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We calculate cross section for production of χc pairs in proton-proton collisions. The cross section for
the gg → χcJ1 χcJ2 is considerably smaller (especially for the χc1 χc1 final state) than that obtained recently
in the kT-factorization approach. We calculate therefore next-to-leading order (NLO) contributions with the
χc pair and one extra associated (mini-)jet. We find these contributions to be much larger than those for the
2 → 2 contribution. Especially the emission of a leading gluon (carrying a large momentum fraction of one
of the incoming gluons) is important. These emissions in the kT-factorization approach are absorbed into
the initial state unintegrated gluon distributions. A smaller contribution to the cross section comes from the
production of central gluons emitted with rapidities between the χc mesons. They do lead, however, to an
enhancement of the χc-pair production at large rapidity distance between the mesons. Our present study
explains the size of the cross section for the χc-pair production obtained previously in the kT-factorization
approach. Several differential distributions are presented.
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I. INTRODUCTION

The production of quarkonia in the nonrelativistic pertur-
bative quantumchromodynamics approachhas a longhistory.
The production of J=ψ is a good example; see e.g., the review
[1]. Using standard parameters of the J=ψ wave functions the
lowest-order cross section in the color-singlet model is much
below experimental data. Higher order corrections and/or
color-octet contributions must be included to get closer to
the data [2–4]. Furthermore, a large fraction of the prompt
production originates from the radiative decays ofP-wave χc
quarkonia. Another efficient option is the kT-factorization
approach [5] where already the lowest-order approach with
unintegrated gluon distributions constructed following
the prescription in Ref. [6] gives reasonable results (see
e.g., [7–11]). In general, the inclusive cross section for J=ψ
(the same is true for other quarkonia) grows with energy.
In recent years also the production of J=ψ pairs became

accessible experimentally [12–16]. There is not yet sufficient

understanding of the measured cross section. An important
problem is the understanding of the contribution from single
parton scattering (SPS) and double parton scettaring (DPS)
mechanisms. Indeed, the importance of charm for the studies
of DPS has been stressed in [17,18]. Especially production
of two J=ψ mesons at large rapidity difference is not well
understood. The production of quarkonia with large rapidity
distance is often attributed to the double parton scattering
mechanism for which the two partonic processes are almost
uncorrelated, in contrast to the single parton scattering
mechanism where the correlation is encoded in relevant
matrix elements. In this region of phase space the DPS
contribution to the cross section for different hard processes
is well represented by the factorized ansatz,

σðDPS; J=ψJ=ψÞ ¼ 1

2

σ2ðSPS; J=ψÞ
σeff

: ð1:1Þ

The so-called effective cross section σeff determines the
normalization of the DPS contribution. A value of σeff ≈
15 mb was found from several phenomenological studies;
see e.g., [19] or a table in Ref. [16]. In the case of J=ψ pair
production the cross section for large rapidity distances
requires rather small values of σeff < 5 mb [12–16]. Is the
production of J=ψ pairs different than for other partonic
processes? We do not see physical arguments to justify such
a claim.
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In Ref. [20] it was found that double χc production
associated with radiative decays of both χc quarkonia leads
to distributions quite similar to those from double parton
scattering. A rather sizeable cross section for χc-pair
productionwas obtained from the kT-factorization approach.
Can we get a similar result within the collinear-factorization
approach? The 2 → 2g g → χc χc processes were already
calculated a long time ago [21]. We intend to calculate both
gg → χc χc processes (see Fig. 1) as well as 2 → 3 processes
(see Fig. 2). The recent calculation within kT-factorization
suggests that the 2 → 3 contributions may be sizeable.
One would expect that the emission of a gluon in the

central rapidity region of the parton-level process [see
diagram (C) in Fig. 2] would enhance the cross section at
large rapidity distances between the χc mesons. The
contributions of leading gluons, which carry a large
longitudinal momentum fraction of one of the incoming
gluons [see diagrams (A) and (B) in Fig. 2], contain a
contribution of minijets produced at a large rapidity
distance to the χc pair. Such contributions—beyond the
obvious collinear emissions—are included in the kT-
factorization approach already in the lowest order. There
these gluons are absorbed into the initial state unintegrated
gluon distribution. The 2 → 3 processes were studied
previously in the context of quarkonium pair production
for pp → J=ψJ=ψg reaction [22] and the corresponding
cross section turned out to be similar to the leading pp →
J=ψJ=ψ contribution and important in order to understand
some correlation observables.
We illustrate our calculations with several examples of

χc χc pairs. Several differential distributions are shown.

