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We study the bottomonium screening masses in a 2þ 1 flavor QCD on the lattice using the highly
improved staggered quark (HISQ) action. We focus on a wide temperature range in the region
350 MeV ≤ T < 1000 MeV, and perform our calculations on three different lattice spacings correspond-
ing to temporal lattice extent of Nτ ¼ 8, 10 and 12, in order to control the lattice cutoff effects. From a
detailed study of the temperature dependence of screening masses we conclude that the ηbð1SÞ and ϒð1SÞ
states melt at T > 500 MeV, while the scalar and axial-vector states χb0ð1PÞ and hbð1PÞ melt already at
T > 350 MeV.
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I. INTRODUCTION

The study of the properties of bound states of heavy
quarks called quarkonium has received a lot of attention
since the seminal paper by Matusi and Satz [1], where it
was suggested that the formation of a color deconfined
medium in heavy-ion collisions will lead to the dissolution
of quarkonium, resulting in a suppression of their produc-
tion. There are large experimental efforts in recent times
dedicated towards understanding quarkonium production
and its dynamics in heavy-ion collisions, which are
supplemented by many phenomenological studies, see
Refs. [2–7] for recent reviews.
The in-medium properties of quarkonium in a quark-

gluon plasma (QGP) as well as its dissolution as a function
of the temperature are all encoded in the quarkonium
spectral functions, that are defined in terms of the real-time
correlation functions of the appropriate hadron operators.
Quarkonium states show up as peaks in the spectral
functions, which at high temperatures are expected to be
broadened and shifted in the frequency space, and even-
tually merge into the continuum of quark-antiquark scatter-
ing states. Through an analytic continuation one can relate
the spectral function of the quarkonium state of a specific

quantum number channel to the Euclidean time correlation
function, which can be calculated using lattice field theory
techniques. The Euclidean time correlation function is the
Laplace transform of the spectral function, if thermal
particle production can be neglected, and has a more
complicated kernel otherwise. Therefore, lattice calcula-
tions can in principle provide a model independent infor-
mation on the quarkonium spectral functions. However, in
practice the reconstruction of the spectral function from a
discrete set of Euclidean correlator data from lattice is a
difficult task. Early works on the reconstruction of the
spectral functions have been reported in Refs. [8–15]. It has
also been pointed out that the Euclidean correlation
functions have limited sensitivity to the in-medium quar-
konium properties and/or their melting [16,17], because at
high temperatures the temporal extent of the lattice
becomes small. In the case of bound states of bottom
quarks (bottomonium) there is an additional problem of
large discretization errors in the correlators due to the large
bottom-quark mass. One can circumvent this problem by
using nonrelativistic QCD (NRQCD), an effective theory in
which the energy scale associated with the heavy quark
mass has been integrated out [18]. This approach is widely
used to calculate bottomonium properties at zero temper-
ature [19–24]. Recent studies within the NRQCD formal-
ism at finite temperature [25–30] have indicated that the
ground states of bottomonium channels,ϒð1SÞ and ηbð1SÞ,
can survive up to temperatures of 400 MeV, whereas the
fate of P-wave bottomonia is not yet completely settled.
Lattice results from the FASTUM collaboration suggest
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that the P-wave states melt already at temperatures around
200 MeV [26], while other independent studies also within
the NRQCD formalism suggest that P-wave bottomonia
can survive at higher temperatures within the QGP [28–30].
Since NRQCD is an effective theory with an ultraviolet
cutoff of around the bottom quark mass, the choice of
lattice spacings in these calculations cannot be too small.
Since the temperature is related to the inverse lattice
spacing, T ¼ 1=ðaNτÞ with Nτ being the temporal extent,
this also suggests that studying bottomonia at high temper-
ature with some reasonable choice ofNτ is difficult. For this
reason we do not know yet at what temperatures the ground
state bottomonia melt.
The spatial correlation functions of mesons can offer a

different perspective on the problem of in-medium modi-
fication of mesons, in particular charmonium [31–33]. In
contrast to the temporal meson correlators, the spatial
meson correlation functions can be calculated for large
(spatial) separations between the source and the sink and,
therefore, are more sensitive to the in-medium modifica-
tions of meson states [31–33]. The spatial correlation
functions are in turn related to the meson spectral function
at nonzero momenta through the relation

