ L η

2

(
L η
2 (ε2, η), ε1

)
.

• (WWT):

0 = L ε
2

(
L ε
2 (η1, η2), ε

)
+ L ε

2

(
L η
2 (ε, η1), η2

)
+ L ε

2

(
L η
2 (η2, ε), η1

)

+ L ε
3

(
η1, η2, L

T
1 (ε)

)
,

0 = −L ε
2

(
L ε
3 (η1, η2, T ), ε

)
+ L ε

3

(
L η
2 (η1, ε), η2, T

)
,

− L ε
3

(
L η
2 (η2, ε), η1, T

)
+ L ε

3

(
LT
2 (T, ε), η1, η2

)
.
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The first J3-type relation requires β = 16α
5c+22~ to hold and, due to the appearance

of the non-vanishing last term, features that the two-product L2 violates its Jacobi

identity.

• (WWW):

0 = L η
2

(
L ε
2 (η1, η2), η3

)
+ L η

2

(
L ε
2 (η3, η1), η2

)
+ L η

2

(
L ε
2 (η2, η3), η1

)
,

0 = L η
2

(
L ε
3 (η1, η2, T ), η3

)
+ L η

2

(
L ε
3 (η3, η1, T ), η2

)
+ L η

2

(
L ε
3 (η2, η3, T ), η1

)
,

0 = L ε
3

(
LT
2 (η1,W ), η2, η3

)
+ L ε

3

(
LT
2 (η2,W ), η3, η1

)

+ L ε
3

(
LT
2 (η3,W ), η1, η2

)
.

5 Summary and conclusions

This completes the proof that the quantum W3 algebra is an example for a quantum

L∞ algebra as defined in section 3.1. Like for the classical W3 algebra, the quantum

corrected relations with two inputs gave the constraint α = 2 and the relations with three

inputs J qu
3 = 0 required β = 16α

5c+22~ . The only other non-trivial higher order relations were

satisfied without any further constraint. The L∞ relations with three symmetry parameters

were essentially the same as in the classical case.

Let us emphasize that the quantum contractions in (3.19) are necessary for the L∞

relations to hold. This means that the quantum W3 algebra does neither define a classical

nor a loop L∞ algebra (as appeared for CSFT), but this new type of a quantum L∞ algebra.

Of course the higher products in CSFT and for quantum W algebras are different from

the onset. In the latter case they involve the non-associative normal ordered product of

2d CFT, whereas in the former case they are the loop corrected n-vertices of CSFT. Thus,

it seems that for global and gauge symmetries there does not exist a unique version of a

physically reasonable definition of an L∞ algebra for a quantum theory.

We expect that in general the whole class of W algebras yields further examples for

quantum L∞ algebras, since all of them have a closing symmetry algebra that involves

normal ordered products as defined in CFT. As in the classical case, also higher n-products

will be non-trivial. Since our analysis of quantum W-algebras is restricted to non-trivial

elements in X0⊕X−1, it is not obvious whether and how this structure generalizes to more

general gradings.
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[13] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in

Contemporary Physics, Springer (1997).

[14] A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal

Quantum Field Theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].

[15] R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel and R. Varnhagen, W

algebras with two and three generators, Nucl. Phys. B 361 (1991) 255 [INSPIRE].

[16] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory,

Lect. Notes Phys. 779 (2009) 1 [INSPIRE].

[17] P. Bowcock and G.M.T. Watts, On the classification of quantum W algebras,

Nucl. Phys. B 379 (1992) 63 [hep-th/9111062] [INSPIRE].

[18] V. Kac, Vertex algebras for beginners, American Mathematical Society (1996).

– 20 –

https://doi.org/10.1016/0550-3213(93)90388-6
https://arxiv.org/abs/hep-th/9206084
https://inspirehep.net/search?p=find+EPRINT+hep-th/9206084
https://doi.org/10.1016/0550-3213(85)90074-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B260,295%22
https://doi.org/10.1007/BF00671791
https://arxiv.org/abs/hep-th/9209099
https://inspirehep.net/search?p=find+EPRINT+hep-th/9209099
https://arxiv.org/abs/math/9802118
https://inspirehep.net/search?p=find+EPRINT+math/9802118
https://doi.org/10.1007/s00220-002-0678-3
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,231,25%22
https://arxiv.org/abs/1611.02772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02772
https://doi.org/10.1007/JHEP01(2017)108
https://arxiv.org/abs/1609.00459
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00459
https://doi.org/10.1002/prop.201700014
https://arxiv.org/abs/1701.08824
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08824
https://doi.org/10.1007/JHEP07(2017)060
https://arxiv.org/abs/1705.00736
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.00736
https://doi.org/10.1016/0370-1573(93)90111-P
https://arxiv.org/abs/hep-th/9210010
https://inspirehep.net/search?p=find+EPRINT+hep-th/9210010
https://doi.org/10.1007/PL00005575
https://arxiv.org/abs/hep-th/9711045
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711045
https://doi.org/10.1007/BF01036128
https://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,65,1205%22
https://doi.org/10.1016/0550-3213(91)90624-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B361,255%22
https://doi.org/10.1007/978-3-642-00450-6
https://inspirehep.net/search?p=find+J+%22Lect.Notes%20Phys.,779,1%22
https://doi.org/10.1016/0550-3213(92)90590-8
https://arxiv.org/abs/hep-th/9111062
https://inspirehep.net/search?p=find+EPRINT+hep-th/9111062

	Introduction
	The L(infinity) gauge algebra of a classical symmetry
	Quantum L(infinity) gauge algebras
	The quantum L(infinity) algebra of a quantum symmetry
	Comparison to the L(infinity) algebra of CSFT

	The quantum W(3)-L(infinity) algebra
	W algebras
	L(n) products with one symmetry parameter
	L(n) products with two symmetry parameters
	Quantum L(infinity) relations with two symmetry parameters
	L(infinity) relations with three symmetry parameters

	Summary and conclusions