II. FORMALISM

A. Parton-level amplitudes

We are interested in three types of configurations in
which a final state gluon is produced: first, the central

production of a gluon gg → χcJg χcJ [diagram (C) in
Fig. 2] and secondly the two configurations with leading
gluons [diagrams (A) and (B) in Fig. 2], where a gluon
carries the largest fraction of momentum of one of the
incoming gluons. The leading gluon minijet production
is expected of importance for comparison to the kT-
factorization approach. This contribution is dominated
by a kinematics, where the gluon is emitted at large rapidity
distance to the χc mesons.
A gauge invariant way to organize the calculation in this

situation is the use of vertices from the Lipatov effective
action [23,24].
Let us introduce the four momenta of incoming protons,

neglecting their masses,

P1μ ¼
ffiffiffi
s
2

r
nþμ ; P2μ ¼

ffiffiffi
s
2

r
n−μ ; ð2:1Þ

with the lightlike basis vectors

n�μ ¼ 1ffiffiffi
2

p ð1; 0; 0;�1Þ: ð2:2Þ

The incoming gluon momenta are

qa ¼ qþa nþμ ¼ x1P1μ; qb ¼ q−b n
−
μ ¼ x2P2μ: ð2:3Þ

The vertex for the upper leading gluon reads [23,24]

n−ρΓμνρðqa; p1Þ ¼ 2qþa gμν þ n−μ ðp1 − 2qaÞν
þ ðqa − 2p1Þμn−ν −

ðp1 − qaÞ2
qþa

n−μn−ν ;

ð2:4Þ

while for the lower leading gluon we have

FIG. 1. A diagrammatic representation of the leading order mechanisms for the pp → χcJ1 χcJ2 reaction.

(a) (b) (c)

FIG. 2. The lowest-order mechanisms for the χcJ1 χcJ2g production in the high-energy kinematics described in the text.
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nþρΓμνρðqb; p2Þ ¼ 2q−b gμν þ nþμ ðp2 − 2qbÞν
þ ðqb − 2p2Þμnþν −

ðp2 − qbÞ2
q−b

nþμ nþν :

ð2:5Þ

For the vertex of central gluon production (the “Lipatov
vertex”) we introduce the momenta of fusing gluons,

q1μ ¼ qþ1 n
þ
μ þ q⊥1μ; q2μ ¼ q−2 n

−
μ þ q⊥2μ;

q2i ¼ ðq⊥i Þ2 ¼ −q⃗2i⊥; ð2:6Þ

so that

Γμρνðq1; q2Þ ¼ n−μnþν Cρðq1; q2Þ;

Cρðq1; q2Þ ¼
�
qþ1 þ q21

q−2

�
nþμ −

�
q−2 þ q22

qþ1

�
n−μ

þ ðq2 − q1Þ⊥μ : ð2:7Þ

We also need the g�g� → χcJ vertices. We write them in the
form

Vab
μνðJ; Jz; q1; q2Þ

¼ −i4παSδab
2R0ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πNcM3

p ffiffiffi
3

p
· TμνðJ; Jz; q1; q2Þ: ð2:8Þ

The explicit form of the tensors Tμν is found in Ref. [20].
Above a, b are the color indices of incoming gluons,
Nc ¼ 3 is the number of colors, andM is the mass of the χc
meson. For J ¼ 1 and J ¼ 2 states, the tensors have the
form

Tμνð1;Jz;q1;q2Þ¼Tμναð1;q1;q2Þεα�ðJz;q1þq2Þ;
Tμνð2;Jz;q1;q2Þ¼Tμναβð2;q1;q2Þεαβ�ðJz;q1þq2Þ; ð2:9Þ

where εμðJz; pÞ, εμνðJz; pÞ is the polarization vector/tensor
for the meson with momentum p. The derivative of the
radial wave function at the origin is related to the γγ-decay
width as

Γð χc0 → γγÞ ¼ 27e4cα2em
m4

c
jR0ð0Þj2: ð2:10Þ

We use the value jR0ð0Þj2 ¼ 0.042 GeV2. We can now
construct all the 2 → 3 amplitudes of interest from the
above tensors. The amplitude for gg → χcJ1g χcJ2 with a
central gluon reads