Gðz; TÞ ¼
Z

∞

0

2dω
ω

Z
∞

−∞
dpzeipzzσðω; pz; TÞ: ð1Þ

While the above relation is more complicated than the
corresponding relation for the temporal correlator and
spectral function for mesons, it is still quite useful. At large
distances the spatial meson correlation function decays
exponentially, and the exponential decay is governed by
the so-called screening mass, GðzÞ ∼ expð−MscrzÞ. When
there is awell-defined bound state peak in themeson spectral
function, the screening mass will be equal to the meson pole
mass [31,32]. On the other hand at very high temperatures,
when the quark and antiquarks are eventually unbound, the

screening mass is given by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπTÞ2 þm2

q

q
, with mq being

the quark mass. Thus the temperature dependence of the
meson screening masses can provide some valuable infor-
mation about themelting ofmeson states. The analysis of the
spatial correlation functions have provided some evidence
for sequential in-medium modification of different charmo-
nium states, i.e., stronger in-mediummodification of excited
charmonia compared to its ground states, and for the
dissolution of the 1S charmonium state at temperatures
T > 300 MeV [32].
The aim of this paper is to provide some new insights on

the melting of bottomonium states in the QGP through the
study of their spatial correlation functions. For the first time
we use the full relativistic Dirac operator for the bottom
quarks in the construction of the meson correlators in 2þ 1
flavor QCD, which allows us to make an independent
prediction on the melting of different quantum number
states independent of the NRQCD formalism. We can thus

unambiguously observe an earlier melting of the scalar and
axial-vector bottomonium states compared to the pseudo-
scalar and vector channels. The paper is organized as
follows. In Sec. II we provide the details of the techniques
we use. Subsequently the main results on the bottomonium
screening masses are discussed in Sec. III, followed by our
concluding section.

II. LATTICE SETUP

We calculate the screening masses of the bottomonium
states in QCD with 2þ 1 flavors of dynamical quarks
treating the bottom quarks in the quenched approximation.
We use the highly improved staggered quark (HISQ) action
[34] for the quarks and a tree level Symanzik improved
gauge action. Using HISQ action for the valence bottom
quark is important since it preserves the correct dispersion
relation for heavy quarks [34]. The strange quark mass,ms,
was chosen to be close to its physical value, while the light
quark masses ml ¼ ms=20 correspond to a pion mass of
160 MeV in the continuum limit [35]. We perform our
calculations on N3

σ × Nτ lattice with temporal extent of
Nτ ¼ 8, 10, 12 and the spatial extent, Nσ fixed by
Nσ ¼ 4Nτ. The corresponding gauge configurations have
been generated by the HotQCD collaboration [35–37]. We
have specifically focused on a wide temperature range
between 2–8 Tc, where Tc ¼ 156.5ð1.5Þ MeV is the chiral
crossover temperature [38]. This enables us to measure the
full details of the thermal evolution of the bottomonium
correlators. Moreover we ensured that mba≲ 1 for the
lattice spacings over this entire temperature range of
interest, which in turn allowed us to have sufficient control
on the lattice artifacts in the results of the bottomonium
correlators. Having three different lattice extents allowed us
to have a better control on the discretization effects at high
temperatures. The bottom-quark mass in this entire range
was set to be 52.5ms, which is close to its physical value.
The lattice spacing was determined in physical units using
the r1 scale defined in terms of the static quark-antiquark

potential through r2 dVðrÞ
dr jr¼r1

¼ 1. We used the paramet-
rization of a=r1 obtained in Ref. [39] and the value r1 ¼
0.3106ð18Þ fm [40]. The details of the lattice parameters
including the bare lattice gauge coupling β ¼ 10=g20, the
quark masses, the temperatures as well as the number of
configurations used in this work are summarized in Table I.
The meson operators for staggered fermions have the

form

JMðxÞ ¼ q̄ðxÞðΓD × ΓFÞqðxÞ; x ¼ ðx; y; z; τÞ; ð2Þ

where ΓD, ΓF are the Dirac gamma matrices corresponding
to the spin and the staggered taste (flavor) structure. In this
work we consider the case where ΓD ¼ ΓF ¼ Γ. This
choice corresponds to local operators for the meson
currents, which in terms of the staggered quark fields have
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the simple form JMðxÞ ¼ ϕ̃ðxÞχ̄ðxÞχðxÞ. The staggered
phase ϕ̃ðxÞ specifies the quantum numbers of the meson
channel. In this work we consider the spatial correlation
functions along the z-direction:

CMðzÞ ¼
Z

dxdydτhJMðxÞJMð0Þi: ð3Þ

For each choice of ϕ̃ðxÞ, the staggered meson correlation
function contains contributions from both parity states,
which correspond to the oscillating and nonoscillating parts
of the correlators. If we restrict ourselves to the lowest
states, the spatial meson correlation function can be simply
written as

CMðzÞ ¼ ANO cosh

�
MNO

�
z −

Ns

2

��

− ð−1ÞzAO cosh

�
MO

�
z −

Ns

2

��
: ð4Þ

The subscripts O and NO for the screening masses and
amplitudes denote the oscillating and nonoscillating states.
In Table II we give the details of the staggered phases
corresponding to the oscillating and nonoscillating con-
tributions for different meson quantum numbers, as well as
the labels denoting the screening masses in the pseudo-
scalar (PS), scalar (S), vector (V) and the axial-vector
(AV) channels. In this study we used point sources

corresponding to the quark and antiquarks in the meson
correlators and performed two state fits of the correspond-
ing correlators to Eq. (4) in order to determine the
bottomonium screening masses.

III. RESULTS

We begin by showing the pseudoscalar ηb screening
mass as a function of the temperature, in Fig. 1. The results
on the screening mass at each temperature have been
normalized by the zero temperature ηb meson mass in this
figure. While the ratiomb=ms is chosen close to its physical
value, the lines of constant physics for the strange quark
mass have not been fixed very precisely for this temper-
ature range [35]. Therefore, we cannot use the experimen-
tally measured mass for ηb from the Particle Data Group
[41], and need to take into account the small deviations of
the b quark mass from its physical value. The dependence
of the ηb meson mass on the b quark mass for the HISQ
action has been studied earlier in Ref. [42] for β ¼ 7.596,
7.825, 8.0, 8.2 and 8.4. Therefore, we could estimate the
zero temperature ηb mass for β ¼ 7.825, 8.0, 8.2 and 8.4
and the b quark masses given in Table I. It turns out that the
ηb mass is larger than the PDG value by 9.8% for β ¼ 8.4.
For β > 8.4, where we do not have the zero temperature
mass data, we assume that the ηb mass is 9.8% larger than
the experimentally measured value based on the above
result. By fitting the lattice b quark mass that corresponds
to the physical value for β ¼ 7.596, 7.825, 8.0, 8.2 and 8.4
[42] with the renormalization group inspired Ansatz we
determine that the input b quark mass for β ¼ 7.65 is 5.5%
larger than its physical value. We can also estimate that at
the close-by value of β, namely β ¼ 7.596, the 5.5% larger
b-quark mass leads to an ηb meson mass that is 4.4% larger
than the physical value. Therefore, we assume that the ηb
meson mass for β ¼ 7.65 is 4.4% larger than the PDG

TABLE I. The gauge coupling, β, the quark masses, the
temperature values and the number of gauge configurations
(#c) used in this study.

Nτ ¼ 8 Nτ ¼ 10 Nτ ¼ 12

β ams amb T #c T #c T #c

7.650 0.0192 1.0090 � � � � � � � � � � � � 350 220
7.825 0.0164 0.8618 611 500 489 250 407 180
8.000 0.0140 0.7357 711 500 571 500 476 180
8.200 0.0117 0.6133 844 250 675 250 562 500
8.400 0.0098 0.5124 1000 240 800 250 666 500
8.570 0.0084 0.4402 � � � � � � 923 250 769 250
8.710 0.0074 0.3886 � � � � � � � � � � � � 866 250
8.850 0.0065 0.3431 � � � � � � � � � � � � 974 250

TABLE II. The staggered phases, the Γ matrices, the botto-
monium states and the corresponding screening masses consid-
ered in this study.