MC ¼ igSfa0b0cVaa0
1 ðqa; p1Þ

1

t1
Cρðqa − p1; qb − p2Þ

× ε�ρðλg; pgÞ
1

t2
Vbb0
2 ðqb; p2Þ; ð2:11Þ

where

Vaa0
1 ðqa; p1Þ ¼ εμðλa; qaÞVaa0

μμ0 ðJ1; J1z; qa; p1 − qaÞn−μ0 ;
Vbb0
2 ðqb; p2Þ ¼ ενðλb; qbÞVbb0

ν0ν ðJ2; J2z; qb; p2 − qbÞnþν0 :

ð2:12Þ

The amplitude for the final state with the leading gluons in
the fragmentation region of gluon qa or qb can be written
in terms of the (half-) off-shell amplitude for the g�g →
χc1 χc2 process. The 2 → 2 amplitude is obtained from

Mab
μνðqa;qb;p1;p2Þ¼Vaa0

μμ0 ðJ1;Jz1;qa;p1−qaÞ

×
−gμ0ν0δa0b0

t̂
Vbb0
ν0ν ðJ1;Jz1;p2−qb;qbÞ

þVbb0
νν0 ðJ1;Jz1;qb;p1−qbÞ

×
−gμ0ν0δa0b0

û
Vaa0
μ0μðJ1;Jz1;p1−qa;qaÞ:

ð2:13Þ

Here the Mandelstam variables are

t̂ ¼ ðp1 − qaÞ2 ¼ ðp2 − qbÞ2;
û ¼ ðp1 − qbÞ2 ¼ ðp2 − qaÞ2: ð2:14Þ

The amplitude of Eq. (2.13) enters the 2 → 3 amplitudes as
follows:

MA ¼ igSfab0cεμðλa; qaÞΓμνρðqa; pgÞn−ρεν�ðλg; pgÞ

×
1

t1
nþμ0Mb0b

μ0ν0 ðpg − qa; qb;p1; p2Þεν0 ðλb; qbÞ

¼ igSfab0c2qþa δλaλg
1

t1
nþμ0εν

0 ðλb; qbÞ

×Mb0b
μ0ν0 ðpg − qa; qb;p1; p2Þ; ð2:15Þ

and likewise

MB ¼ igSfa0bcn−ν
0
εμ

0 ðλa; qaÞMaa0
μ0ν0 ðqa; pg − qb;p1; p2Þ

×
1

t2
εμðλb; qbÞΓμνρðqb; pgÞnþρεν�ðλg; pgÞ

¼ igSfa0bcn−ν
0
εμ

0 ðλa; qaÞMaa0
μ0ν0 ðqa; pg − qa;p1; p2Þ

×
1

t2
2q−b δλbλg : ð2:16Þ

We close this section with a brief comment on the gluon
exchanges in the crossed channel. The t-channel gluons
explicitly depicted in Fig. 2 are taken in the respective high-
energy limit—they correspond to the Reggeized gluons of
the effective action [23,24]. For the gluon exchanges in the
blobs of diagrams (A) and (B) of Fig. 2 we checked that the
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approximation of Reggeized gluon exchange in the gg →
χc χc subprocess becomes a good approximation at a
rapidity distance between χc’s of Δy⪆3. In the numerical
calculations, we use the full gluon propagator in Feynman
gauge. We note that the interference between t- and u-
channel amplitudes is negligible and confined to a very
narrow interval around Δy ∼ 0.

B. Parton-level cross sections

Let us now have a look at the parton-level cross section
in order to understand better the kinematics and possible
singularities in the integration over phase space. The 2 → 3
parton-level cross sections are obtained from

dσ ¼ 1

4qþa q−b
jMij2dΦðqa þ qb;p1; p2; pgÞ; ð2:17Þ

where i ¼ A, B, C, and there is no interference between the
diagrams of Fig. 2. Let us start from the production of a
leading gluon along the direction of incoming gluon a,
described by amplitude MA. Here, following the rules of
the high-energy limit, the four momentum q1 ≡ pg − qa of
the exchanged gluon enters the 2 → 2 amplitude in the
form

q1μ ¼ qþ1 n
þ
μ þ q⊥1μ ≡ z1qþa nþμ þ q1⊥e⊥μ : ð2:18Þ

We can now use the Ward identity to write

nþμενðλb; qbÞMb0b
μν ðq1; qb;p1; p2Þ

¼ q1⊥
qþ1

e⊥μενðλb; qbÞMb0b
μν ðq1; qb;p1; p2Þ

≡ q1⊥
qþ1

Mð2 → 2Þ: ð2:19Þ

Then, the 2 → 3 cross section takes the simple form

dσð2→ 3Þ ¼ 2CAαS
π

q21⊥
t21

d2q⃗1⊥
π

dz1
z1ð1− z1Þ

1

4qþ1 q
−
b

× jMð2→ 2Þj2dΦðq1 þ qb;p1; p2Þ

¼ 2CAαS
π

d2q⃗1⊥
πq21⊥

dz1
z1

·
1

2qþ1 q
−
b

× jMð2→ 2Þj2dΦðq1 þ qb;p1; p2Þ: ð2:20Þ

Here one would recognized the factorization in the unin-
tegrated gluon distribution in a gluon

zdng=gðz; q⃗⊥Þ
dzd logq2⊥

¼ 2CAαS
π

; ð2:21Þ

and the off-shell cross section for the process g�g → χc χc.
The off-shell cross section will provide us with a scale

μ2 ∼M2⊥, so that for q21⊥ ≪ μ2 we can neglect the off-
shellness of gluon q1 and only the on-shell cross section
gg → χc χc enters. The parton-level cross section then
consists of two parts:

dσð2→3Þ¼2CAαS
π

Z
μ2 dq21⊥

q21⊥
dz1
z1

dσð2→2Þ

þ2CAαS
π

Z
μ2

d2q⃗1⊥
πq21⊥

dz1
z1

dσð2→2; q⃗1⊥Þ: ð2:22Þ

Here the first piece contains the infrared divergent integralR
μ2 dq21⊥=q21⊥, which is of course just the collinear loga-

rithm in the g → gg splitting. In a complete NLO calcu-
lation of the inclusive χc χc the collinear logarithm within
some factorization scheme would be absorbed into the
evolution of the gluon distribution of one of the protons.
The contribution from hard q2⊥1 > μ2 is a genuine NLO
contribution. In our numerical calculations we simply show
the 2 → 3 cross section with a lower cutoff on the trans-
verse momentum of the produced gluon (mini-) jet,
pg⊥ > pcut

g⊥ ∼ 1 GeV.
Let us now come to the contribution from production of

a central gluon in the gg → χcg χc process. We write the
parton-level cross section differential in the gluon rapdity
yg and the transverse momenta of χc mesons p⃗1;2⊥,

dσðgg→ χcgχcÞ¼
1

256π5ŝ2
jMCj2dygd2p⃗1⊥d2p⃗2⊥: ð2:23Þ

The square of the amplitude MC of Eq. (2.11) can be
written in the usual impact factor representation

jMCj2 ¼
Nc

N2
c − 1

16παSI1ðp⃗1⊥Þ
ŝ2

ðp⃗1⊥ þ p⃗2⊥Þ2
I2ðp⃗2⊥Þ

¼ 16π3ŝ2

N2
c − 1

I1ðp⃗1⊥ÞKrðp⃗1⊥;−p⃗2⊥ÞI2ðp⃗2⊥Þ: ð2:24Þ

Here Kr is the real-emission part of the BFKL kernel [25]

Krðp⃗1⊥;−p⃗2⊥Þ ¼
CAαS
π2

1

ðp⃗1⊥ þ p⃗2⊥Þ2
: ð2:25Þ

Notice that the integral over the gluon rapidity is propor-
tional to Y ¼ logðŝ=M2Þ, so that the 2 → 3 cross section
will be

dσð2 → 3Þ ¼ Y
16π2ðN2

c − 1Þ I1ðp⃗1⊥ÞKrðp⃗1⊥;−p⃗2⊥Þ

× I2ðp⃗2⊥Þd2p⃗1⊥d2p⃗2⊥: ð2:26Þ

Here we again have an infrared singularity when
p⃗g⊥ ¼ −p⃗1⊥ − p⃗2⊥ → 0. This is of course just the back-
to-back region of the 2 → 2 process. The differential cross
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section of the Born-level 2 → 2 cross section can be
expressed in terms of the same impact factors and reads

dσð0Þð2 → 2Þ ¼ 1

16π2ðN2
c − 1Þ I1ðp⃗1⊥Þδð2Þðp⃗1⊥ þ p⃗2⊥Þ

× I2ðp⃗2⊥Þd2p⃗1⊥d2p⃗2⊥: ð2:27Þ
To the leading order in αSY, the virtual correction to the
2 → 2 process can be easily calculated using the gluon
Reggeization property, which amounts to the replacement
of the gluon propagator by