−ϕ̃ðxÞ Γ JPC Meson Screening mass

MNO 1
γ4γ5 0−þ ηb MPS

scr
MO 1 0þþ χb0 MS

scr

MNO ð−1Þxþτ, ð−1Þyþτ γi 1−− ϒ MV
scr

MO γjγk 1þ− hb MAV
scr
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FIG. 1. The pseudoscalar screening mass divided by the mass
of the ηbð1SÞ meson at zero temperature as a function of the
temperature obtained on lattices with Nτ ¼ 8, 10 and 12.
The solid line is LO prediction for the screening mass, while
the dashed line is the NLO prediction, see text.
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value. Since we did not calculate the zero temperature ηb
masses explicitly on the given lattice spacings but estimated
them based on the interpolation, we assign a systematic
error of 1% to all zero temperature ηb masses to account for
possible systematic effects. For the data in Fig. 1, we also
consider the errors in the scale setting a=r1 as well as the
error of r1 in physical units. Different sources of errors have
been added in quadrature to determine the error on each
data point. We observe that the lattice cutoff (Nτ depend-
ence) of the results shown in Fig. 1 is small compared to the
estimated systematic and statistical errors.
In Fig. 1 we observe that at the lowest temperatures, the

ηb screening mass is close to the zero temperature mass,
while at high temperature the screening mass increases
roughly linearly with the temperature. The temperature
dependence of the ηb screening mass is qualitatively very
similar to the temperature dependence of the ground state
charmonium (ηc and J=ψ) screening masses, except that for
charmonium the linear increase with the temperature is seen
already at T > 250 MeV [32]. We recall here that the
approximately linear increase of the screening masses with
temperature corresponds to an unbound quark-antiquark
pair, where the screening mass at leading order (LO) for

quarks of mass mq is given by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπTÞ2 þm2

q

q
. The next-

to-leading correction to the screening mass has also been
calculated [43]. Therefore, we will also use the next-to-
leading (NLO) result to compare with the lattice data. We
show both the LO and NLO result for the bottomonium
screening mass in Fig. 1. For the bottom quarks we use the
MS mass at the scale μ ¼ mb, given by mðμ ¼ mbÞ ¼
4.188 GeV [42]. We observe that the lattice results for the
pseudoscalar screening mass are close to the NLO pre-
dictions for T > 500 MeV. The temperature dependence of
the pseudoscalar screening masses for T > 500 MeV
suggests that the bottom quark and antiquark are no longer
consistently bound, i.e., the ηb meson melting is under way
at T > 500 MeV. At lower temperatures the ηb state exists
with small in-medium modifications. The latter conclusion
is consistent with the findings from NRQCD based studies
[25,26,28–30] as well as with the results obtained
from potential models with a screened complex poten-
tial [44,45].
Next we study the temperature dependence of the

difference between the vector ϒ and ηb screening masses,
which is shown in Fig. 2. We do not expect this difference
to be affected by the small deviations of the b-quark mass
from its physical value, and therefore, we do not attempt to
correct for these small deviations. In estimating the errors
for this observable, we have simply added the errors in the
determination of the lattice spacings and the statistical
errors in quadrature. We again observe a mild Nτ depend-
ence of the results compared to the estimated errors. At zero
temperature the difference between the ϒð1SÞ and ηbð1SÞ
mass is about 70 MeV [41], and is caused by spin-

dependent interactions, which are suppressed as 1=m2
b.