1

q2
→

1

q2
exp½ωðq⃗⊥ÞY�; ð2:28Þ

where

ωðq⃗⊥Þ ¼ −
αSNc

4π2

Z
d2Q⃗⊥

q⃗2⊥
Q⃗2⊥ðQ⃗⊥ − q⃗⊥Þ2

: ð2:29Þ

Expanding the Regge propagator to the first order, we
obtain the 2 → 2 process cross section as

dσð2 → 2Þ ¼ dσð0Þð2 → 2Þ

þ Y
16π2ðN2

c − 1Þ I1ðp⃗1⊥Þδð2Þðp⃗1⊥ þ p⃗2⊥Þ

× 2ωðp⃗1⊥ÞI2ðp⃗2⊥Þd2p⃗1⊥d2p⃗2⊥: ð2:30Þ

Then, the inclusive cross section for the production of χc
pairs becomes

dσðgg → χc χcXÞ ¼ dσð0Þ þ Y
16π2ðN2

c − 1Þ I1ðp⃗1⊥Þ

×KBFKLðp⃗1⊥;−p⃗2⊥ÞI2ðp⃗2⊥Þ
× d2p⃗1⊥d2p⃗2⊥: ð2:31Þ

Here KBFKL is the leading order in αSY Balitsky-Fadin-
Kuraev-Lipatov (BFKL) kernel

KBFKLðp⃗1⊥;−p⃗2⊥Þ
¼Krðp⃗1⊥;−p⃗2⊥ÞþKvðp⃗1⊥;−p⃗2⊥Þ

¼ αSNc

π2

�
1

ðq⃗1⊥þ q⃗2⊥Þ2

−δð2Þðq⃗1⊥þ q⃗2⊥Þ
1

2

Z
d2Q⃗⊥

q⃗2⊥
Q⃗2⊥ðQ⃗⊥− q⃗⊥Þ2

�
: ð2:32Þ

We cannot absorb the infrared divergencies into the initial
state parton distributions in this case. However, for the
sufficiently inclusive, say over soft gluon radiation, cross
section, the infrared divergencies in the real and virtual part
of the BFKL kernel will cancel. Notice that this mechanism
resembles in many respects the Mueller-Navelet dijet

production [26], with the χc playing the role of the jets.
However, for this case more involved calculations includ-
ing a full BFKL resummation have been performed in
recent years [27,28]. As in the case for production of
leading gluons, we will in our numerical calculations
show the contribution from the χc χcg final state with a
lower cutoff on the transverse momentum of the gluon
pg⊥ ¼ jq⃗1⊥ þ q⃗2⊥j > pcut

g⊥ ∼ 1 GeV.

C. Hadron-level cross sections

We now come to the hadron-level cross sections. Below s
is the proton-proton center-of-mass energy squared. The
inclusive production of χc pairs from the 2 → 2 process is
obtained from

dσ ¼ x1gðx1; μ2Þx2gðx2; μ2Þ
1

16πðx1x2sÞ2
× jMð2 → 2Þj2dy1dy2d2p⃗1⊥d2p⃗2⊥δð2Þðp⃗1⊥ þ p⃗2⊥Þ;

ð2:33Þ

with pT ¼ jp⃗1⊥j, and

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T

s

r
ðey1 þ ey2Þ;

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T

s

r
ðe−y1 þ e−y2Þ: ð2:34Þ

The cross section for the 2 → 3 processes is calculated from

dσ¼x1gðx1;μ2Þx2gðx2;μ2Þ
1

256π5ðx1x2sÞ2
jMð2→3Þj2

×dy1dy2dygd2p⃗1⊥d2p⃗2⊥d2p⃗g⊥δð2Þðp⃗1⊥þ p⃗2⊥þ p⃗g⊥Þ;
ð2:35Þ

with

x1 ¼
m1⊥ffiffiffi

s
p ey1 þm2⊥ffiffiffi

s
p ey2 þ pg⊥ffiffiffi

s
p eyg ; ð2:36Þ

x2 ¼
m1⊥ffiffiffi

s
p e−y1 þm2⊥ffiffiffi

s
p e−y2 þ pg⊥ffiffiffi

s
p e−yg ; ð2:37Þ

where mi⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

i⊥
p

and y1;2 are the cm rapidities of
mesons. We take as the factorization scale μ2 ¼ ŝ ¼ x1x2s.
For the case of identical χc mesons in the final state all of
the cross sections must be multiplied by 1=2.

III. NUMERICAL RESULTS

A. Parton-level processes

In this subsection we show two examples of rapidity
distributions on the parton level for the process (C)
in Fig. 2.

ASSOCIATED PRODUCTION OF χc PAIRS WITH A GLUON IN … PHYS. REV. D 99, 074014 (2019)

074014-5



In Fig. 3 we show distribution in rapidity for the
gg → χc0g χc0. Here the center-of-mass energy has been
fixed at W ¼ 50 GeV. The two χc0 mesons are produced
in forward and backward directions while the gluon is
produced in the midrapidity region in the partonic center-
of-mass system. For comparison we show also rapidity
distributions of χc0 mesons from the gg → χc0 χc0 process
(solid line).
Similar distribution for the gg → χc1g χc1 process is

shown in Fig. 4. The situation is similar as for the χc0 χc0
pair production. However, the 2 → 3 contribution here is
relatively enhanced compared to the 2 → 2 one (solid
lines). In each of the gg → χc1 vertices in the 2 → 2
process only one gluon is off-mass shell, whereas in the
2 → 3 process in one of the vertices both gluons are off-mass
shell. The vertex g�g� → χc1 strongly depends on virtualities

of the gluons. We recall that when gluons are on-mass shell
the vertex vanishes (Landau-Yang theorem [29]).
To ensure validity of the effective Regge action (appli-

cability of the Lipatov vertex) one should ensure that the
gluon is produced at a distance of at least yveto ∼ 1 from the
mesons. We therefore show in the left panels of Figs. 3 and
4 the result obtained for yveto ¼ 1 and in the right panels the
result without a rapidity veto. Interestingly, for the χc0 case,
the gluon is automatically produced centrally, while for the
case of χc1 production the rapidity veto is important to
exclude contributions from noncentral kinematics.

B. Hadron-level cross sections

The integrated cross sections (full phase space) for differ-
ent components are shown in Table I for

ffiffiffi
s

p ¼ 8 TeV.
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TABLE I. Values of total cross sections for particular processes for
ffiffiffi
s

p ¼ 8 TeV.

χc2 σtotal χc1 σtotal χc0 σtotal

pp → χc2 χc2 0.62 nb pp → χc1 χc1 8.60 × 10−2 nb pp → χc0 χc0 0.40 nb
pp → ½ χc2 χc2�g 0.19 nb × 2 pp → ½ χc1 χc1�g 4.07 × 10−2 nb × 2 pp → ½ χc0 χc0�g 0.10 nb × 2

pp → χc2g χc2 0.16 nb pp → χc1g χc1 1.78 × 10−2 nb pp → χc0g χc0 0.03 nb
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We restrict ourselves to the case of identical pairs, i.e.,
χc0 χc0, χc1 χc1, or χc2 χc2. We see that the cross sections for
the 2 → 2 processes are consistently lower than the ones
obtained in the kT-factorization approach in Ref. [20].

In Fig. 5 we show transverse momentum distribution of
one of the χc mesons for the 2 → 2 and 2 → 3 processes.
The 2→3 contributions were calculated with pTg>1GeV.

The factorization scale is chosen as μf ¼ ffiffiffî
s

p
and the
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energy in the center of mass of two protons is 8 TeV.
We use the MSTW2008nlo [30] parton distribution
functions. For illustration in a few plots we present only
diagram (B) from Fig. 2, since the behavior of the process
described by diagram (A) is exactly opposite. We discuss
only such pairs, where the two χc’s have the same spin.
This is a sufficiently general example to illustrate the
general characteristics of these processes. Notice that in
high transverse momentum region, the pp → ½ χc χc�g
process dominates for each χcJ, though for χc1 it is
not a big effect.
In Fig. 6 we show rapidity distributions of χc mesons for

the different 2 → 2 and 2 → 3 mechanisms discussed
above. One can see that in the rapidity range jyj > 3 the
pp → ½ χc1 χc1�g process is not negligible (the middle plot
in Fig. 6). While the 2 → 2 subprocesses lead to the