At the lowest two temperatures the difference between the
vector and pseudoscalar screening masses is consistent with
this value. This suggests that at these temperatures the ηbð1SÞ
and ϒð1SÞ exist as well-defined bound states with possibly
little in-medium modifications. For T ≥ 500 MeV this
difference increases linearly with temperature. Perturbative
calculation at NLO in the strong-coupling constant predicts
this difference to be identically zero. In order to understand
the linear temperature dependence of the difference between
the vector and pseudoscalar screening masses at high
temperatures one has to go beyond NLO, and instead
consider a dimensionally reduced three-dimensional effec-
tive theory of QCD.Within this effective theory, a quark and
antiquark propagating along the z-direction interact via a
spin-dependent potential which is proportional to the temper-
ature [46,47]. This spin dependent potential causes a splitting
between the pseudoscalar and vector screening mass that is
also proportional to the temperature [46,47]. For light quarks,
where the effect of their masses is negligible, this feature has
been observed in the lattice calculations for T > 900 MeV,
and the difference is ∼0.3T [48]. For bottom quarks,
however, the effective quark mass in the effective three-
dimensional theory is larger, resulting in the suppression of
the spin-dependent interactions. As a result, the difference
between the vector and pseudoscalar screening masses is
smaller than for the light quarks in the studied temperature
region. At much higher temperatures, T ≫ mb, we expect
that this differencewill eventually approach thevalue of 0.3T
even for the bottomonium. Therefore, the increase in the
difference between the vector and pseudoscalar screening
masses shown in Fig. 2 is in fact expected and is consistent
with an unbound bottom quark-antiquark pair. This again
confirms our assertion that ground state bottomonium melts
at T > 500 MeV.
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FIG. 2. The difference between the vector and pseudoscalar
screening masses as a function of the temperature obtained on
lattices with Nτ ¼ 8, 10 and 12. The solid line corresponds to the
difference between theϒð1SÞmass and the ηbð1SÞmass from the
Particle Data Group (PDG) [41].
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We now examine the difference between the ηb and χb0,
i.e., pseudoscalar and scalar screening masses, as well as
the difference between the ϒ and hb masses. Again we do
not expect these observables to be sensitive to the small
error in our determination of the bottom-quark mass. In
Fig. 3 we show the difference between the scalar and
pseudoscalar screening masses; the error on each data point
is determined by adding the statistical and scale-setting
errors in quadrature. As one can see from Fig. 3 the cutoff
dependence of the result is mild compared to the estimated
errors. The difference between the axial-vector and vector
screening masses is very similar to the one shown in the
figure, hence not shown explicitly. At the lowest temper-
ature T ¼ 350 MeV, the difference between the scalar and
pseudoscalar (or between the axial-vector and vector)
screening masses agrees with the differences between
the χb0ð1PÞ and ηbð1SÞ [hbð1PÞ and ϒð1SÞ] masses
reported in the PDG [41]. This again suggests that
χb0ð1PÞ and hbð1PÞ states exist in the deconfined medium
at T ≤ 350 MeV with relatively small medium modifica-
tions. This is also consistent with the recent lattice results
using NRQCD which show almost no medium mass shift of
the hbð1PÞ and χb0ð1PÞ states [29,30]. For T > 350 MeV
the difference between the scalar and pseudoscalar (axial-
vector and vector) screening masses decreases with increas-
ing temperature, initially very rapidly, by about a factor of 2
in the temperature region 350 MeV ≤ T ≤ 600 MeV, and
then more slowly for T > 600 MeV. At very high temper-
atures the splitting between the scalar and the pseudoscalar
screening masses is expected to be extremely small. In the
light quark sector, this observation is related to the restoration
of chiral and the effective restoration of axial U(1) symmetry.
For bottom quarks these symmetries are explicitly broken
by the large value of the quark mass. However, for T ≫ mb
we expect that the difference between the scalar and

pseudoscalar screening correlators will eventually vanish.
Therefore, the first rapid drop in the difference between
the scalar and the pseudoscalar screening mass shown in
Fig. 3 is related to the melting of χb0ð1PÞ and hbð1PÞ states,
while the subsequent slower decrease for T > 600 MeV
is related to the tiny effects of the bottom-quark mass
and their eventual disappearance in the limit of very high
temperatures.

IV. CONCLUSIONS

We performed a first comprehensive study about the
temperature dependence of the pseudoscalar, vector, scalar
and axial-vector bottomonium screening masses on the
lattice using a relativistic (HISQ) action for the bottom
quarks. We scanned a wide range of the temperature
ranging from 350 to 1000 MeV, and for most temperatures
performed these calculations at three different lattice cut-
offs corresponding to temporal extent Nτ ¼ 8, 10 and 12 of
the lattices. We have found the lattice spacing dependence
of our results is small compared to other sources of errors
and thus does not effect our main conclusion. At the lowest
temperature, all four screening masses agree with the
corresponding bottomonium masses at zero temperature.
For the axial-vector and scalar screening masses we find a
rapid change as a function of temperature forT > 350 MeV,
while for vector and pseudoscalar screening masses the cor-
responding thermal modifications occurs at a higher temper-
ature,T > 450 MeV.The small thermalmodifications of the
ground state bottomonium screening masses [ηbð1SÞ and
ϒð1SÞ] for T < 450 MeV are consistent with the lattice
calculations within the NRQCD formalism [25,26,28]. On
the other hand we predict that the 1P bottomonia will melt at
temperatures, somewhere about 350 MeV, while the ground
state bottomonia will melt at T > 500 MeV.
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