production of χc mesons at midrapidities the 2 → 3
processes generate χc mesons also at large jyj. Such
mesons are then suppressed in the midrapidity experiments
as ATLAS or CMS. The same may be true in the case of the
forward LHCb experiment. When the forward emitted
meson is measured the second meson is emitted preferen-
tially at midrapidities [diagrams (A) and (B)] or even in
opposite directions [diagram (C)]. We leave detailed studies
relevant for a given experiment for the future.
In Fig. 7 we compare rapidity distributions of χc

mesons and the associated gluon [see diagram (C) in
Fig. 2]. In this case, while the χc quarkonia are produced
preferentially in forward or backward directions, gluons
are emitted preferentially at midrapidities. For compari-
son we show also distributions of χc quarkonia from the
2 → 2 subprocesses.
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In Fig. 8 we show similar distributions for diagrams (A)
and (B) in Fig. 2 and for reference also the distributions
from the 2 → 2 subprocesses.
In general, there is rapidity ordering of final state

particles for the considered 2 → 3 processes. To see it
even better let us present now distributions in rapidity
differences between final state objects.

The distribution in rapidity distance between two χc
mesons is shown in Fig. 9 for different components
discussed in the present paper: χc0 χc0, χc1 χc1 and
χc2 χc2. Indeed, as expected, the largest distances between
the χc quarkonia are populated by processes with the gluon
emitted among both χc mesons. Then also a sizeable gap at
small rapidity distances can be observed.
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In Fig. 10 we show similar distributions, this time for
rapidity distance between one of the χc mesons and the
associated gluon for χc0 χc0, χc1 χc1 and χc2 χc2. The
considered mechanisms prefer large distances also in this
variable.
Let us discuss now some correlation observables.
In Figs. 11–13 we show two-dimensional distribu-

tions in transverse momenta of both χc quarkonia for
separate diagrams (A) and (C) shown in Fig. 2. The
contributions of diagram (B) can be obtained by
symmetry with respect to pT1 ↔ pT2. Such separation
of contributions of different diagrams is possible due to
quite different phase space population of the different
mechanisms (diagrams).
Finally in Fig. 14 we show distribution in pT;sum

(vector sum of transverse momenta of both outgoing
quarkonia) for different involved contributions. Because
of the momentum conservation it equals the transverse-
momentum distribution of the emitted gluon. A signifi-
cant difference between diagram (A) and (B) or (C)
appears for χc1. Emission of the gluon is suppressed in
diagram (A) at small pT region. While the distributions
for χc0 χc0 and χc2 χc2 are similar, the distributions for
χc1 χc1 are clearly less steep. Similar observation was
already made in the kT-factorization study in [20]. This
is particularly spectacular for the central emission dia-
gram [diagram (C) in Fig. 2] when both gluons are off-
mass shell.

IV. CONCLUSIONS

In the present paper we have calculated differential
cross sections for χc pair production in the collinear
approach including next-to-leading order corrections

(2 → 3 processes). Here we have considered only
symmetric pairs (identical χc mesons). The present
results can be compared to previously calculated cross
sections in the kT-factorization approach with uninte-
grated gluon distributions constructed according to
Ref. [6]. We have found that the leading order 2 → 2
processes give much smaller cross sections than those
in the kT-factorization approach. Therefore we have
calculated higher order corrections including 2 → 3
processes. There are three typical diagrams with
emission of leading and central gluons (see Fig. 2).
The cross section for leading gluon emission is much
larger.
When adding the leading and (real emission part of the)

next-to-leading order contribution we have obtained results
that are similar to the kT-factorization results for the
production of χc0 χc0 and χc2 χc2 but still considerably
less than in the kT-factorization approach for the χc1 χc1.
The latter disagreement is likely due to even higher order
[next-to-next-to-leading order (NNLO)] contributions
(involving 2 → 4 processes) contained effectively in the
kT-factorization which may be crucial to include for the
χc1 χc1 channel as here the vertices vanish for on-shell
gluons. In general, the larger the numerical value of
deviation from the on-shell situation the larger the vertex.
We expect that consistent inclusion of the NNLO correc-
tions may be important in this particular case and much less
important for other cases. A detailed study will be done
elsewhere.
The central gluon emission is interesting in that it

enhances production of χc ’s at large rapidity distances.
This is similar to the Mueller-Navelet production of large
rapidity distance dijets and one may think of a larger
enhancement from resummation.
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We have calculated several single-particle differential
distributions in rapidity and transverse momentum of χc
mesons as well as some correlation observables such as
two-dimensional distribution in transverse momenta of
both χc quarkonia or in transverse momentum of the
quarkonium pair.
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